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Abstract

We provide comparable algorithms for the Dekel-Fudenberg procedure, it-

erated admissibility, proper rationalizability and full permissibility by means

of the notions of likelihood orderings and preference restrictions. The algo-

rithms model reasoning processes whereby each player’s preferences over his

own strategies are completed by eliminating likelihood orderings.

We apply the algorithms for comparing iterated admissibility, proper ra-

tionalizability and full permissibility, and provide a sufficient condition under

which iterated admissibility does not rule out properly rationalizable strategies.

We also use the algorithms to examine an economically relevant strategic situ-

ation, namely a bilateral commitment bargaining game. Finally, we discuss the

relevance of our algorithms for epistemic analysis.

JEL Classification No.: C72, C78.

Keywords: Non-cooperative games, proper rationalizability, iterated admis-

sibility, bargaining.
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1 Introduction

In non-cooperative game theory, a player is cautious if he takes into account all

opponent strategies, also strategies that seem very unlikely to be chosen by the

opponents. Caution implies that a player prefers one strategy to another if the

former weakly dominates the latter. This concept can be modeled by allowing a

player i to deem some strategy sj of an opponent j infinitely more likely than some

other strategy s′j , while still taking s′j into account (Blume et al., 1991a). What

reasoning in a strategic game is consistent with, not only players being cautious,

but also believing that the opponents are rational and cautious, believing that the

opponents believe that their opponents are rational and cautious, and so on?

Various concepts in the literature provide different answers to this question. Still,

there is a common idea underlying each of these concepts, namely that player i should

deem a strategy sj of opponent j infinitely more likely than strategy s′j whenever

player i considers sj a “better choice” for opponent j than s′j . The question then

remains what we should mean by a “better choice”.

As an illustration, consider the following economic example (which is the Spy

game of Perea, 2012, p. 262, but with another motivating story). An entrant (firm

1) and an incumbent (firm 2) must decide which type of good to bring to the market:

x, y or z. The entrant expects a revenue of 3 as long as it produces a good different

from the incumbent, and a revenue of 2 if it produces the same good. Its production

costs for each of the goods is 2. The incumbent expects, for every production choice,

a revenue of 3. The only exception is when the goods x and z are both brought on

the market. Since these goods are complementary, the incumbent expects a revenue

of 6 in this case. The incumbent has produced good x in the past, which would

therefore have the lowest costs (normalized to 0). Producing goods y and z would

cost the incumbent 1 and 2, respectively, since good y is more similar to x than z

is. The profits for both firms can be found in Figure 0, where the choice of firm 1 is

indicated in upper case, to differentiate from the choice of firm 2 in lower case.

Note that for firm 2, production choice y can never be rational as x weakly (and

strictly) dominates y, whereas x and z might as they are not even weakly dominated.

One could therefore argue that x and z are better choices for firm 2 than y, and hence

firm 1 should deem x and z infinitely more likely than y. But then, since Y weakly

dominates both X and Z on the subset {x, z}, firm 1’s unique rational choice would

be to implement production plan Y . The line of argument we have followed here
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x y z

X

Y

Z

0, 3 1, 2 1, 4

1, 3 0, 2 1, 1

1, 6 1, 2 0, 1

Figure 0: Illustrating iterated admissiblity and proper rationalizability.

corresponds to the procedure of iterated admissibility which iteratedly eliminates all

weakly dominated strategies, as it corresponds to the epistemic foundation provided

for this procedure by Brandenburger et al. (2008, Theorem 9.1) for any finite number

of iterations.

Iterated admissibility is not the only plausible procedure for cautious reasoning,

however. Consider again the example above. If firm 2 would indeed believe that

firm 1 makes production choice Y , which is what iterated admissibility requires,

then choice y would actually be better for firm 2 than choice z. So given that firm 1

believes that firm 2 believes that firm 1 will do the choice that iterated admissibility

requires, one could argue that firm 1 should deem y infinitely more likely than z,

and not infinitely less likely, as iterated admissibility imposes. Hence, by applying

the procedure of iterated admissibility one may along the way impose conditions

on beliefs which need not be convincing given the prescriptions that this procedure

ends up providing. Such problems with iterated admissibility were already pointed

out, discussed and analyzed by Samuelson (1992).

The concept of proper rationalizability (Schuhmacher, 1999; Asheim, 2001) takes

a different viewpoint. The key condition is that a player i should deem a strategy

sj of opponent j infinitely more likely than strategy s′j whenever he believes that

opponent j, after completing his reasoning process, prefers sj to s′j . If the beliefs of

player i satisfies this condition, we say (following Blume et al., 1991b, Definition 4)

that player i respects the preferences of opponent j.

To see what difference this approach makes, let us return to the example. It

is clear that for firm 2, choice x is better than choice y, whereas we cannot say at

this stage of the reasoning process that z is better than y. Proper rationalizability

therefore only requires that firm 1 deems x infinitely more likely than y, but does

not require that it deems z infinitely more likely than y. If firm 1 indeed holds such a

belief, then firm 1 prefers Y to X as Y weakly dominates X on both {x} and {x, z},
implying that firm 2 should deem Y infinitely more likely than X. But then, firm 2

will, in addition to prefering x to y, also prefer y to z as y weakly dominates z on
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both {Y } and {Y,Z}. Hence, firm 1 should deem x infinitely more likely than y, and

y infinitely more likely than z. As a consequence, firm 1 should choose production

plan Z, and not Y as iterated admissibility requires.

The concept of full permissibility (Asheim and Dufwenberg, 2003a) represents

an intermediate position: Based on the observation that y can never be a rational

choice for firm 2, firm 1 might (i) deem both x and z infinitely more likely than y,

(ii) deem x infinitely more likely than both y and z, or (iii) deem z infinitely more

likely than both x and y. In case (i), X and Z are ruled out as rational choices for

firm 1, leading firm 2 to deem Y infinitely more likely than both X and Z. In case

(ii), only X is ruled out as a rational choice for firm 1, leading firm 2 to deem both

Y and Z infinitely more likely than X. Lastly, in case (iii), only Z is ruled out as a

rational choice for firm 1, leading firm 2 to deem both X and Y infinitely more likely

than Z. However, in neither of these cases, can z be the sole rational choice for firm

2, ruling out case (iii) where firm 1 deems z infinitely more likely than both x and

y. This precludes that firm 2 deems both X and Y infinitely more likely than Z.

But then, x and z cannot both be rational choices for firm 2, ruling out case (i) and

implying that firm 1, in line with case (ii), deems x infinitely more likely than both

y and z. Thus, only X is ruled out as a rational choice for firm 1, in which case firm

2 deems both Y and Z infinitely more likely than X. Thereby, full permissibility

promotes the choice sets {Y, Z} and {x} for firms 1 and 2 respectively.

All three concepts, iterated admissibility, proper rationalizability and full per-

missibility, are reasonable concepts with their own intuitive appeal, but may lead

to completely different reasoning and choices as we have seen. It therefore seems

worthwhile to investigate their differences and similarities in some more detail, and

this is exactly what this paper seeks to accomplish.

A number of contributions, starting with Brandenburger (1992) and Börgers

(1994), have shown that the Dekel-Fudenberg procedure (Dekel and Fudenberg,

1990), where one round of elimination of weakly dominated strategies is followed

by iterated elimination of strictly dominated strategies, provides a robust answer to

the question we posed initially, in the sense that the eliminated strategies are defi-

nitely incompatible with iterated beliefs of the event that all players are rational and

cautious. Hence, surviving the Dekel-Fudenberg procedure, and thus being permiss-

ible in the terminology of Brandenburger (1992), is a necessary condition. However,

the concepts of iterated admissibility, proper rationalizability and full permissibility

might rule out more strategies. This is indeed the case in the game of Figure 0,
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where the Dekel-Fudenberg procedure eliminates only y for firm 2, leading to X, Y

and Z being permissible for firm 1 and x and z being permissible for firm 2.

Permissibility, iterated admissibility and full permissibility are all defined in

terms of algorithms. While epistemic foundations for the former and latter were

provided quickly (Brandenburger, 1992; Börgers, 1994; Asheim and Dufwenberg,

2003a), half a century elapsed between the introduction of iterated admissibility

in the 1950s and the establishment of epistemic foundations for this procedure by

Brandenburger et al. (2008) and later contributions (cf. footnote 2).

The case of proper rationalizability is different. This concept was defined by

Schuhmacher (1999) and Asheim (2001) by means of epistemic conditions. Schuh-

macher defines, for every ε > 0, the ε-proper trembling condition, which states that

if a player prefers one pure strategy over another, then the probability he assigns to

the latter strategy should be at most ε times the probability he assigns to the for-

mer. Proper rationalizability is obtained by imposing common belief of the ε-proper

trembling condition, and then letting ε tend to zero. Schuhmacher (1999) provides

an algorithm, iteratively proper trembling, which generates for a given ε > 0 the set

of mixed strategy profiles that can be chosen under common belief of the ε-proper

trembling condition. However, this procedure does not yield the set of properly

rationalizable strategies directly, as we must still let ε go to zero, and see which

strategies survive in the limit. Only later has Perea (2011) provided an algorithm

that directly computes the set of properly rationalizable strategies.

