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Abstract 18 

Arctic-breeding geese acquire resources for egg production from overwintering and breeding 19 

grounds, where pollutant exposure may differ. We investigated the effect of migration strategy 20 

on pollutant occurrence of lipophilic polychlorinated biphenyls (PCBs) and protein-associated 21 

poly- and perfluoroalkyl substances (PFASs) and mercury (Hg) in eggs of herbivorous barnacle 22 

geese (Branta leucopsis) from an island colony on Svalbard. Stable isotopes (δ13C and d15N) in 23 

eggs and vegetation collected along the migration route were similar. Pollutant concentrations 24 

in eggs were low, reflecting their terrestrial diet (∑PCB = 1.23 ± 0.80 ng/g ww; ∑PFAS = 1.21 25 

± 2.97 ng/g ww; Hg = 20.17 ± 7.52 ng/g dw). PCB concentrations in eggs increased with later 26 

hatch date, independently of lipid content which also increased over time. Some females may 27 

remobilize and transfer more PCBs to their eggs, by delaying migration several weeks, relying 28 

on more polluted and stored resources, or being in poor body condition when arriving at the 29 

breeding grounds. PFAS and Hg occurrence in eggs did not change throughout the breeding 30 

season, suggesting migration has a greater effect on lipophilic pollutants. Pollutant exposure 31 

during offspring production in Arctic-breeding migrants may result in different profiles, with 32 

effects becoming more apparent with increasing trophic levels.  33 
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Introduction 34 

Migratory birds utilize resources from multiple locations to fuel energetic costs associated 35 

with reproduction.1,2 However, resources can also be geographically isolated, particularly for 36 

terrestrial bird species that fly overseas. Individuals may therefore be limited by where they 37 

acquire energy for both flight and reproduction.3 In highly seasonal environments such as the 38 

Arctic, terrestrial birds often follow a “green wave” of spring resources,4 where individuals 39 

optimize timing between high quality resources and reproductive success.5,6 An individual’s 40 

timing depends on many factors including body condition and resource availability and 41 

conditions along the flyway and at the breeding grounds.7,8 42 

 43 

In female birds, reproduction includes egg production. Given feeding sites are 44 

geographically isolated, then energy directed towards egg production will range from exclusive 45 

reliance on distant wintering ground resources, to energy obtained during migration, or to 46 

reliance on local breeding resources, but is typically a mix.3,9 Energy often represents nutrients 47 

available to an individual in the form of lipids and protein, with lipids being energetically richer 48 

and less costly to transport over long distances than protein.10-12 49 

 50 

Avian eggs reveal how females both acquire and utilize energy,13 and are useful in the 51 

biomonitoring of environmental pollutants.14 During egg production, females maternally 52 

transfer various lipophilic pollutants including polychlorinated biphenyls (PCBs) and 53 

hexachlorobenzene (HCB), and protein-associated pollutants such as per- and polyflouroalkyl 54 

substances (PFASs) and mercury (Hg).15-17 These contaminants are known for their persistent, 55 

bioaccumulative and toxic properties.18-20 56 

 57 
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In migratory birds such as geese, the consumption of vegetation contaminated via 58 

atmospheric deposition represents a source of exposure to certain pollutants.21,22 Several studies 59 

in migratory birds have identified a spatial relationship between latitudinal position and 60 

pollutant exposure.23,24 With increasing latitude, atmospheric and soil deposition of lighter 61 

chlorinated PCBs and HCB increases, whereas heavier chlorinated PCBs decreases.25-27 The 62 

exposure profile of many bird species is dominated by heavier, more persistent PCBs,28 and this 63 

profile should also reflect spatial trends in migratory birds that feed at different sites during egg 64 

formation. Ecological tracers such as stable isotopes have been used in large part to identify 65 

energy sources utilized during egg production,13,29 however, ecotoxicological studies 66 

combining stable isotopes and pollutants as chemical tracers have received much less attention. 67 

 68 

The purpose of this study was to investigate how migration strategy, both in terms of timing 69 

and spatial dietary energy source, affects pollutant occurrence in eggs of Svalbard-breeding 70 

barnacle geese (Branta leucopsis). Female geese acquire and utilize terrestrial resources along 71 

their migration route relative to their breeding grounds including: resources from distant 72 

overwintering grounds (United Kingdom), staging areas (northern Norway), and local bird cliff 73 

and island tundra (Svalbard, Norway).13,30 Stable isotopes and observational data indicate that 74 

early arriving females utilize distant resources for egg production before local breeding ground 75 

resources reach peak availability,13 while late arriving females are better suited at utilizing local 76 

resources before laying eggs.31 To our knowledge, no attempt has been made to combine stable 77 

isotopes and pollutants as ecological and chemical tracers in this migratory species. 78 

Additionally, storage and transport of lipids are also less costly than proteins, meaning 79 

migration strategies may have a greater effect on pollutants associated with lipids than proteins. 80 

Given latitudinal differences exist in the PCB and HCB profile in air and soil, then geese serve 81 

as a model species to track the movement of environmental pollutants. 82 
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 83 

