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Abstract 

Climate change and human activities are two major driving forces affecting the hydrologic 

cycle, which further influence the stationarity of the hydrologic regime. Hydrological drought 

is a substantial negative deviation from the normal hydrologic conditions affected by these two 

phenomena. In this study, we propose a framework for quantifying the effects of climate 

change and human activities on hydrological drought. First, trend analysis and change point 

test are performed to determine variations of hydrological variables. After that, the fixed runoff 

Threshold Level Method (TLM) and the Standardized Runoff Index (SRI) are used to verify 

whether the traditional assessment methods for hydrological drought are applicable in a 

changing environment. Finally, two improved drought assessment methods, the variable TLM 

(TLMv) and the SRI based on parameter transplantation (SRIt) are employed to quantify the 

impacts of climate change and human activities on hydrological drought based on the 

reconstructed natural runoff series obtained using the Variable Infiltration Capacity (VIC) 

hydrologic model. The results of a case study on the typical semiarid Laohahe basin in North 

China show that the stationarity of the hydrological processes in the basin is destroyed by 

human activities (an obvious change-point for runoff series is identified in 1979). The 

traditional hydrological drought assessment methods can no longer be applied to the period of 

19802015. In contrast, the proposed separation framework is able to quantify the 

contributions of climate change and human activities to hydrological drought during the above 

period. Their ranges of contributions to hydrological drought calculated by the TLMv method 

are 20.6–41.2% and 58.8–79.4%, and the results determined by the SRIt method are 15.3–45.3% 

and 54.7–84.7%, respectively. It is concluded that human activities have a dominant effect on 

hydrological drought in the study region. The novelty of the study is twofold. First, the 

proposed method is demonstrated to be efficient in quantifying the effects of climate change 

and human activities on hydrological drought. Second, the findings of this study can be used 

for hydrological drought assessment and water resource management in water-stressed regions 

under non-stationary conditions. 

Keywords: Hydrological drought; Human activities; Climate change; Standardized Runoff 

Index; Threshold Level Method 
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1. Introduction 

Droughts affect both the surface and ground water resources and can significantly reduce the 

existing water supplies, deteriorate water quality, and reduce crop productivity, as well as affect 

a host of social and economic activities (Heim, 2002; Dai, 2011; Rivera et al., 2018). 

According to various types of water deficits (e.g. precipitation, streamflow, soil moisture 

content and water resources), droughts can be classified into four major types: meteorological, 

agricultural, hydrological, and social-economical (Mishra and Singh, 2010; Ma et al., 2014; Ye 

et al., 2016). Hydrological drought, which can be defined as inadequate surface and subsurface 

water resources for established water uses of given water resources management system, is 

considered one of the most important types of drought (Shukla and Wood, 2008; Van Loon, 

2015). In particular, assessing hydrological drought in a changing environment is important for 

drought disaster management. 

 Climate change is expected to affect the manifestation of terrestrial extreme phenomena 

such as droughts (Sheffield et al., 2012; Li et al., 2017; Haro-Monteagudo et al., 2018). For 

instance, the changes of precipitation and evapotranspiration are likely to affect the evolution 

characteristics of droughts (Vicente-Serrano et al., 2015). Due to the enhanced 

evapotranspiration (caused by rising temperatures) without increasing precipitation, higher 

frequency and magnitude of the hydrological drought risk have been predicted for the coming 

century in most locations over the world (Sheffield et al., 2012; Dai, 2013; Trenberth et al., 

2014). However, the impact factors of droughts are not limited to climate change, human 

activities are also the main driving forces affecting hydrological drought (Van Loon and Van 

Lanen, 2013). Human activities in forms of land cover change, agricultural irrigation, water 

extraction, and reservoir regulation influence the processes of the hydrological cycle, and 

further affect the variability characteristics of hydrological drought (Ren et al., 2002; Han et al., 

2014; Van Loon et al., 2016; Zhu et al., 2018). For example, He et al. (2017) and Zhang et al. 

(2018) conducted that human water management has intensified the hydrological drought in 

California and Yangtze River, respectively. Thus, in this climate change and human activities 
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comprehensively influenced era, scientific cognition of the effects of climate change and 

human activities on hydrological drought has become a new challenge. 

To date, there have been some studies itemized for analysis of the effects of climate 

change and human activities on hydrological drought, in which the assessments of climate 

change impacts are mainly based on the drought indices evaluation considering the changes of 

meteorological conditions (Sheffield et al., 2012; Dai, 2013; Trenberth et al., 2014; Yu et al., 

2014; Zhu et al., 2016; Wang et al., 2018; Safavi et al., 2018), while the studies of human 

activities impacts are mainly based on the watersheds comparative analysis and natural runoff 

reconstruction (Wan et al., 2017; He et al., 2017; Zhang et al., 2018; Bazrafshan and Hejabi, 

2018; Tijdeman et al., 2018; Firoz et al., 2018). For instance, Wang et al. (2018) evaluated the 

spatiotemporal variation of future drought (2016–2100) in the Pearl River Basin (PRB) in 

South China and found that climate change enhances the severity and variability of drought in 

the PRB in the 21st century. Tijdeman et al. (2018) quantified the impact of the human 

activities on the streamflow drought by comparing the dataset consisting of catchments with 

near-natural flow as well as catchments for which different human influences indicated in the 

metadata. Compared with the itemized impact assessment, there are only a few investigations 

comprehensively analyzed the effects of climate change and human activities on hydrological 

drought (Van Loon and Van Lanen, 2013; Liu et al., 2016; Ren et al., 2016; Lin et al., 2017). 

