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Abstract

Hepatitis C virus (HCV) virions contain a subset of host liver cells proteome often
composed of interesting virus-interacting factors. A proteomic analysis performed on
double gradient-purified clinical HCV highlighted the translation regulator LARP1 on

these virions. This finding was validated using post-virion capture and immunoelectron
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microscopy, immunoprecipitation applied to in vitro (Huh7.5 liver cells) grown (Gt2a,
JFH1 strain) and patient-derived (Gt1a) HCV particles. Upon HCV infection of Huh7.5
cells, we observed a drastic transfer of LARP1 to lipid droplets, inducing colocalization
with core proteins. RNAi-mediated depletion of LARP1 using the C911 control
approach decreased extracellular infectivity of HCV Gt1a (H77), Gt2a (JFH1), and
Gt3a (S52 chimeric strain), yet increased their intracetlular infectivity. This fatter effect
was unrelated to changes in the hepatocyte secretory pathway, as evidenced using a
functional RUSH assay. These results indicate that LARP1 binds to HCV, an event

associated with retention of intracellular infectivity.
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Introduction

Viruses and primate cells have coexisted for several million years. Host cells have
evolved to eliminate most replicating viruses according to paleovirology studies (Patel
et al., 2011). Therefore virion-bound host proteins (VBPs) may be considered to
provide viral species with important components for virus persistence and/or
propagation through their implication in replication, egress or entry steps of the viral
cycle (Arthur et al., 1992; Garrus et al., 2001). Assuming that VBPs are likely to play a
more important role in the viral life cycle than the rest of the cell proteome, the aim of
our study was to validate the presence of some VBPs on hepatitis C virus (HCV) virions
and to unravel a potential role for these VBPs at the entry or egress levels.

HCV is an enveloped positive-strand RNA virus and belongs to the genus Hepacivirus
in the Flaviviridae family. HCV often establishes persistent infection in humans, which
may lead to chronic liver disease, cirrhosis, and hepatoceliular carcinoma, the third
most common cause of cancer-related death (El-Serag, 2012). HCV infects
hepatocytes and induces extensive remodeling of endoplasmic reticulum (ER)-derived
membranes into a so-called “membranous web” (Egger et al., 2002). This web is
composed of double membrane vesicles located in close proximity to lipid droplets
(LDs) and serves as the site of viral genome replication and particle assembly (Aizaki
et al., 2004), prior to release via the secretory pathway, though the precise

mechanisms underlying this export process are not fully understood.

HCV comprises both an abundant amount and a broad variety of VBPs. Indeed, HCV
virions incorporate not only viral but also host proteins, many of which, notably
apolipoproteins B and E, have been shown to be functionally implicated in the viral life
cycle by modulating cellular processes involved in lipid metabolism (Chang et al,

2007) (Huang et al., 2007; Meunier et al., 2008). In addition, HCV VBPs implicated in
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protein folding, e.g. HSC70 (Parent et al., 2009), as well as others functions (Benga et

al., 2010; Cottarel et al., 2016) have been identified.

The La-Related Protein 1 (LARP1) is a highly evolutionarily conserved translation
regulating and RNA-binding protein (RBP) of the LARP family, each member of which
carries a conserved La domain and an RNA-binding region. Following a recent upsurge
in studies focusing on LARP1 in human biology, after its initial investigation in plants
(Merret et al., 2013), this RBP was identified as a regulator of both mRNA stability and
translation (Gentilella et al., 2017; Hong et al., 2017; Lahr et al., 2017), especially with
respect to transcripts implicated in cell proliferation and cell survival (Stavraka and
Blagden, 2015). Interestingly, LARP1 is overexpressed in hepatocellular, lung and
ovarian cancers, where it is an independent predictor of adverse prognosis (Xie et al.,
2013) (Hopkins et al., 2016). Moreover, the level of LARP1 is elevated in squamous
cervical cancer, where it promotes cell motility and invasion, and binds an mRNA
interactome enriched in oncogenic transcripts (Mura et al., 2015). In this study, we
identify LARP1 as a novel component of at least a subset of HCV particles and show
that it plays a role in the virus life cycle, predominantly by restricting the release of

three epidemiologically important HCV genotypes.