To determine where geese acquire their energy for egg production and whether this reflects 84 

pollutant exposure, we collected vegetation along the flyway of the goose and eggs at the 85 

Svalbard breeding grounds. We also quantified nest hatch date for the breeding population as a 86 

proxy for migration timing and energy source. We hypothesized that: 1) early egg laying 87 

females fuel reproduction using either stored body reserves or distant wintering ground 88 

resources (UK and/or northern Norway), leading to pollutant remobilization or higher exposure 89 

in females and maternal transfer to eggs; 2) late egg laying females feed on local breeding 90 

ground resources (Svalbard), and are exposed to lower concentrations of pollutants than 91 

individuals relying on distant resources; and 3) migration strategy has a greater effect on 92 

concentrations of lipophilic pollutants (PCBs and HCB) in eggs than protein-associated 93 

pollutants (PFASs and Hg). 94 

 95 

Materials and methods 96 

Barnacle goose biology 97 

The barnacle goose population in the present study overwinter on the Solway Firth (UK) and 98 

migrate to the high Arctic archipelago of Svalbard, Norway (Figure S1, Supporting 99 

Information). Most individuals stopover in spring staging areas along the coast of northern 100 

Norway for several weeks,32 but a small number of birds skip these sites during their northward 101 

migration.33,34 Geese typically depart from the Solway Firth between late April and early May, 102 

spending several weeks in mainland Norway before arriving at the Svalbard breeding grounds 103 

in late May.35 The geese also utilize additional pre-breeding sites on Bjørnøya and along the 104 

west coast of Svalbard, which include tundra vegetation fertilized by marine birds at cliff-105 

breeding colonies.30 When female geese arrive at the breeding grounds, they commence egg 106 

laying in as little as three days.36 Females typically lay a clutch of four eggs and only lay once 107 
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per breeding season.37,38 The egg laying period for the breeding colony typically spans 108 

approximately two weeks, and eggs of a clutch hatch synchronously.38,39 109 

 110 

Study sites and sampling effort 111 

In 2016, our study included three main areas along the migration route of the Svalbard-112 

breeding population of the barnacle goose, including: UK (Solway Firth); northern Norway 113 

(Helgeland and Vesterålen); and Svalbard (Kongsfjorden). Barnacle geese breed on several 114 

islands in the fjord,38 and our study population represented the Storholmen Island colony 115 

(78°56'N, 12°14'E). 116 

 117 

Sighting and nest data 118 

Intensive sightings of ringed barnacle geese were carried out in northern Norway from 29 119 

April to 21 May 2016 in Vesterålen (municipalities of Andøy, Hadsel, Sortland and Øksnes), 120 

and from 22 April to 21 May 2016 in Helgeland (municipalities of Herøy and Træna). On 121 

Svalbard, we registered all nests on Storholmen Island and recorded ring codes of nesting 122 

individuals. At least one member of each nesting pair from our sampling effort was ringed, and 123 

we assumed any unringed individuals in nesting pairs represented the partner. For each 124 

registered nest, we also recorded the hatching date of the clutch, defined as the first day when 125 

an egg in each clutch hatched. 126 

 127 

Vegetation and egg sampling 128 

Vegetation was collected on the Solway Firth and Vesterålen in May 2016, and on Svalbard 129 

June–July 2016. Sites on Svalbard included both island colony and marine bird cliff tundra, 130 

referred to as island tundra and cliff tundra respectively. Vegetation represented a mix of 131 

graminoid and forb species, reflecting the diet of the geese (see Table S1, Supporting 132 
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Information). Diet was sampled in areas where geese had been observed grazing and where 133 

fresh droppings were present. Only the top layers of vegetation were used for subsequent 134 

analysis, as geese predominantly graze at this level.35 135 

 136 

For eggs, an intensive sampling effort took place during the main incubation period on 137 

Storholmen Island from 9 June to 20 June. We had originally planned to sample from early and 138 

late arriving females, however almost all individuals had commenced egg laying prior to our 139 

sampling period. Instead, we sampled a single egg at random from 61 nests, to reduce the 140 

potential effects of intra-clutch variation. Although egg laying sequence may affect pollutant 141 

concentration in avian species,40 several studies have demonstrated that mother-egg or inter-142 

clutch variation is greater than intra-clutch variation.15,41 Thus, we assumed that each egg 143 

sampled was representative of a female’s entire clutch. 144 

 145 

We prioritized sampling from nesting pairs where at least one parent was ringed and 146 

observed at the staging areas in northern Norway. We attempted to sample eggs from females 147 

utilizing early or late migration strategies based on sighting data from northern Norway as well 148 

as egg incubation stage.42 Eggs were stored overnight at 4°C. Embryonic age (defined as 149 

incubation stage) varied greatly across all eggs, so samples were homogenized to obtain a signal 150 

representing whole egg content. Homogenates were aliquoted to polypropylene tubes and stored 151 

at –20 °C. Samples were analyzed for protein content and stable isotopes of carbon (δ13C) and 152 

nitrogen (δ15N), the details of which are described in Supporting Information. 153 