The present paper presents algorithms for permissibility, iterated admissibility

and full permissibility that are comparable to Perea (2011)’s algorithm for proper

rationalizability. In all cases, the reasoning process leads to preferences that become

more complete with additional levels of reasoning. If a player is cautious but does

not reason about the behavior of his opponents, then he can only rank strategies that

weakly dominate each other on the whole set of opponent strategy profiles. However,

by realizing that some opponent strategies are “better choices” than others, the player

might also be able to rank strategies that weakly dominate each other on strict subsets

of opponent strategy profiles, as illustrated by the game of Figure 0. Considering that

opponents also engage in similar kinds of reasoning reduces his strategic uncertainty

even more and leads to further completion of preferences, and so on.

It is a main observation of the present paper that, in the case all four concepts

considered, the reasoning process can be captured by the key notions introduced

by Perea (2011): likelihood orderings and preference restrictions. More specifically,
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the completion of preferences with increasing levels of reasoning corresponds to

elimination of likelihood orderings, while the reasoning about opponent behavior

is captured by sets of preference restrictions derived from their sets of remaining

likelihood orderings.

Section 2 defines the notions of likelihood orderings and preference restrictions

and explores how a player’s set of likelihood orderings corresponds to (possibly

incomplete) preferences over the player’s own strategies. Section 3 introduces algo-

rithms that iteratedly eliminate likelihood orderings, for the concepts of permissibil-

ity, iterated admissibility and full permissibility. These algorithms are thus compa-

rable with the one for proper rationalizability. Section 4 then puts these algorithms

to use. In particular, we offer examples further illuminating the differences between

iterated admissibility, proper rationalizability and full permissibility. Moreover, we

provide a sufficient condition under which iterated admissibility does not rule out

properly rationalizable strategies. Finally, we use the algorithms to examine an eco-

nomically relevant strategic situation, namely a bilateral commitment bargaining

game which has been analyzed by Ellingsen and Miettinen (2008). Section 5 offers

concluding remarks, in particular by discussing the relevance of our algorithms for

epistemic analysis. An appendix contains all proofs.

2 Likelihood orderings and preference restrictions

Consider a finite strategic game G = (Si, ui)i∈I where I is a finite set of players

and where, for i ∈ I, the finite set Si denotes player i’s set of strategies and ui :∏
j∈I Sj → R denotes player i’s utility function. Write S−i :=

∏
j 6=i Sj and S−i,j :=∏

j′ 6=i,j Sj′ . As usual, we extend ui to objective probability distributions (mixed

strategies) µi ∈ ∆(Si) over player i’s strategies, writing ui(µi, s−i) for the resulting

objective expected utility, and to subjective probability distributions λi ∈ ∆(S−i)

over the opponent’s strategy profiles, writing ui(si, λi) for the resulting subjective

expected utility.

For all mixed strategies µ′i, µ
′′
i ∈ ∆(Si), say that µ′i strictly dominates µ′′i on

a subset S′−i ⊆ S−i of opponent strategy profiles if ui(µ
′
i, s−i) > ui(µ

′′
i , s−i) for

every s−i ∈ S′−i. Similarly, say that µ′i weakly dominates µ′′i on S′−i if ui(µ
′
i, s−i) ≥

ui(µ
′′
i , s−i) for every s−i ∈ S′−i, with strict inequality for some s′−i ∈ S′−i.

Each player i’s preferences over his own strategies are determined by ui and a

non-empty set Li of likelihood orderings on S−i. The notion of a likelihood ordering
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was used by Perea (2011) and is one of the two key definitions for our algorithms.

Definition 1 (Likelihood ordering) A likelihood ordering for player i on S−i is

an ordered partition Li = (L1
i , L

2
i , . . . , L

K
i ) of S−i.

Let L∗i denote the set of all likelihood orderings on S−i. Note that L∗i is finite. Let

L̃∗i (⊆ L∗i ) denote the set of all likelihood orderings on S−i which are either trivial

(so that K = 1 and Li = (L1
i ) = (S−i)) or partition S−i into a non-empty proper

subset S′−i and its complement (so that K = 2 and Li = (L1
i , L

2
i ) = (S′−i, S−i\S′−i)).

Assume that player i has a non-empty set Li of likelihood orderings. Then, for

all mixed strategies µ′i, µ
′′
i ∈ ∆(Si), player i prefers µ′i to µ′′i under Li (written

µ′i �
Li
i µ′′i ) if, for all Li = (L1

i , L
2
i , . . . , L

K
i ) ∈ Li, there exists k ∈ {1, . . . ,K} such

that µ′i weakly dominates µ′′i on L1
i ∪ · · · ∪Lk

i , and player i deems µ′i equally as good

as µ′′i (written µ′i ∼
Li
i µ′′i ) if ui(µ

′
i, s−i) = ui(µ

′′
i , s−i) for every s−i ∈ S−i. It holds for

any non-empty set Li of likelihood orderings that µ′i �
Li
i µ′′i if µ′i weakly dominates

µ′′i on S−i since, for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li, L1

i ∪ · · · ∪ LK
i = S−i.

Write µ′i %
Li
i µ′′i if µ′i �

Li
i µ′′i or µ′i ∼

Li
i µ′′i .

Lemma 1 Let Li be player i’s non-empty set of likelihood orderings. The ∼Lii and

%Lii relations are reflexive and transitive, and the �Lii relation is irreflexive and

transitive. Furthermore, the ∼Lii and �Lii relations satisfy objective independence.1

Remark 1 While the %Lii relation is always reflexive and transitive, it need not be

complete. To see this, let I = {1, 2}, S1 = {s′1, s′′1}, S2 = {s′2, s′′2}, u1(s′1, s
′
2) = 1,

u1(s′′1, s
′
2) = 0, u1(s′1, s

′′
2) = 0, and u1(s′′1, s

′′
2) = 1. Then s′1 �

L1
1 s′′1, s′1 �

L1
1 s′′1 and

s′1 ⊀
L1
1 s′′1 if L1 = L∗1 = {({s′2}, {s′′2}), ({s′′2}, {s′2}), (S2)}. However, s′1 �

L1
1 s′′1 if

L1 = {({s′2}, {s′′2})}.

These preferences can be characterized by means of the lexicographic probability

system (LPS) concept and related to the infinitely more likely relation, both due to

Blume et al. (1991a).

A lexicographic probability system (LPS) on S−i consists of a finite sequence

of subjective probability distributions, λi = (λ1
i , λ

2
i , . . . , λ

K
i ), where for each k ∈

{1, . . . ,K}, λki ∈ ∆(S−i). Consider two mixed strategies µ′i, µ
′′
i ∈ ∆(Si). The LPS λi

ranks µ′i above µ′′i if there exists k ∈ {1, . . . ,K} such that (i) ui(µ
′
i, λ

k
i ) > ui(µ

′′
i , λ

k
i )

1Say that a binary relation ∼ (�) satisfies objective independence if, for all µ′i, µ
′′
i , µ′′′i ∈ ∆(Si)

and γ ∈ (0, 1), µ′i ∼ (�)µ′′i if and only if γµ′i + (1− γ)µ′′′i ∼ (�) γµ′′i + (1− γ)µ′′′i .
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and (ii) ui(µ
′
i, λ

`
i) = ui(µ

′′
i , λ

`
i) for all ` ∈ {1, . . . , k − 1}. The LPS λi deems µ′i

indifferent to µ′′i if ui(µ
′
i, λ

k
i ) = ui(µ

′′
i , λ

k
i ) for all k ∈ {1, . . . ,K}. For given LPS,

the ranking-above-or-deeming-indifferent-to relation is complete and transitive. The

LPS λi = (λ1
i , . . . , λ

K
i ) has full support on S−i if suppλ1

i ∪ · · · ∪ suppλKi = S−i. Say

that the LPS λi = (λ1
i , . . . , λ

K
i ) is consistent with the likelihood ordering Li =

(L1
i , L

2
i , . . . , L

K
i ) if, for all k ∈ {1, . . . ,K}, suppλ1

i ∪ · · · ∪ suppλki = L1
i ∪ · · · ∪ Lk

i .

An LPS λi has full support on S−i if consistent with a likelihood ordering Li.

Lemma 2 Let Li be player i’s non-empty set of likelihood orderings. For all mixed

strategies µ′i, µ
′′
i ∈ ∆(Si), µ

′
i �
Li
i µ′′i if and only if, for all Li ∈ Li, every LPS λi

consistent with Li ranks µ′i above µ′′i , and µ′i ∼
Li
i µ′′i if and only if, for all Li ∈ Li,

every LPS λi consistent with Li deems µ′i indifferent to µ′′i .

Assume that player i has a non-empty set Li of likelihood orderings. Consider

two pure opponent strategy profiles s′−i, s
′′
−i ∈ S−i. Player i deems s′−i infinitely more

likely than s′′−i under Li (written s′−i �
Li
i s′′−i) if, for all Li = (L1

i , L
2
i , . . . , L

K
i ) ∈ Li,

there exists k ∈ {1, . . . ,K} such that s′−i ∈ L1
i ∪ · · · ∪ Lk

i and s′′−i /∈ L1
i ∪ · · · ∪ Lk

i .

Furthermore, for each j 6= i, player i deems s′j infinitely more likely than s′′j under

Li (written s′j �
Li
i s′′j ) if there exists some s′−i ∈ {s′j}×S−i,j such that s′−i �

Li
i s′′−i

for all s′′−i ∈ {s′′j } × S−i,j . In the following remark we observe that this definition is

consistent with the concept as defined by Blume et al. (1991a, Definition 5.1).