Results

In order to identify host cell factors that associate with circulating HCV virions, we
performed a proteomic analysis of HCV particles isolated from the plasma of two
viremic patients. Plasma from an aviremic subject served as a control. After initial
pelleting, HCV particles were sedimented on two sequential iodixanol gradients via
isopycnic centrifugation as described previously (Cottarel et al., 2016; Parent et al.,

2009). By monitoring HCV RNA in the collected fractions, we identified a peak of viral
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RNA at 1.12 g/mL of iodixanol (Fig. 1}). To further decrease the level of non-specific
co-sedimented background material, we subjected our virus-containing fractions to a
second iodixanol gradient-based purification step, together with a naive plasma
sample (Parent et al., 2009). Following HPLC/MS analysis of the virus-containing
fractions as described before (Cottarel et al., 2016) (Parent et al., 2009), we detected
LARP1 in these fractions, but not in the corresponding aviremic control.

In order to confirm the presence of LARP1 on the particles, we immunoprecipitated
LARP1 from JFH1 virus released from Gt2a HCVcc-infected Huh7.5 cells (Delgrange
et al., 2007) with anti-LARP1 or anti-HCV E2 (CBH5) (Keck et ai., 2005). Material was
then subjected fo silica beads-based RNA extraction and RT-qPCR using HCV
primers. As expected, our positive control, the human anti-E2 CBH5 monoclonal
antibody displayed the highest enrichment ratio (8-fold) when compared toc an isotype
control. RNA of in vitro produced HCV could be enriched 4-fold using an anti-LARP1
lg compared to its isotypic control (Fig. 2a). Delipidated particles using NP40 (0.1%,
4°C, overnight) did not immunoprecipitate (not shown) using anti-LARP1 antibodies,
suggesting that LARP1 associates with HCV externally rather than being
encapsidated.

To seek further evidence that LARP1 is associated with HCV virions, we performed
immunogold electron microscopy (IEM) on supernatants of infected Huh7.5 cells, and
also used immunocapture (Piver et al., 2017) as an alternative and independent EM-
related approach. Viral suspensions were generated from the supernatants of JFH1-
infected Huh7.5 cells which were clarified and concentrated on sucrose cushions
(Parent et al,, 2009) or from patient plasma as previously described (Piver et al., 2017).
Suspensions were adsorbed on grids and processed (Cottarel et al., 2016). As shown

in Fig. 2b (left set of images), no virion-like structure was observed in HCV-negative
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supernatants. No labeling was found for HCV-positive samples stained with secondary
antibodies only, ruling out non-specific staining. Although labeling was scarce, an issue
commonly encountered in IEM, as illustrated by our previous ApoE staining (Cottarel
et al., 2016; Parent et al., 2009), probing HCV-positive supernatants with anti-LARP1
antibodies exposed virions of 30-80 nm in size (Fig. 2b, right set of images),
corroborating previously published features of in vitro-derived viral particle
preparations (Catanese et al., 2013). Gold particles located < 40 nm (corresponding to
a single immunoglobulin length) away from the virion were considered to be specifically
bound. These data were confirmed using our recently developed immunocapture
approach (Piver et al., 2017), implemented here based on anti-E2 and anti-LARP1
antibodies, and which also revealed small-sized virions (Fig. 2¢).

Virion-bound host proteins often contribute to viral budding, not least due to their
specific intracellular localization, as initially highlighted in the HIV field (Garrus et al.,
2001). Using confocal immunofluorescence microscopy, we studied the localization of
LARP1 with respect to the infection status of Huh7.5 cells and vicinity of LDs as major
sites for HCV morphogenesis (Miyanari et al., 2007), followed by the investigation of
several HCV parameters. LARP1 produced a diffuse signal in the cytosol of uninfected
celis, while it relocated to the immediate proximity of L.LDs upon infection, in most cases
exhibiting near total colocalization with the typical LD-associated HCV core protein
(Fig. 3a). These data were quantitatively verified using Pearson, morphometric and Li
correlation coefficient approaches (Fig. 3b-d). Despite several aftempts, co-
immunoprecipitation assays between HCV core and LARP1 remained unsuccessful,
suggesting a labile interaction between both proteins at this level. These results
indicate that an important fraction of the LARP1 cytosolic pool accumulates around

core-decorated ER/LD structures as previously documented (Miyanari et al., 2007) in
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an HCV-positive cell-specific manner. No concomitant increase in LARP1 levels upon
infection could be consistently observed (Suppl. Fig. 1). Altogether such data argue for
a role for LARP1 in viral assembly processes,