 154 

Pollutant analysis 155 

Egg homogenates were analyzed for PCBs, HCB and PFASs at Norwegian Institute for Air 156 

Research (NILU) at the Fram Centre in Tromsø, Norway. Mercury in eggs was analyzed at the 157 
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University of Oslo, Norway. PCBs and HCB were measured in vegetation from the Solway 158 

Firth, Vesterålen and Svalbard, and PFASs from one site on the Solway Firth and bird cliff 159 

tundra from Svalbard. A total of 43 compounds were analysed, including 19 PCB congeners, 160 

HCB, 22 PFAS compounds and mercury. 161 

 162 

PCBs and HCB analysis 163 

For eggs, approximately 1.5 g of pre-weighed homogenate was freeze-dried for moisture 164 

content removal in approximately 1:5 weight/weight (w/w) of anhydrous sodium sulfate (burnt 165 

at 600 °C). For vegetation, approximately 10 g of pre-weighed material was pulverized with 166 

liquid nitrogen and freeze-dried in 1:3 (w/w) sodium sulfate. Samples were spiked with 2.7 167 

ng/μl of 13C-labelled internal standards: PCB-28, -31, -52, -47, -37, -74, -66, -101, -99, -149, -168 

118, -153, -105, -138, -187, -183, -180, -170, -194 and -209, and HCB. Sample homogenate 169 

was extracted three times with cyclohexane/acetone (3:1) (40/30/30 ml) in an ultrasonic bath. 170 

Supernatant from each step was combined, and then 10% of the combined supernatant was 171 

aliquoted into a pre-weighed vial for gravimetric lipid determination. The remaining 172 

supernatant was evaporated to dryness and reconstituted in 0.5 ml of isooctane and transferred 173 

to EZ-POP NP cartridges (Supelco®) for clean-up purposes. PCBs and HCB were eluted from 174 

the cartridges with 3 × 5 ml of acetonitrile and the eluent was evaporated and reconstituted in 175 

0.5 ml of isooctane. An additional clean-up step was performed using automated solid phase 176 

extraction where extract was eluted with 1 g of activated Florisil® (burnt at 450 °C) with 12 ml 177 

of 1:10 dichloromethane/hexane. The collected extract was evaporated to approximately 0.1 ml 178 

and quantitatively transferred to a GC vial, evaporated to 100 μl, and spiked with 13C-labelled 179 

PCB-159 volume correction standard. See Supporting Information for details on instrument 180 

analysis. 181 

 182 
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PFAS analysis 183 

1–1.5 g of pre-weighed homogenized egg material was extracted using 8 ml acetonitrile, 184 

while 30 g of vegetation was extracted using ca. 40 ml of methanol following methods described 185 

previously.17 Egg and vegetation extracts were evaporated to 2 ml and 1.5 ml respectively. Prior 186 

to extraction, all samples were spiked with 0.5 ng/μl of 13C-labelled internal standards: PFBA, 187 

PFPA, PFHxA, PFHpA, PFOA, PFNA, PFDcA, PFUnDA, PFDoDA, PFTeDA, PFBS, PFHxS, 188 

PFOS, PFOSA, 6:2 FTS and 8:2 FTS. Prior to quantification, each 0.5 ml of solution was spiked 189 

with 2 ng of 3,7-brPFDcA recovery standard and 0.1 ml was transferred to an autoinjector vial 190 

containing 0.1 ml of 2 mM NH4OAc in HLB-water. Full details of the instrumental analysis are 191 

described elsewhere.43 Ten μl of extract was used to separate and analyses PFASs by ultrahigh 192 

pressure liquid chromatography triple-quadrupole mass-spectrometry (UHPLC-MS/MS). Data 193 

quantification was conducted with LCQuan software (Thermo Scientific). Unless specified, all 194 

PFASs refer to linear isomers. 195 

 196 

Hg analysis 197 

Total mercury was analyzed by atomic absorption spectrometry using a Direct Mercury 198 

Analyzer (DMA-80, Milestone). Approximately 0.03 g of freeze-dried egg homogenate was 199 

analyzed. Samples were analyzed in parallel with sample blanks and certified reference material 200 

(DORM-4 fish protein; DOLT-5 dogfish liver, National Research Council Canada). Samples 201 

were analyzed in at least duplicate to ensure precision of measurements. Average recoveries of 202 

the certified reference materials were within 10% of the reported values. The detection limit of 203 

the instrument was 0.05 ng mercury. 204 

 205 

Quality assurance/control 206 

Concentrations reported for PCBs, HCB and PFASs were blank corrected based on the 207 

average concentration detected within blank samples. Limits of detection (LOD) and 208 
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quantification were calculated as three and ten times the standard variation within blank 209 

samples, respectively. LOD for PCBs ranged from 0.001 to 0.012 ng/g wet weight (ww); HCB 210 

was 0.026 ng/g ww; and PFASs from 0.015 to 0.100 ng/g ww (Table 1). PCB and HCB 211 

concentrations were only reported for analytes that had a quantification/qualifier ion ratio 212 

within 20% of the ratio determined within the quantification standard. Reference material for 213 