Van Loon and Van Lanen (2013) proposed a quantitative discrimination framework for drought 

(natural driving) and water scarcity (human driving) using an observation-modeling method. 

Liu et al. (2016) analyzed the connections between meteorological and hydrological droughts 

of the Laohahe basin by a fixed runoff Threshold Level Method (TLM). Ren et al. (2016) 

evaluated hydrological drought evolution characteristics over the Weihe catchment using the 

Standardized Runoff Index (SRI) with a time-variant parameterization scheme. However, these 

studies either used only one method (or index) or failed to quantitatively distinguish the effects 

of climate change and human activities on hydrological drought. Thus, the objective of this 

study is to construct a framework for quantifying the impacts of climate change and human 

activities on hydrological drought, comprehensively using two different methods: the variable 



 

 

This article is protected by copyright. All rights reserved. 

TLM (TLMv) and the SRI based on parameter transplantation (SRIt). 

The Laohahe basin is a highly human-impacted watershed in the Northern part of China, 

with hydrological drought occurring frequently (Liu et al., 2009; Jiang et al., 2011). The 

proposed framework will be adopted to quantify the effects of climate change and human 

activities on hydrological drought in Laohahe basin and the research results are important for 

the local drought disaster mitigation and sustainable development of water resources. 

2. Materials and methods 

2.1. Study area 

 The Laohahe catchment (41°N42.75°N, 117.25°E120°E) located in the northern China 

(Fig. 1) covers a drainage area of 18112 km
2
. The climate is semiarid, and the elevation ranges 

between 427 m and 2054 m a.m.s.l. with a generally increasing trend from the northeast to the 

southwest. The long-term mean annual air temperature, precipitation, and runoff observed in 

the period between 1964 and 2015 are 7.57°C, 417.9 mm, and 24.9 mm, respectively. The 

Laohahe catchment exhibits strong seasonality of runoff because of the uneven precipitation 

distribution (80% of the annual precipitation occurs between May and September). 

2.2. Data 

 The data used in this study are as follows: 

(1) Daily precipitation data measured by 52 rain gauges and streamflow records of the 

Xinglongpo hydrological station for the period of 19642015 are provided by the Water 

Resources Department of the Inner Mongolia Autonomous Region. Streamflow data are 

further converted to catchment runoff by averaging the runoff amounts over the catchment area 

to compare with the precipitation and potential evapotranspiration (PET), which was calculated 

via the Penman-Monteith equation recommended by FAO (Allen et al., 1998). 

(2) Daily meteorological forcing data (19642015) including the maximum and minimum 

air temperature, wind speed, relative humidity, and sunshine duration measured by three 

national standard meteorological stations inside and around the Laohahe catchment are 

downloaded from the China Meteorological Data Sharing Service System 

(http://data.cma.cn/). 

http://data.cma.cn/
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(3) Geographic information is obtained as follows. Soil types are derived from the Food 

and Agriculture Organization (FAO) dataset, and vegetation types are obtained from the 

University of Maryland’s 1 km Global Land Cover Production. The 30 arc-second global 

digital elevation model (GTOPO30) data are obtained from the U.S. Geological Survey 

(USGS), and re-sample to 0.0625 0.0625   resolution to generate flow directions, basin 

mask, and contributing areas for running the Variable Infiltration Capacity (VIC) model (Liang 

et al., 1994). 

(4) Socioeconomic statistical information for Chifeng city in the Laohahe basin regarding 

the gross domestic product (GDP), food production, population, and livestock is collected from 

a local statistical bureau website. 

2.3. Trend and change-point analysis 

2.3.1. Mann-Kendall test 

 The Mann-Kendall (MK) test is a non-parametric test method recommended by the World 

Meteorological Organization (WMO) and widely used to determine trends of data series. It is 

applicable to the analysis of non-normal distribution data such as hydrologic and 

meteorological series. For a time series  1 2, , , nX x x x  with 10n  , the standard normal 

statistic Z is estimated as follows: 
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 where t is the extent of any given tie, and 
t

  denotes the summation of all ties. The 
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statistic Z follows the standard normal distribution. At a 5% significance level, the null 

hypothesis of no trend is rejected if |Z| > 1.96. A positive value of Z denotes an increasing trend, 

and the opposite corresponds to a decreasing trend (Mann, 1945; Kendall, 1975). 

