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Hydrogen production from water electrolysis is a key enabling energy storage technology for 

large scale deployment of intermittent renewable energy sources. Proton Ceramic Electrolysers 

(PCEs) can produce dry pressurized hydrogen directly from steam, avoiding major parts of 

cost-driving downstream separation and compression. The development of PCEs has however 

suffered from limited electrical efficiency due to electronic leakage and poor electrode kinetics. 

Here, we present the first fully-operational BaZrO3-based tubular PCE, with 10 cm2 active area 

and a hydrogen production rate above 15 NmL·min-1. The novel steam anode Ba1-

xGd0.8La0.2+xCo2O6-δ (BGLC) exhibits mixed p-type electronic and protonic conduction and low 

activation energy for water splitting, enabling total polarization resistances below 1 Ω∙cm2 at 

600°C and faradaic efficiencies close to 100% at high steam pressures. These tubular PCEs 

are mechanically robust, tolerate high pressures, allow improved process integration, and offer 

scale-up modularity. 

High temperature electrolysers (HTEs) that utilize readily available steam and/or heat 

(renewable or industrial) as a supplementary energy source provide superior electrical 

efficiency compared to conventional water electrolysis.1-4 HTEs developed to date comprise 

solid oxide electrolysers (SOEs) which utilize oxide ion conducting electrolytes and therefore 

produce hydrogen on the steam side cathode. The undiluted high pressure oxygen produced on 

the anode in SOEs presents a safety hazard. Their high operating temperature (typically 800°C) 
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imposes challenges in terms of cell degradation, expensive construction materials, and 

constrained process integration.4-6 Operation at temperatures below 700°C would reduce 

degradation and enable the utilization of inexpensive stainless steel materials in manifolds and 

housing for pressurized systems.7 

Proton ceramic electrolysers (PCEs) based on proton conducting electrolytes such as Y-doped 

BaZrO3-BaCeO3 solid solutions (BZCY) conversely transport protons (H+) from the steam 

anode to the hydrogen-side cathode. Protons migrate with lower migration barrier than oxide 

ions, and are thus favourable for operation at intermediate temperatures, e.g. 400-700°C, which 

is suitable for integration with renewable heat sources (solar-thermal and geothermal plants), 

and waste heat from industrial plants. Unlike other electrolysers it hence produces directly dry 

electrochemically pressurized H2 at the cathode while the O2 produced at the anode is diluted 

with steam (Figure 1a).8-11 This reduces the risks of handling undiluted oxygen at high pressure 

and temperature and, more importantly, alleviates the necessity for most of the cost-driving 

downstream separation and mechanical multi-step compression of H2, amounting for instance 

to approximately 2.4 and 3 kWh/kg H2 at 600°C for compression ratios of 10 and 20, 

respectively. PCEs instead offer the direct production of pressurized H2 from low-pressure 

steam, and the associated compression heat – generally dissipated – can be locally utilized in 

the endothermic electrolysis reaction at the cathode, in turn giving rise to higher process energy 

efficiency.   
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Figure 1: Schematics of water electrolysis technologies and PCE membrane and transport. a, 
Comparison of PEME, PCE and SOE operation, illustrating the benefit of PCEs with production of 
undiluted dry hydrogen on the cathode and diluted oxygen on the anode. b, Illustrations of a tubular 
PCE architecture producing dry hydrogen in the inner cathode chamber with scanning electron 
micrograph of a polished cell architecture. c, Detailed view of transport phenomena and reaction 
mechanisms through a PCE. 

 

The promise of proton ceramic technologies have recently been demonstrated for highly 

performing and fuel-flexible fuel cells (PCFCs),12-15 tubular proton ceramics for direct methane 

conversion into benzene16 and intensified steam methane reforming.17 However, reports of 

steam electrolysis are scarce and limited to laboratory-scale button cells (< 1 cm2) mostly with 

moderate performance and low efficiencies (40-60%).18-22 So far, a lack of efficient and stable 

steam anodes have caused high overpotentials that impose increased p-type electronic 

conductivity in the BZCY electrolyte, resulting in reduced faradaic efficiency as a consequence 

of electronic leakage currents, typically below 50%. A concurrent article15 reports high 

efficiencies of PCEs for small button cells employing a doubly-doped BaCeO3-based 

electrolyte (BaCe0.7Zr0.1Y0.1Yb0.1O3−δ, BCZYYb) and BaCo0.4Fe0.4Zr0.1Y0.1O3−δ (BCFZY) 

anode operating at sub-atmospheric steam pressures. Herein, we show how materials-specific 

challenges can be addressed and overcome, especially concerning targeted adjustment of the 
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anode material composition, to reach stable operation and efficiencies close to 100% for tubular 

PECs (Figure 1) with large (10 cm2) electrode area at high steam pressures. 