PCBs and HCBs (Contaminated fish reference material, EDF-2525) and PFASs (Pike-perch, 214 

QM03-2) were also extracted in conjunction with sample material to assess method 215 

performance. Internal standard recoveries for PCBs in eggs ranged between 40% and 60%; and 216 

PFASs between 50% and 73% in eggs, and from 16% to 165% in vegetation (Table S8, 217 

Supporting Information). 218 

 219 

Data treatment and statistical analyses 220 

Pollutant datasets 221 

We used two datasets for statistical analyses, including: 1) lipophilic compounds with 19 222 

PCB congeners and HCB; and 2) protein-associated compounds with six PFAS compounds and 223 

mercury.  Individual pollutants were included in datasets if they were detected in 60% or more 224 

of our egg samples, to maximize statistical information and reduce random noise from non-225 

detect samples (see Table S7, Supporting Information for pollutants excluded). When 226 

individual concentrations of each pollutant across all samples fell below the LOD, we imputed 227 

left-censored data by replacing missing values (53 values for PCB; 71 values for PFAS) with a 228 

random number between 0 and the LOD assuming a beta distribution (α = 5, β = 1). We also 229 

calculated pattern or relative contribution of PCBs and PFASs, expressed as the proportion of 230 

each PCB congener or PFAS family to the sum total (e.g. [PCBi]/∑PCB or [PFASi]/∑PFAS). 231 

For PCBs, we also summed concentrations according to the number of chlorine atoms as well 232 

as metabolic group (Tables S9–10, Supporting Information). 233 
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 234 

Statistical analyses 235 

We analyzed pollutant concentrations and patterns in R v. 3.4.1.44 Multivariate analysis and 236 

visualization of data was conducted by Principal Component Analysis (PCA) within the vegan 237 

package v. 2.4-4.45 We transformed pollutant concentrations (log10 x) to normalize distributions 238 

and reduce heterogeneity and/or skewness. We explored absolute concentrations of PCBs, 239 

HCB, PFAS and Hg, as well as relative concentrations (i.e. patterns) of PCBs and PFASs by 240 

PCA. Biological variables, which included hatch date, egg size (length), embryonic age, and 241 

values of δ13C and δ15N, were projected on the ordination space as passive variables. We 242 

conducted a redundancy analysis (RDA) on both datasets in order to summarize the explanatory 243 

power of relevant explanatory or biological variables, and quantified the percentage of variation 244 

explained by each variable. Biological variables in our RDA included hatch date, egg size 245 

(length), embryonic age, values of δ13C and δ15N and lipid and protein content. Hatch date was 246 

positively correlated with lipid content (Pearson’s R = 0.29, P = 0.02), and PCB concentrations 247 

also increased with later hatch date, independent of lipid content (see Results and Discussion). 248 

This prompted us to conduct partial RDA (pRDA) by treating PCB and HCB concentrations on 249 

wet weight basis and lipid content as a covariable. A pRDA fits the biological variables to the 250 

residual variation that is not attributable to the covariables.46 The relationship between 251 

significant biological variables and pollutant concentrations are depicted using linear 252 

regressions. Unless specified, PCB, HCB and PFAS concentrations are reported on wet weight 253 

(ww), and mercury on dry weight (dw) basis. 254 

 255 

Results and Discussion 256 

Breeding population of Storholmen 257 
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In 2016, a total of 272 breeding pairs were registered on the Storholmen island breeding 258 

colony. Nest hatching commenced 10 June and concluded 20 July, with a peak hatch date 259 

between 24 and 25 June (Figure 1). Hatching dates of the subsampled population (N = 61 pairs) 260 

were similar to the colony as a whole, with a peak hatch date of 25 June (range: 18 June to 20 261 

July; Figure 1; Table 1). 262 

 263 

The spread in hatch dates is twice as large as in 1993 and 1994 (range = 15 days),47 as well 264 

as in 2006 and 2007 (range = 15 days).13 This new timeframe suggests that geese are responding 265 

to a warmer climate, due to increased availability of resources at the staging areas in northern 266 

Norway and Svalbard breeding grounds, and has resulted in a broadening of the time window 267 

for reproduction. The mean hatch date for the Svalbard population has also advanced by 268 

approximately one week since the 1990s,39,47 and 2016 represented the earliest hatch date on 269 

record for the island population. 270 

 271 

From the 61 nesting pairs which eggs were sampled, at least one individual from 23 nesting 272 

pairs was resighted at the staging areas in northern Norway previously in the same breeding 273 

season (Vesterålen N = 18; Helgeland N= 5), meaning that we could not account for the 274 

migratory behavior of the remaining geese. It is likely that several non-sighted geese utilized 275 

staging areas in northern Norway before arriving in Svalbard, but were either not observed 276 

during the sighting period or were feeding outside sighting areas. Lipid content in eggs was 277 

