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 Abstract— Successful trading in electricity markets relies on 
the market actor’s ability to accurately forecast the electricity 
price. The fundamental electricity price models use market 
information, provided by various price drivers, including the 
residual that contains a risk premium. In the past, researchers 
investigating risk premium focused primarily on daily spot price 
levels, ignoring the intraday information hindering the accurate 
risk premium determination. This paper presents a new KGB 
Method for modelling of risk premium, based on “ex-ante” 
approach focused on a yearly product. The method involves a 
novel KGB Model and its linearized formulation, the KGB 
Linear Model, which enables capturing the influence of 
renewable energy sources on risk premium. The four key drivers 
of the KGB Linear Model were used providing an insight into the 
influence of RES generation on risk premium evolution. The 
method was tested on historical data from the German electricity 
market. The results for the 2010 – 2014 period reveal overall 
influence of PV production share on risk premium is greater 
than that of wind production share, both increasing the risk 
premium due to their variability and uncertainty. Using the 
KGB Method, market actors can forecast risk premium using 
information readily available to them. 

Key words—risk premium, PV production, wind production, 
RES production, risk premium model, electricity price, 
fundamental electricity price models, electricity markets. 

I. INTRODUCTION 

 
 ORECASTING of electricity price is one of the key 
support tools for companies trading in the wholesale 

electricity market, so the choice of an appropriate forecasting 
model is of great importance to them, [1]. Market actors 
calibrate their forecasting models corresponding to their 
vision of the market as well as their trading strategy. 
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According to their market roles, they follow different trading 
strategies, exhibiting various levels of risk tolerance. 

Among the actors, traders primarily realize a profit from 
taking on the risk on the electricity market. They do this by 
opening a trading position based on their view of the market 
and on their risk tolerance level. In contrast, the producers and 
the large- or the mid-scale suppliers are primarily responding 
to relative price levels on the market and are typically less 
interested in quantifying the risk levels of their trades. 

In an ideal electricity market, the expected spot price of 
electricity as forecasted by the model would equal the actual 
traded derivative future price. However, the expected spot 
price does not perfectly conform to the price of the traded 
futures even with frequent updates of the forecast, and the 
difference appears to be stochastic. We could therefore 
assume that this difference does not contain only a forecast 
error, but also a specific quantity – a Risk Premium (RP), [2]. 

RP is a part of the future commodity price that comprises 
the expected future risk and the expected spot price. A 
producer is willing to sell its future production at the expected 
future commodity price, and the consumer is prepared to pay 
RP within the expected future commodity price to eliminate 
the future price risk, [3]. In the literature, various RP 
definitions can be found. While some authors, [4], deal with a 
general notion of RP, others classify RP into several types, 
based on: 

• The used calculation approach, e.g. “ex-ante” or “ex-
post”, [2], [5], [6], or 

• The assessed risk type, e.g. “statistical risk”, 
“fundamental risk” and “behavioral risk”, 
respectively, [5]. 

In the “ex-post” RP calculation approach, RP is defined as 
a difference between the traded futures price and the realized 
spot price, [7]–[9]. However, this assumption would hold only 
if the electricity price was stationary in the delivery time 
horizon (t, T). Since the price is generally not stationary over 
time, [10], that difference contains also a forecast error in 
addition to RP, [5]. Consequently, we believe that the “ex-
post” approach yields incorrect RP results since it ignores the 
forecast error. 

The “ex-ante” RP calculation approach, Fig. 1, has a 
different philosophy. The traded futures price is considered at 
the time of the expected spot price forecast. Therefore, all 
market data used to compute RP are captured at the same 
time. Since the “ex-ante” approach does not assume the 
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electricity price as stationary, it allows for a correct 
calculation of RP. 

Researchers acknowledge that “ex-ante” approach is highly 
dependent on the subjective choice of a forecasting model for 
the expected spot price determination, [1]. 

 

 
Fig. 1. The “ex-post” and “ex-ante” RP calculation approaches compared 

The dynamic behavior of RP is also influenced by energy 
storage. The latest findings show a strong inverse correlation 
of RP with water reservoir levels, [2], [11]. Namely, the 
electricity stored in a full water reservoir can be injected 
during the times of energy shortage on the market, reducing 
the potential price spikes. Since the market actors expect that 
kind of hydro power producer behavior, the full water 
reservoir levels reduce the future price uncertainty on the 
market, as expressed with RP. Furthermore, the authors state 
that this correlation can be extrapolated to all energy storage 
technologies, [2], [11]. They also suggest a possible 
dependence of RP on the variable and uncertain electricity 
production from Renewable Energy Sources (RES) 
production, in particular wind- and solar photovoltaic (PV) 
production. However, we are not aware of any current 
research focusing on modeling of that dependence. 

The research of RP in the energy markets came to focus in 
the past decade, with several authors stating that RP is time-
varying, [2], [6]. While the formulation of the behavior of RP 
in the literature is diverse, they all define it as a component of 
the forecasted price that increases or decreases the expected 
price due to uncertainty inherent in the »ex-ante« approach, 
[1]. 

Most of the “ex-ante” RP research focuses on forecasting 
of RP in short-term spot market (day- to week ahead). Some 
claim that strong positive RP occurs due to tightness of the 
system, attributing the cause to fundamental factors such as 
power plant availability, wind power production and demand, 
[12]. On a short-term time horizon (up to 1 month), “ex-ante” 
modelling can result in highly positive RP for base load 
products [7], [12], [13]. Yet, [5], Bunn’s findings on the short-
term day-ahead market show RP for peak being positive 
where off-peak is on average negative. In the same study 
considering month-ahead RP results show that peak and off-
peak products during the winter carry positive RP, and during 
the summer the results of peak and off-peak RP are negative. 
Still, in [6], within the “ex-ante” short-term monthly RP 
research, the authors claim that the average RP increases with 
the length of the time-to-maturity, considering RP in general 
positive for the long-term yearly products. For the long term 
horizon up to two years ahead, some authors, [9], examine the 
forward RP in the net hedging demand of market actors. They 
develop a model that yields decreasing absolute values of 

forward RP (eventually getting negative) when time-to-
maturity or delivery period length increases, [5]. 

The focus of the present paper is on the longer-term 
horizon (yearly products), as exhibited in the traded futures 
products with an additional focus on peak/off-peak dynamics 
through peak and off-peak periods. This is a less-researched 
area, yet of high interest of the market actors. Therefore, we 
have proposed a robust model that does not respond to quick 
changes in trends present in the input data that are typical in 
day-ahead markets. Such a model is well suited for 
forecasting of RP in long-term products, but not so much for 
RP forecasting in the short-term products. 

In the last 5 years we witness a steep growth of variable 
RES, most notably PV and wind generation that introduced 
increased generation uncertainty, intuitively increasing the 
long-term RP. This trend is likely to continue in the following 
decade, [14], [15], so the trend of increased RP is likely to 
persist. 

In the paper, a new method for RP determination is 
presented. The KGB (Krečar-Gubina-Benth) Method is based 
on the “ex-ante” approach that allows for mathematical 
calculation of RP. The method involves a novel KGB Model 
and its alternative formulation, the KGB Linear Model that 
enables capturing the influence of RES drivers on RP. The 
KGB Method envisions calibration of the KGB Linear Model 
using the multiple linear regression (MLR). The key drivers 
used in the KGB Linear Model are determined through 
correlation with the calculated RP values. By correlating RP 
with the PV production and wind production time series, we 
provide an insight into how the RES generation units 
influence RP evolution and consequently the electricity price 
on the market. 

II. ANALYTICAL KGB RISK PREMIUM MODEL 
In the »ex-ante« RP modeling approach, [5], the difference 

between the current futures price ℱ(𝑡𝑡,𝑇𝑇) and expected spot 
price 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡] for a future time T can be expressed as ∆(t, 
T) (1). 