Remark 2 Let Li be player i’s non-empty set of likelihood orderings. For all mixed

strategies µ′i, µ
′′
i ∈ ∆(Si) and all pure opponent strategy profiles s′−i, s

′′
−i ∈ S−i,

if s′−i �
Li
i s′′−i, then µ′i �

Li
i µ′′i whenever µ′i, µ

′′
i ∈ ∆(Si) satisfy ui(µ

′
i, s
′
−i) >

ui(µ
′′
i , s
′
−i) and, for all s−i ∈ S−i\{s′−i, s′′−i}, ui(µ′i, s−i) = ui(µ

′′
i , s−i).

The converse of the implication in Remark 2 cannot be shown as we consider a

particular game G with a particular utility function ui for player i.

We are now ready to introduce the other key notion of our algorithms, also taken

from Perea (2011).

Definition 2 (Preference restriction) A preference restriction for player i on Si

is a pair (si, Ai), where si ∈ Si and Ai is a nonempty subset of Si.

Let Ri denote a set of preference restrictions for i, and let R∗i denote the collection

of all sets of preference restrictions for i.
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For any non-empty set Li of likelihood orderings, let Ri(Li) denote the set of

preference restrictions derived from Li, where Ri(Li) is defined as follows:

Ri(Li) := {(si, Ai) ∈ Si × 2Si | ∃µi ∈ ∆(Ai) such that µi �Lii si} .

Hence, the interpretation of a preference restriction (si, Ai) in the set Ri(Li) is

that player i prefers some mixed strategy in ∆(Ai) to si under Li. It follows that

Ri(L′i)∩Ri(L′′i ) = Ri(L′i∪L′′i ) for every L′i, L′′i ⊆ L∗i . In particular, Ri(L′i) ⊇ Ri(L′′i )

whenever L′i ⊆ L′′i . Abuse notation slightly by writing Ri(Li) instead of Ri(Li) if

Li = {Li} is a singleton set of likelihood orderings.

Lemma 3 Let Li be player i’s non-empty set of likelihood orderings. If (si, Ai) ∈
Ri(Li), then there exists A′i ⊆ Si\{si} such that (si, A

′
i) ∈ Ri(Li).

Remark 3 The set Ri(Li) of derived preference restrictions need not be non-empty.

To see this, consider the example of Remark 1, where s′1 �
L1
1 s′′1, s′1 ⊀

L1
1 s′′1 and

R1(L1) = ∅ if L1 = L∗1 = {({s′2}, {s′′2}), ({s′′2}, {s′2}), (S2)}. However, s′1 �
L1
1 s′′1 and

R1(L1) = {(s′′1, {s′1}), (s′′1, S1)} if L1 = {({s′2}, {s′′2})}.

Assume that player i has the (possibly empty) set, Ri, of preference restrictions.

Define player i’s choice set Ci(Ri) as follows:

Ci(Ri) := {si ∈ Si | @Ai ⊆ Si with (si, Ai) ∈ Ri} .

It follows that Ci(R
′
i)∩Ci(R

′′
i ) = Ci(R

′
i ∪R′′i ) for every R′i, R

′′
i ∈ R∗i . In particular,

Ci(R
′
i) ⊇ Ci(R

′′
i ) whenever R′i ⊆ R′′i . Clearly, Ci(∅) = Si. The following result yields

a justification for the term ‘choice set’.

Lemma 4 Let Li be player i’s non-empty set of likelihood orderings. Then

Ci(Ri(Li)) = {si ∈ Si | @µi ∈ ∆(Si) such that µi �Lii si} .

Furthermore, Ci(Ri(Li)) 6= ∅.

Let R∗−i :=
∏

j 6=iR∗i denote the collection of all vectors of sets of preference

restrictions for i’s opponents. If R−i ∈ R∗−i, let C−i(R−i) :=
∏

j 6=iCj(Rj) denote the

Cartesian product of the choice sets of i’s opponents, given the vector of their sets of

preference restrictions. The set C−i(R−i) is the event that i’s opponents are rational

when their preferences satisfy the vector R−i of sets of preference restrictions. Let
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R−i(L−i) := (Rj(Lj))j 6=i denote the vectors of sets of preference restrictions for

i’s opponents given their vector L−i := (Lj)j 6=i of non-empty sets of likelihood

orderings. Let L−i 6= ∅ signify that Lj 6= ∅ for all j 6= i and let L′−i ⊆ L′′−i signify

that L′j ⊆ L′′j for all j 6= i. Let R−i(L−i) := (Rj(Lj))j 6=i denote the vectors of sets of

preference restrictions for i’s opponents given their vector L−i = (Lj)j 6=i of singleton

sets of likelihood orderings. Let L−i ∈ L−i signify that Lj ∈ Lj for all j 6= i.

Likelihood-orderings can be related to the ordinary belief operator as well as the

assumption operator, as proposed by Brandenburger et al. (2008) (and discussed by

Asheim and Søvik, 2005, Section 6).

Definition 3 (Believing an event) For a given subset A−i ⊆ S−i of opponent

strategy vectors, the likelihood ordering Li = (L1
i , L

2
i , . . . , L

K
i ) believes A−i if L1

i ⊆
A−i.

Likewise, say that player i with non-empty set Li of likelihood orderings believes

A−i if, for all Li ∈ Li, Li believes A−i. In the special case where A−i is a singleton

set, we have that player i believes A−i if and only if the sole strategy profile a−i in

A−i satisfies, for every s−i ∈ S−i\A−i, a−i �Lii s−i.

Definition 4 (Assuming an event) For a given subset A−i ⊆ S−i of opponent

strategy vectors, the likelihood ordering Li = (L1
i , L

2
i , . . . , L

K
i ) assumes A−i if there

exists k ∈ {1, . . . ,K} such that L1
i ∪ · · · ∪ Lk

i = A−i.

Likewise, say that player i with non-empty set Li of likelihood orderings assumes

A−i if, for all Li ∈ Li, Li assumes A−i. Hence, player i assumes A−i if and only if

A−i 6= ∅ and, for every s−i ∈ S−i\A−i, a−i �Lii s−i for every a−i ∈ A−i.
Note that if player i assumes an event A−i, then the player also believes the

event A−i (since clearly, for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li, L1

i ⊆ A−i if there exists

k ∈ {1, . . . ,K} such that L1
i ∪ · · · ∪ Lk

i = A−i), but not vice versa.

Likelihood-orderings can also be related to respect of preferences as introduced

by Blume et al. (1991b).

Definition 5 (Respecting preferences) For a given vector R−i ∈ R∗−i of sets of

preference restrictions, the likelihood ordering Li = (L1
i , L

2
i , . . . , L

K
i ) respects R−i

if, for all players j 6= i, and every preference restriction (sj , Aj) ∈ Rj , there exists

k ∈ {1, . . . ,K} such that

(L1
i ∪ · · · ∪ Lk

i ) ∩ (Aj × S−i,j) 6= ∅ and (L1
i ∪ · · · ∪ Lk

i ) ∩ ({sj} × S−i,j) = ∅ .

9



Likewise, say that player i with non-empty set Li of likelihood orderings respects

R−i if, for all Li ∈ Li, Li respects R−i. If player i respects R−i and there exist a

player j and a preference restriction (sj , Aj) such that Aj\{sj} is a singleton set,

then the sole strategy aj in Aj\{sj} satisfies aj �Lii sj .

It follows that player i believes the rationality of the opponents if the player

respects their preferences, but not vice versa. This can be stated formally as follows.

Lemma 5 If player i with non-empty set Li of likelihood orderings respects the

vector R−i ∈ R∗−i of sets of preference restrictions, then the player also believes the

event C−i(R−i).

Let Lbi(R−i) denote the greatest set of likelihood orderings for which player i

believes the rationality of i’s opponents when the preferences of i’s opponents satisfy

the vector R−i of sets of preference restrictions:

Lbi(R−i) := {Li ∈ L∗i | Li believes C−i(R−i)} .

Let Lai (R−i) denote the greatest set of likelihood orderings for which player

i assumes the rationality of i’s opponents when the preferences of i’s opponents

satisfy the vector R−i of sets of preference restrictions:

Lai (R−i) := {Li ∈ L∗i | Li assumes C−i(R−i)} .

Finally, let Lri (R−i) denote the greatest set of likelihood orderings for which

player i respects the vector R−i of opponent sets of preference restrictions:

Lri (R−i) := {Li ∈ L∗i | Li respects R−i} .