 

2.3.2. Pettitt test 

 The Pettitt test is a non-parametric test method used to determine the occurrence of a 

change-point at a given significance level, which is based on rank statistics and independent of 

distribution. This method is widely used to analyze the change-point of hydrological and 

meteorological variables. 

 This approach considers a time series as two samples represented by 1 , , tx x  and 

1, ,t Nx x . The Pettitt indices ,t NU  can be calculated from the following formula (Pettitt, 1979; 

Kiely et al., 1998): 

     ,

1 1

sgn 1, ,
t N

t N j i

j i

U x x t N
 

                  (5) 

where 

        

1 0

sgn 0 0

1 0



 



 


 
 

                           (6) 

Then, we can calculate the series of probabilities of change-points for each year by the 

following formula (Kiely et al., 1998): 

          
 

2

,

3 2

6
1 exp

t NU
P

N N

 
  
 
 

                          (7) 

 

2.3.3. Precipitation-runoff double cumulative curve method 

 The precipitation-runoff double cumulative curve (DCC) method can visually illustrate the 

consistency of precipitation and runoff data (Jiang et al., 2012a). Normally, it is represented by 

a straight line, and the change in the gradient of the curve may infer that the characteristics of 

precipitation or runoff have changed. In this study, the DCC method was utilized for the 

auxiliary detection of the change-point of the runoff series. 
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2.4. Framework for quantifying the effects of the climate change and human activities 

Distinguishing droughts induced by different factors is essential for objective 

understanding the underlying causes of regional drought, which is also important for water 

planning and management. In this section, a framework is developed to quantify the effects of 

climate change and human activities (Fig. 2), which assumes climate change and human 

activities to be independent factors affecting hydrological drought. This assumption allows a 

linear and additive relationship between the relative contributions of climate change and 

human activities. 

 

The proposed framework can be divided into three sections. (1) In the first step, a 

change-point is determined from the hydrometeorological variables. After that, the entire 

period can be divided into two parts: the baseline period (“undisturbed”) and change period 

(“disturbed”). For change-point detection, the Pettitt test and DCC method are selected. (2) The 

second step focuses on reconstructing the runoff series of the change period by the hydrologic 

model, which is first calibrated via hydrometeorological forcing data during the baseline period. 

After that, while keeping the optimized parameters constant, the meteorological forcing of the 

change period is used to reconstruct (simulate) the runoff series without involving human 

activities. Hydrological models can be used to reproduce the natural flow situation; in this 

study, the distributed VIC model is used for this purpose (its detailed description is provided in 

the following section). (3) The third step is the core of this framework. The effects of climate 

change and human activities on hydrological drought during the change period can be 

quantitatively determined by identifying the observed and simulated runoff series using the 

TLMv method and the SRIt method, respectively. The hydrological drought identified by the 

observed runoff series are affected by both climate change and human activities, while the 

latter are developed at the natural conditions (affected only by climate change). Thus, their 

difference represents the droughts caused exclusively by human activities. 
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2.4.1. Variable runoff Threshold Level Method 

The TLM is the most commonly used approach for studying hydrological droughts (Van 

Loon and Van Lanen, 2013; Liu et al., 2016; Razmkhah, 2017; Sarailidis et al., 2018). 

According to this method, drought events occur when the flow is below a predefined threshold 

Qz (Fig. 3a). Each event can be characterized by some measure of severity, such as the deficit 

volume, vk, (calculated by summing up the differences between the actual flux and threshold 

level over a specified period), time of occurrence, tk, drought duration, dk, and drought interval, 

ik, (the time period between two consecutive drought events). 

 

The selection of threshold Qz is subjective but essential since it influences the number of 

events, drought duration, and deficit volume. In this study, the TLMv is utilized to represent 

strong seasonal variability. A monthly threshold derived from the 70th percentile of the 

monthly duration curves was used, which implied that the selected runoff value for each month 

was equal to or exceeded 70% of the time in that specific month. The variable threshold values 

were calculated from the baseline period and then applied to the change period. Different 

threshold values were computed for the observed and simulated runoff series to reduce the 

influence of the simulation error. 

We selected the deficit volume (vk) from the TLMv method to separate the effects of 

different factors on hydrological drought. In particular, vtotal was used to represent the total 

impact on hydrological drought caused by both climate change and human activities, which 

was calculated by summing up the differences between the observed series and the threshold 

values obtained for the baseline period. vrecon was used to represent the impact on hydrological 

drought caused by climate change, which was calculated by summing up the differences 

between the simulated series and the threshold values (determined for the baseline period). In 

addition, the difference between vtotal and vrecon (denoted as vhuman) represents the effects of 

human activities. The relative contributions (i.e., percentages) of climate change (Ic) and 

human activities (Ih) to hydrological drought can be defined as follows: 

100%recon

c

human recon

v
I

v v
 


                   (11) 
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  100%human

h

human recon

v
I

v v
 


                   (12) 

The runoff series were examined at a moving average of 3 months to make the TLMv 

method comparable to the SRIt method on the time scale. 