 ℱ(𝑡𝑡,𝑇𝑇) − 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡] = ∆(𝑡𝑡,𝑇𝑇) (1) 

We can assume that the spot price is observed in a filtration 
ℑ𝑡𝑡, containing all market information up to time 𝑡𝑡. ∆(𝑡𝑡,𝑇𝑇) is a 
sum of RP 𝑅𝑅(𝑡𝑡,𝑇𝑇), forecast error ε and random noise 𝜗𝜗𝑡𝑡, (2), 

 ∆(𝑡𝑡,𝑇𝑇) = 𝑅𝑅(𝑡𝑡,𝑇𝑇) + ε + 𝜗𝜗𝑡𝑡 (2) 
The forecast error ε is mainly related to the expected 

deviation between the results of an ideal forecast and the 
individual actors’ forecasts. Since we propose a general 
forecasting method, this component can be assumed to be on 
average close to zero, ε = 0, and therefore it is considered for 
simplicity to be equal to zero from now on. Random noise 𝜗𝜗𝑡𝑡 
describes the market movements due to the activity of the 
relevant market actors. Since an ideal market is liquid enough 
to neutralize these effects, the model has been designed for the 
ideal market without random noise 𝜗𝜗𝑡𝑡  = 0. Hence, under the 
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ideal conditions, It is assumed that ∆(t, T) comprises only RP, 
s.t. ∆(𝑡𝑡,𝑇𝑇) = 𝑅𝑅(𝑡𝑡,𝑇𝑇). Equation (1) becomes (3), 

 ℱ(𝑡𝑡,𝑇𝑇) − 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡] = 𝑅𝑅(𝑡𝑡,𝑇𝑇) (3) 

By definition, RP is calculated as the difference between 
the future value of delivered electricity price ℱ(𝑡𝑡,𝑇𝑇) and the 
estimated value of its spot price 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡] at time 𝑡𝑡 for the 
future delivery period interval [T1, T2]. The generalized 
expression of RP can be written as (4). 

𝑅𝑅(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) = ℱ(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) − 1
𝑇𝑇2−𝑇𝑇1

∫ 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡]𝑑𝑑𝑑𝑑
𝑇𝑇2
𝑇𝑇1

 (4) 

Here 𝑅𝑅(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) represents RP, and the futures price is 
represented as ℱ(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) at time 𝑡𝑡 for the delivery time 
period [T1, T2]. The spot price 𝑆𝑆(𝑇𝑇) can be defined as a sum of 
deterministic 𝛬𝛬(𝑇𝑇) and stochastic 𝑋𝑋(𝑇𝑇) components, to model 
each process independently in (5), [16]. 

 𝑆𝑆(𝑇𝑇) = 𝛬𝛬(𝑇𝑇) + 𝑋𝑋(𝑇𝑇) (5) 

The deterministic component 𝛬𝛬(𝑇𝑇) at time T can be 
modeled explicitly as a seasonally varying mean. In order to 
express the dynamics of 𝑋𝑋(𝑇𝑇) we use an Ornstein-Uhlenbeck 
(OU) process driven by a Brownian motion  𝐵𝐵(𝑡𝑡). 

 𝑑𝑑𝑑𝑑(𝑡𝑡) = − 𝛼𝛼𝛼𝛼(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎𝜎𝜎(𝑡𝑡)  (6) 

Here α represents the speed of mean reversion and σ is the 
volatility. An OU-process is mean-reverting, meaning that 
prices deviating from the long-term mean Λ(t) will tend to 
return to it. The farther the prices are away from the mean, the 
stronger mean reversion is. This is in line with economic 
reasoning, e.g. very high prices will lead to reduced demand, 
and in turn to reduction in prices. The expected value of the 
stochastic process 𝑋𝑋(𝑇𝑇) is expressed as a sum of two parts, 
(7), 

 𝔼𝔼[𝑋𝑋(𝑇𝑇) ∣ ℑ𝑡𝑡] = 𝔼𝔼�𝑋𝑋(𝑡𝑡)𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑡𝑡) 
 + 𝜎𝜎 ∫ 𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠) ∣ ℑ𝑡𝑡

𝑇𝑇
𝑡𝑡 � (7) 

Since the stochastic integral inside the conditional 
expectation of (7) has zero mean and is independent of the 
𝜎𝜎 − ℑ𝑡𝑡, its estimated value equals zero as well, (8). 

 𝔼𝔼 �𝜎𝜎 ∫ 𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠) ∣ ℑ𝑡𝑡
𝑇𝑇
𝑡𝑡 � = 0 (8) 

The expected spot price for the period [T1, T2] equals to 
deviation of spot price and deterministic component 
multiplied by exponential expression, (9), 

 𝔼𝔼[𝑋𝑋(𝑇𝑇) ∣ ℑ𝑡𝑡] = 𝑋𝑋(𝑡𝑡)𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑡𝑡) + 0 (9) 

 𝔼𝔼[𝑋𝑋(𝑇𝑇) ∣ ℑ𝑡𝑡] = �𝑆𝑆(𝑡𝑡) − 𝛬𝛬(𝑡𝑡)�������
𝑋𝑋(𝑡𝑡)

� 𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑡𝑡) (10) 

, expression (10) is inserted into (4) and (5) to express RP, 
(11). 

𝑅𝑅(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) = ℱ(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) 

− 1
𝑇𝑇2−𝑇𝑇1

∫ �𝛬𝛬(𝑇𝑇) + [𝑆𝑆(𝑡𝑡) − 𝛬𝛬(𝑡𝑡)]𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑡𝑡)�𝑑𝑑𝑑𝑑𝑇𝑇2
𝑇𝑇1�����������������������������

𝐼𝐼

 (11) 

Introducing I as a substituting variable leads to (12). 

𝐼𝐼 =
1

𝑇𝑇2 − 𝑇𝑇1
� 𝛬𝛬(𝑇𝑇)𝑑𝑑𝑑𝑑
𝑇𝑇2

𝑇𝑇1
+

1
𝑇𝑇2 − 𝑇𝑇1

� 𝑆𝑆(𝑡𝑡)𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇2

𝑇𝑇1
 

 − 1
𝑇𝑇2−𝑇𝑇1

∫ 𝛬𝛬(𝑡𝑡)𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇2
𝑇𝑇1

  (12) 

By integration, (12) becomes (13). 

𝐼𝐼 = 𝛬𝛬̅(𝑇𝑇1,𝑇𝑇2) + [𝑆𝑆(𝑡𝑡) − 𝛬𝛬(𝑡𝑡)] 1
𝑇𝑇2−𝑇𝑇1

∫ 𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑡𝑡)𝑑𝑑𝑑𝑑𝑇𝑇2
𝑇𝑇1

(13) 

Additionally, the integral in (13) is solved as in (14). 

� 𝑒𝑒−(𝑇𝑇−𝑡𝑡)𝑑𝑑𝑑𝑑
∆
→

𝑇𝑇2

𝑇𝑇1
 

 
∆
→ �−

1
𝑇𝑇2−𝑇𝑇1

𝑒𝑒𝛼𝛼𝛼𝛼 �𝑒𝑒
−𝛼𝛼𝑇𝑇2−𝑒𝑒−𝛼𝛼𝑇𝑇1�

𝛼𝛼
𝛼𝛼 = 0

 (14) 

Hence, I can be expressed as (15). 
𝐼𝐼 = 𝛬𝛬̅(𝑇𝑇1,𝑇𝑇2) 

 +[𝑆𝑆(𝑡𝑡) − 𝛬𝛬(𝑡𝑡)] 1
𝑇𝑇2−𝑇𝑇1

𝑒𝑒𝛼𝛼𝛼𝛼 �𝑒𝑒
−𝛼𝛼𝑇𝑇2−𝑒𝑒−𝛼𝛼𝑇𝑇1�

−𝛼𝛼���������������
𝛺𝛺(𝑡𝑡,𝑇𝑇1,𝑇𝑇2)

 (15) 

Consequently, the KGB Model expresses RP as (16). 

 𝑅𝑅(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) = ℱ(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) − 𝐼𝐼 (16) 

From (15), 𝛺𝛺 is expressed as (17), 

 𝛺𝛺(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) = � 𝑡𝑡 ≤ 𝑇𝑇1;  1
𝑇𝑇2−𝑇𝑇1

𝑒𝑒𝛼𝛼𝛼𝛼 �𝑒𝑒
−𝛼𝛼𝑇𝑇2−𝑒𝑒−𝛼𝛼𝑇𝑇1�

−𝛼𝛼
 

𝑡𝑡 > 𝑇𝑇1;                            0                      
 (17) 

III. DEFINITION OF KGB LINEAR MODEL 
Among the most important characteristics of the electricity 

spot price are its volatility and mean reversion, [17]. To 
incorporate these characteristics, the Schwartz model [18] and 
[19] has been chosen as a classic price model for commodity 
markets. The Schwartz model extends the Brownian motion 
model by allowing for mean reversion, (6). It contains a 
seasonality component and an OU process. To find the 
forward price under a pricing measure 𝑄𝑄 equivalent to 𝑃𝑃, 
Brownian motion is expressed as a combination of a Wiener 
process and a drift in (18). 

 𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝑑𝑑𝑑𝑑(𝑡𝑡) + 1
𝜎𝜎
𝜇𝜇�𝑍𝑍(𝑡𝑡)�𝑑𝑑𝑑𝑑 (18) 

A measure change is expressed in (18) and (19), linking 𝑄𝑄 
with an adapted 𝑅𝑅𝑛𝑛-valued stochastic process 𝑍𝑍 and a 
measurable function 𝜇𝜇. If the Radon-Nikodym density 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 
expressed in (19) 

 𝑡𝑡 ↦ 𝑒𝑒𝑒𝑒𝑒𝑒(∫0
𝑡𝑡𝜇𝜇(𝑍𝑍(𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠)) − 1

2
∫0
𝑡𝑡𝜇𝜇2(𝑍𝑍(𝑠𝑠))𝑑𝑑𝑑𝑑)  (19) 



4 
TPWRS-01806-2018.R2 

 
 

   
 

is a true martingale, Girsanov’s Theorem [20]–[22] ensures 
the existence of an equivalent probability 𝑄𝑄~𝑃𝑃 such that 𝑊𝑊 is 
a Q-Brownian motion on a finite time interval. A true 
martingale ensures that the expected value is one, hence 
defining a probability measure. In general, (19) is only a local 
martingale if 𝜇𝜇(𝑍𝑍(𝑠𝑠)) is an Ito integrable process. For the 
moment, we suppose that 𝜇𝜇 and 𝑍𝑍(𝑠𝑠) satisfy additional 
conditions that yield the martingale property of (19). This way 
the Q-dynamics of 𝑋𝑋 becomes, (20): 

 𝑑𝑑𝑑𝑑(𝑡𝑡) = �𝜇𝜇�𝑍𝑍(𝑡𝑡)� − 𝛼𝛼𝛼𝛼(𝑡𝑡)�𝑑𝑑𝑑𝑑 + 𝜎𝜎𝜎𝜎𝜎𝜎(𝑡𝑡)  (20) 

Or, on the explicit form, 𝑋𝑋(𝑇𝑇) is expressed as in (21). 

𝑋𝑋(𝑇𝑇) = 𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑡𝑡)𝑋𝑋(t) 

 +𝜎𝜎 ∫ 𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑠𝑠)𝑑𝑑𝑑𝑑(𝑠𝑠)𝑇𝑇
t  (21) 

 +∫ 𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑠𝑠)𝜇𝜇�𝑍𝑍(𝑠𝑠)�𝑑𝑑𝑑𝑑𝑇𝑇
t   

Hence, the forward price (for a fixed-delivery contract) can 
be easily expressed as in (22). 

 ℱ(𝑡𝑡,𝑇𝑇) = 𝔼𝔼𝑄𝑄[𝑆𝑆(𝑇𝑇)|ℑ𝑡𝑡]  

 = 𝛬𝛬(𝑇𝑇) + 𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑡𝑡) 𝑋𝑋(t)�
𝑆𝑆(t)−𝛬𝛬(t)

 (22) 

  +∫ 𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑠𝑠)𝔼𝔼𝑄𝑄�𝜇𝜇�𝑍𝑍(𝑠𝑠))|ℑ𝑡𝑡��𝑑𝑑𝑑𝑑
𝑇𝑇
t���������������������

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

  

The Wiener process has independent increments with zero 
mean, yielding the expression for the risk premium as in (23), 

 𝑅𝑅(𝑡𝑡,𝑇𝑇) = ℱ(𝑡𝑡,𝑇𝑇) − 𝔼𝔼[𝑆𝑆(𝑇𝑇)|ℑ𝑡𝑡]  

 = ∫𝑡𝑡
𝑇𝑇𝑒𝑒−𝛼𝛼(𝑇𝑇−𝑠𝑠)𝔼𝔼𝑄𝑄[𝜇𝜇(𝑍𝑍(𝑠𝑠))|ℑ𝑡𝑡]𝑑𝑑𝑑𝑑 (23) 

We assume that 𝜇𝜇 is such that the conditional expectation 
under 𝑄𝑄 can be expressed in (24) by a linear combination of 
the factors in 𝑍𝑍(𝑡𝑡) for deterministic functions 𝑎𝑎1,.. 𝑎𝑎𝑛𝑛. 

𝔼𝔼𝑄𝑄 �𝜇𝜇 �𝑍𝑍(𝑠𝑠)� �ℑ𝑡𝑡� = 𝑎⃑𝑎𝑇𝑇(𝑡𝑡, 𝑠𝑠)𝑍𝑍(𝑡𝑡) = 𝑎𝑎1(𝑡𝑡, 𝑠𝑠)𝑍𝑍1(𝑡𝑡) 

+𝑎𝑎2(𝑡𝑡, 𝑠𝑠)𝑍𝑍2(𝑡𝑡)+. . . +𝑎𝑎𝑛𝑛(𝑡𝑡, 𝑠𝑠)𝑍𝑍𝑛𝑛(𝑡𝑡) (24) 

This can be achieved by assuming that 𝜇𝜇 itself is a linear 
function in 𝑍𝑍(𝑡𝑡) and letting 𝑍𝑍𝑖𝑖(𝑡𝑡) be OU-processes. 
Alternatively, (24) can be viewed as a linearization of the 
“true” μ that is serving as its specification. The property we 
use for 𝑍𝑍(𝑡𝑡) to go from (23) to (24) is a linear property with 
regards to conditional expectation, which is shared by many 
processes, including OU processes. For validation of the 
measure change from 𝑃𝑃 to 𝑄𝑄 with such a choice of 𝜇𝜇, please 
refer to [23], where the authors analyse measure change with 
state dependent Radon-Nikodym derivatives given by 
Ornstein-Uhlenbeck processes (including jumps) and RP is 
expressed as a weighted sum of the impact factors. This way, 
the KGB Linear Model is defined in (24). 

IV. KGB METHOD OVERVIEW 
In this paper, a new KGB Method for RP calculation and 

the associated models are proposed. The analytical KGB 
Model is based on a robust stochastic process aimed at long-
term RP forecasting, less suitable for predicting RP for 
weekly or daily futures products. The proposed KGB Method 
simplifies the computation of RP and is aimed at a broader 
audience of market actors beyond the specialized analytics 
departments of large energy traders. 

The KGB Method is composed of three parts: KGB Model 
calculation, KGB Linear Model calibration, and KGB Linear 
Model use in forecasting, Fig. 2, as explained in this section. 

 
Fig. 2: KGB Method  

The KGB Model, defined in (16), includes a KGB Price 
Sub-model, (15), that supplies the expected spot price 
𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡]. Since the actual values of RP are not known, 
the KGB Model was set up to calculate RP(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) with the 
help of 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡], and the only way to validate the KGB 
Model results was to compare the quality of 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡] 
forecasts by using back-casting comparison with the actual 
price data 𝑆𝑆(𝑡𝑡). For this purpose, the outputs of KGB Price 
Sub-model 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡] were compared to the price forecast 
results from two other models, ARX(7)-GARCH(1,1) and 
SARIMAX(2,1)(1,1), described in Section VI. The Quality 
Test in the top right of Fig. 2 compares the outputs of the 
models based on how well their output fit the past data. If the 
forecast error of KGB Price Sub-model is less or equal to the 
error in the other two models, the KGB Price Sub-model use 
is validated for its use in calculation of RP(𝑡𝑡,𝑇𝑇1,𝑇𝑇2). 
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To facilitate a broader use of RP forecasting, a KGB Linear 
Model was introduced in (24). In the following step of the 
KGB Method, Fig. 2, this model is calibrated using MLR 
according to Section V. 

The mathematical derivation in Section III proves that the 
relation between the stochastic RP process and the exogenous 
variables can be described as a linear combination, via the 
KGB Linear Model, (24), and parameterized via MLR. 
Several exogenous variables are proposed in Section V. By 
using MLR we obtain regression parameters and other 
statistical quality measures of the estimation. 

Using the calibrated KGB Linear Model, a market actor 
can run the RP forecast for any desired time period, Fig. 2; an 
example is presented in Section VIII-F. The market actor only 
needs four sets of exogenous data [𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, 𝑧𝑧4] for a selected 
period in the future. 

V. RES PRODUCTION INFLUENCE ON RP 
To investigate the influence of the RES on RP 

development, we have correlated RP calculated using KGB 
Model with RES production, with the focus on PV and wind 
production. In the literature, expected price models related to 
several exogenous variables can be found that include drivers 
like wind production share, PV production share and 
consumption, [24], [24], [26]. Since RP is strongly related to 
time-to-maturity, [5], [6], it was chosen in addition to the 
three above already established exogenous variables. 

Our assumption therefore was that the following four 
variables, influencing the behavior of the market participants, 
have the greatest impact on RP component of the electricity 
price: wind production share in the total production 𝑧𝑧1, PV 
production share 𝑧𝑧2, electricity consumption 𝑧𝑧3, and time-to-
maturity 𝑧𝑧4. The ex-ante RP as stated in KGB Linear Model 
can be expressed as (25). 