Note that Lbi(∅) = Lai (∅) = Lri (∅) = L∗i . We have seen that assumption im-

plies belief, but not vice versa. Moreover, from Lemma 5 we know that respect of

preferences implies belief of rationality, but not versa. Hence, we conclude that

Lbi(R−i) ⊇ Lai (R−i) ∪ Lri (R−i)

for every R−i ∈ R∗−i with C−i(R−i) 6= ∅. Since the belief operator satisfies conjunc-

tion and monotonicity, the properties of the choice correspondence Ci(·) imply

Lbi(R′−i) ∩ Lbi(R′′−i) = Lbi(R′−i ∪R′′−i)
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for every R′−i, R
′′
−i ∈ R∗−i. However, since the assumption operator satisfies con-

junction but not monotonicity, it holds for every R′−i, R
′′
−i ∈ R∗−i that

Lai (R′−i) ∩ Lai (R′′−i) ⊆ Lai (R′−i ∪R′′−i) ,

while the inverse inclusion need not hold. In particular, Lai (R′−i)∩Lai (R′′−i) 6= ∅ only

if C−i(R
′
−i) ⊆ C−i(R′′−i) or C−i(R

′′
−i) ⊆ C−i(R′−i). Finally, Definition 5 implies

Lri (R′−i) ∩ Lri (R′′−i) = Lri (R′−i ∪R′′−i)

for every R′−i, R
′′
−i ∈ R∗−i. In particular, Lbi(R′−i) ⊇ Lbi(R′′−i) and Lri (R′−i) ⊇ Lri (R′′−i)

whenever R′−i ⊆ R′′−i. This conclusion need not hold for Lai (·) since a likelihood

ordering Li may assume A′−i but not A′′−i even though A′−i ⊂ A′′−i. Hence, we may

have Lai (R′−i) * Lai (R′′−i) and Lai (R′−i) + Lai (R′′−i) even though R′−i ⊂ R′′−i.

3 Algorithms

In this section we provide comparable algorithms for permissibility (the Dekel-

Fudenberg procedure), iterated admissibility, proper rationalizability, and full per-

missibility. To define these concepts, we need to introduce the following operators:

ai(S
′
−i) := {si ∈ Si | si is not weakly dominated by any µi ∈ ∆(Si) on S′−i} ,

bi(S
′
−i) := {si ∈ Si | si is not strictly dominated by any µi ∈ ∆(Si) on S′−i} ,

where S′−i is a non-empty subset of S−i. Note that ∅ 6= ai(S
′
−i) ⊆ bi(S

′
−i) ⊆ Si for

any non-empty subset S′−i of S−i.

3.1 An algorithm for permissibility

We first consider the Dekel-Fudenberg procedure (Dekel and Fudenberg, 1990), which

is the procedure where one round of maximal elimination of weakly dominated strate-

gies is followed by iterated maximal elimination of strictly dominated strategies. Fol-

lowing Brandenburger (1992), strategies surviving the Dekel-Fudenberg procedure

are referred to as permissible. The formal definition is as follows.

Definition 6 (Permissibility) Consider the sequence defined by, for all players i,

S0
i = Si and, for every n ≥ 1, Sn

i = bi
(
Sn−1
−i
)
∩ ai(S−i). A strategy si for player i is

permissible if si ∈
⋂∞

n=1 S
n
i .

11



Since ai(S−i) ⊆ bi(S−i) this corresponds to the Dekel-Fudenberg procedure: Elimi-

nation of weakly dominated strategies in the first round, followed by elimination of

strictly dominated strategies in later rounds.

For our algorithmic characterization of permissibility in Proposition 1 below, the

following observation is useful.

Lemma 6 Let si ∈ Si, Ai ⊆ Si and S′−i ⊆ S−i. Then, si is strictly dominated by

some µi ∈ ∆(Ai) on S′−i if and only for every (∅ 6=)S′′−i ⊆ S′−i strategy si is weakly

dominated by some µ′i ∈ ∆(Ai) on S′′−i.

By Lemma 6 it follows that the operator bi(S
′
−i) can be expressed as follows:

bi(S
′
−i) = {si ∈ Si | ∃(∅ 6=)S′′−i ⊆ S′−i s.t. si ∈ ai(S′′−i)} ,

and the combined operator used to define permissibility (in Definition 6) becomes:

bi(S
′
−i) ∩ ai(S−i) = {si ∈ Si | ∃(∅ 6=)S′′−i ⊆ S′−i

s.t. si ∈ ai(S′′−i) ∩ ai(S−i)} .
(1)

Hence, a strategy si for player i survives another round of the Dekel-Fudenberg

procedure if there exists a subset S′′−i of non-eliminated opponent strategy profiles

such that si is not weakly dominated on either S′′−i or the set S−i of all opponent

strategy profiles.

Consider the following algorithm, which iteratedly decreases the set of likelihood

orderings for all players:

Ini For all players i, let L0
i = L∗i .

Per For every n ≥ 1 and all players i, let Lni = Lbi(R−i(L
n−1
−i )).

From the properties of Lbi(·) and Ri(·), it follows that Ini and Per determine,

for each player, a non-increasing sequence of sets of likelihood orderings (where

non-increasing are defined w.r.t. set inclusion). As a consequence, the sequence

Ci(Ri(Lni )) of choice sets is non-increasing. Since the set of likelihood orderings is

finite, the algorithm converges after a finite number of rounds.

For all players i, let L∞i :=
⋂∞

n=1 Lni be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and Per.

Proposition 1 Let G be a finite strategic game. Then, for all players i, a strategy

si is permissible if and only if si ∈ Ci(Ri(L∞i )).
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Proof. See the appendix for a proof that applies equation (1).

As we note in the proof, the same result is obtained if the algorithm is initiated

with L0
i = L̃∗i , including only likelihood orderings that are either trivial or partition

S−i into a non-empty proper subset and its complement. The reason is that the belief

operator is concerned only with the top level element of the likelihood ordering.

3.2 An algorithm for iterated admissibility

Iterated admissibility is the procedure of iterated maximal elimination of weakly

dominated strategies, which can formally be defined as follows.

Definition 7 (Iterated admissibility) Consider the sequence defined by, for all

players i, S0
i = Si and, for every n ≥ 1, Sn

i = ai
(
Sn−1
−i
)
∩ Sn−1

i . A strategy si for

player i survives iterated admissibility if si ∈
⋂∞

n=1 S
n
i .

Consider the following algorithm, which iteratedly decreases the set of likelihood

orderings for all players:

Ini For all players i, let L0
i = L∗i .

IA For every n ≥ 1 and all players i, let

Lni = Lai (R−i(Ln−1
−i )) ∩ Ln−1

i .

It follows directly that Ini and IA determine, for each player, a non-increasing

sequence of sets of likelihood orderings. As a consequence, the sequence Ci(Ri(Lni ))

of choice sets is non-increasing. Since the set of likelihood orderings is finite, the

algorithm converges after a finite number of rounds.

For all players i, let L∞i :=
⋂∞

n=1 Lni be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and IA.

Proposition 2 Let G be a finite strategic game. Then, for all players i, a strategy

si survives iterated admissibility if and only if si ∈ Ci(Ri(L∞i )).

Proof. See the appendix.

Proposition 2 is proven by showing that, for every n ≥ 0 and all players i,

Ci(Ri(Lni )) equals the set of player i’s strategies that survives n+1 rounds of iterated
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admissibility. This observation echoes Brandenburger et al.’s (2008, Theorem 9.1)

epistemic characterization of strategy profiles that survives a finite number of rounds

of iterated admissibility (see also the observation that Stahl, 1995, makes in his

theorem) by pointing out that iterated admissibility corresponds to sets of likelihood

orderings where

• strategies eliminated in a later iteration are deemed infinitely more likely than

strategies eliminated in an earlier iteration, and

• surviving strategies are deemed infinitely more likely than strategies eliminated

in any iteration.

Thus, when evaluating iterated admissibility by considering how our algorithm elim-

inates likelihood orderings, our evaluation is consistent with Brandenburger et al.’s

(2008, Theorem 9.1) epistemic characterization for finite numbers of iterations.2

3.3 An algorithm for proper rationalizability

We then consider proper rationalizability, a concept defined by Schuhmacher (1999)

and characterized by Asheim (2001). We refer to these references for details.

Consider the following algorithm, which iteratedly decreases the set of likelihood

orderings for all players:

Ini For all players i, let L0
i = L∗i .

PR For every n ≥ 1 and all players i, let Lni = Lri (R−i(L
n−1
−i )).

From the properties of Lri (·) and Ri(·), it follows that Ini and PR determine,

for each player, a non-increasing sequence of sets of likelihood orderings. As a

consequence, the sequence Ci(Ri(Lni )) of choice sets is non-increasing. Since the

set of likelihood orderings is finite, the algorithm converges after a finite number of

rounds.

For all players i, let L∞i :=
⋂∞

n=1 Lni be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and PR.

2Brandenburger et al. (2008) do not provide an epistemic foundation for iterated admissibility

with a countably infinite number of iterations, cf. their Theorem 10.1. Barelli and Galanis (2013),

Dekel et al. (2016), Keisler and Lee (2015), Lee (2016) and Yang (2015) are later papers that discuss

iterated admissibility and the problem of providing an epistemic foundation for this procedure.
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Proposition 3 Let G be a finite strategic game. Then, for all players i, a strategy

si is properly rationalizable if and only if si ∈ Ci(Ri(L∞i )).

Proof. Perea (2011).

3.4 An algorithm for full permissibility

We finally consider an algorithm for the concept of fully permissible sets, as defined

by Asheim and Dufwenberg (2003a) for 2-player games. Full permissibility selects

sets of strategies, rather than individual strategies, for both players. In analogy

with the combined operator for permissibility, as interpreted in (1), let a strategy

subset Ai for player i survive another iteration of the procedure that defines full

permissibility if there exists a union A1
j∪· · ·∪An

j of non-eliminated opponent strategy

subsets A1
j , . . . , A

n
j such that Ai equals the set of player i strategies that are not

weakly dominated on the union A1
j ∪ · · · ∪An

j and not weakly dominated on the set

Sj of all opponent strategies.