17.0 ± 2.4%, and was 2-5 times greater than protein content (4.9 ± 1.0%; Table 1). Lipid content 278 

in eggs also increased with hatch date, which was contrary to expectation. We expected that 279 

earlier arriving females would utilize stored body reserves, resulting in increased lipid 280 

availability during egg production. Instead, later arriving females were remobilizing a greater 281 

proportion of lipids, which could be due to differences in foraging behavior for geese that 282 
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migrate late to the Svalbard breeding grounds,7 or energetic differences in vegetation along the 283 

migration route.48 We found no relationships between all other biological variables measured 284 

(Tables S2–4, Supporting Information). 285 

 286 

Spatial contribution of resources for egg production 287 

Stable isotope signatures in vegetation overlapped between the wintering, staging and island 288 

colony sites (Figure 2). Vegetation sampled from cliff tundra contained lower δ13C and higher 289 

δ15N values compared to all other sites (δ13C: t-test: t13 = –2.75, P = 0.02; δ15N: t-test: t13 = 4.26, 290 

P < 0.01; Figure 2). We expected to find a unique isotopic composition along the flyway of the 291 

goose following a previous study on goose droppings collected from each site.13 However, 292 

stable isotope signatures between vegetation and droppings may not be comparable given 293 

fractionation between diet and droppings takes place during digestion.49,50 294 

 295 

Egg stable isotope signatures (δ13C = –28.4 ± 0.8 ‰, range: –30.3, –26.6; δ15N = 10.1 ± 1.7 296 

‰, range: 7.7, 19.4; Figure 2) were unrelated to lipid and protein content or sighting of 297 

individuals in northern Norway (Tables S4–6, Supporting Information). Values of δ13C in eggs 298 

increased with later hatch date (Pearson’s R = 0.30, P = 0.02; Figure 3b), but δ15N values did 299 

not. δ13C and δ15N values were higher in eggs compared to vegetation from all sites (t-test: δ13C 300 

t72 = –2.75, P < 0.001; δ15N t68 = 6.15, P < 0.001), except for cliff tundra where δ15N was higher 301 

than in eggs (t-test: t61 = –6.54, P < 0.001; Figure 2). 302 

 303 

Carbon and nitrogen isotope signatures in the eggs of barnacle geese from Storholmen Island 304 

were similar to a neighboring island colony in 2006 and 2007.13 The high δ13C values in eggs 305 

compared to vegetation suggest that geese also utilize stored body reserves for egg production 306 

such as breast muscle and abdominal fat, which is often enriched in 13C.11,29 A previous study 307 
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on Greater Snow Geese (Chen caerulescens atlantica) found a strong positive relationship 308 

between δ13C values in maternal storage tissues and eggs,29 suggesting that an increasing 309 

reliance on stored body reserves corresponds to an enriched 13C signal in eggs. 310 

 311 

δ15N values in eggs did not change throughout the breeding season, suggesting that most 312 

females either did not utilize local Svalbard resources from bird cliff in 2016, or utilized this 313 

resource in similar proportions. Due to an overlapping δ13C signal across most sites, we could 314 

not calculate the contribution of resources towards egg production under a stable isotope mixing 315 

model.51 A previous model has shown that the Svalbard goose population can allocate 50% of 316 

resources from vegetation in the UK and northern Norway for egg production, assuming a 317 

limited number of sites along the flyway.13 However, reliance of resources from UK and 318 

northern Norway decreases with later egg laying date; and this relationship has only been 319 

observed in the lipid-free yolk component of eggs.13 Even though we measured stable isotopes 320 

in whole eggs, the positive relationship between δ13C signal in eggs and nest hatch date 321 

remained, suggesting that egg energy source varies throughout the breeding season. 322 

 323 

Low levels of pollutants in vegetation 324 

Low concentrations of HCBs were detected for vegetation at all sites, but PCBs were not 325 

(Solway Firth: 0.02 ± 0.01 ng/g ww, N = 2; Vesterålen: 0.05 ± 0.03 ng/g ww, N = 3; Svalbard 326 

cliff tundra: 0.09 ± 0.04 ng/g ww, N = 4; Svalbard island tundra: 0.03 ± 0.02 ng/g ww, N = 2). 327 

PFASs were detected at cliff tundra (0.03 ng/g ww, N = 1), but not on the Solway Firth (N = 328 

1). We could not sample a larger quantity of vegetation across all sites due to intensive goose 329 

grazing activity, meaning these values should be treated with caution. 330 

 331 

Low levels of lipophilic pollutants in eggs 332 
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Total PCB concentrations in eggs ranged between 0.46 and 4.42 ng/g ww (Table 1). PCB-333 

153 accounted on average for 32% of the total PCB concentration in eggs, followed by PCB-334 

118 (16%), PCB-138 (12%) and PCB-180 (10%). HCB was the dominating chemical in all 335 

eggs, where concentrations ranged between 0.99 and 5.65 ng/g ww (Table 1). 336 

 337 

Average concentrations of PCBs and HCB in barnacle goose eggs indicate low levels of 338 

exposure in adult female geese. Pollutant concentrations are several orders of magnitude lower 339 

than in eggs of piscivorous and predatory Arctic seabird species.52,53 The low concentrations in 340 

goose eggs reflects a terrestrial diet, and is similar to levels in other Arctic terrestrial species 341 

occupying low trophic levels including caribou (Rangifer tarandus) and hare (Lepus 342 

arctica).54,55 Average lipid normalized concentrations of PCBs and HCB in eggs from this study 343 