𝑅𝑅(t,𝑇𝑇1,𝑇𝑇2) = 𝑎𝑎0(t,𝑇𝑇1,𝑇𝑇2) + 𝑎𝑎1(t,𝑇𝑇1,𝑇𝑇2)𝑧𝑧1(t) 
 +𝑎𝑎2(t,𝑇𝑇1,𝑇𝑇2)𝑧𝑧2(t) + 𝑎𝑎3(t,𝑇𝑇1,𝑇𝑇2)𝑧𝑧3(t) (25) 

 +𝑎𝑎4(t,𝑇𝑇1,𝑇𝑇2)𝑧𝑧4(t).  

To avoid correlation error between input variables, all 
inputs need to be exogenous to RP. Since wind and PV 
productions depend on weather conditions, and since their 
marginal production cost is near zero, the wind and PV power 
series can be treated as exogenous to price [24], consequently 
to RP. For the same reason, consumption can be treated as 
exogenous, too. To ensure that all exogenous variables are 
stationary, the Dickey-Fuller test, [24] was performed. The 
test results show that all exogenous variables used are 
stationary. The Belsley collinearity diagnostics was used on 
the variables and has shown no collinearity among them. 

The analysis of RES production characteristics in Section 
VIII.D shows that the PV production has the greatest impact 
on price during the peak hours and the wind production has 
the greatest impact on price during the off-peak hours. 
Therefore, the KGB Linear Model has been run separately for 
two time periods within a day: peak hours (8:00 – 20:00) and 

off-peak hours (0:00-8:00 and 20:00-24:00).  Two separate 
instances of the MLR were used to calibrate the model, using 
two separate RP time series obtained by the KGB Model, 
R𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) for the peak period and R𝑜𝑜𝑜𝑜𝑜𝑜_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) 
for the off-peak period. 

VI. PRICE MODEL COMPARISON 
In Section IV the RP model structure is presented which is 

strongly dependent on the relevance of its major components 
such as the estimated spot price 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡]. To confirm the 
relevance, two alternative stochastic price models were used: 
the ARX(7)-GARCH(1,1), [24], and the SARIMAX(2,1)(1,1), 
[25], in addition to the KGB Price Sub-model, (16). Ketterer 
acknowledges that strong mean reversion and seasonality are 
common for the spot price, so they should be included in the 
price model, [24]. Since all three considered price models 
comprise mean reversion and seasonality, they serve a similar 
purpose and could be used in KGB Model quality test, Fig. 2. 

In the ARX(7)-GARCH(1,1) model, an autoregressive 
process is used to avoid overestimation of the variance and 
mean reversion driven by the volatile periods. The model 
comprises exogenous variables (wind and PV), as described 
by (26)-(27): 

𝑦𝑦t = μ + �ϕiyt−i

𝑙𝑙

𝑖𝑖=1

+ �θjwt−j

𝑚𝑚

𝑗𝑗=1

 

+∑ Ϙjpvt−j𝑚𝑚
𝑗𝑗=1 + εt        (26) 

ℎt = ω + �αiε𝑡𝑡−𝑖𝑖2

𝑞𝑞

𝑖𝑖=1

+ �βjht−j

𝑝𝑝

𝑗𝑗=1

 

+∑ γkwt−k
𝑠𝑠
𝑘𝑘=1 + ∑ ϖkpvt−k𝑠𝑠

𝑘𝑘=1     (27) 
  Here 𝑦𝑦t is log price and ℎt conditional variance. Wind 

generation is expressed with wt, PV generation with pvt, 
where ω is the long-run variance, εt = �ht ∙ zt and 
zt~𝑁𝑁𝑁𝑁𝑁𝑁(0,1); the rest are coefficients. As the model has to be 
stationary, the following requirements have to be met αi ∙ βj <
1 and (αi  ∧ βj) > 0. 

The SARIMAX(2,1)(1,1) model proposed by Rintamäki et 
al., [26], aims to capture the influence of exogenous variables 
such as wind and PV to price volatility using seasonally 
adjusted autoregressive moving average, described by 
SARIMAX(p,q)(P,Q) model introduced by [27], (28). 

𝑣𝑣t = α0 + ∑ αi𝑣𝑣t−i
𝑝𝑝
𝑖𝑖=1 + ∑ βiεt−i

𝑞𝑞
𝑖𝑖=1 + ∑ αi•s𝑣𝑣t−i•s𝑃𝑃

𝑖𝑖=1 +
∑ βi•sεt−i•s
𝑄𝑄
𝑖𝑖=1 + εt + γ𝑇𝑇x𝑡𝑡     (28) 

Here 𝑣𝑣t is an endogenous variable and x𝑡𝑡 represents the 
exogenous variables at the time t. The number of 
autoregressive terms of 𝑣𝑣t−i is 𝑝𝑝, where the number of moving 
average terms of εt−i is 𝑞𝑞. 𝑃𝑃 is a seasonal autoregressive term 
of 𝑣𝑣t−i•s with a periodicity of s and 𝑄𝑄 is a seasonal moving 
average term for εt−i•s with the periodicity of s. Coefficients 
are represented by αi, βi, αi•s and βi•s. 
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VII. ELECTRICITY MARKET OVERVIEW 
The German electricity market is suitable to test the 

proposed KGB Linear Model as it is one of the most liquid 
markets in Europe, [28]. The German market attracts market 
participants from all over Europe because energy traded there 
can be delivered in several European countries. Consequently, 
the presence of most market participants in the German 
market brings additional liquidity for products delivered in 
Germany. 

The German electricity market comprises several markets, 
including a long-term market (forwards and futures), [29], as 
well as short-term spot and intraday markets, [30]. The 
products traded in the long-term market are mainly divided in 
those traded on Over The Counter (OTC) and those on the 
organized power exchange EEX, [29], [31]. The OTC 
products are based on the EFET contracts and are cleared only 
between the counterparties. The products traded on EEX are 
cleared on European Commodity Clearing (ECC), [32]. 

The short-term markets in Germany are organized by the 
EPEX Spot power exchange, typically involving spot and 
intra-day markets. On the spot market, the market participants 
can trade with the hourly products on the auction trading 
based on the uniform market clearing price on EPEXDAY 
Ahead, [30]. EPEXDAY Ahead auction market is adequate to 
quantify the influence of RES production on the electricity 
price and on RP due to its size and transparent public market 
price signal. 

VIII. RESULTS 
In the research data from German electricity markets, EEX 

(the futures market related to delivery in German) and EPEX 
Spot (EPEXDAY Ahead auction for the day ahead (spot) 
market for delivery in Germany) have been used. 
• The first set of data used was historical hourly data of day 

ahead market from January 1st, 2011 to August 31st, 2014 
with delivery in Germany. Those data were used to 
determine the estimated spot price 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡] and 
deterministic part 𝛬𝛬̅(𝑇𝑇1,𝑇𝑇2) in the future period of 
September 1st, 2014 to December 31st, 2015 for Germany, 
[33]. 

• The futures market EEX has provided us with the traded 
data in 2014 for delivery of the annual product (F1BY, 
[29]) for the year 2015 for Germany as well, [34]. 

• The daily production of solar PV and wind production in 
Germany for the 5-year period from January 1st 2011 to 
August 31st 2014 was used to determine the correlation 
factors in (26) by MLR, [35]. 

• For MLR we have used raw data of German electricity 
consumption for the same period, [36]. 

A. Data Analysis: Exogenous Variables 
Before exogenous variables (spot price, wind generation, 

PV generation) could be used in all three price models, all key 
criteria, relating to stationary and levels of seasonality, 
autocorrelation and partial autocorrelation, must be tested.  

The results of Dickey-Fuller test show that spot price is not 
stationary. The price signal contains a trend and a 
differentiation (D element) of 2. After filtering the price signal 
for differentiation and trend, and after removing the monthly 
seasonal pattern, the remaining signal can be regarded as 
stochastic. Next, the logarithm of price time series for peak 
and off-peak are created. Time series for German market day-
ahead price and logarithm of price are shown on Fig. 3 for 
peak and off-peak periods, respectively. 