The anode activity towards the electrochemical oxygen-steam redox reaction can be enhanced 

by extending the reaction zone beyond the triple phase boundaries (tpb) through the use of 

mixed protonic electronic conductors (MPECs) as electrode material (Figure 1c). For a long 

time, materials that combine mixed protonic and electronic conduction with high catalytic 

activity and thermodynamic stability have been notoriously elusive. However, recent efforts 

have led to the discovery of electronically conductive perovskite-based materials that exhibit 

proton incorporation in the presence of steam.13,23-26 Among these, the double perovskite 

BaGd0.8La0.2Co2O6-δ (BGLC) exhibits the lowest apparent polarisation resistance reported for 

proton ceramic cells of 0.05 Ω·cm2 at 650°C in a symmetrical cell with wet air (EA < 50 kJ∙mol-

1) for the oxygen-steam redox reaction, and an electronic conductivity higher than 800 Scm-

1.24,27,28 BGLC is an ordered double perovskite with oxygen vacancies preferentially located in 

the lanthanide-layer, and displays considerable proton incorporation in humid atmospheres.24 

A recent molecular dynamics study29 of a similar compound, BaGdCo2O5+δ, revealed fast 

proton diffusion kinetics within the a-b plane, supporting the mixed protonic conduction 

character of BGLC electrodes. For the purpose of high pressure electrolysis, where the anode 

material is exposed to high pH2O, we tailored the composition of BGLC by partial substitution 

of Ba with La, giving the general formula Ba1-xGd0.8La0.2+xCo2O6-δ. Stability tests at 600°C 

under 1.5 bar of steam for 72 hours showed a separation into two phases for compositions with 

x < 0.5, i.e., a double perovskite phase and hexagonal BaCoO3 (Supplementary Information (SI) 

Fig.1).30 Precipitation of BaCoO3 proceeds until the remaining double perovskite phase reaches 

a composition stable in steam, thereafter the two phases coexist under the given conditions 

(Figure 2). The stable double perovskite phase is expected to have both of the two lanthanides 

substituted for Ba. Indeed, XRD analysis shows that when 50% of the Ba is substituted with La 

(x = 0.5), BGLC is stable in 1.5 bar of steam, with no precipitation of BaCoO3. The excellent 

stability in high steam atmospheres was further confirmed at a pressure of 28 barg (75% steam 

25% O2) at 600°C with no evidence of secondary phase formation (SI Fig. 1c).  
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Figure 2: Phase segregation and microscopy of BGLC. a, Phase segregation and stability of BGLC in 1.5 
bar of steam and 600°C after 72 hours. b, S/TEM analysis of BGLC nanoparticle after operation as steam 
anode. High-angle annular dark-field (HAADF) micrograph on the left with corresponding energy 
dispersive x-ray spectroscopy (EDS) maps of Ba, Co, Gd, La, O and Zr. High-resolution S/TEM 
micrograph of interface in the top left. 
 
Tubular PCEs were assembled by brush-painting 30 µm-thick BGLC-based anodes on 6 cm 

long tubular BZCY-NiO/BZCY half-cells. The half-cells were produced by co-sintering spray-

coated BZCY electrolyte on extruded Ni/BZCY cathode support tube using solid-state reactive 

sintering.31 This method ensures a reproducible, cost-efficient and highly scalable16,17 

production route of open-ended tubular segments with 5-12 cm2 active area. BZCY72 

(BaZr0.7Ce0.2Y0.1O2.95) was chosen as the electrolyte composition as a compromise between 

thermodynamic stability (high Zr content) and low grain boundary resistance (high Ce content). 