 

2.4.2. The Standardized Runoff Index based on parameter transplantation 

The SRI was used as the useful counterpart for depicting the hydrological aspects of 

drought (Shukla and Wood, 2008). The long-term streamflow series were first fitted to the 

probability distribution function (Nalbantis and Tsakiris, 2009; Ren et al., 2016). Once the 

distribution was determined, the cumulative probability was then transformed to the standard 

normal SRI value using the following approximation: 

 
 
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 
   

     
       

    (8) 

where F(x) is the cumulative distribution function, and the constants are defined as C0 = 

2.515517, C1 = 0.802853, C2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308. 

 After that, the SRI value is used to determine whether a drought event has occurred (Fig. 

3b) and obtain the drought characteristics (e.g. time of occurrence, tk, duration, dk, drought 

severity, sk, and drought interval, ik). In this study, the drought severity can be divided into five 

classes based on the SRI values: non-drought when 0.5SRI   , mild drought when 

1.0 0.5SRI    , moderate drought when 1.5 1.0SRI    , severe drought when

2.0 1.5SRI    , and extreme drought when 2SRI   . Specially 0.5SRI   was defined 

as the normal range to reduce the number of “minor drought” events without affecting the 

drought rating. 

 

 The calculation core of the SRI method is fitting the runoff series with an appropriate 

probability distribution function under the assumption of stationarity. However, under the 

effects of both climate change and human activities, this assumption may no longer be valid for 

many river basins, making the corresponding model or method not applicable under 
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non-stationary conditions. 

 In this study, a parameter transplant method was used to construct a new SRI series 

(denoted as SRIt) to represent the total change of the hydrological drought caused by both 

climate change and human activities. Through the optimization of the probability distribution 

function, a three-parameter generalized extreme value (GEV) distribution function that passed 

the Kolmogorov-Smirnov test was used to fit the runoff series in the baseline period (the effects 

of human activities on hydrological drought were less recognized during this period). After that, 

the parameters and distribution of the probability function were extracted and transferred to the 

observed and simulated runoff series during the change period to calculate the SRI series, 

respectively. The SRI values determined from the observed series (SRIt) during this period 

represent the total change in hydrological drought caused by both climate change and human 

activities. Further, the SRI values computed from the reconstructed (simulated) series (SRIr) 

during the change period represent the changes in hydrological drought caused by climate 

change. Therefore, the difference between SRIt and SRIr (denoted as SRIh) represents the 

effects of human activities. The relative contributions (i.e., percentages) of climate change (Ic) 

and human activities (Ih) to hydrological drought can be defined as follows: 

 

100%r

c

h r

SRI
I

SRI SRI
 


                      (9) 

100%h

h

h r

SRI
I

SRI SRI
 


                     (10) 

Here, the SRI series corresponding to the 3-month time scale (SRI-3t) was selected for the 

quantitative analysis of hydrological drought. 

 

2.4.3. The VIC hydrologic model 

VIC is a macro-scale distributed hydrologic model that balances both the water and 

surface energy budgets. By dividing the land surface into different land-cover types and bare 

soil, it incorporates the sub-grid spatial change of precipitation and infiltration (Liang et al., 

2004). The model parameters can be classified into two categories. The first category of 
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parameters is not adjusted once determined (e.g. the saturated soil potential ψs (m), soil 

porosity θs (m
3
m

3
), and saturated hydraulic conductivity ksat (ms

1
)) and the classifications of 

the University of Maryland global land cover (e.g. root depth and fraction). Another category 

includes seven user-calibrated parameters (listed in Table 1), in which B (the infiltration curve 

parameter) and d2 (the thickness of the middle soil moisture layer) are the two most sensitive 

ones. 

 

In this study, the VIC model was implemented from 1964 to 2015 using a 24-h temporal 

and 0.0625 0.0625   spatial resolution. The Muskingum method was employed as the 

streamflow routing module to produce a model-simulated runoff at the Xinlongpo hydrologic 

station. The coefficient of correlation (CC), Nash-Sutcliffe efficiency coefficient (NSE), and 

relative error (BIAS) specified by Equations (13), (14), and (15), respectively, were used to 

evaluate the model performance (Jiang et al., 2012b; Jiang et al., 2018b). 
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
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



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                   (15) 

where  obsQ i  is the observed runoff (mm/month) at time step i,  simQ i  is the simulated 

runoff (mm/month) at time step i, obsQ 
 is the mean observed runoff value (mm/month), simQ 

 

is the mean simulated runoff value (mm/month), and n is the number of data points. 

 

3. Results and Discussion 

3.1. Hydrological variation analysis 



 

 

This article is protected by copyright. All rights reserved. 