 
Fig. 3: German market: De-seasonalized spot price and its logarithm 

rendition 

The de-seasonalized spot price is used to apply the 
autocorrelation function (ACF) and the partial autocorrelation 
function (PACF) on peak and off-peak time series. The results 
in Fig. 4 show that the weekly pattern remains with a lag of 7. 
This indicates that the residuals have 7th-degree seasonal 
integration, which prevents PACF to tail-off, so the seasonal 
component needs to be removed for the input data to be 
suitable for use. Those results are an example of customers’ 
weekly consumption behavior pattern, reflected in the spot 
prices. After removing the weekly seasonal effect, that pattern 
is not present any longer. 
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Fig. 4: Statistics of the German market: ACF and PACF for 1st differential 

of the electricity spot price 

For other exogenous variables such as wind generation and 
PV generation, Fig. 5, their share in the total electricity 
production mix was calculated, as such normalized form is 
better suited for use in the price models in Section VI, [26]. 

 
Fig. 5: German Daily Wind and PV generation and Consumption.  

B. Results of Price Model Comparison 
The key element for RP calculation relies on the quality of 

estimated spot price 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡]. To test KGB Price Sub-
model relevance, its forecast error is compared to the 
performance of two other price models. The model-supplied 
price forecast was compared to the actual values in a back-
casting process, providing the forecast error. Based on 
Sections IV, V and VI, three price models were used for the 
same time frame: KGB Price Sub-model, ARX(7)-
GARCH(1,1) and SARIMAX(2,1)(1,1). Two separate 
instances of each model were run (peak and off-peak) to 
compare the differences in the intraday dynamics. 

 The comparison covered the 𝔼𝔼[𝑆𝑆(𝑇𝑇) ∣ ℑ𝑡𝑡] mean values 
and the associated confidence intervals for all three price 
models separately for the two instances. The daily mean 
values of all forecasts are presented in Fig. 6, from September 
1st, 2014 to December 31st, 2015. The same figure shows the 
actual electricity price values in two parts: the full line 
presents pre-sampled period, and the dotted line presents 
actuals in the forecast period. Fig. 6 shows that KGB Price 
Sub-model and the ARX(7)-GARCH(1,1) provide similar 
results and are close to the actual price values whereas the 
SARIMAX(2,1)(1,1) exhibits a stronger decline and therefore 
provides lower forecast values, with consequently greater 
error compared to the actual values. TABLE I shows the 
results of all three models for the peak and off-peak instances. 
The second column group displays different time frames 
within the same forecasting period. 

 

 
Fig. 6: Forecast results of three stochastic models 

The first data column group shows the mean values of the 
forecasted instances for different time-periods, and the second 
group shows the values of forecast errors compared to the 
actuals in [%]. These values were used to calculate the 
average MAPE (Mean Absolute Percentage Error) values for 
the entire forecast period. For KGB Price Sub-model, average 
MAPE is 12.2 %, for ARX-GARCH 15.7 % and for 
SARIMAX 23.0 %. The last column group shows the share of 
instances with violations of confidence level in the forecast 
period in [%]. The average monthly violation levels for the 
forecast period are similar in all models, where the lowest is 
for KGB Price Sub-model with 2.7 %, followed by ARX-
GARCH with 2.8 % and SARIMAX with 2.9 %. 

The results show that the KGB Price Sub-model on 
average provides better results compared to the other two 
models presented. Therefore, the KGB Price Sub-model is 
adequate for long-term spot price forecasting, and hence 
suitable to be used in the KGB Model calculation. 

 
 

   

 

    

-1

0

1

A
ut

oc
or

re
la

tio
n

Autocorrelation Function PEAK

0 10 20 30 40 50
Lag

-1

0

1

Pa
rti

al
 A

C

Partial Autocorrelation Function PEAK

0 10 20 30 40 50
Lag

-1

0

1

A
ut

oc
or

re
la

tio
n

Autocorrelation Function OFF-PEAK

0 10 20 30 40 50
Lag

        

-1

0

1

Pa
rti

al
 A

C

Partial Autocorrelation Function OFF-PEAK

0 10 20 30 40 50
Lag

Date
0

0.5

1

1.5

2

2.5

D
ai

ly
 P

V
Pr

od
uc

tio
n 

[M
W

h]

10 5 German Market: PV Production 

2011 2012 2013 2014

PEAK Load OFF-PEAK Load

Date
0

1

2

3

D
ai

ly
 W

in
d 

Pr
od

uc
tio

n 
[M

W
h]

10 5 German Market: Wind Production

2011 2012 2013 2014

Date
4

6

8

10

D
ai

ly

C
on

su
m

pt
io

n 
[M

W
h]

10 5 German Market: Total Consumption of Germany

2011 2012 2013 2014

        

    

 

  

0

20

40

60

80

100

120

GERMAN MARKET: Actuals and Forecasted Spot PEAK Electricity Price

2011 2012 2013 2014 2015

0

20

40

60

80

100

120
GERMAN MARKET: Actuals and Forecasted Spot Off-PEAK Electricity Price

2011 2012 2013 2014 2015



8 
TPWRS-01806-2018.R2 

 
 

   
 

TABLE I 
COMPARISON OF PRICE FORECAST RESULTS TO ACTUAL VALUES 

 
 

C. Risk Premium Calculation 
In the KGB Model, RP is calculated with the three main 

components (15)-(16). The first component is determined in 
the market ℱ(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) as a result of daily futures trades. The 
second component 𝛬𝛬̅(𝑇𝑇1,𝑇𝑇2) is a deterministic component 
expressing the seasonal effect that was forecast with the use of 
standard moving average approach taking into account all 

specifics such as type of the day, bridge days, daylight saving 
time, Monday mornings, Friday afternoons etc. The third 
component [𝑆𝑆(𝑡𝑡) − 𝛬𝛬(𝑡𝑡)] ∙ 𝛺𝛺(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) is driven by the 
Omega factor, (17). It is important to note that since the 
futures price ℱ(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) is only available for base and peak 
periods instead of for hourly level, RP is also only calculated 
for these periods (base, peak and off-peak). 

RP was calculated for the observation period from January 
1st, 2014 up to August 31st, 2014. The observation time 
horizon is hence 12 months including the entire year prior to 
the delivery period [T1, T2] and was also used to calibrate our 
model using MLR. 

 
Fig. 7 shows the results of RP calculation using KGB 

Model for the period of Jan 1st, to Aug 31st, 2014 with the 
back-casting estimation of the RP using KGB Linear Model 
shown for reference (dashed line). The KGB Model provides 
the range of RP ∈ [2.97, 20.83] EUR/MWh with a mean of 
9.58 EUR/MWh for peak and [-2.56, 2.11] EUR/MWh with a 
mean of 0.52 EUR/MWh for off-peak. The results of peak 
hours exhibit high volatility of RP, with maximum jumps of 
+87 % for bridge-days and +147 % within 5 consecutive days. 
We confirm assumption from the research, [13], considering 
RP to be positive in the mid-term period prior to time-to-
maturity. In general overview the RP is positive for peak, still 
highly volatile, where off-peak RP exhibits frequently 
negative values. 
 

 
Fig. 7. Risk Premium development 

In the top panel of the Fig. 7 for the period from the end of 
March to mid-April we assume that the results of the 
calculated peak’s RP can be associated with the purchase 
strategy of the demand (bid) side pushing the RP much higher 

Est. Spot 
Price 

Models

Time 
frame

PEAK 
[EUR/ 
MWh]

OFF 
PEAK 
[EUR/ 
MWh]

PEAK  Δ 
to Act

OFF 
PEAK  Δ 

to Act

PEAK  
VIOL.

OFF-
PEAK 
VIOL.