Composite BGLC/BZCY anodes were also employed to tailor the macroscopic thermal 

expansion of the electrode layer to better match that of the tubular support, which is critical to 

achieve sufficient attachment and mechanical integrity in tubular systems during thermal 

cycling. Figure 1b shows a schematized cell arrangement and a detailed SEM view of the 

electrodes-electrolyte interfaces and the top noble metal current collector. BGLC and BZCY 



6 
 

phases are chemically compatible as confirmed by XRD analysis of co-fired powders and form 

clean grain interfaces, as revealed by S/TEM analysis of composite anodes after electrolysis 

tests at high steam pressures (Figure 2b). 

Figure 3a displays current-voltage behaviour of cells operated under electrolytic bias at a total 

pressure of 3 bar, with 1.5 bar steam and 80 mbar O2 on the anode side and 0.3 bar H2 on the 

cathode side (Ar as balance on both sides) at 600°C. The cells with the composite anode 

displayed the lowest total area-specific resistance (ASR) under operation, and much higher 

faradaic efficiencies. Electrochemical impedance analysis under slight electrolytic bias (Figure 

3b) reveals a significantly lower electrode polarization resistance (Rp) for the composite anode 

(0.8 Ω∙cm2) as compared to the single-phase BGLC anode (4 Ω∙cm2). Post-measurement 

inspections of the single-phase BGLC anode revealed considerable delamination of the 

electrode layer, and the larger impedance of this cell is thus attributed to poor adhesion and 

limited reaction zone between the electrode and electrolyte resulting from TEC-mismatch 

between BGLC and the Ni/BZCY support tube. This was successfully mitigated by using 

composite anodes, where a combination of higher annealing temperature and improved TEC-

matching with the tubular support ensured a mechanically robust electrode layer with good 

adhesion to the electrolyte.  
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The polarisation resistance of the composite anode cell under electrolytic operation is below 

1 Ω∙cm2 for anode and cathode combined at 600°C with an activation energy of 0.4 eV between 

400 and 700°C (SI, Fig. 11) attributed primarily to the BGLC steam anode. The rate limiting 

step for the water splitting anode reaction is ascribed to surface-related processes (adsorption, 

dissociation and diffusion) as inferred from the capacitance values of 10-4-10-2 F∙cm-2, in 

agreement with our previous work on BGLC.24 In addition, gas phase diffusion resistance (with 

associated capacitances of 1-10 F∙cm-2) accounts for around 1/3 of Rp at 600°C. Upon increasing 

electrolytic bias, however, gas diffusion resistance diminishes, indicating that consumption and 

thereby reduction of H2O levels facilitate desorption and diffusion of the formed molecular 

oxygen, i.e., that high steam pressures correspondingly cause oxygen mass transfer limitations 

 
Figure 3: PCE electrochemical performance and literature comparison. a, Current-voltage curves 
and faradaic efficiency of two different PCEs (cells 1 and 2, see SI) measured at 600°C with 1.5 bar 
steam in the anode compartment.  b, Corresponding Nyquist plots of the two cells under a small 
electrolytic bias. c, Hydrogen production rates and ionic current densities at thermo-neutral voltage 
(1.29 V) compared to literature values calculated from reported area specific resistances and 
faradaic efficiencies. The grey area provides the theoretical range of operation for PCEs considering 
a 30 µm thick BZCY electrolyte with BGLC anode. The dashed line represents predicted SOE 
performance using 30 µm thick YSZ electrolyte with LSCF anode.  
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at low currents. The ohmic resistance is a major contributor to the total cell resistance, and 

includes also parasitic contact and current collection resistances resulting from the large 

electrode area of the measurement setup and tubular geometry. ASR values are given without 

scaling parasitic wiring and contact resistances to the total area (see SI for details). The 

robustness of the composite electrode processing was further investigated across four cells 

employing different current collection and manufacturing process, showing only small 

variations in electrode polarization (cf. SI Fig. 3). There were, however, significant differences 

in the ohmic offset of the cells due to parasitic and contact resistances arising from the different 

current collection approaches, highlighting the challenge of current collection along the length 

of tubular electrochemical cells.      

By implementing stable BGLC and BZCY compositions as the anode and electrolyte materials, 

we have been able to produce fully operational PCEs with larger surface areas (>10 cm2) that 

can be operated close to 100% faradaic efficiency at 500-600°C under high steam pressures. 