To test this hypothesis, we then modulated LARP1 expression and tested its effect on
HCV replication and infectivity. LARP1 levels were transiently modulated by the
infection. HUh7.5 cells were transfected with non targeting siRNAs, LARP1 C911-
mutated LARP1 siRNAs (Buehler et al., 2012) as a control for excluding off-target
effects, or with wt LARP1 siRNAs. Knockdown efficiency was verified by RT-gPCR and
Western blotting (Fig. 4a,b). LARP1 depletion-mediated toxicity was ruied out after
performing Sulforhodamine B (SRB) (Vichai and Kirtikara, 2006) and Neutral Red (NR)
(Repetto et al., 2008) assays (Fig. 4¢,d).

The virological consequences of LARP1 depletion were then addressed, by initially
considering the highly propagative HCV JFH1 (Gt2a) strain. As shown in Fig. 5a,b,
LARP1 depletion weakly decreased (< 2-fold) intracellular HCV RNA Gt2a levels,
though no effect was detected extracellularly. This depletion was correlated with a
strong increase in intracellular infectivity (up to 3.5-fold, see Materials and methods
section) (Fig. 5¢). Intriguingly, no significant effect could be observed on extraceliular
infectivity (Fig. 5d). The same approach was implemented to determine relative
infectivity levels, by measuring TCIDso/HCV RNA ratios, thus evaluating the
intracellular RNA-to-particle conversion yield. Similarly to global infectivity levels, RNAI
depletion of LARP1 increased the relative intracellular infectivity up to 3-fold (Fig. 5e).
Interestingly, a weak (< 2-fold) reduction in the relative extracellular (particle to RNA
copies) infectivity levels could be observed (Fig. 5f), which were confirmed through

secreted HCV core antigen (Ag) levels (Fig. 5g).
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Finally, we evaluated the validity of these results across other HCV genotypes. We
therefore tested the conseguences of LARP1 depletion on the H77 (Gt1a) (Blight et
al., 2003; Yanagi et al., 1997) and Gt3a-bearing S52 chimeric {Gottwein et al., 2011a)
strains after electroporation. Post-electroporation viability and proliferative capacity of
the cells were similar in all instances (Fig. 6a-b-e-f). While no difference could be
observed at the HCV RNA level irrespective of LARP1 conditions (Fig 6¢-g), significant
inhibition (> 2-fold and 10-foid for Gtta and Gt3a, respectively) of secreted HCV core
Ag levels was observed upon LARP1 depletion {Fig. 6d-h). Lack of HCV RNA reduction
following siRNA transfection was probably due to the presence in excess of in vitro
transcribed RNA copies, while absence of detection of intracellular infectivity reflects
the poor, if any, propagation rate of non JFH1 strains in vitro. Nevertheless, these
findings suggest trans-genotypic validity of our resuits.

To verify whether the enhancing impact of LARP1 depletion on HCV intraceilkular
infectivity was due to its general impact on the secretory pathway of the hepatocyte,
we conducted a RUSH (retention using selective hooks) assay (Boncompain and
Perez, 2013). Since LARP1 depletion did not impair the trafficking of secretory cargoes
between the ER and the Golgi apparatus (Suppl. Fig. 2), i.e. increased infectivity was
not due to increased viral output, we postulate that LARP1 is involved in restricting
viral infectivity downstream of the replication phase. These results may also indicate
that the enhanced intracellular infectivity occasioned by LARP1 depletion is reversed
and/or compensated by other structural components during the secretory process prior

to the extracellular particle release.
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Discussion

A virus may contain host proteins for the following reasons: the host protein is present
at the site of assembly, the protein interacts with a viral protein and is swept up into
the virion during budding, or its incorporation is needed to perform a specific function
for the virus. Taken together, derived from MS as well as two methodologically-
unrelated approaches, our data identify LARP1 as a component of at least a subset of
in vitro-grown (Gt2a)} and clinical (Gt1a) HCV virions. These data also suggest that
some LARP1 regions are exposed on the surface of the secreted viral particle since
the protein is accessible for antibody binding, though the mechanisms underlying this
exposure should be further ascertained. Indeed, HCV buds through the ER membrane
and it is therefore expected that virion-bound proteins such as LARP1 that are
accessible to antibody binding in IP/RT-gPCR and TCIDs, assays translocate to the
ER lumen prior to their association with the virion. LARP1 rapidly colocalizes with the
peri-droplet HCV core signals but not with the envelope E2 glycoprotein. The
association of LARP1 with nascent virions may therefore consist in its intercalation
either (i} between the ER-derived membrane and the capsid or (i) as a virion
membrane embedded protein. Since none of the LARP1 primary sequence features
encode for a signal peptide, as evidenced by its analysis using Predisi or SignalP 4.0
(Petersen et al., 2011) software, non-canonical translocation processes (Giuliani et al.,
2011; Nickel and Rabouille, 2009; Nickel and Seedorf, 2008) may thus arise.