sep.14 37.10 29.53 4% 5% 2.2% 1.2%
okt.14 39.34 29.20 4% 1% 2.8% 2.0%
nov.14 46.58 31.91 -6% -9% 3.4% 1.7%
dec.14 43.10 25.72 -5% -2% 0.6% 2.6%
jan.15 47.80 32.30 -36% -40% 5.0% 0.6%
feb.15 43.79 32.78 -4% -5% 4.0% 2.0%
mar.15 38.88 32.56 -13% -15% 2.5% 1.9%
apr.15 35.76 31.97 -19% -6% 3.7% 2.9%
maj.15 32.50 29.31 -24% -19% 4.2% 2.4%
jun.15 32.41 28.59 -2% -1% 4.9% 4.5%
jul.15 31.43 29.22 15% 12% 1.8% 2.3%
avg.15 31.70 28.96 5% 3% 4.6% 0.0%
sep.15 43.64 36.70 -25% -26% 3.1% 2.7%
okt.15 41.49 32.46 7% 5% 2.4% 4.8%
nov.15 45.24 31.01 -16% -20% 0.4% 4.6%
dec.15 42.85 23.61 -27% -9% 1.9% 3.6%
sep.14 38.26 36.00 1% -16% 3.5% 1.6%
okt.14 38.82 35.58 5% -20% 4.3% 4.5%
nov.14 40.43 37.87 8% -29% 3.3% 2.1%
dec.14 36.87 33.59 10% -33% 4.6% 5.5%
jan.15 34.39 32.44 2% -41% 3.1% 1.8%
feb.15 38.98 40.66 7% -30% 4.0% 4.9%
mar.15 35.45 37.35 -3% -32% 3.6% 0.4%
apr.15 34.42 35.53 -14% -18% 1.4% 1.7%
maj.15 32.06 31.72 -23% -29% 0.7% 4.5%
jun.15 36.21 30.78 -13% -9% 0.6% 5.0%
jul.15 40.18 28.94 -9% 13% 0.6% 1.5%
avg.15 38.49 23.56 -15% 21% 2.8% 4.7%
sep.15 38.99 22.31 -12% 24% 4.3% 0.5%
okt.15 45.22 26.51 -1% 22% 1.5% 1.9%
nov.15 39.76 23.16 -2% 11% 4.0% 2.5%
dec.15 36.22 16.97 -7% 22% 1.2% 2.0%
sep.14 33.03 26.77 15% 13% 0.4% 0.7%
okt.14 36.69 29.01 10% 2% 0.4% 4.2%
nov.14 36.39 26.55 17% 9% 3.7% 0.6%
dec.14 34.84 26.13 15% -3% 5.4% 1.8%
jan.15 34.77 26.92 1% -17% 5.8% 0.6%
feb.15 31.95 27.29 24% 13% 2.3% 4.3%
mar.15 25.96 25.34 24% 10% 4.1% 3.0%
apr.15 20.26 25.29 33% 16% 4.1% 4.6%
maj.15 18.85 26.61 28% -8% 3.4% 2.1%
jun.15 18.24 25.58 43% 9% 3.1% 5.0%
jul.15 15.01 24.44 59% 26% 4.1% 0.9%
avg.15 13.21 24.14 61% 19% 5.4% 3.5%
sep.15 18.47 26.43 47% 10% 6.0% 0.9%
okt.15 18.69 24.31 58% 29% 1.3% 1.3%
nov.15 18.87 23.22 51% 10% 1.7% 0.5%
dec.15 20.50 25.02 39% -15% 5.5% 2.7%

ARX-
GARCH

SARI
MAX

FORECAST MEAN ERROR TO ACTUAL VIOLATION SHARE
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than expected according to the long-term predictions. 
Consequently, RP increases from 10 EUR/MWh up to the 
level of 20 EUR/MWh. 

In the following time segment from mid-April to mid-May, 
we assume that the increased RP leads to an increase in the 
supply (ask) side with additional energy offered in the market. 
This additional energy offer drives RP towards an equilibrium 
between the bid and ask sides in mid-April up to the point 
when the ask side becomes larger than the bid side, pushing 
the futures prices down. We believe that the sudden shift in 
the value of RP below the estimated equilibrium value is 
associated with a higher push of the ask side decreasing the 
value of RP from 20 EUR/MWh to the value of 3 EUR/MWh 
at the end of April. At that value level, peak product RP is 
underestimated; it incites the bid side to increase until RP 
converges to the market acceptable value level. Based on the 
results shown in Fig. 7 we assume that for the annual peak 
product, the market acceptable value of RP is approximately 
10 EUR/MWh.  
The results of the estimation fit well to calculated data, 
however estimation is unable to capture RP adequately during 
the high volatility periods. The high value of RP opens a new 
chapter in the understanding of RP, therefore further 
clarification is required.  

The results of RP calculation using KGB Model, presented 
in the top panel of the Fig. 7, are a combination of the market 
acceptable long-term mean value of RP, (approximately 10 
EUR/MWh), the short-term Futures deviation from a medium-
term trend (e.g. a mean), the largest short-term DA price 
forecast change and the forecast error. 

Fig. 8 aims to provide additional insight into the RP results 
for the Peak products. In the top panel, the yellow shaded area 
represents RP as a difference between the traded Futures 
product for 2015 (yearly peak product, F1PY CAL’15, red 
dashed line) and the Expected day-ahead (DA) price estimated 
using KGB Price sub-model (blue dashed line). All three 
values are determined during 2014 reflecting the expectations 
for 2015. The actual 2015 DA prices are shown as the annual 
medium-term mean value (green line). In the bottom panel, 
the actual 2014 DA prices (grey line) are shown compared to 
the prices estimated with the KGB Price sub-model (KGB 
PSM, dashed blue). 

The peak prices shown in the top panel of Fig. 8 indicate 
how much the value of the Futures peak CAL’15 differs from 
the actual 2015 DA. The “Focus Area” (black rectangle) 
contains the largest peak product RP values ranging between 
[18.18, 20.53] EUR/MWh. These high RP values can be 
associated with a significant downward trend of the DA prices 
in Q1 of 2014 (as indicated by a black arrow). That trend 
lasted over two months and has been captured in the RP 
calculated by the KGB model, with the highest RP value of 
20.53 EUR/MWh. 

The price dynamics in the Off-peak products features the 
values smaller than in the Peak products; however, the 
mechanisms shown in Fig. 8 are valid for both products. 

 

 
Fig. 8: Relationships of RP to Futures and estimated day-ahead prices   

In TABLE II, the Focus Area RP results indicated in Fig. 8 
are presented indicating RP values where significant 
development takes place in the actual 2014 DA prices. There a 
change in the DA trend led to a start of the mean reversion 
process of the Expected DA prices to their long-term mean 
value.   

TABLE II 
RISK PREMIUM IN THE FOCUS AREA 

 
If the trend of the actual 2014 DA prices would have 
continued further, the Futures values F1PY CAL’15 would 
have entirely detached from the actual 2015 DA price value. 
In our case, the Futures prices have only partially detached, 
and while the KGB Price sub-model has consequently slightly 
overestimated the 2015 DA price, the model forecast has 
quickly reverted to mid-term mean.  Our analysis shows that 
most of the time, the KGB Price sub-model provided an 
adequate prediction of the future DA 2015 price. 
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Actual Day-ahead price, 2014
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Time [Quarter]

Q2

Q1 Q3Q2

Q1 Q3

YEAR MONTH DAY F1PY F1OY 
KGB 
PSM 

PEAK

KGB 
PSM 

OffPEAK

RP 
PEAK

RP 
OffPEAK

2014 3 24 45.2 29.68 33.17 29.24 12.03 0.44
2014 3 25 44.87 29.62 31.81 29.22 13.06 0.40
2014 3 26 44.75 29.56 31.25 29.24 13.50 0.32
2014 3 27 44.57 29.24 28.32 29.52 16.25 -0.28
2014 3 28 43.82 28.83 23.29 30.42 20.53 -1.59
2014 3 31 43.92 28.90 25.43 30.13 18.49 -1.23
2014 4 1 44.05 28.95 28.74 29.85 15.31 -0.90
2014 4 2 43.5 28.48 25.89 30.84 17.61 -2.36
2014 4 3 43.35 28.50 24.24 31.06 19.11 -2.56
2014 4 4 43.2 28.52 24.27 31.05 18.93 -2.53
2014 4 7 43.42 28.96 25.24 30.10 18.18 -1.14
2014 4 8 43.29 28.83 25.05 30.36 18.24 -1.53
2014 4 9 43.51 28.71 24.50 30.59 19.01 -1.88
2014 4 10 43.48 28.74 22.65 30.72 20.83 -1.98
2014 4 11 43.45 29.21 29.43 29.55 14.02 -0.34
2014 4 14 43.80 29.28 33.01 29.42 10.79 -0.14

Focus 
Area 
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The valuable calculation of the short-term difference 
between the day-ahead and real-time prices is presented in the 
Potomac report, [37]. The difference is presented as a 
premium that market participants are willing to pay to 
eliminate the day-ahead production price risk. The short-term 
Risk Premium was calculated using the “ex-post” approach 
(denoted as RPEP) as in the Potomac report in the period 
between Jan 1st 2014 and Aug 31st 2014. During that period 
the short-term RPEP is considered to be extremely high, 
ranging within [-100.65, +74.00] EUR/MWh, TABLE III. The 
values of the settlement prices for the same time period are 
lower, ranging within [-42.23, 31.88] EUR/MWh, still much 
higher than the long-term RPEP of the peak product.   

TABLE III 
RISK PREMIUM: SHORT-TERM “EX-POST” POTOMAC APPROACH 

 
To investigate the relationship between the short-term “ex-

post” RPEP and the long-term “ex-ante” RP, as well as 
between the short-term “ex-post” RPEP and long-term “ex-
post” RPEP, correlation analysis has been performed. All 
correlation factors are low, ranging between 0.06 and 0.27. 
The analysis using German market data did not provide any 
evidence by which a short-term RPEP calculated with “ex-
post” approach would be connected to the value of the long-
term “ex-ante” RP. 