The H2-production rates of these tubular cells under thermo-neutral operation (1.29 V) exceed 

those in the literature using small button-cell BZY-based PCEs, as shown in Figure 3c.18-22 H2 

production rates obtained in this work approach the predicted range of PCE operation 

considering a 30 µm thick BZCY and BGLC as the anode24,27 and surpass that of SOE operation 

below 700°C with YSZ and LSCF as the electrolyte and anode, respectively (See SI for 

details).32-34 Further reduction in ASR for increased H2 production can be obtained through 

improvement of current collection along the tube length to reduce ohmic contact resistances, 

reduction of electrolyte thickness, and optimization of the electrolyte composition with higher 

Ce-content and dopant concentration and hence higher proton conductivity, e.g. 

BaCe0.7Zr0.1Y0.1Yb0.1O3−δ (BCZYYb) or similar.15 

The reported hydrogen production rates of button-cell electrolysers in the literature deviate 

significantly from the theoretical performance of PCEs,18-22 principally due to low faradaic 

efficiencies (ηF < 50%) originating from severe p-type electronic leakage through the 

electrolyte induced by large anode overpotentials. To illustrate the issue of leakage currents, 

the transport of the protonic and electronic (holes and electrons) charge carriers can be 

understood to proceed in “rails” connected in parallel (Figure 1c and SI Fig. 10) where each 

carrier displays a particular dependency on cell potential, temperature and partial pressures. In 

these rails, protons must overcome three in-series connected resistances – ascribed to anode, 

electrolyte and cathode – while electronic charge carriers depend on the electronic conductivity 

in the electrolyte only. 
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Imposing higher current densities in electrolysis operation leads to higher cell potentials that in 

turn induces the generation of additional p-type electronic charge carriers in the electrolyte on 

the anode interface.35 36 In proton conducting BZCY ceramics, the concentration of electron 

holes can be related to oxygen and steam partial pressures and the redox potential E through 

the water oxidation equilibrium as  

[h•] = 𝐾𝐾ox[OHO
• ]𝑝𝑝H2O

−12  𝑝𝑝O2
1
4 = 𝐾𝐾oxexp �𝐹𝐹�𝐸𝐸−𝐸𝐸

0�
𝑅𝑅𝑅𝑅

�      (1) 

, assuming full hydration of BZCY ([OHO
• ] = [YZr

/ ]). Thus, operation of a PCE anode at high 

potentials effectively enhances the electronic leakage current (and lowers faradaic efficiency 

ηF). Similarly, increased n-type conduction develops on the cathode-electrolyte interface as the 

cathode overpotential increases and the effective hydrogen pressure is increased. 

High-steam pressure operation will shift the equilibrium towards lower electron hole 

concentration, higher proton concentration, and thus a higher ionic transport number near the 

anode. At a fixed steam utilization rate, increased total pressure should diminish the hole 

concentration with a 𝑝𝑝tot
−1/4-dependency, giving rise to higher efficiency ηF. Lower temperature 

increases the efficiency further due to decreased hole and increased proton concentrations, 

helped by the low activation energy for water oxidation by the BGLC anode, as illustrated in 

Figure 4a, where I-V-characteristics and H2 production rates at 500, 600, and 700°C are 

presented for the composite anode cell. 
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Figure 4:  PCE cell performance and characterization. a, Hydrogen production and current-voltage 
relations of a composite-anode cell (cell 2) at 500, 600 and 700°C operated at 1.5 bar steam. b, Current-
voltage relations (cell 4) at 600 and 700 °C in 1.5 and 4 bar steam using a 10 cm2 composite anode. c, 
Impedance sweeps at 700°C and 1.5 bar steam at zero and 65 hours (cell 4), and under 4 bar steam 
after 67 hours of operation. 
 

The positive effect of higher steam (and total) pressure is observed in the I-V curves recorded 

for a composite anode cell under 1.5 and 4 bar steam on the anode side (Figure 4b) and keeping 

constant pO2 and pH2 on anode and cathode side, respectively. The operating voltage is 

decreased by 30-50 mV when the steam pressure is increased from 1.5 bar to 4 bar, reflecting 

an increased proton conductivity in the electrolyte, as inferred from the Nyquist plots presented 

in Figure 4c. The stability of the electrochemical performance after 65 hours of high-steam 

pressure operation is evidenced in the same figure.  