Formally, for both players i, let Σi denote the collection of all non-empty subsets

of player i’s strategy set Si, and introduce the following operator:

αi(Σ
′
j) := {Ai ∈ Σi | ∃(∅ 6=) Σ′′j ⊆ Σ′j s.t. Ai = ai

(
∪Aj∈Σ′′j

Aj

)
∩ ai(Sj)} ,

where j 6= i and Σ′j and Σ′′j are non-empty subcollections of Σj . Note that ∅ 6=
αi(Σ

′
j) ⊆ Σi for any non-empty subcollection Σ′j of Σj .

Definition 8 (Full permissibility) Consider the sequence defined by, for both

players i, Σ0
i = Σi and, for every n ≥ 1, Σn

i = αi

(
Σn−1
j

)
. A strategy set Ai for

player i is fully permissible if Ai ∈
⋂∞

n=1 Σn
i .

Consider the following algorithm, which iteratedly decreases the set of likelihood

orderings for all players:

Ini For all players i, let L0
i = L∗i .

FP For every n ≥ 1 and all players i, let

Lni = {Li ∈ L∗i | ∃(∅ 6=)L−i ⊆ Ln−1
−i s.t. Li = (S′−i, S−i\S′−i) if S′−i 6= S−i

and Li = (S−i) otherwise, where S′−i = ∪L−i∈L−iC−i(R−i(L−i))} .
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Hence, Lni contains likelihood orderings that assume a subset S′−i of opponent strat-

egy profiles (other than the set S−i of all opponent strategy profiles) only if S′−i

is a union of Cartesian products of opponent choice sets, where the union is taken

over vectors of sets of opponent preference restrictions for vectors of singleton sets

of likelihood orderings in some non-empty subset L−i of Ln−1
−i .

It follows that Ini and FP determine, for each player, a non-increasing sequence

of sets of likelihood orderings. As a consequence, the sequence (Ci(Ri(Li)))Li∈Lni of

collections of choice sets is non-increasing. Since the set of likelihood orderings is

finite, the algorithm converges after a finite number of rounds.

For all players i, let L∞i :=
⋂∞

n=1 Lni be the limiting set of likelihood orderings

produced by the algorithm defined by Ini and FP.

Proposition 4 Let G be a finite 2-player strategic game. Then, for both players

i, Ai is a fully permissible set if and only if there exists Li ∈ L∞i such that Ai =

Ci(Ri(Li)).

Proof. See the appendix.

We can use the algorithm defined by Ini and FP to define the concept of fully

permissible sets for games with more than two players:

Definition 9 Let G be a finite strategic game. Then, for all players i, Ai is a fully

permissible set if there exists Li ∈ L∞i such that Ai = Ci(Ri(Li)).

As for permissibility, we can initiate the algorithm for full permissibility with

L0
i = L̃∗i , including only likelihood orderings that are either trivial or partition S−i

into a non-empty proper subset and its complement. Indeed, Lni ⊆ L̃∗i for every

n ≥ 1 and all players i also when the algortithm is initiated with L0
i = L∗i .

4 Applying the algorithms

In this section we put the algorithms to work. In the first subsection four examples

illustrate how the algorithms lead to sequences of sets of likelihood orderings. This

sheds light on differences between iterated admissibility, proper rationalizability and

full permissibility. Iterated admissibility results in a strict refinement of permissi-

bility in all four examples, proper rationalizability strictly refines permissibility in

examples 2 and 3, and full permissibility strictly refines permissibility in examples
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2 and 4. However, even when two different concepts (like iterated admissibility and

proper rationalizability in examples 2 and 3) give rise to the same prescription, there

are interesting differences in the working of the algorithms in terms of the likelihood

orderings that are eliminated along the way. In particular, example 3 illustrates

how iterated admissibility and proper rationalizability promote backward induction

through two different sequences of elimination, while example 4 does the same for

how iterated admissibility and full permissiblity promote forward induction.

In the second subsection we build on insights conveyed by the examples and

provide through Proposition 5 a sufficient condition ensuring that any properly

rationalizable strategy survives iterated admissibility. In particular, since proper

equilibrium always exists and any strategy being used with positive probability in a

proper equilibrium is properly rationalizable, we reach the following conclusion: If

a game, for which iterated admissibility leads to a unique strategy for each player,

satisfies the sufficient condition of Proposition 5, then the surviving strategies are

the unique properly rationalizable strategies and the corresponding strategy profile

is the unique proper equilibrium.

In the third subsection we consider a contribution on commitment bargaining

(Ellingsen and Miettinen, 2008) to show the usefulness and appeal of the concept of

proper rationalizability in an economically relevant situation. In particular, we use

the algorithm of Section 3.3 to show how proper rationalizability yields the outcomes

Ellingsen and Miettinen point to in their propositions, while other concepts do not.

4.1 Examples

The examples are games G1–G4, which are illustrated by Figures 1–4. The corre-

sponding Tables 1–4 provide the order in which likelihood orderings are eliminated

by the algorithms for permissibility, iterated admissibility, proper rationalizability

and full permissibility in each of these examples.3

[Table 1 about here.]

In game G1 (discussed by Asheim and Dufwenberg, 2003a) the algorithm for

permissibility rules out likelihood orderings for player 2 where D is at the top level,

while the algorithm for proper rationalizability in addition requires that player 2

3For permissibility and full permissibility we restrict ourselves to likelihood orderings that are

either trivial or partition the opponent’s strategy set into a proper subset and its complement

since—as noted in the main text—this is immaterial for the outcome.
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Figure 1: Iterated admissibility rules out properly rationalizable strategies (G1).

respects the preferences of player 1 by deeming D infinitely less likely than U (as U

weakly dominates D and is thus preferred by player 1). Since this does not imply

anything about the relative likelihood of M and D, which is what the preferences

of player 2 depend on, there is no elimination of likelihood orderings for player 1.

Thus, for permissibility and proper rationalizability, the algorithm converges after

one round. The algorithm for full permissibility also rules out that the top level

element of a surviving likelihood ordering is a singleton set containing only R or M .

However, all three concepts eliminate only strategy D in this example.

In contrast, the algorithm for iterated admissibility works by eliminating all

likelihood orderings for player 2 but those that assume {U,M}, thus deeming D

infinitely less likely than both U and M in the first round. This in turn means

that player 2 prefers L to R, determining ({L}, {R}) as the sole surviving likelihood

ordering for player 1 in round 2, and that player 1 prefers U to M , determining

({U}, {M}, {D}) as the sole surviving likelihood ordering for player 2 in round 3.

Thus, iterated admissibility eliminates both strategies D and M for player 1 and

strategy R for player 2.

The key difference in game G1 between the algorithms for iterated admissibility

and the other concepts is that the algorithm for iterated admissibility insists that

both U and M be infinitely more likely than D, even though only U weakly dom-

inates D. It follows from the structure of game G1 that player 2 prefers L to R if

player 2 believes that M is infinitely more likely than D. The algorithms for the

other concepts do not reach this conclusion, and thus player 2 need not prefer L

to R. Under iterated admissibility the sole surviving likelihood ordering for player

1 entails the belief that L is infinitely more likely than R, implying that player 1

prefers D to M . Nevertheless, the sole surviving likelihood ordering for player 2

entails the belief that D is infinitely less likely than M .

[Table 2 about here.]

Compare game G1 to game G2, for which both iterated admissibility and proper

rationalizability prescribe only U for player 1 and only L for player 2. Also in this
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Figure 2: IA and proper rationalizability make same prescription (G2).
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Figure 3: Backward induction in a four-legged centipede game (G3).

game, the algorithm for proper rationalizability rules out all likelihood orderings for

player 2 but those where D is infinitely less likely than U (as U weakly dominates

D and is thus preferred by player 1), while the algorithm for iterated admissibility

goes further by eliminating all likelihood orderings but those where D is infinitely

less likely than both U and M in the first round. However, in this example the

preferences of player 2 depends on the relative likelihood of U and D and thus U

being infinitely more likely than D is sufficient for player 2 preferring L to R. For

both algorithms this determines ({L}, {R}) as the sole surviving likelihood ordering

for player 1 in round 2, and implies that player 1 prefers both U and D to M .

In the algorithm for iterated admissibility this entails that player 2 assumes {U},
implying that U is infinitely more likely than both M and D. Since all likelihood

orderings but those where both U and M are infinitely more likely than D have

already been eliminated, ({U}, {M}, {D}) ends up as the sole surviving likelihood

ordering for player 2 in round 3. However, as player 1 prefers D to M and the

algorithm for proper rationalizability requires player 2 to respect the preferences

of player 1, this algorithm yields ({U}, {D}, {M}) as the sole surviving likelihood

ordering for player 2 in round 3.

A key observation for game G2 is that U weakly dominates D, and that L weakly

dominates R on both {U} (which is the strategy used to eliminate D in the first

round of iterated admissibility) and {U,M} (which is the set of strategies for player

1 surviving the first round of iterated admissibility). The same kind of observation

can be made for the centipede game, which we turn to next.