(∑12PCB = 7.2 ng/g lipid weight; HCB = 14.4 ng/g lw) are lower than in eggs from a 344 

neighboring Svalbard barnacle goose colony sampled in 2006 (∑12PCB = 53.5 ng/g lw; HCB = 345 

27.4 ng/g lw; n = 6).56 The temporal decrease in PCB and HCB concentrations in biota is also 346 

consistent with decreasing trends in air and monitoring data.57,58 347 

 348 

Effect of migration on PCB and HCB in eggs 349 

With later hatching date, both lipid content and wet weight concentrations of PCB in eggs 350 

increased (Figures 3a and 3c). Hatch date contributed to 10.9% of the total variation in wet 351 

weight pollutant concentrations (RDAHatch date: F1,54 = 6.62, P = 0.001) and 6.9% when lipid 352 

content was treated as a covariable (pRDAHatch date: F1,53 = 4.37, P = 0.01; Figure S3, Supporting 353 

Information). HCB contributed little to pollutant variation across eggs (Figure 3d). When 354 

exploring differences in PCB patterns across eggs, hatch date explained 4% of the total variation 355 

in PCB patterns (RDAHatch date: F1,54 = 2.26, P = 0.05). The relative contribution of tri- and tetra-356 

chlorinated PCBs to the total PCB load was higher in late hatching eggs (75th percentile = 8.3 357 
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± 4.3%) than in early hatching eggs (25th percentile = 6.8 ± 1.5%; RDAHatch date: %variation = 358 

6.7; F1,54 = 3.86, P = 0.02; Figure S4, Supporting Information). We also found a weak 359 

relationship between the enrichment of 13C and increasing concentrations of tri- and tetra-360 

chlorinated PCBs in eggs (RDAδ13C: %variation = 4.5; F1,54 = 2.54, P = 0.07). Hatch date was 361 

unrelated to substitution patterns of PCBs when arranged by metabolic group.59 362 

 363 

The finding that absolute PCB concentrations were higher in late hatching eggs (75th 364 

percentile = 1.74 ± 0.66 ng/g ww) than in early hatching eggs (25th percentile = 1.06 ± 0.15 365 

ng/g ww) was contrary to our expectations. We expected the earliest hatching eggs to contain 366 

the highest concentrations of PCBs, as these represent females that arrive at the Svalbard 367 

breeding grounds prior to snowmelt,60 thereby relying on resources from wintering grounds, 368 

staging areas, cliff tundra and/or stored body reserves for egg production. However, HCB 369 

concentrations in eggs did not change throughout the breeding season, suggesting that 370 

consumption of Svalbard resources was similar across females, assuming that HCB 371 

concentration in vegetation increases at higher latitudes.61,62 372 

 373 

Late hatching eggs may instead represent a small number of females that delay their 374 

departure from the wintering grounds by several weeks, skip or have a very brief stopover at 375 

staging areas in northern Norway. The exact proportion of individuals that utilize this strategy 376 

is unclear, but these females arrive later or around the same time as individuals that utilize 377 

staging areas in northern Norway.33-35 In addition, the pre-nesting period between arrival at the 378 

breeding grounds and egg laying may be shorter for late arriving females than early ones.31 379 

Thus, late arriving females may rely more on overwintering ground resources instead of 380 

breeding ground resources. Other relevant biological variables that could contribute to the total 381 

variation in pollutant occurrence across eggs include timing of departure from the overwintering 382 
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grounds, duration spent at staging areas, timing of arrival at the breeding grounds, and 383 

proportion of resources utilized at different sites. 384 

 385 

When breeding females utilize stored body reserves for egg production, PCBs becomes 386 

remobilized and translocated within the body. The rate of diffusion depends on chlorine atom 387 

placement and degree of the chlorination for a given PCB congener. For example, less 388 

chlorinated PCBs translocate more quickly from stored body reserves than more chlorinated 389 

PCBs due to their lower lipophilicity (i.e. lower Kow).63-65 Indeed, we observed the latest 390 

hatching eggs to contain a significantly higher relative contribution (1.5% greater) of tri- and 391 

tetra-chlorinated PCBs compared to the total PCB load when compared to the earliest hatching 392 

eggs. The substitution pattern of PCBs should also affect their diffusion rates,66 however this 393 

pattern was similar across all eggs. 394 

 395 

The body condition of females offers an alternative explanation for the higher lipid content 396 

and PCB concentrations in late hatching eggs. Females that arrive late at the breeding grounds 397 

may be in poorer body condition, and thus will depend more on stored body reserves (e.g. lipids) 398 

to maintain body condition.7 A remobilization of lipids will thus lead to increased circulating 399 

levels of pollutants in blood,67 thereby increasing the potential for pollutants to be transferred 400 

during egg production. Additionally, a greater reliance on distant resources may result in 401 

exposure to higher concentrations of PCBs, as these areas are closer to potential point sources 402 

of pollution compared to remote polar regions.23,24 The high lipid content and PCB 403 

concentration in late hatching eggs is likely to be due to a combination of factors, including 404 

females foraging predominantly at distant overwintering grounds, followed by the direct flight 405 

to the Svalbard breeding grounds resulting in a greater reliance on stored body reserves and/or 406 

poorer body condition. However, we were unable to assess the exact contribution of each of 407 
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these factors to the overall pollutant profile measured in eggs, and this uncertainty warrants 408 

future research. This could include the use of tracking devices to determine each individual’s 409 

migration schedule.68 410 

 411 

Similar PFASs and Hg occurrence across eggs 412 

Total detectable PFAS concentrations in eggs ranged between 0.05 and 17.7 ng/g ww (Table 413 