The long-term stability of a tubular cell with BGLC/BZCY composite anode was further 

evaluated under pressurized electrolysis conditions (Figure 5a), showing excellent stability over 

700 hours of operation at 600°C with constant current density of 62.5 mA·cm-2 and 1.5 bar 

steam on the anode. The small variations and spikes in the cell potential are associated with 

temperature and pressure changes that occurred upon refilling the steam-supply water tank.  
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During operation, the pH2O gradient over the cell will lead to a certain steam permeation due 

to ambipolar transport of protons and oxide ions, counteracted by the co-ionic migration of 

oxide ions towards the O2/H2O-side of the cell in electrolysis mode. The balance between 

ambipolar diffusion and co-ionic transport by oxide ions will establish a small water vapour 

partial pressure in the H2 compartment, depending on the oxide ion transport number (i.e., T 

and pH2O), ensuring hydration of the electrolyte there. The humidity in the H2 exhaust gas 

stream from a cell operated at 600°C with 1.5 bar steam on the anode side was measured as a 

function of current density to evaluate water content in the produced hydrogen for the present 

cell and reactor design, shown in Figure 5b. As can be seen, the humidity of the produced 

hydrogen remains low (around 0.24%) and unchanged during whole test independently of 

applied current density. This illustrates a major advantage of PCEs over SOEs, where the steam 

is a major component of the hydrogen-side atmosphere. 

The energy efficiency of hydrogen production using tubular PCEs is presented as a function of 

current density in Figure 5c with four different assumptions; i) strict cell-level electrical 

efficiency assuming surplus free heat available, ii) energy efficiency including heat demand in 

endothermic operation, iii and iv) energy efficiency including water vaporization at 50% and 

90% steam utilization, respectively. The present tubular PCEs with active area of 12 cm2 

provide cell-level energy efficiencies above 80% at 150 mA∙cm-2. From a technological 

perspective, it is needed to reduce the ohmic losses throughout the cell to yield similar 

efficiencies at current densities above 1 A∙cm-2. 
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Figure 5: Technological viability of tubular PCEs. a) Stability of tubular PCE (cell 5) operated at 3 
bar total pressure with 1.5 bar steam on anode side over 700 hours at 600°C with a constant current 
density of 62.5 mA∙cm-2. b) Water content in hydrogen exhaust stream as a function of current density, 
showing less than 0.3% water for all applied current densities. c) Calculated energy efficiencies at cell-
level and including heat of water vaporization based on the present set of results.  

 

To validate the observed positive effects of lowered Rp and higher pressure on the faradaic 

efficiency ηF of PCEs, a model is developed based on defect chemistry (Eq.1) and the Butler-

Volmer relation for the electrode polarization. This model describes partial ionic and electronic 

currents as a function of cell potential (cf SI for details) with parameters from the literature for 

BZCY to describe transport through the electrolyte. The anode polarization resistance and total 

pressure (at a fixed steam utilization rate) are varied to investigate the effect of electrode 

performance and operating conditions. Figure 6a shows how the predicted faradaic efficiency 

increases significantly with decreasing Rp for a given current density, as the lower overpotential 

reduces the electron hole concentration in the electrolyte. The model also predicts increased 

faradaic efficiency at higher total pressures (Figure 6b) for a given steam utilization (SU) and 

charge transfer resistance. Thus, pressurized PCE operation allows improved performance and 
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electrical efficiency and – contrary to conventional electrolysers – enable the production of dry 

electrochemically pressurized hydrogen directly in the cathode compartment without dilution 

with unreacted steam (SOE) or water drag (PEM) (Figure 1a). 

Computational fluid-dynamics (CFD) modelling further reveals that the tubular design 

employed in this work allows for essentially isothermal operation along the entire tube length 

(Figure 6c-e). Furthermore, there are practically no radial concentration gradients, i.e. the 

proper gas-phase transport for the chosen cell geometry is confirmed, while the spatially-

progressive steam conversion and dilution with the formed oxygen can be recognized (Figure 

6f). Sensitivity analysis of the current density illustrates the transition between endo- and 

exothermic regimes along the cell length (SI Fig. 13a). The extended analysis on 29 cm-long 

cells – single or in-series segmented – shows again an isothermal profile along the tube length 

and absence of compositional gradients (SI Fig. 14a). These CFD results demonstrate that the 

electrolysis process is scalable for tubular PCE cells with beneficial heat and process 

integration. 