Firstly, the precipitation, PET, and runoff series obtained over the Laohahe catchment from 

1964 to 2015 were analyzed. According to Fig. 4a, Fig. 4b, and Fig. 4c, the precipitation and 

PET series show slightly decreasing trend during the past 52 years, whereas the runoff series 

exhibits a rapidly decreasing trend with a large descending rate. More directly, we analyzed the 

inconsistent change of the precipitation and runoff series using runoff coefficient (Fig. 4d). Its 

mean value in the basin was 0.06, but during the three dry decades (1980s, 2000s, and 2010s), 

the runoff coefficient was extremely low (significantly less than 0.06). In addition, the MK test 

was performed for the trend analysis of the precipitation, PET, and runoff series during the past 

52 years. The results (Table 2) show that precipitation and PET series have no significant 

increasing or decreasing trend. While, the runoff series exhibited a significantly decreasing 

trend (with a positive significance of 0.99) at a rate of 6.3mm every 10 years during the entire 

study period. 

 

Based on the results of trend analysis, the Pettitt test was selected to identify the 

change-point for the runoff series. The results (Fig. 5a) show that the first change-point of this 

series was observed in 1979 (P = 0.99). In addition, the precipitation and runoff double 

accumulative curve method (DCC) was used to assist in identifying the change-point for the 

runoff series. The results (Fig. 5b) also show that the gradient of the runoff accumulation curve 

was significantly different from that of the precipitation accumulation curve after 1979. 

 

After finding the change-point, the social and economic data (Fig. 6) collected from 

Chifeng city located in the Laohahe basin were analyzed. It was observed that: (1) beginning 

from 1979, the food production (Fig. 6a) in the city increased rapidly. Similarly, the animal 

husbandry industry (Fig. 6b) continued to stabilize at a high level after 1979 and experienced 

rapid growth in the 21st century. These phenomena are closely related to the Chinese land 

reform conducted in 1978. However, the rapid development of agriculture consumes a large 

amount of water resources, which are required for irrigation, drinking water for livestock, and 

other applications. (2) Before the 21st century, the population of Chifeng city (Fig. 6c) was 
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rapidly growing. In the 21st century, the population growth has slowed down, but remained at a 

high level, leading to a sustained increase in the demand for domestic water. (3) The GDP of 

Chifeng city (Fig. 6d) experienced rapid growth after the national economic opening policy 

was implemented in 1979 (In 2015, the GDP was more than 200 times greater than that of 

1979). The secondary and tertiary industries that supported the rapid growth of GDP also 

caused a massive consumption of water resources. 

 

In addition, the construction and operation of large reservoirs in the Laohahe basin also 

produced a significant effect on the natural runoff series. Before the 21st century, the Laohahe 

basin was mainly regulated by two large reservoirs, namely the Erdaohezi (storage capacity: 

0.98×10
8
 m

3
) and Dahushi (storage capacity: 1.2×10

8
 m

3
), and the total regulated storage 

capacity of both reservoirs reached 2.0×10
8
 m

3
. In 2009, when the Sanzuodian reservoir (with a 

storage capacity of 3.05×10
8
 m

3
) was built and operated, the reservoir regulation capacity of 

the Laohahe basin exceeded 5×10
8
 m

3
. As a result, the large-scale reservoir regulation caused a 

sharp reduction in the surface water resources. Besides, the land use and cover changed 

obviously in the study area after 1979. Cropland and built-up land increased substantially while 

the areas of water body and grassland decrease persistently. Forest land and unused land 

changed in fluctuation with a decrease on the whole (Yong et al., 2013). 

Through analyzing these phenomena, it revealed that the natural hydrological processes of 

the basin were affected not only by climate change, but also by various human activities after 

the change-point in 1979 (especially the runoff series, which exhibited a rapidly decreasing 

trend with a large descending rate). 

 

3.2. Hydrological drought analysis based on traditional assessment methods 

In this section, the TLM (Fig. 7a) and SRI (Fig. 7b) methods were used to analyze the 

hydrological drought occurred in the Laohahe basin during the past 52 years (19642015) in a 

changing environment. Using the former method, a fixed threshold value was calculated for the 

entire period (19642015) and applied to the entire time series. Likewise, 3-month SRI values 



 

 

This article is protected by copyright. All rights reserved. 

(SRI-3) were calculated based on the entire period (19642015) using a three-parameter GEV 

distribution function. These two methods are different from the improved methods described in 

section 3.2. 

 

The results (Table 3) show that hydrological drought events frequently occurred in the 

1980s (19801989), 2000s (20002009), and 2010s (20102015), while in other decades, their 

frequency was much lower. When TLM was used for drought evolution, 60%, 81%, and 99% 

of droughts were identified in the 1980s, 2000s, and 2010s, respectively. Similarly, 45%, 58%, 

and 100% of droughts were detected in the 1980s, 2000s, and 2010s, respectively, using the 

SRI method. 