D. Characteristics of RES Production 
To assess the RES production influence on electricity price 

and RP, their temporal behavior needs to be understood. 
Therefore, the respective temporal characteristics of the 5-
year PV- and wind production hourly time series were 
investigated. Separately for each time series, the matching 
hours were summed per year and normalized to the highest 
hourly value of the five data points. The resulting normalized 
5-year average values are shown in Fig. 8 and Fig. 9 with red 
being the highest and dark blue the lowest value. 

PV production exhibits a strong seasonal effect, with the 
strongest impact expected from March to September where 
the diurnal effect is strong as well. The strongest impact 
during the day is between 11:00 and 17:00, as shown in Fig. 8. 

 
Fig. 9. PV production characteristics 

Wind production characteristics are shown in Fig. 9, 
exhibiting a seasonal effect as well, with the strongest impact 
expected from November to January. The strongest impact is 
expected during the daytime from 08:00 to 14:00 followed by 
the interval from 19:00 to 24:00. The weakest impact is 
expected from April to August. During that period, the diurnal 
effect is divided into two time periods. The smallest impact is 
expected during the daytime from 06:00 to 10:00 followed by 
an interval from 16:00 to 19:00. 
 

 
Fig. 10. Wind production characteristics 

The results show that the PV and wind production are 
complementary in a generation portfolio, therefore 
constituting an ideal portfolio of electricity production mix for 
the producers. 

E. Correlation Results 
The impact of RES production on RP has been investigated 

using the correlation method. Since the correlation of RP to 
RES production could depend on the share of RES production 
in total electricity production mix, the respective RES 
production share of PV and wind in the production mix was 
used as a proxy. 

 
1) Correlation between Electricity Price and RES 

To determine the correlation factors between the RES 
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production and electricity price, the calculation was based on 
a 5-year horizon from 2010 to 2014 covering more than 
105,000 data records. Due to a possible correlation error 
associated with negative price values, the negative prices were 
excluded. In the period from January 1st, 2011 to December 
31st 2014, 64 negative values out of total number 38,592 have 
been excluded. Had those negative prices been included in the 
calculations, it would lead to the following errors: for wind vs. 
price in 15 out of 288 correlation results, the error would be 
(min/mean/max [-0.05; -0.01; 0.02]) and for PV in 14 out of 
288 correlation results, the error would be (min/mean/max [-
0.03; -0.02; 0.00]). 

The correlation calculated for the entire time horizon is 
negative, yet very low, i.e. 4.8 % for PV and 6 % for wind. 
Hence the correlation time window was reduced to a month 
for each hour of the day. Since RES production does not 
depend on a day type, further segmentation by day type was 
not needed. Correlation factors are shown in Fig. 10 for PV 
production share and in Fig. 11 for wind production share. 

The results in Fig. 10 show that the PV production share 
exhibits a strong negative correlation to electricity price up to 
-0.77 on average per month. The month with the strongest 
hourly average negative correlation, [-0.52, -0.77] is 
September in the daily period between 07:00 and 21:00. Fig. 
10 also shows a strong correlation of PV in July during 
morning hours between 06:00 and 08.00 and in the evening 
hours between 16.00 and 22.00. 

 

 
Fig. 11. Correlation of PV production share vs. price 

Wind production share in Fig. 11 exhibits a seasonal effect 
as well, with and the strongest influence on electricity price 
between April and May and between September and October. 
Average hourly correlation levels within [-0.18, 0.26] are 
observed. The strongest wind production is during the period 
of consumption morning ramp. During this period, the 
dynamics of electricity production mix is the greatest 
compared to the rest of the day. In that period, several 
different types of conventional generation are switched on in 
order to follow the expected morning increase of 
consumption. At the same time, the empirical analysis in Fig. 
11 shows that the wind generation on average has the greatest 

increase in its production between 7:00 and 14:00. High 
dynamics in electricity production mix levels would need 
further analysis to clarify the extent of wind generation 
contribution to price shift in the morning ramp time, however 
this is beyond the scope of this paper. 

 
Fig. 12. Correlation of wind production share vs. price 

 
2) Correlation between RP and RES 

To determine the correlation between RP and RES 
production the same dataset was used as in Section VIII.E.1. 
Monthly RP instances were calculated with the KGB Model 
separately for peak- and off-peak periods. 

Fig. 12 shows the results of correlation between PV 
production share and RP for the base- and peak periods. They 
show a negative correlation of PV and RP, except for the 
November positive correlation of 0.1695 in the off-peak 
period. June and July have the highest negative correlations, -
0.73 and -0.76, respectively. 

 
Fig. 13. Correlation of PV production share vs. RP 

Wind production share and RP are negatively correlated for 
all months except for June, July, and August with positive 
correlations of 0.22, 0.18 and 0.05, respectively, Fig. 13. The 
correlation results for wind vs. RP are relevant, yet the 
correlation is weaker than that for PV vs. RP. October has the 
greatest negative correlation factor of -0.3. 
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Fig. 14. Correlation of wind production share vs. RP 

F. KGB Linear Model Calibration using MLR 
To calculate the coefficients of the KGB Linear Model, 

MLR was used as expressed in (25). RP comes in two 
instances, peak and off-peak, expressed as 𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) 
and 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2). The results of MLR show a 
significant dependence of RP on PV production share. 
According to (25), KGB Linear Model employs four 
variables, namely wind production share, PV production 
share, consumption, and time-to-maturity. The parameters of 
all four variables were obtained for both RP instances 
𝑅𝑅𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2) and 𝑅𝑅𝑜𝑜𝑜𝑜𝑜𝑜_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2). The final results of 
MLR calculation with data on daily granularity (daily peak 
and daily off-peak for the annual product) are shown in TABLE 
II and TABLE III. 

TABLE IV 
MULTIPLE LINEAR REGRESSION RESULTS FOR THE PEAK INSTANCE 

 
 
The MLR results for the peak period in TABLE I show that 

the three variables (PV, consumption, and time-to-maturity) 

are relevant because P-value in these three cases is far below 
0.05. An exception is the fourth independent variable, wind 
production share, with P-value p = 0.0830, that is not 
significant enough to determine the dependent variable 
R𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2). 

The overall significance of MLR is confirmed having 
significance F < 0.05. Adjusted R square confirms that 
92.3249 % of the dependent variable RP has been described 
by those four variables. 

The results of MLR for the off-peak period in TABLE III 
show that the P-value for all three variables is below P < 0.05 
and therefore they are relevant. The overall significance of the 
off-peak period MLR is confirmed as well. The adjusted R 
square confirms that 92.5775 % of dependent variable RP is 
described by those four variables. The peak- vs. off-peak 
period observation reveals the true impact of RES on 
electricity price and on RP. 

The MLR results of KGB Linear Model coefficients show 
that during peak hours wind production share coefficient is 
negative (-1.03), decreasing the R𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2), where PV 
production share coefficient is positive (+17.03), increasing 
R𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2). During the of off-peak period, wind 
production share coefficient has positive sign (0.49) therefore 
increasing the R𝑜𝑜𝑜𝑜𝑜𝑜_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2), where PV production 
share coefficient is negative (-16.53), decreasing 
R𝑜𝑜𝑜𝑜𝑜𝑜_𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑡𝑡,𝑇𝑇1,𝑇𝑇2). 