To conclude, BGLC-based PCEs can be operated at a lower temperature and high faradaic 

efficiency, while the tubular geometry enables simple heat and process integration as well as 

low-cost cell fabrication and peripherals. As a consequence, the results presented herein 

demonstrate the potential of PCE technology as a cost-competitive alternative for large-scale 

energy storage and pressurized hydrogen production, especially when renewable or industrial 

waste heat is available. 
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Figure 6: Charge transfer and CFD models of PCE system. Predicted faradaic efficiencies using Eq.1 
(lines) as a function of charge transfer resistance (a) and total system pressure (b). The symbols in 
(a) represent the measured values for the single-phase and composite PCEs in this work. Results of 
the adiabatic CFD model are depicted in figures c-g. c, Description of the setup; d, Cross-section of 
the setup centered in the tube with a description of the external gas flow (orange arrows), and 
internal gas flow (blue arrows); e, Temperature profile for the reference case near the 
thermoneutral point; f, Molar fraction profiles for hydrogen in the internal chamber and for steam 
in the external chamber.  
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Methods 

Preparation of tubular half-cells 

The electrolyte material is BaZr0.7Ce0.2Y0.1O2.95 (BZCY72). Acceptor-doped BaZrO3 is the 

oxide material with the theoretically highest bulk conductivity of protons,37 while acceptor-

doped BaCeO3 is less chemically stable but has lower grain boundary resistance, giving a higher 

total proton conductivity. A solid solution of BaZrO3 and 20% BaCeO3 renders a high 

performing electrolyte material, chemically stable in high steam pressures. In this process, the 

half-cells were prepared by co-sintering a coated, extruded substrate. 

https://doi.org/10.1016/j.ssi.2013.09.025
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Final thermal processing consisted of a reactive sintering method 31,38,39 in which the final 

material is produced via decomposition of the component oxides during normal powder 

processing, rather than using single-phase doped barium zirconate powder. The extrudate 

consisted of a mixture of ceramic powder dispersed in an aqueous binder system. The ceramic 

component was a blend of BaSO4 (Solvay), CeO2 (American Elements), ZrO2 (AMR), Y2O3 

(HJD International) adjusted such that the stoichiometric ratios would yield BZCY72 on 

decomposition along with NiO (Fuel Cell Materials). All powders but NiO were first attrition 

milled with an ammonium polyacrylate dispersant to an average particle size of 0.3 µm. NiO 

was used as-received with an average particle size of 1 µm. Following extrusion, the green 

substrate was coated with a slurry of milled perovskite precursors, binder and organic solvent. 

The coated tubes were then sintered by hang-firing in a muffle furnace at 1600 to 1650°C for 5 

to 10 hrs, which yields dense tubes of BZCY72/NiO with a nominally 30 µm thick BZCY72 

coating.  The tubular cells presented herein are made from tubes taken from production batches 

sintered within this range (longer dwell times for lower temperatures and vice versa) without 

further specification for each tube. Subsequent reduction of the substrate was performed in a 

tube furnace at 1000°C using 5% H2/balance Ar.  Open porosity of the substrate was estimated 

using the Archimedes method to be 25%. 

Sintering of steam-side anodes 

Four different cells, one with a single-phase anode layer of BGLC (x = 0.3, Cell 1) and three 

with composite anode layers of BGLC (x = 0.5) and BZCY (Cells 2-4) were prepared and tested 

on half-cells which was sealed to Al2O3 risers and capped in the open end by use of a glass-

ceramic sealing material developed specifically for BZCY tubular ceramics by CoorsTek 

Membrane Sciences. 