These antibody-based results finally indicate that LARP1 plays a role in early
interactions of at least a subset of particles with their target cells, as observed for other
VBPs (Chang et al., 2007) (Parent et al., 2009). Since HCV displays a high level of
association with non viral-encoded host material {Chang et al., 2007) (Huang et al.,

2007; Meunier et al., 2008), and, in this study, LARP1 inferring infracellular retention

10
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of infectivity across three genotypes, this implies that such material must therefore be
of specific structural importance for the life cycle of this pathogen (Lavie and
Dubuisson, 2017).

LARP1 was characterized relatively recently and has proven of interest in the field of
the Dengue virus (Suzuki et al., 2016), another Flaviviridae member. LARP1 is
overexpressed in HCC and that it is associated with poorer prognosis (Xie et al., 2013).
While our study specifically focused on basic virology of HCV, it may prove pertinent
to consider a potential association between intrahepatic LARP1 levels and HCV levels
at the cirrhotic stage, the most exposed condition for HCC onset in patients. The fact
that LARP1 may restrict HCV propagation deserves further investigation in light of its
HCC-related protein status and the decreased viremia observed in HCC in the clinic

(Reid et al., 1999).
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Materials and methods

Purification of HCV virions

Infected plasma was obtained from three HCV-positive patients and an aviremic
control and processed after approval of the French IRB (CPP South-East i, agreement
#2010-08-AM2). Plasmas were stabilized with 10 mM Hepes (Gibco), antiproteases
{Roche), centrifuged at 8,000 g for 15 min at 4°C, filtered through 0.45 ym membranes,
layered onto a 20% sucrose cushion in TNE (10 mM Tris, 150 mM NaCl, 2 mM EDTA)
and ultracentrifuged at 27,000 rpm for 4 h at 4°C. Pellets were then resuspended in 1

ml. of TNE, layered on top of 15-40% iodixanol gradients, and submitted to isopycnic
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ultracentrifugation for 16 h at 31,200 rpm at 4°C. Fractions were then harvested from
the top of the gradient. The amount of HCV RNA in each fraction was determined by
real-time quantitative polymerase chain reaction (RT-gPCR). The fractions with the
highest RNA content and the corresponding fractions from the uninfected control were
pooled and dialyzed against TNE overnight at 4°C. Fractions were then concentrated
10- to 20-fold in YM-3 concentration devices (Centricon; Millipore, Billerica, MA),
subjected to a second ultracentrifugation step as described above and processed for

mass spectrometry.

Electron microscopy

Viral suspensions were generated from infected cell supernatants or patient plasma
which was clarified and then concentrated on a 20% sucrose cushion as described
(Parent et al., 2009). Suspensions were adsorbed on 200 mesh Nickel grids coated
with formvar-C for 2 min at room temperature (RT). Immunogold labeling was
performed by floating the grids on droplets of reactive medium. Grids were blocked in
1% BSA / 1% normal goat serum / 50 mM Tris-HCI, pH 7.4 for 10 min at RT. Incubation
with anti-LARP1 primary antibodies (40 ug/ml) was carried out in a wet chamber for 2
h at RT. Following successive washes in 50 mM Tris-HCI, pH 7.4 and pH 8.2 at RT,
grids were first incubated in 1% BSA / 50 mM Tris-HCI, pH 8.2 in a wet chamber for 10
min at RT and then labeled with 10 nm gold-conjugated 1gG (Aurion) diluted 1/80 in
1% BSA / 50 mM Tris-HCI pH 8.2 for 45 min. Grids were then subjected to two washes
in 50 mM Tris-HCI pH 8.2 and pH 7.4 and finally rinsed in distilled water. Following a
2 min fixation with 4% glutaraldehyde, grids were stained with 2% phosphotungstic
acid for 2 min and then analyzed using a transmission electron microscope (Jeol 1400

JEM, Tokyo, Japan) equipped with a Gatan camera (Orius 600) and a Digital

13
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Micrograph Software.