However, in terms of the drought characteristics (e.g. the number and duration of droughts), 

the results obtained by the two methods were quite different. Using the TLM method, 9, 12, 

and 12 drought events were identified in the 1960s, 1970s, and 1990s, while only 2, 1, and 2 

drought events were identified in these periods by the SRI method, respectively. Similarly, 

using the TLM method, the drought durations determined for these three decades were 18 

months, 32 months, and 24 months, whereas the drought durations obtained by the SRI method 

were equal to 2 months, 1 month, and 8 months, respectively. In addition, the deficit volume of 

the dry decade (e.g., the 1980s, 2000s) was 4 to 9 times larger than that of the humid decade 

when the TLM method was utilized, while the drought severity showed that the extent of 

expansion was significantly greater when the SRI method was used (for example, the drought 

severity in the 1980s was 150 times higher than that in the 1970s). 

Then, 3-month standardized precipitation index (SPI-3) values were calculated from the 

precipitation series (19642015) for meteorological drought (Fig. 7c). The meteorological 

drought process driven by precipitation did not exhibit an obvious inter-annual change in 

contrast to the runoff-driven hydrological drought process. By comparing the results of the 

three methods, it can be concluded that the irregularity of hydrological drought is beyond the 

range of natural drought evolution (since the 21st century, the proportion of drought event was 

over 80% and even reached 100% in the 2010s). Besides, large differences in the drought 
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characteristics were obtained by various methods, indicating that the traditional drought 

assessment methods might produce deviations during the drought identification of basins in a 

changing environment, especially for the droughts disturbed by intense human activities. 

Therefore, drought assessment methods must be optimized to distinguish the impacts of 

climate change and human activities on hydrological drought both accurately and 

quantitatively. 

 

3.3. Quantifying the impacts of climate change and human activities on hydrological 

drought 

By combining the results of runoff variation analysis and change-point identification 

performed in section 3.1, the time series of the study period was divided into two parts: the 

baseline period (“undisturbed”) from 1964 to 1979 and the change period (“disturbed”) from 

1980 to 2015. According to this division, the hydrometeorological forcing data of the baseline 

period were used to calibrate the VIC model (Fig. 8a), in which 1964 was the warm-up period, 

19651974 was the calibration period, and the remaining 19751979 was the validation period. 

The values of NSE, BIAS, and CC were 0.83, 5.1%, and 0.92 for the calibration period and 

0.73, 2.5%, and 0.86 for the validation period, respectively, which showed that the VIC model 

could accurately simulate the natural runoff series. After that, the runoff series during the 

change period were simulated using the calibrated VIC model and meteorological forcing data 

(Fig. 8b). The difference between the observed and simulated runoff series is mainly a 

reflection of the impact of human activities, including some minor simulation errors. 

 

 

Subsequently, we used the two improved methods, namely, TLMv and SRIt method to 

analysis and quantify the impacts of climate change and human activities to hydrological 

drought. Firstly, we compared the drought characteristics identified from simulated runoff 

(affected by only climate change) during the “baseline period” (19641979) with that during 

the “change period” (19802015) in the Table 4 to analysis the effect of climate change to 
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hydrological drought using the above two methods. Results show that, when using the TLMv 

method, the duration of drought was increased by 1.11.6 times, and the deficit volume was 

increased by 1.82 times. Similarly, when using the SRIt method, the duration of drought was 

increased by 1.21.3 times, and the drought severity was increased by 1.62.2 times. It 

indicated that climate change aggravated hydrological drought slightly during the change 

period. Then, drought assessment of the observed and simulated runoff series during the 

change period was carried out through the two improved methods to analysis the effect of 

human activities to hydrological drought. Using the former method (Table 4, Fig. 9a and Fig. 

9b), the number of droughts identified during simulated series (affected by only climate change) 

was very close to that of the observed ones (affected by both climate change and human 

activities); however, when human activities were considered, the duration of drought was 

increased by 39 times, and the deficit volume was increased by 411 times. Similar results 

were obtained using the SRIt method (Table 4, Fig. 10a and Fig. 10b); in this case, the duration 

of drought increased by 412 times and drought severity increased by 815 times. Hence, the 

drought affected by human activities is more serious than natural drought (affected only by 

climate change). 

 

 

Fig. 9c and Fig. 10c show the differences between the observed and natural droughts 

(distinguished from the simulated series), which indicate the impact of the net human activities 

on the drought; here, the positive value means aggravating drought and the negative value 

means relieving drought. The contribution of climate change calculated by the TLMv method 

accounts only for 20.641.2%, while the impact of human activities accounts for 58.879.4%. 

Similarly, the values computed using the SRIt method are equal to 15.345.3% for the climate 

change and 54.784.7% for the human activities.  