Cell 1: The assembly of riser, lower sealing ring, pre-reduced tube segment and sealing cap was 

mounted in a custom-made sealing jig in a ProboStatTM (NORECS, Norway) sample holder 

with an outer tube for controlled atmosphere and heated to 1000°C at 3°/min in 5% H2 in dry 

Ar. After dwelling for 1 hour at 1000°C, the cell was sealed, and the temperature lowered to 

RT at 3°/min. The single-phase anode was applied on the pre-reduced and sealed half-cell. In-

house synthesized powders of Ba0.7Gd0.8La0.5Co2O6-δ (BGLC, x = 0.3) was prepared by a 

derived Pechini synthesis route. The starting materials were: BaCO3 (99% Alfa Aesar), 

Gd(NO3)3⋅6H2O (99%, Sigma-Aldrich), La(NO3)3⋅6H2O (99%, Fluka) and Co(NO3)2⋅6H2O 

(99%, Sigma-Aldrich) in stoichiometric composition. 1.5 mole citric acid (99.5%, Sigma-
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Aldrich) per mole cations was dissolved in water in a large beaker on a hot plate. BaCO3 was 

slowly added until fully dissolved upon magnetic stir. La-, Gd-, and Co nitrates were 

subsequently dissolved. The beaker was left on the hot-plate with magnetic stir for evaporation 

of the water. When a thick gel was obtained, the beaker was put in a (ventilated) heating cabinet 

at 250°C for 18 hrs for the combustion reaction to take place. The combusted powder was 

crushed thoroughly in a mortar and calcined at 1100°C for 5 hrs. XRD confirmed single-phase.  

The calcined powder was firstly ball-milled in isopropanol at 250 rpm in an agate jar for two 

hrs and further ultra-sonicated for 3 minutes to break up agglomerates. The powder was dried 

in air for 1 hr, and finally mixed with a commercial Nextech ink vehicle and left on a magnetic 

stir for 20 hrs. After the stir-mixing, the ink was brush-painted in eight thin layers, with a drying 

step in air in between each coating, onto the pre-reduced sealed tube segment, mounted in a 

ProboStatTM sample holder and fired at 1000°C for 1 hr with 2% O2 in Ar in the outer 

compartment. The tube segment was primed with NiO sintering aid prior to electrode deposition 

and the inner tube compartment was kept in 5% H2 in Ar during anode sintering. Due to the 

large chemical gradient across the cell, and the mixed electronic-ionic conduction behavior of 

BZCY at high temperatures and under dry oxidizing conditions, the electrolyte is expected to 

face significant oxygen flux in the anode sintering process. Therefore, to avoid Ni re-oxidation, 

the cell was supplied with Pt electrode wires, connected to a Gamry Ref-3000 potentiostat and 

kept under an imposed potential of 1.5 V during the firing program.  After anode deposition, a 

layer of Au paint (Metalor) was applied as current collector and fired in dual atmosphere at 

800°C for 1 hr before the electrolysis experiments. The electrode area was 4.7 cm2. 

Cells 2-4: The composite anodes were applied on un-reduced tube segments. 60 vol% BGLC 

(x = 0.5, Marion Technologies, France) was mixed with 40 vol% BZCY (CerPoTech, 

Trondheim, Norway) and ball-milled in isopropanol at 200 rpm for 3 hrs using agate jar and 

balls. The mixed powder was firstly dried in air and mixed with Nextech ink vehicle using a 

magnetic stirring plate for 20 hrs. Three un-reduced 6 cm tubular NiO/BZCY // BZCY half-

cells were primed with NiO sintering aid. NiO powder was dispersed in isopropanol and the 

suspension was applied at the surface of the electrolyte and dried in air. The segments were 

brush-painted in seven layers with a drying step in air in between each coating and fired in air 

with a 10 hrs dwell at 1200°C. After firing of the anode layers, the adhesion and mechanical 

robustness of the anodes was tested by fastening and removing a rubber Scotch tape. As current 

collector, Pt ink was brush-painted on cells 2 and 4 and fired for 1 hour at 1050°C. Cell 3 was 

painted with Ag ink and fired at 850°C for 2 hrs. After firing of Pt / Ag current collectors, the 
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anode layers were infiltrated with a suspension of BGLC (x = 0.5) particles (d < 100 nm) for 

enhanced catalytic activity. The infiltration suspension was prepared as described elsewhere. 24 

The un-reduced cells were then mounted and sealed to Al2O3 riser tubes before cathode 

reduction. The thermal expansion mismatch between NiO and the sealing materials requires 

that un-reduced cells must be sealed and reduced in one step. In the one-step sealing and 

reduction procedure, the cells were mounted in a ProboStatTM sample holder on risers with 

upper and lower sealing rings and ceramic cap in a custom-made sealing jig. The assembly was 

heated to 1000°C in dry air where all parts sealed. The atmosphere in the inner compartment 

was subsequently switched to 5% H2 in Ar for 30 min and to 10% H2 in Ar for another 30 min, 

keeping the flow at 50 SCCM. After 1 hour, the temperature was lowered to 800°C at 0.5°/min 

and left for 40 hrs for to complete NiO reduction. To avoid oxygen transport, the cell potential 

was kept at 1.5 V. Monitoring electrolytic current during the process gave control over the 

reduction, yielding reduced, crack-free and gas-tight cells. 