TABLE V 
MULTIPLE LINEAR REGRESSION RESULTS FOR THE OFF-PEAK PERIOD 

 
 
The coefficients show that RP is increasing with the wind 

production share during the off-peak period and with the PV 
production share during the peak period, where the impact of 
PV is 35.3 times greater. On the other hand, RP is decreased 
by the wind during the peak period and by the PV during the 
off-peak period, where the impact of PV is 16.53 times 
greater. The results for the observation period of 2010 – 2014 
reveal that the overall influence of PV production share on RP 
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Regression Statistics PEAK
Multiple R 0,961
R Square 0,923
Adjusted R Square 0,923
Standard Error 3,061
Observations 1461

ANOVA

df SS MS F Signif. 
F

Regression 4 164.627 41.157 4.392 0
Residual 1.456 13.645 9
Total 1.460 178.272

Coefficients
Intercept -0,4270
Var. 1 - Wind prod. Share -1,03
Var. 2 - PV prod. Share 17,03
Var. 3 - Consum. 6,18E-06
Var. 4 - Time interc. 0,0104

Lower 95%
Intercept 7,47E-01
Var. 1 - Wind prod. Share -2,47E-01
Var. 2 - PV prod. Share -6,96E+00
Var. 3 - Consum. -2,41E-06
Var. 4 - Time interc. 2,46E-02

1,09E+00 1,73E+00 8,30E-02
1,27E+00 -3,53E+00 4,27E-04

Standard Error t Stat P-value
8,09E-01 2,88E+00 3,98E-03

Upper 95% Lower 95,0% Upper 95,0%
3,92E+00 7,47E-01 3,92E+00

9,07E-07 -6,95E-01 4,87E-01
2,00E-04 1,25E+02 0,00E+00

1,15E-06 -2,41E-06 1,15E-06
2,54E-02 2,46E-02 2,54E-02

4,02E+00 -2,47E-01 4,02E+00
-1,99E+00 -6,96E+00 -1,99E+00

Regression Statistics Off-PEAK
Multiple R 0,962
R Square 0,926
Adjusted R Square 0,926
Standard Error 2,302
Observations 1461

ANOVA

df SS MS F Signif. 
F

Regression 4 96.487 24.122 4.554 0
Residual 1.456 7.713 5
Total 1.460 104.200

Coefficients
Intercept 0,8312
Var. 1 - Wind prod. Share 0,49
Var. 2 - PV prod. Share -16,53
Var. 3 - Consum. -1,20E-06
Var. 4 - Time interc. 0,0016

Lower 95%
Intercept -3,8447
Var. 1 - Wind prod. Share -2,02E-01
Var. 2 - PV prod. Share -1,47E+02
Var. 3 - Consum. -4,24E-06
Var. 4 - Time interc. 1,88E-02

7,34E-01 1,69E+00 9,20E-02
1,78E+01 -6,29E+00 4,24E-10

Standard Error t Stat P-value
6,37E-01 -4,08E+00 4,79E-05

Upper 95% Lower 95,0% Upper 95,0%
-1,35E+00 -3,84E+00 -1,35E+00

9,78E-07 -2,37E+00 1,77E-02
1,47E-04 1,30E+02 0,00E+00

-4,04E-07 -4,24E-06 -4,04E-07
1,94E-02 1,88E-02 1,94E-02

2,68E+00 -2,02E-01 2,68E+00
-7,69E+01 -1,47E+02 -7,69E+01
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is greater than the wind production share, yet both are relevant 
and contribute to RP determination. Further economic insights 
into the reasons for RP behavior would require extensive 
additional analyses that are beyond the scope of this paper. 
However, the tools proposed in this paper, the KGB Method 
and the associated models, facilitate further such analyses. 

G. KGB Linear Model Use 
Based on the results from MLR in both instances (peak and 

off-peak for the annual product), the market participants can 
forecast RP with a limited set of input data using KGB Linear 
Model. To forecast RP on Sept 30th, 2015 for the next 10 
consecutive days ahead, a market participant only needs an 
estimated mean value of wind production share, PV 
production share, and consumption for the chosen period of 
10 days ahead. Considering that an active market participant 
daily operates with those data, simulation of mean RP value 
should be rather straightforward using (25), with 10 values of 
RP for each instance. The required coefficients (𝐴𝐴1,𝐴𝐴2,𝐴𝐴3 and 
𝐴𝐴4), and the intercept  𝐴𝐴0 are listed in TABLE II and TABLE III, 
To simulate deviation from expected mean, the respective 
values of the lower and upper confidence interval were used, 
and the results of the Monte Carlo simulation are shown in 
TABLE IV and in Fig. 14. In the figure, the calculated values of 
RP via the KGB Model are followed by the 10-day KGB 
Linear Model forecasted RP values (in blue) with the 
associated confidence intervals (dashed lines), for the two 
respective instances. 

 
TABLE VI 

 RESULTS OF KGB LINEAR MODEL FORECAST FOR ANNUAL  

 
 

 
Fig. 15: KGB Linear Model forecast for peak and off-peak instances 

The market actors could use the KGB Linear Model 
forecast results in various areas, e.g. risk management and 
trading. In the risk management, prospective energy 
companies would be focused on MC simulation results to 
quantify the value of possible loss in the worst-case scenario, 
[38]. 

Traders, producers and suppliers would act according to 
their current portfolio position (having a short or long 
position) and would use such a result to optimize their trading 
strategies. Based on the results of RP forecasts market actors 
would be able to accelerate or delay any trade to obtain a 
positive difference. When a producer needs to sell the next 
tranche of production on annual basis, and the 10-day RP peak 
annual product forecast as shown in TABLE IV indicates 
significantly higher values (e.g. 11.56 EUR/MWh) than 
observed today (e.g. 7.41 EUR/MWh), the producer could 
delay such a trade, according to the corporate risk tolerance. 
With the smallest tranche on EEX Derivatives equaling to 1 
LOT (5 MW – equaling to 15,600 MWh p.a.) and the 
producer deciding to delay the transaction at the target RP = 
10 EUR/MWh, the payoff of such delay could yield a profit of 
40,404 EUR. From the experience, typical tranches of a mid-
size producer equal to 50 MW of annual products, yielding 
considerable profits without significantly increasing the risk 
exposure. 

IX. CONCLUSION 

The main purpose of this paper was to propose a new 
stochastic KGB Model for RP calculation and the associated 
KGB Method for its use based on the “ex-ante” calculation 
approach that would allow for risk premium forecast of a 

Lower 
bound Mean FC

Upper 
bound

Lower 
bound Mean FC

Upper 
bound

1 4,55237 7,41377 8,63256 0,15347 0,42925 0,88496
2 5,02629 7,79047 9,12385 0,12567 0,37496 0,76423
3 4,93796 7,20967 9,35749 0,11203 0,31111 0,71819
4 5,04116 7,91776 10,45436 0,09727 0,26327 0,56114
5 5,05712 8,57304 10,66486 0,08624 0,27340 0,57389
6 5,84578 9,19814 11,55613 0,12085 0,26158 0,62644
7 5,94203 8,93716 10,41439 0,16237 0,35387 0,71281
8 5,11249 7,74840 10,41479 0,21243 0,48983 1,07844
9 3,95541 7,01167 8,73008 0,13764 0,38879 0,87312
10 4,02636 7,62055 10,23932 0,09803 0,32404 0,76078
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year-ahead electricity products in the German power market 
with the use of a limited set of input data. Our aim was to 
capture the intraday dynamics of RP driven by RES 
production. 

In the initial calculation, RP exhibits a time-varying and 
extremely volatile character. To facilitate its use, the RP 
model is expressed in a linear form as the KGB Linear Model 
(25), with MLR used for its calibration. It was very important 
to define the right exogenous variables to provide enough 
explanatory power, as expressed by adjusted R square. For 
this purpose, pairwise cross-correlations separately with price 
and with RP were performed with different independent 
variables (wind- and PV production share in generation mix in 
particular) to determine their behavior and their impact on 
both, price and RP. Empirical observations show that where 
PV production share has displayed the greatest positive 
impact on RP during the peak hours, wind production share 
did so during the off-peak hours. However, the exact wind 
production share contribution to price and RP, e.g. during the 
morning ramp, cannot be readily determined without the 
comprehensive analysis of price drivers which is beyond the 
scope of this paper. It can be assumed that the high dynamics 
of conventional generation present in the morning ramp part 
of the off-peak consumption can mask the true contribution of 
variable RES, especially wind. 

The MLR results for both instances confirm the overall 
significance of the KGB Linear Model. The significance of 
PV production share in the off-peak instance was surprising 
because the off-peak period is usually associated with night 
hours without sunshine. However, the dynamics in PV 
production in the morning yet off-peak hours from 05:00 to 
08:00 during the morning ramp in electricity consumption 
obviously makes a significant enough contribution of PV 
production mix to drive the overall PV off-peak significance. 

The results show that the variable RES production plays a 
key role in price determination, which is in general negatively 
correlated to RES production due to its low marginal cost. 
However, the instances of positive correlation of RES to RP 
can arise during other periods, so the connection cannot 
simply be expressed with a positive or a negative correlation 
as it very much depends on the share of RES production in the 
total electricity production mix. 

There are many opportunities arising from the use of the 
proposed RP models in RP forecasting. The proposed KGB 
Method simplifies the computation of RP, especially with the 
KGB Linear Model that is aimed at a broader audience of 
market actors beyond the specialized analytics departments of 
large energy traders. Their use could be expanded to all future 
products from weekly products to yearly products for a few 
years in advance. 

The KGB Method allows the insight into significant market 
changes due to variable RES impact (in particular wind and 
PV production). The impact is already visible from the RP 
results in years 2010 to 2014. With further intensive growth of 
RES share in total production mix during the period 2015-
2019 and beyond, we strongly believe that the influence of 
RES will become a key driver of RP. 
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