 

The results obtained by the two methods indicate that both climate change and human 

activities aggravated hydrological drought and human activities is the dominant factor 
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affecting hydrological drought. Moreover, by comparing the results of different decades, it was 

found that the influence of human activities represents a growing trend (Fig. 11). Precipitation 

and evaporation are normally recognized as the most crucial climate factors to control runoff, 

and further affect hydrological drought. In the Laohahe basin, the decreasing trend of 

evaporation (represented by PET) is smaller than that of precipitation and the difference 

between these two factors will lead to runoff reduction and further cause more droughts. In 

addition to the climate change, human activities such as land use/cover changes and reservoir 

construction will also affect hydrological drought. The area of cropland of the Laohahe basin 

was 6852 km
2
 before the 1980s, and with the continuous increase in land reclamation it reached 

7370 km
2
 in the 2000s, accounting for about 40% of the total basin area. The areal coverage of 

grassland dropped from 5882 km
2
 in 1980s to 4629 km

2 
in the 2000s (Yong et al., 2013). The 

substantial increase of water-consuming cropland and continuous decrease of grassland 

contributed serious loss of surface water and hydrological drought. Additionally, reservoir 

construction with a total storage capacity exceeding 5×10
8
 m

3
 disrupted the natural 

hydrological cycle and provided more water supplies for irrigation and domestic water usage, 

consequently further led to the occurrence of severe hydrological drought events. 

 

3.4. Discussion on the uncertainty of hydrologic simulation 

The entire hydrological drought separation framework is based on the hydrological model 

simulation; hence, the accurate simulation of the hydrological characteristic process line 

directly affects the results of the hydrological drought assessment. In this study, biases (errors 

not more than 5.1%, equivalent to approximately 0.14mm/month in runoff) of the VIC model 

during the baseline period is mainly caused by overestimating or underestimating the runoff 

peak, while the drought events mostly occur in the dry season (the low-runoff period). The 

systematic bias caused by the flood peak period does not affect the drought assessment results 

in any significant way as long as the low-runoff process can be accurately simulated. More 

directly, we compared the differences in drought characteristics between observations and 

hydrological model simulations during the baseline period to analyze the propagated bias in 
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droughts. Results show that (Table 4), when using TLMv method, the difference of the drought 

duration is an average of 0.1 months, and the difference of deficit (drought severity) is an 

average of 0.2mm per drought. Likely, when using SRIt method, the difference is 0.3months, 

and 0.3 per drought, respectively. These magnitudes in general are rather small compared with 

that of human-induced droughts during the change period, where the difference of drought 

duration and deficit volume (drought severity) are 6.8 months and 8mm per drought using the 

TLMv method, and 9.9 months and 21.8 per drought using SRIt method. In other words, minor 

errors derived from model simulations though exist; they will not influence the dominant 

contribution of human activities substantially. In future studies, we can compare the simulation 

results of multiple hydrological models and use optimization method to reduce uncertainties, 

including model uncertainty (arising from lumped and simplified representation of 

hydrological processes in hydrologic models) and parametric uncertainty (reflecting the 

inability to specify exact values of model parameters due to finite length and uncertainties in 

the calibration data) (Renard et al., 2010; Jiang et al., 2018a).  

 

4. Conclusion 

Hydrological drought is greatly influenced by climate change and human activities in a 

changing environment. In this paper, we established a separation framework including the 

TLMv and SRIt method to quantify the impacts of climate change and human activities on 

hydrological drought. The results of the case study conducted for the semiarid Laohahe basin 

of North China are as follows: 

(1) The traditional drought assessment methods were used to identify hydrological drought 

of the Laohahe basin between 1964 and 2015. The obtained results showed that the 

hydrological drought in the basin exhibited an apparent irregularity and was beyond the range 

of the natural drought evolution. Because of the significant impacts of human activities on the 

hydrological process, the traditional hydrological drought assessment methods are no longer 

applicable to some basin in a changing environment. 

(2) Through the MK test, the precipitation and PET series exhibits no apparent downward 
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trend, while the runoff series demonstrates a rapidly decreasing trend. The first change-point 

for the Laohahe basin determined by the Pettitt test is dated 1979. The analysis of multiple 

economic indicators of Chifeng city located in the Laohahe basin, land use changes, and 

reservoir construction reveal that various forms of human activities have had a significant 

impact on the hydrological process since 1979, which also confirmed the results of the 

change-point test. 

(3) The hydrological drought during the change period (1980-2015) in the Laohahe basin 

was evaluated using the proposed separation framework. The results show that when human 

activities are considered, the duration of the drought is increased by 39 times using the TLMv 

method and by 412 times using the SRIt method respectively. The increases in the deficit 

volume amount to 411 times using TLMv method, and the drought severity expands by 815 

times through the SRIt method, indicating that the degree of drought severity resulting from 

human activities is greater than that corresponding to natural drought. 

(4) The impacts of climate change and human activities on hydrological drought were 

quantified. The results obtained by the TLMv method show that climate change accounted for 

20.641.2% of the total impact, and human activities accounted for 58.8–79.4%. For 

comparison, the results obtained by the SRIt method demonstrate that climate change 

accounted for 15.345.3% of the total impact, and human activities accounted for 54.784.7%. 