Cell 5: A final tubular cell employing a composite BGLC/BZCY anode was fabricated using a 

slightly different approach that circumvents the in-situ sealing and reduction procedure used 

for cells 2-4. Here, a 20 µm thick porous BZCY backbone was sintered onto the tubular half-

cell, before the cell was reduced at 1000°C in 5% H2. The reduced half-cell (with backbone) 

was then capped and sealed under reducing conditions using the same procedure as for cell 1. 

Following the sealing procedure, the BGLC electrode was dip-coated into the backbone using 

a loaded gel solution containing a combination of dissolved precursor nitrates and the calcined 

powder. The coated cell was subsequently fired at 950°C for 5 hours in dual atmosphere (10% 

O2 on anode side, 30% H2 on cathode side) to avoid re-oxidation in the reduced Ni-support 

while keeping the BGLC phase oxidized.  

Set-up and instruments 

Steam electrolysis and electrochemical characterization was performed in a special-made 

experimental reactor designed for measurements with high steam pressures (up to 50 bar total). 

Mass flow controllers and back pressure regulators control and adjust the gas flow rates and 

partial pressures on either compartment. The gas (and liquid water) is fed through an evaporator 

before it enters a hot-box which can be heated up to 200°C. A three-zone furnace and gas 

distribution lines are placed inside the hot-box, to ensure proper and uniform heat throughout 

the measurement system – avoiding any condensation of steam due to cold spots. Exhaust gas 
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is passed through a condenser to extract excess water before the gas is further passed either into 

a micro gas chromatograph (Model 490, Varian) or vented.  

Two different experimental setups were used to measure the single cells. A ProboStatTM 

measurement cell was modified to tolerate temperatures up to 165°C (up to 2 bar steam 

possible) and pressures up to 10 bar and employed for measurements of Cells 1-3. An in-house 

built measurement system based on steel tubing and Swagelok fittings was employed for Cell 

4 to enable higher temperature tolerance, and thus higher steam pressures without water 

condensation.  

Electrochemical measurements were conducted by use of a Gamry Ref-3000 electrochemical 

interface equipped with a Reference 30K Booster, allowing DC currents up to 30 A. Stepwise 

galvanostatic voltage measurements at increasing currents were performed under isothermal 

and isobaric conditions while the outlet gas composition was analysed in the micro GC. The 

outlet gas flow was recorded with reactor mass flow controllers and an extra digital flowmeter 

on the gas line between the reactor and the GC. The measurements were repeated for different 

temperatures and steam pressures. Impedance sweeps were taken in the frequency range from 

105 to 10-2 Hz at steady OCV, and before and after every current step, each time with the same 

DC bias as the corresponding galvanostatic step.  

Cell 5 was used to measure the long-term stability in electrolysis operation and humidity of the 

hydrogen-side exhaust. Both experiments were conducted at 600°C with symmetrical total 

pressure of 3 bar total – with 1.5 bar steam and 0.15 bar O2 (balance Ar) on the anode and 0.3 

bar H2 (balance Ar) on the cathode. The long-term stability tests were conducted over 700 hours 

at a constant current density of 62.5 mA·cm-2, with 0.03 bar of steam in the cathode sweep gas. 

For the humidity test, the applied current density varied from 0 to 60 mA·cm−2 and the steam 

concentration in the cathode exhaust gas was monitored by a Fischerbrand 11745843 humidity 

sensor. Relative humidity and temperature of the hydrogen produced were measured and 

recorded by a humidity sensor under atmospheric pressure, for either dry or humidified (0.03 

bar H2O) sweep gas on the cathode side. The water partial pressure was calculated based on the 

average atmospheric pressure on the test days, which were 101.6 kPa and 102.1 kPa 

respectively. 
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Data Availability 

The data that support the findings of this study are available from the corresponding author 

upon reasonable request.  
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