1). When detectable, linear-PFOS on average accounted for 29% of the total PFAS 414 

concentration in eggs, followed by: PFUnDA (25%), PFNA (13%), PFTriDA (11%), PFDcA 415 

(9%) and PFDoDA (8%). We detected mostly long-chained perfluorinated carboxylates 416 

(PFCAs) in eggs, which are also common in other bird species and the marine ecosystem in 417 

general.69 Total mercury concentrations in eggs ranged between 9.76 and 40.99 ng/g dw (Table 418 

1). 419 

 420 

Occurrence of PFAS and Hg in relation to the protein content of eggs did not change 421 

throughout the breeding season (Figures 3e–f), supporting our expectation that migration 422 

strategy has a greater effect on pollutants associated with lipids than proteins. Proteins may 423 

serve as a limiting resource during egg formation,29,70 and energetic costs of transporting stored 424 

protein during migration may be greater than for lipids.11 Thus, the acquisition and allocation 425 

of PFASs and Hg towards egg production should be limited by similar mechanisms. 426 

Alternatively, a similar PFAS or Hg signal across eggs may be due to similar exposure profiles 427 

at each site along the flyway. For example, fractionation of PFASs generally does not occur 428 

along latitudinal gradients,71 as the chemicals are mainly transported through oceanic currents.72 429 

This could be validated by future or increased sampling efforts of vegetation at each site along 430 

the migration route. 431 

  432 
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The present study reveals differences in exposure profiles of eggs of herbivorous geese, 433 

which may be a consequence of different migration strategies. Eggs laid later in the breeding 434 

season contained higher concentrations of PCBs. Barnacle geese are also responding to a 435 

warming climate by arriving earlier at the breeding grounds, which can affect the optimal timing 436 

between departure from overwintering grounds, arrival at the breeding grounds and peak food 437 

quality.68 A shift in timing may also lead to a change in reproductive success of Arctic-breeding 438 

goose populations,36 which may lead to further changes in the exposure profile of eggs. Recent 439 

evidence shows some polar bears (Ursus maritimus) have shifted their summer diet, which 440 

includes increased consumption of goose eggs.73 This will not only impact the reproductive 441 

success the barnacle goose populations, but may cause changes in the distribution pollutants 442 

across Arctic food webs. The study of pollutants as chemical tracers in Arctic migrants yields 443 

insights into potential energy sources utilized during offspring production. Our study concerned 444 

an herbivorous migrant, and we expect stronger relationships for organisms that feed at higher 445 

trophic levels, where the effects of migration or reproductive strategies may become more 446 

apparent. 447 

 448 
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Table 1. Biological and pollutant information (PCB, HCB, PFAS and Hg) in barnacle goose 676 

eggs sampled on Svalbard in 2016. Unless specified, estimates refer to the egg contents. 677 

Biological variable   Min-max N Mean ± SD 

Mass (g)  Whole egg: 

Content: 

82.0–113.3 

71.0–101.6 

61 98.4 ± 7.1 

87.8 ± 6.6 

Whole egg size (mm)  Length: 

Width: 

67.6–92.5 

47.2–55.2 

61 76.2 ± 4.2 

50.3 ± 1.6 

Embryo age (d)   0–23 61 13.3 ± 5.7 

Nest hatch date   18 June–20 July 61 28 June ± 5.6 days 

Lipid (%)   10.6–26.0 59 17.0 ± 2.4 

Water content (%)   60.2–72.7 61 68.3 ± 1.6 

Protein (%)   2.8–8.7 50 4.9 ± 1.0 

Pollutant LOD % detected* Min-max Median‡ Mean ± SD 

PCBs (ng/g ww, N = 58)      