[Table 3 about here.]
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Also in the four-legged centipede game illustrated in Figure 3 both iterated

admissibility and proper rationalizability make the same prescription, namely the

backward induction outcome (D, d). However, as for game G2, the algorithms in

terms of likelihood orderings do not coincide. In the first round, the algorithm for

proper rationalizability requires that player 1 respects the preferences of player 2

by deeming ff infinitely less likely than fd (as fd weakly dominates ff and is thus

preferred by player 2). The algorithm for iterated admissibility goes further by

eliminating all likelihood orderings for player 1 but those that assume {d, fd}, thus

deeming ff infinitely less likely than both d and fd. Even though the set of likelihood

orderings for player 1 that assume {d, fd} is a strict subset of those that deem fd

infinitely more likely than ff, it turns out that deeming fd infinitely more likely

than ff is sufficient for player 1 to prefer FD to FF. Likewise, in the second round,

even though the set of likelihood orderings for player 2 that assume {D,FD} is a

strict subset of those that deem FD infinitely more likely than FF, it turns out that

deeming FD infinitely more likely than FF is sufficient for player 2 to prefer d to fd.

Note that in the second round, FD weakly dominates FF on both {fd} (which

is the strategy used to eliminate ff in the first round of iterated admissibility) and

{d, fd} (which is the set of strategies for player 2 surviving the first round of iterated

admissibility). Likewise, in the third round, d weakly dominates fd and ff on both

{FD} (which is the strategy used to eliminate FF in the second round of iterated

admissibility) and {D,FD} (which is the set of strategies for player 1 surviving the

second round of iterated admissibility). Similar conclusions hold for any centipede

game independent of size and illustrates how both iterated admissibility and proper

rationalizability correspond to the procedure of backward induction in such games.4

The algorithm for permissibility works similarly in games G2 and G3 as in game

G1. In particular, in game G2 it does not require player 2 to deem U infinitely more

likely than D (even though U weakly dominates D and is thus preferred by player 1).

Thus, this algorithm does not allow us to conclude that player 2 prefers L to R, and

therefore does not determine ({L}, {R}) as the sole surviving likelihood ordering for

player 1. In contrast, the algorithm for full permissibility does lead to ({L}, {R}) as

4For finite perfect information games without relevant payoff ties, proper rationalizability leads

to the unique profile of backward induction strategies (Schuhmacher, 1999; Asheim, 2001), and

iterated admissibility leads to the backward induction outcome (see Battigalli, 1997, pp. 52–53,

for relevant references). While the algorithms of Sections 3.2 and 3.3 correspond to the backward

induction procedure in the subclass of centipede games, this does not hold for the whole class of

finite perfect information games without relevant payoff ties.
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Figure 4: Forward induction in the battle of the sexes with outside option (G4).

the sole surviving likelihood ordering for player 1 in game G2. Hence, it prescribes

the outcome (U,L), thus coinciding with the algorithms for iterated admissibility and

proper rationalizability in this respect. However, the algorithm for full permissibility

does not directly conclude that U infinitely more likely than D. Rather, as shown

in Table 2, this conclusion is reached through a process that is more involved than

for the algorithms for iterated admissibility and proper rationalizability.

[Table 4 about here.]

To illustrate the algorithm for full permissibility in another game where this

concept has as much cutting power as iterated admissibility, but where in contrast

to game G2 it is more restrictive than proper rationalizability, we include the battle

of the sexes with outside option as game G4. In this game, both iterated admissibility

and full permissibility prescribe the forward induction outcome (U,L) (see Asheim

and Dufwenberg, 2003b, p. 319). However, the process at which player 2 is lead

to conclude that U is infinitely more likely than M (leading to a preference for L

over R) is different for the two algorithms. For iterated admissibility this follows

directly from assuming {U,D}, thus deeming M infinitely less likely than both U

and D, even though only D weakly dominates M . For full permissibility the process

is more involved, as illustrated in Table 4.

The examples of Figures 1–4 show that there are no logical relationships between

proper rationalizability and full permissibility, while suggesting that iterated admis-

sibility refines proper rationalizability and full permissibility, which in turn refine

permissibility. Which of these relations are general properties? This is a question

which we consider in the next subsection.
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4.2 The relations between the algorithms

The properties of Lbi(·) and Ri(·) combined with Lemma 5 imply both

Lai (R−i(L′−i)) ⊆ Lbi(R−i(L′−i)) ,

Lri (R−i(L′−i)) ⊆ Lbi(R−i(L′−i)) ,

{Li ∈ L∗i | ∃(∅ 6=)L−i ⊆ L′−i s.t. Li = (S′−i, S−i\S′−i) if S′−i 6= S−i

and Li = (S−i otherwise, where S′−i = ∪L−i∈L−iC−i(R−i(L−i))}
⊆ Lbi(R−i(L′−i))

for any vector L′−i of non-empty sets of likelihood orderings for i’s opponents, and

Lbi(R−i(L′−i)) ⊆ Lbi(R−i(L′′−i))

if L′−i ⊆ L′′−i, signifying that L′j ⊆ L′′j for all j 6= i. Thus, if L′j ⊆ L′′j for all j 6= i,

then the set of likelihood orderings determined for i by Per on the basis of L′′−i is

always a superset of those sets determined for i by IA, PR and FP on the basis of

L′−i. This means that Propositions 1–4 can be used to establish the (already known)

result that each of the concepts iterated admissibility, proper rationalizability and

full permissibility refine the concept of permissibility. The examples illustrate that

these refinements might be strict.

The other conjecture suggested by examples of Figures 1–4, namely that iter-

ated admissibility refines proper rationalizability and full permissibility, is not true.

Asheim and Dufwenberg (2003a, p. 216) show that there is no logical relationship

between iterated admissibility and full permissibility: in their game G4 (illustrated

in Asheim and Dufwenberg, 2003a, Figure 4) strategy b survives iterated admissi-

bility but does not appear in any fully permissible set, while strategy f appears

in a fully permissible set but does not survive iterated admissibility. Likewise, our

example in the introduction, illustrated in Figure 0 (see also Perea, 2012, p. 262),

shows that there is no logical relationship between iterated admissibility and proper

rationalizability: in the game of Figure 0 proper rationalizability uniquely selects

strategy Z, whereas iterated admissibility uniquely selects strategy Y .

As we have seen in games G2 and G3, there are examples where proper ratio-

nalizability has at least as much cutting power as iterated admissibility. In the fol-

lowing proposition we generalize insights gained through these examples to provide

a sufficient condition under which iterated admissibilty does not rule out properly

rationalizable strategies. Hence, under these conditions, the restrictions on lexico-

graphic beliefs that the procedure of iterated admissibility imposes along the way

are convincing also given the prescriptions that this procedure ends up providing.
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Proposition 5 Consider a finite 2-player strategic game G where the procedure of

iterated admissibility leads to the sequence 〈Sn
1 , S

n
2 〉∞n=0 of surviving strategy sets.

Suppose that there exists a sequence 〈An
1 , A

n
2 〉∞n=0 of strategy sets satisfying, for both

players i, A0
i = Si and for each n ∈ N,

• An
i ⊆ Sn

i ,

• if Sn
i 6= Sn−1

i , then, for every si ∈ Si\Sn
i , si is weakly dominated by every

ai ∈ An
i on either (An−1

j and Sn−1
j ) or Sj,

• if Sn
i = Sn−1

i , then An
i = An−1

i .

Then, for both players i, if si is properly rationalizable, then si ∈
⋂∞

n=1 S
n
i .

Proof. See the appendix.

Both G2 of Figure 2 and G3 of Figure 3 can be used to illustrate Proposition

5. In G2, the procedure of iterated admissibility yields the following sequence of

strategy sets: S1
1 = S2

1 = {U,M} and Sn
1 = {U} for n ≥ 3, and S1

2 = {L,R} and

Sn
2 = {L} for n ≥ 2. Choose An

1 = {U} for n ≥ 1, and A1
2 = {L,R} and An

2 = {L}
for n ≥ 2. It is straightforward to check that the conditions of Proposition 5 are

satisfied; in particular, L weakly dominates R on both A1
1 = {U} and S1

1 = {U,M},
and U weakly dominates M on A2

2 = S2
2 = {L}, and weakly dominates D on S2.

In G3, the procedure of iterated admissibility yields the following sequence of

strategy sets: S1
1 = {D,FD ,FF}, S2

1 = S3
1 = {D,FD} and Sn

1 = {D} for n ≥ 4,

and S1
2 = S2

2 = {d, fd} and Sn
2 = {d} for n ≥ 3. Choose A1

1 = {D,FD ,FF},
A2

1 = A3
1 = {FD} and An

1 = {D} for n ≥ 4, and A1
2 = A2

2 = {fd} and An
2 = {d}

for n ≥ 3. Again, it is straightforward to check that the conditions of Proposition 5

are satisfied; in particular, FD weakly dominates FF on both A1
2 = {fd} and S1

2 =

{d, fd}, d weakly dominates both fd and ff on both A2
1 = {FD} and S2

1 = {D,FD},
and D weakly dominates both FD and FF on A3

2 = S3
2 = {d}.

4.3 Commitment bargaining

The algorithms of Section 3 can be applied for the purpose of analyzing economically

significant models, independently of whether the sufficient condition of Proposition

5 is satisfied. In particular, they can be used for comparing iterated admissibility
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to properly rationalizable strategies in specific strategic situations. In this subsec-

tion we consider a model of bilateral commitment bargaining due to Ellingsen and

Miettinen (2008, Section I).