Immunocapture

The formvar-carbon EM grids (8162, Oxford Instruments) were initially incubated with
0.01% poly-L lysine for 30 min at RT and then with selected antibodies (20 ug/mL) for
1h at RT. Grids were washed in PBS and incubated with biological samples containing
or not viral particles, for 2 h at RT. EM grids were washed in PBS and incubated for 20
min in 4% paraformaldehyde and 1% glutaraldehyde in 0.1 M phosphate buffer, pH
7.2. Particles trapped on grids were stained with 0.5% uranyl acetate for examination

under a JEOL 1230 transmission electron microscope (Piver et al., 2017).

Cell culture and HCV infection / electroporation.

The human hepatoma cell line Huh7.5 was cultured in Dulbecco’s minimal essential
medium (DMEM,; Life Technologies) supplemented with 10% fetal bovine serum (FBS;
Thermo Scientific) and 1% penicillin-streptomycin (Life Technologies). Viral stocks
(Gt2a) or experiments (Gt1a and Gt3a) were generated via transfection of in vitro
transcripts encoding the JFH1 genotype 2a-derived strain (Delgrange et al., 2007) or
H77 (Yanagi et al.,, 1997) and 852 (Gotiwein et al., 2010; Gottwein et al., 2011b)

strains. 2x104 cells/cm? were infected with HCV JFH1 at an MOI of 0.1,

siRNA-mediated knockdown

Twenty thousand cells per square centimeter were transfected with 33 nM final
concentration of non-targeting control siRNAs, C911-mutated LARP1 siRNAs (Buehler
et al, 2012) or wt LARP1 siRNAs (Sigma-Aldrich, sense strand, 5'-3"

GGUGACUUUGGAGAUGCAAUC, antisense strand, 5-3"

i4
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GAUUGCAUCUCCAAAGUCACC) using Lipofectamine 2000 (Invitrogen), according
to the manufacturers instructions. The target sequence of LARP1, 5-3"

GGTGACTTTGGAGATGCAATC corresponds to the GenBank Acc.# NM_015315.

Immunofluorescence

siRNA-transfected Huh7.5 cells were fixed in 2% paraformaldehyde, permeabilized
and blocked with 0.1% triton X-100 / 3% BSA in PBS at RT, then stained with the
primary antibodies overnight at 4°C (anti-LARP1 from Novus #NBP1-19128, anti-HCV
core clone #C7/50 from Santa Cruz, 2 pg/mL) and finally incubated with Alexa-—
conjugated secondary antibodies (1 pg/mL). Cell nuclei were counterstained with
Hoechst 33358 (0.025ug/mL in PBS) and visualized under a Leica SP5 confocal

microscope. Overlaid images were obtained using the ImageJ software.

immunoblotting

Immunobilotting was performed using 30 pg of RiIPA-resuspended Huh7.5 cell lysates,
then resolved on 10% SDS-PAGE, blotted onto nitrocellulose membranes (Amersham
Biosciences), blocked using 5% low fat dried milk in PBS for 1hr at RT and probed

overnight at 4°C with antibodies raised against LARP1 (1/1,000; Novus Biologicals,

. cat. #NBP1-19128} and tubulin (1/10,000; Sigma-Aldrich, cat. #T5168).

Immunoprecipitation and neutralization assays

Supernatants from infected cells were harvested 4 days post infection, cleared by
centrifugation (8,000 g, 15 min. 4°C) and then supplemented with 10 mivi HEPES and
protease inhibitors. Immunoprecipitation of secreted virions with antibodies coupled to

protein G magnetic beads (Pierce, 2 ug/iP) was carried out as described previously
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(Jammart et al., 2013). Material was then subjected to RNA extraction (Qiagen) and

RT-qPCR.