The results from the two methods indicate that both climate change and human activities 

aggravated hydrological drought and human activities are the dominant factor affecting 

hydrological drought with an upward trend. 
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Fig. 1. Location of the study area and distributions of the rain gauges, meteorological stations, 

and Xinlongpo hydrologic station. 
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Fig. 2. Hydrological drought evaluation framework. 
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Fig. 3. Illustrations of (a) the TLM method (time of occurrence, tk, duration, dk, deficit volume, 

vk, drought interval, ik, and the threshold level, Qz) and (b) the SRI method (time of occurrence, 

tk, duration, dk, drought severity, sk, drought interval, ik). 
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Fig. 4. Variations of the (a) annual precipitation, (b) PET, (c) runoff, and (d) runoff coefficient 

observed for the Laohahe catchment since 1964. The red dashed lines denote the corresponding 

linear trends. 
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Fig. 5. (a) Probability of a change-point year and (b) double cumulative curves of the annual 

precipitation and runoff. 
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Fig. 6. Changes in the quantities of (a) food, (b) livestock, (c) population, and (d) GDP for 

Chifeng city in 1964–2015. 
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Fig. 7. Temporal evolutions of the (a) hydrological drought identified using the TLM method 

(derived from the runoff series), (b) hydrological drought identified using the SRI method 

(derived from the runoff series), and (c) meteorological drought identified using the SPI 

method (derived from the precipitation series). 
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Fig. 8. VIC simulated monthly runoff at the Xinlongpo hydrologic station for the (a) baseline 

period of 1964–1979 and (b) change period of 1980–2015. 
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Fig. 9. Hydrological droughts identified with the TLMv method during 1980–2015 from the (a) 

observed and (b) simulated runoff series. (c) Difference of deficit volume between the 

observed and simulated runoff series representing the net effect of human activities on 

hydrological drought. 
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Fig. 10. Hydrological droughts identified with the SRIt method during 1980–2015 from the (a) 

observed and (b) simulated runoff series. (c) Difference of drought severity between the 

observed and simulated runoff series representing the net effect of human activities on 

hydrological drought. 
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Fig. 11. Relative contributions of climate change and human activities to hydrological drought 

calculated by two different methods. 
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Table 1 

Seven parameters commonly calibrated in the VIC-3L model, their physical meanings, and 

default values. 

Parameter Physical meaning Unit Numeric range Default parameter value 

B Infiltration curve parameter N/A 00.4 0.01 

d2 Thickness of the middle soil 

moisture layer 

m 02 1.35 

Ds Fraction of Dsmax where the 

non-linear baseflow begins 

Fraction 01 0.004 

Dsmax Maximum velocity of the baseflow mm/day 030 6 

Ws Fraction of the maximum soil 

moisture where non-linear baseflow 

occurs 

Fraction 01 0.98 

d1 Thickness of the top thin soil 

moisture layer 

m 0.050.1 0.05 

d3 Thickness of the lower soil moisture 

layer 

m 02 2 
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Table 2 

Trend and change-point analysis of the annual precipitation, PET, and runoff. 

Factor Mean value 

(mm/a) 

Trend rate 

(mm/10a) 

MK trend test Pettitt change-point 

analysis 
Z Positive significance 

Precipitation 417.9 6.7 1.27 ― ― 

PET 1014.1 0.8 0.13 ― ― 

Runoff 24.9 6.3 4.80 0.99 1979 
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Table 3 

Hydrological drought characteristics identified from observed runoff using TLM and SRI 

method, and meteorological drought characteristics identified from observed precipitation 

using SPI method during 1964-2015. 

Period Number of droughts  Duration (months)  Deficit（mm）/ 

Drought severity 

TLM  SRI  SPI  TLM  SRI  SPI  TLM  SRI  SPI 

19641969 9  2  8  18  2  26  3.7  0.2  18.5 

19701979 12  1  15  32  1  26  7.1  0.2  16.6 

19801989 13  12  18  72  54  43  28.1  33.0  31.5 

19901999 12  2  15  24  8  24  4.6  5.5  16.7 

20002009 10  10  21  97  70  45  33.8  39.8  26.1 

20102015 2  1  11  71  72  27  35.2  64.3  16.4 

TLM, the runoff threshold level method; SRI, the standardized runoff index method; SPI, the standardized 

precipitation index method. 
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Table 4 

Drought characteristics identified from observed and simulated runoff using TLMv and SRIt 

method during 1964-2015. 

 TLMv, the variable runoff threshold level method; SRIt, the Standard Runoff Index based on parameter 

transplantation.  

 

 

 

Period Method Series Number of 

droughts 

Duration (month) Deficit volume(mm)/ 

drought severity 

Mean Max Mean Max 

Baseline 

period 

(1964-1979) 

TLMv Observed 14 3.0 6 1.9 5.6 

Simulated 17 2.9 7 1.7 6.2 

SRIt Observed 14 3.2 8 2.4 5.2 

Simulated 20 2.9 6 2.1 6.9 

Change 

period 

(1980-2015) 

TLMv Observed 29 9.9 94 11.2 131.8 

Simulated 34 3.1 11 3.2 12.5 

SRIt Observed 24 13.3 96 25.2 225.7 

Simulated 47 3.4 8 3.4 15.0 