Ellingsen and Miettinen (2008) reexamine the problem of observable commit-

ments in bargaining, first studied by Schelling (1956) and later formalized by Craw-

ford (1982). Ellingsen and Miettinen (2008) extends Crawford’s (1982) analysis by

considering variants of iterated admissibility and refinements of Nash equilibrium.

Here we show how some of the outcomes that Ellingsen and Miettinen (2008) sug-

gest, in particular through their Lemma 2 and Proposition 2, can be obtained by

using proper rationalizability instead of iterated admissibility. There is actually a

mistake in their Lemma 2, but we will come back to this later.

In order to turn their strategic situation where two players bargain over real

numbered fractions of a surplus of size 1 into a finite one-stage game with simul-

taneous moves, we introduce a smallest money unit g. We measure all variables

in terms of numbers of the smallest money unit, and assume that k units of the

smallest money unit equals the total surplus (i.e., k · g = 1). Hence, players 1 and 2

bargain over a surplus of size k.

Each player i chooses, simultaneously with the other, either to commit to some

demand si ∈ {0, 1, . . . , k} or to wait and remain uncommitted. Let w denote the

waiting strategy. Hence the strategy set of each player i is Si = {0, 1, . . . , k} ∪ {w}.
If both players choose w, then each player i receives βi > 1, where β1 + β2 = k.

In the case with certain commitments and no commitment costs (Ellingsen and

Miettinen, 2008, Section I) the payoffs are as follows: If only one player i makes a

commitment si, then i receives si and the other player receives k−si. If both players

make commitments, then each player i receives xi(si, sj) ∈ {si, si + 1, . . . , k − sj},
with x1(s1, s2) + x2(s2, s1) ≤ k, if s1 + s2 ≤ k and nothing otherwise.

The payoff function ui(si, sj) of each player i can be summarized as follows:

ui(si, sj) =



xi(si, sj) if si + sj ≤ k ,

0 if si + sj > k ,

si if si 6= w and sj = w ,

k − sj if si = w and sj 6= w ,

βi if si = w = sj .

Ellingsen and Miettinen (2008) show through the proof of their Lemma 2 that,

for each player i, iterated admissibility leads to the elimination of 0, 1, . . . , βi in the
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first round, and βi + 1, βi + 2, . . . , k− 1 in the second round, leaving k and w as the

surviving strategies. Actually, with only k and w as the surviving strategies, w is

eliminated in the third round, since choosing k yields player i a payoff of 0 if the

opponent also chooses k and k if the opponent chooses w, while choosing w yields

player i a payoff of 0 if the opponent chooses k and βi (< k) if the opponent also

chooses w. Hence, the correct statement of Ellingsen and Miettinen’s (2008) Lemma

2 is that only k is iteratedly weakly undominated.

Ellingsen and Miettinen (2008) use Lemma 2 in their subsequent Proposition 2 to

focus on Nash equilibria involving only the strategies k and w (including asymmetric

equilibria where one commits to the entire surplus and the other waits), as opposed to

the plethora of unrefined Nash equilibria that this game gives rise to (cf. Crawford,

1982). Their Proposition 2 states that only the two asymmetric equilibria along

with the symmetric equilibrium where both claim the entire surplus are consistent

with two rounds of elimination of weakly dominated strategies. This statement is

correct, but it begs the question: why stop with two rounds of weak elimination?

As the following proposition shows, proper rationalizability provides a reason for

considering only the strategies k and w.

Proposition 6 Consider the finite version of Ellingsen and Miettinen’s (2008, Sec-

tion I) bilateral commitment bargaining game with zero commitment cost. The prop-

erly rationalizable strategies for each player are to commit to the whole surplus, i.e.,

to choose the strategy k, or to wait, i.e., to choose the strategy w.

Proof. See the appendix.

The proof of Proposition 6 consists of two parts. The one part uses the algorithm

of Section 3.3 to show that no strategy but k and w can be properly rationalizable.

Since w weakly dominates 0, 1, . . . , βj for player j, respect of j’s preferences forces

player i to deem w infinitely more likely than each of 0, 1, . . . , βj . This in turn

implies that k weakly dominates βi + 1, βi + 2, . . . , k − 1 for player i. Hence, only k

and w can be best responses when players are cautious.

The other part uses the result of Asheim (2001, Proposition 2) — that any

strategy being used with positive probability in a proper equilibrium is properly

rationalizable — to show that k and w are properly rationalizable. In particular,

the asymmetric equilibria where one player commits to the entire surplus and the

other waits are proper. In addition, there is a proper equilibrium where both players
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choose k with probability 1.5 In any proper equilibrium, at most one player attains

positive payoff and no strategy but k and w is assigned positive probability. Thus,

the concept of proper equilibrium focuses precisely on the equilibria highlighted in

Ellingsen and Miettinen’s (2008) Proposition 2.6

Ellingsen and Miettinen (2008, Section II) also consider a variant of Crawford’s

(1982) bilateral commitment bargaining game where commitments are uncertain. In

their Proposition 4 they show that only k survives iterated admissibility if commit-

ments are uncertain. Actually, the iterations involve one round of weak elimination,

followed by two rounds of strict elimination. Hence, only k is permissible, and it

follows from the algorithms of Sections 3.1 and 3.3 that only k is properly ratio-

nalizable (and thus, (k, k) is the only proper equilibrium). In their Propositions 1

and 3 they consider costly commitments. In this case, it can be shown that every

strategy surviving iterated elimination of strictly dominated strategies is properly

rationalizable. Hence, in all variants considered by Ellingsen and Miettinen (2008),

proper rationalizability and proper equilibrium yield the outcomes they point to in

their propositions, while other concepts do not.

5 Concluding remarks

In our opinion, proper rationalizability is an attractive concept which is based on

appealing epistemic conditions. However, its applicability has been hampered by the

lack of an algorithm leading directly to the properly rationalizable strategies. With

Perea’s (2011) algorithm, this roadblock has been removed. Here we have compared

proper rationalizability to permissibility (i.e., the Dekel-Fudenberg procedure), it-

erated admissibility and full permissibility by presenting comparable algorithms for

the three latter concepts. Through a bilateral commitment bargaining game due to

Crawford (1982) and Ellingsen and Miettinen (2008) we have illustrated the useful-

ness of proper rationalizability in economic applications.

5This equilibrium involves likelihood orderings where k − 1 and w are at the second level. See

the Claim of the Appendix.

6Even though at most one player attains positive payoff in any perfect equilibrium, there exists,

for each player i and any strategy ` ∈ {βi + 1, βi + 2, . . . , k − 1}, a perfect equilibrium in which

player i assigns positive probability to `. This requires that this player also assigns sufficient positive

probability to w, so that k is the unique best response for the other player. See the Claim of the

Appendix. Hence, the concept of perfect equilibrium can not be used to rule out all equilibria but

the ones highlighted in Ellingsen and Miettinen’s (2008) Proposition 2.
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The four algorithms eliminate likelihood orderings. Likelihood orderings model

cautious behavior, as they require that each player takes into all opponents strate-

gies, also those that seem unlikely to be chosen. There might also be other inter-

esting elimination procedures that can be captured in terms of likelihood orderings.

A particularly interesting example is the reasoning-based expected utility procedure

defined by Cubitt and Sugden (2011). This procedure determines, for each player

and every iteration, a positive and a negative subset of the player’s strategy set (the

two subsets having a non-empty intersection) as follows:

(i) A set of allowable probability distribution is determined by assigning positive

weight to every strategy in the opponent’s positive set and zero weight to every

strategy in the opponent’s negative set.

(ii) The player’s positive set consists of strategies being a best reply to every

allowable probability distribution, while the player’s negative set consists of

strategies not being a best reply to any allowable probability distribution.

In terms of likelihood orderings this requires the top level element to include every

strategy in the opponent’s positive set and to exclude every strategy in the oppo-

nent’s negative set. However, the resulting algorithm is different since the partitional

nature of likelihood orderings induces cautious behavior: all opponent strategies, also

those in the negative set are taken into account.

Finally, it is of interest to speculate how epistemic foundations for the algorithms

of the present paper might be provided in models of interactive beliefs. Epistemic

models of games of complete information usually contain a set Ti of epistemic types

for all players i, where every type ti of player i determines a strategy choice si and

a belief on the set T−i of opponent type profiles.

The algorithms of the present paper indicate that the reasoning process might

alternatively be captured by an epistemic model where every type ti of player i, in

addition to having a belief over the set T−i of opponent type profiles, determines

of non-empty subset Li of likelihood orderings. As we have explored through the

analysis of this paper, such subsets of likelihood orderings are sufficient to describe

player i’s (possibly incomplete) preferences over his own strategies in any stage of the

reasoning processes. Furthermore, the collection of non-empty subsets of likelihood

orderings is finite if the underlying game is finite.

However, such epistemic analysis is beyond the scope of the present paper and

will be investigated in future work.
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A Proofs

Proof of Lemma 1. Let Li be player i’s non-empty set of likelihood orderings.

Reflexivity of ∼Li
i and %Li

i . Consider any µi ∈ ∆(Si). Then, trivially, ui(µi, s−i)

= ui(µi, s−i) for every s−i, so that µi ∼Li
i µi, and thus, µi %

Li
i µi.