HCV TCID;; infectivity assay

Cells were seeded onto 96-well plates (6,400 cells/well) the day before infection. Cells
were then inoculated with 10-fold serial dilutions of the supernatants of inferest. 96 h
post-infection, cells were washed in PBS, fixed for 10 min in methanol/acetone and
blocked for 30 min in 1X PBS / 5% BSA at RT. Cells were then probed with in-house
HCV antiserum (#1804, 1/500) in 1X PBS / 3% BSA for 1hr at RT. After three washes
in 1X PBS / 3% BSA, bound primary antibodies were probed with 1 pg/mL goat anti-
human Alexa Fluor 488 secondary antibodies (Life Technologies) for thr at RT and
visualized by epifluorescence (Nikon TE2000E). Viral titers were determined using the

adapted Reed & Munch method (Lindenbach, 2009).

Neutral Red assay

The Neutral Red (NR) assay was conducted as described by Repetto {Repetio et al.,
2008). Briefly, the NR stock solution (40 mg NR dye in 10 mlL PBS) was diluted in
culture medium to a final concentration of 4 mg/mL and then centrifuged at 600 g for
10 min to remove any precipitated dye crystals. Cells were then incubated with 100 ubL
of NR medium for 1hr. NR medium was removed and the cells washed with PBS.
Plates were incubated for 10 min under shaking with 150 pL/well of NR destain solution
(560% ethanol 96%, 49% deionized water, 1% glacial acetic acid). OD was measured

at 540 nm in a microplate spectrophotometer.

Sulforhodamine B assay
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Cells were incubated with 100 L of 0.057% Sulforhodamine B (SRB) at RT for 30 min
and then rinsed four times with 1% acetic acid, followed by four washes with distilled
water. Plates were left to dry at RT and then incubated in 200 yL of 10 mM Tris pH
10.5. Plates were placed on an orbital shaker for 5 min and OD measured at 510 nm

in a microplate reader.

Quantitative RT-PCR

Total RNA was extracted using trizol (Invitrogen). 1 ug of RNA was DNAse I-digested
(Promega) and then reverse franscribed using MMLY reverse franscriptase
(Invitrogen) according to the manufacturer's instructions. Quantitative real-time PCR
was performed on a LightCycler 480 device (Roche) using the iQ SYBR Green
Supermix (Bio-Rad). PCR primers sequences (5-3') and gPCR conditions were
defined as follows: GUS-F: CGTGGTTGGAGAGCTCATTTGGAA, GUS-R:
ATTCCCCAGCACTCTCGTCGGT, HCV RC1: GTCTAGCCATGGCGTTAGTA, HCV
RC21: CTCCCGGGGCACTCGCAAGC, LARP1-F:
TCAAACTTTCGGTAGCCAAACT, and LARP1-R: GCCTGGCAACCAGAGATCAAA,
Annealing temparature was 55°C in all instances. Primer specificity was assessed by

melting curves and agarose gel electrophoresis.

HCV core Elisa assay

The supernatants (100 i) of HCV Gtia-, Gt2a- and Gt3a-infected cells were spun
down (8,000 g, 5 min, 4°C) prior to Elisa processing using the Quick titer HCV core

Antigen Elisa kit (Cell Biolabs Inc) according to the manufacturer’s instructions.

Figure legends
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Figure 1. Double gradient-based enrichment of HCV particlies harvested from
clinical material.

Clarified and 20% sucrose cushion-pelleted plasmas were subjected to isopycnic
fractionation using two sequential 10% to 60% linear iodixanol gradients. HCV RNA
levels were determined in each fraction after the first run and fractions bearing the
highest viral signal by gPCR were loaded atop the second gradient prior to a second
round of gPCR. The density of each fraction was determined using a refractometer.
The graph is representative of two independent fractionation processes performed on
two distinct patient plasmas. Plasma from an aviremic subject served as co-purification

/ mass spectrometry negative control and was processed in parallel.

Figure 2. LARP1 is a hepatitis C virus particle-bound host factor.

(a) LARP1-mediated immunoprecipitation of HCV RNA. Supernatants harvested from
HCVcc-infected Huh7.5 cells (3 days post-infection (p.i.)) were subjected to
clarification and immunoprecipitation using the indicated antibodies. HCV RNA was
extracted and subsequently analyzed by RT-gPCR. Mann-Whitney test, P < 0.05 (*).
(b} Association of LARP1 with cell culture-derived HCVcc evidenced by IEM.
Concentrated supernatants of infected Huh7.5 cells were deposited onto EM grids and
processed for immunogold labeling using the indicated antibodies. Bound anti-LARP1
antibodies were detected using secondary Igs conjugated to 10 nm gold particles.
Pictures are representative of two labeling procedures. (¢) Association of LARP1 with
cell culture-derived HCV particles evidenced by immunocapture EM. Grids previously
coated with control lgs, anti-HCV E2 (clone #AR3A) or anti-LARP1 were then
incubated with supernatants of HCV-infected Huh7.5 ceils and visualized under TEM.