PCB-28/31 0.003 96 <LOD–0.025 0.009 0.010 ± 0.003 

PCB-52 0.005 93 <LOD–0.044 0.008 0.010 ± 0.006 

PCB-47 0.003 72 <LOD–0.008 0.004 0.005 ± 0.001 

PCB-37 0.001 98 <LOD–0.401 0.013 0.023 ± 0.054 

PCB-74 0.002 100 0.010–0.262 0.023 0.031 ± 0.035 

PCB-66 0.003 98 <LOD–0.037 0.013 0.014 ± 0.006 

PCB-101 0.004 70 <LOD–0.031 0.005 0.008 ± 0.006 

PCB-99 0.001 100 0.005–0.101 0.022 0.028 ± 0.019 

PCB-149 0.004 98 <LOD–0.040 0.010 0.011 ± 0.006 

PCB-118 0.003 70 <LOD–1.104 0.127 0.197 ± 0.176 

PCB-153 0.012 100 0.139–1.559 0.335 0.402 ± 0.244 

PCB-105 0.002 91 <LOD –0.338 0.044 0.068 ± 0.058 

PCB-138 0.010 100 0.056–0.422 0.126 0.150 ± 0.087 

PCB-187 0.003× 100 0.029–0.156 0.058 0.066 ± 0.025 

PCB-183 0.003× 100 0.009–0.076 0.022 0.025 ± 0.013 

PCB-180 0.002 100 0.041–0.362 0.113 0.129 ± 0.064 

PCB-170 0.007× 100 0.025–0.199 0.054 0.060 ± 0.033 

PCB-194 0.007× 100 0.008–0.055 0.016 0.018 ± 0.008 

PCB-209 0.007× 65 <LOD–0.017 0.010 0.010 ± 0.003 

ΣPCB   0.462–4.418 1.006 1.227 ± 0.800 

HCB 0.026 100 0.987–5.647 2.368 2.364 ± 0.697 

PFASs (ng/g ww, N = 59)      

PFHpS 0.035 3 <LOD–0.289 0.268 0.268 ± 0.030 

branched-PFOS 0.070 7 <LOD–4.247 2.114 2.195 ± 2.089 

linear-PFOS 0.070 63 <LOD–11.304 0.314 0.930 ± 2.319 

PFNS 0.065 5 <LOD–0.509 0.436 0.456 ± 0.046 

PFNA 0.015 81 <LOD–0.326 0.062 0.080 ± 0.060 

PFDcA 0.015 81 <LOD–0.367 0.058 0.078 ± 0.067 

PFUnDA 0.015 98 <LOD–0.954 0.127 0.167 ± 0.153 

PFDoDA 0.015 81 <LOD–0.230 0.056 0.066 ± 0.040 

PFTriDA 0.020 75 <LOD–0.261 0.098 0.109 ± 0.055 

PFTeDA 0.020 32 <LOD–0.110 0.054 0.053 ± 0.022 

ΣPFAS   0.054–17.690 0.539 1.209 ± 2.972 

Hg (ng/g dw, N = 61) 0.050 100 9.760–40.990 18.520 20.170 ± 7.520 

Min = minimum; Max = maximum; N = sample size; SD = standard deviation; LOD = limit 678 
of detection; ww = wet weight; dw = dry weight. *Percentage of eggs quantified above the 679 
LOD. ‡Calculated using values above LOD. ×Values represent limits of quantification (LOQ).  680 
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Figure legends  681 

Figure 1. Histogram of nest hatching dates of barnacle geese breeding on Storholmen Island in 682 

2016 (N = 272) and the subsampled population in the present study (N = 61). Arrows indicate 683 

the earliest and latest hatching dates. Mean ± SD above the plots. 684 

Figure 2. Stable isotope composition of δ13C and δ15N in eggs of barnacle geese sampled on 685 

Svalbard (N = 59) in 2016, as well as vegetation collected along the flyway including United 686 

Kingdom, northern Norway and Svalbard island and cliff tundra (N = 15) the same year. Circles 687 

represent eggs of geese sighted in Norway; triangles not sighted. Vegetation is denoted by 688 

diamonds. 689 

Figure 3. Relationship between nest hatch date and: a) lipid content (%) (R2 = 0.07, P = 0.02); 690 

b) δ13C (R2 = 0.09, P = 0.02); c) ∑PCB concentration (points and solid line on wet weight, R2 691 

= 0.18, P < 0.01); dashed line on lipid weight; R2 = 0.11, P < 0.01); d) HCB concentration; e) 692 

∑PFAS concentration; and f) mercury concentration in eggs of barnacle geese sampled on 693 

Svalbard in 2016. Circles represent eggs of geese sighted in Norway; triangles not sighted. 694 

Linear regressions presented when relationships were significant.  695 
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Figure 2. Stable isotope composition of δ13C and δ15N in eggs of barnacle geese sampled on 701 

Svalbard (N = 59) in 2016, as well as vegetation collected along the flyway including United 702 

Kingdom, northern Norway and Svalbard island and cliff tundra (N = 15) the same year. Circles 703 

represent eggs of geese sighted in Norway; triangles not sighted. Vegetation is denoted by 704 

diamonds.  705 
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 706 

Figure 3. Relationship between nest hatch date and: a) lipid content (%) (R2 = 0.07, P = 0.02); 707 

b) δ13C (R2 = 0.09, P = 0.02); c) ∑PCB concentration (points and solid line on wet weight, R2 708 

= 0.18, P < 0.01); dashed line on lipid weight; R2 = 0.11, P < 0.01); d) HCB concentration; e) 709 

∑PFAS concentration; and f) mercury concentration in eggs of barnacle geese sampled on 710 

Svalbard in 2016. Circles represent eggs of geese sighted in Norway; triangles not sighted. 711 

Linear regressions presented when relationships were significant. 712 