(n = 3 +/- 5.d.). Mann-Whitney, P < 0.05 (*). For clarity, only highest significance is
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Figure 3. HCV infection triggers LARP1 accumulation around lipid droplets.

(a) LARP1 and core co-localization. HCVcc-infected Huh7.5 cells (3 days p.i.) were
fixed, permeabilized and stained for HCV core proteins and LARP1 prior to incubation
with Alexa 488 (HCV core signal) and Alexa-594 (LARP1 signal)-conjugated
secondary antibodies. Cells were counterstained with Hoechst 33358. Merged images
were obtained using the ImageJ software. (b) Pearson co-localization coefficient.
Coefficient was calculated using the ImagedJ software and plotted against the indicated
time points. (¢} Morphometric assessment of co-localization. Green (HCV core) and
red (LARP1) fluorescence intensities were plotted for each pixel across a
representative lipid droplet image as shown (dashed line) using the Plot Profile function
of the ImageJ software. Correlation coefficients for the selected couples of intensity
values (core/LARP1) are shown. (d) Further statistical assessment of this co-
localization dataset implemented using the Li coefficient. Profile of positive staining
amplitude values confirm near total co-localization (Bolte and Cordelieres, 2008). Data

are representative of six independent experiments.

Figure 4. RNAi-based depletion of LARP1 expression.

(a,b) Cells transfected with siRNAs were subsequently cultured for 24 to 72 h prior to
RNA extraction (a) or immunaobloting (b). Anti-LARP1-specific primers or anti-LARP1
antibodies, respectively were used. Homogenous loading and blotting were previously
assessed by Ponceau Red staining (not shown) and using anti-tubulin antibodies. {c,d)
Related cell toxicity assays. The same cultures as a were tested for cell proliferation

and viability using the SRB and NRA assays, respectively. n = 3, Mann-Whitney test;
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Figure 5. Virological consequences of LARP1 depletion.

HCVcc-infected cells were transfected with siRNAs and subsequently cultured for 24
to 72 h prior to: intracellular RNA extraction followed by RT-qPCR using HCV and GUS
primers (a), extracellular RNA extraction followed by RT-gPCR using HCV primers (b),
intracellular or extracellular TCIDsy quantification followed by protein normalization (c-
d} or by HCV RNA normalization (e-f), and finally (g) secreted HCV core Ag

guantification by Elisa (n = 3 +/- s.d.). Mann-Whitney, P < 0.05 (*).

Figure 6. Validation of virological consequences of LARP1 depletion in HCV Gtla
and Gt3a (chimeric) strains.

(a-b-e-f). Evaluation of cell viability post-HCV Gtla (H77) and Gt3a (S52)
electroporation using the NRA (a-e) and SRB (b-f) assays. Intracellular RNA exiraction
followed by RT-gPCR using HCV RC1-RC21 and GUS primers (c-g). Extracellular

quantification of secreted HCV core Ag levels (d-h).

Supplementary Figure 1. LARP1 is not modulated by HCV infection.

Cells were infected with HCV at a MO of 0.1 or left uninfected and cultured for 3 days
prior to western blotting using anti-LARP1 and anti-HCV core antibodies. Homogenous
loading and blotting were previously assessed by Ponceau Red staining (not shown)

and using anti-tubulin antibodies (n = 3}.

Supplementary Figure 2. Functionality of the secretory pathway is unaltered by

LARP1 depletion.
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Fig. 3

Core

Pearson coefficient
(LARP1/core colocalization)

Fluorescence intensity

Fluorescence intensity

e
=)
1

2
-
1

o
[N
1

e
=1

60+

404

204

LARP1 Merge + Hoechst

— Core
— LARP1

24 48 72
Time post-infection

HCV+

r=0.70
p<0.0001

30 40 50 60
Distance (um)

08

0.6

0.4

0.2

0.0
-0.6

04

02 00 02 04 06
Staining amplitude

HCV-

HCV+



Fig. 4
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Fig. 6
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Supplementary Fig. 1
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Supplementary Fig. 2
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