Irreflexivity of �Li
i . Consider any µi ∈ ∆(Si). Then, trivially, there exists no subset

of opponent strategy profiles S′−i ⊆ S−i such that µ weakly dominates µ on S′−i. Hence,

µi �Li
i µi.

Transitivity of ∼Li
i . If µi ∼Li

i µ′i and µ′i ∼
Li
i µ′′i , then ui(µi, s−i) = ui(µ

′
i, s−i) =

ui(µ
′′
i , s−i) for every s−i, so that µi ∼Li

i µ′′i .

Transitivity of �Li
i . If µi �Li

i µ′i and µ′i �
Li
i µ′′i , then, for all Li = (L1

i , L
2
i , . . . , L

K
i ) ∈ Li,

there exists k′ ∈ {1, . . . ,K} such that µi weakly dominates µ′i on L1
i ∪ · · · ∪ Lk

′

i and k′′ ∈
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{1, . . . ,K} such that µ′i weakly dominates µ′′i on L1
i ∪ · · · ∪ Lk

′′

i . For each Li ∈ Li, choose

k = min{k′, k′′}. Then µi weakly dominates µ′′i on L1
i ∪· · ·∪Lki since ui(µi, s−i) ≥ ui(µ′i, s−i)

and ui(µ
′
i, s−i) ≥ ui(µ

′′
i , s−i) for every s−i ∈ L1

i ∪ · · · ∪ Lki , with ui(µi, s
′
−i) > ui(µ

′
i, s
′
−i) or

ui(µ
′
i, s
′
−i) > ui(µ

′′
i , s
′
−i) for some s′−i ∈ L1

i ∪ · · · ∪ Lki . Hence, for all Li ∈ Li, there exists

k ∈ {1, . . . ,K} such that µi weakly dominates µ′′i on L1
i ∪· · ·∪Lki , so that so that µi �Li

i µ′′i .

Transitivity of %Li
i . Consider any µi, µ

′
i, µ
′′
i ∈ ∆(Si) such that µi %

Li
i µ′i and µ′i %

Li
i µ′′i .

We must show that µi %
Li
i µ′′i .

Case 1: If µi ∼Li
i µ′i and µ′i ∼

Li
i µ′′i , then it follows from the transitivity of ∼Li

i that

µi ∼Li
i µ′′i , and thus, µi %

Li
i µ′′i .

Case 2a: If µi �Li
i µ′i and µ′i ∼

Li
i µ′′i , then since ui(µ

′
i, s−i) = ui(µ

′′
i , s−i) for every

s−i, for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li, there exists k ∈ {1, . . . ,K} such that µi weakly

dominates µ′′i on L1
i ∪ · · · ∪ Lki , so that µi �Li

i µ′′i , and thus, µi %
Li
i µ′′i .

Case 2b: Likewise if µi ∼Li
i µ′i and µ′i �

Li
i µ′′i .

Case 3: If µi �Li
i µ′i and µ′i �

Li
i µ′′i , then it follows from the transitivity of �Li

i that

µi �Li
i µ′′i , and thus, µi %

Li
i µ′′i .

Objective independence of ∼Li
i Consider any µi, µ

′
i, µ

′′
i ∈ ∆(Si) and all γ ∈ (0, 1).

Objective independence follows since ui(µ
′
i, s−i) = ui(µ

′′
i , s−i) for every s−i ∈ S−i if and

only if ui(γµ
′
i + (1− γ)µ′′′i , s−i) = ui(γµ

′′
i + (1− γ)µ′′′i , s−i) for every s−i ∈ S−i

Objective independence of �Li
i . Consider any µi, µ

′
i, µ

′′
i ∈ ∆(Si) and all γ ∈ (0, 1).

Objective independence follows since, for any S′−i ⊆ S−i, µ′i weakly dominates µ′′i on S′−i if

and only if γµ′i + (1− γ)µ′′′i weakly dominates γµ′′i + (1− γ)µ′′′i on S′−i.

Proof of Lemma 2. Let Li be player i’s non-empty set of likelihood orderings, and

consider two mixed strategies µ′i, µ
′′
i ∈ ∆(Si).

Assume µ′i �
Li
i µ′′i . Hence, for all Li = (L1

i , L
2
i , . . . , L

K
i ) ∈ Li, there exists k ∈

{1, . . . ,K} such that µ′i weakly dominates µ′′i on L1
i ∪ · · · ∪ Lki . Fix Li ∈ Li. We need to

show that every LPS λi consistent with Li ranks µ′i above µ′′i . This follows since ui(µ
′
i, λ

`
i) ≥

ui(µ
′′
i , λ

`
i) for all ` ∈ {1, . . . , k} and ui(µ

′
i, λ

`′

i ) > ui(µ
′′
i , λ

`′

i ) for some `′ ∈ {1, . . . , k}, as µ′i
weakly dominates µ′′i on L1

i ∪ · · · ∪ Lki = suppλ1 ∪ · · · ∪ suppλk.

Assume that, for all Li ∈ Li, every LPS λi consistent with Li ranks µ′i above µ′′i . Fix

Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li. We need to show that there exists k ∈ {1, . . . ,K} such that

µ′i weakly dominates µ′′i on L1
i ∪ · · · ∪ Lki . Suppose, by way of contradiction, that, for all

k ∈ {1, . . . ,K}, µ′i does not weakly dominate µ′′i on L1
i ∪ · · · ∪ Lki = suppλ1 ∪ · · · ∪ suppλk.

Case 1: ui(µ
′
i, s−i) ≤ ui(µ

′′
i , s−i) for every s−i ∈ S−i. Then no LPS λi consistent with Li

ranks µ′i above µ′′i . Case 2: ui(µ
′
i, s
′
−i) > ui(µ

′′
i , s
′
−i) for some s′−i ∈ S−i. W.l.o.g., choose

s′−i and k ∈ {1, . . . ,K} with the properties that s′−i ∈ Lki and ui(µ
′
i, s−i) ≤ ui(µ

′′
i , s−i)

for every s−i ∈ L1
i ∪ · · · ∪ L

k−1
i . Since µ′i does not weakly dominate µ′′i on L1

i ∪ · · · ∪ Lki ,

there exists s′′−i ∈ L1
i ∪ · · · ∪Lki = suppλ1 ∪ · · · ∪ suppλk such that ui(µ

′
i, s
′′
−i) < ui(µ

′′
i , s
′′
−i).

Then it is possible to construct λ̃i consistent with Li such that ui(µ
′
i, λ̃

k
i ) < ui(µ

′′
i , λ̃

k
i ) and

ui(µ
′
i, λ̃

`
i) ≤ ui(µ′′i , λ̃`i) for all ` ∈ {1, . . . , k−1}, implying that λ̃i consistent with Li ranks µ′′i
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above µ′i. In both cases, we obtain a contradiction to the claim that every LPS λi consistent

with Li ranks µ′i above µ′′i .

Assume µ′i ∼
Li
i µ′′i . Hence, ui(µ

′
i, s−i) = ui(µ

′′
i , s−i) for every s−i. Then, clearly, every

LPS λi deem µ′i indifferent to µ′′i .

Assume that, for all Li ∈ Li, every LPS λi consistent with Li, deem µ′i indifferent

to µ′′i . We need to show that ui(µ
′
i, s−i) = ui(µ

′′
i , s−i) for every s−i. Suppose, by way

of contradiction, that ui(µ
′
i, s
′
−i) 6= ui(µ

′′
i , s
′
−i) for some s′−i ∈ S−i. W.l.o.g., choose s′−i,

Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li, and k ∈ {1, . . . ,K} with the properties that s′−i ∈ Lki and

ui(µ
′
i, s−i) = ui(µ

′′
i , s−i) for every s−i ∈ L1

i ∪ · · · ∪ L
k−1
i . Then it is possible to construct

λ̃i consistent with Li such that ui(µ
′
i, λ̃

k
i ) 6= ui(µ

′′
i , λ̃

k
i ) and ui(µ

′
i, λ̃

`
i) = ui(µ

′′
i , λ̃

`
i) for all

` ∈ {1, . . . , k − 1}, implying that λ̃i consistent with Li does not deem µ′i indifferent to µ′′i .

This contradicts that every LPS λi consistent with Li, deem µ′i indifferent to µ′′i .

Proof of Remark 2. Let Li be player i’s non-empty set of likelihood orderings,

and consider two pure opponent strategy profiles s′−i, s
′′
−i ∈ S−i. Assume s′−i �

Li
i s′′−i.

Hence, for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li, there exists k ∈ {1, . . . ,K} such that s′−i ∈

L1
i ∪ · · · ∪ Lki and s′′−i /∈ L1

i ∪ · · · ∪ Lki . If the mixed strategies µ′i, µ
′′
i ∈ ∆(Si) satisfy

ui(µ
′
i, s
′
−i) > ui(µ

′′
i , s
′
−i) and, for all s−i ∈ S−i\{s′−i, s′′−i}, ui(µ′i, s−i) = ui(µ

′′
i , s−i), then,

for all Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li, µ′i weakly dominates µ′′i on L1

i ∪ · · · ∪ Lki by choosing

k ∈ {1, . . . ,K} such that s′−i ∈ L1
i ∪ · · · ∪ Lki and s′′−i /∈ L1

i ∪ · · · ∪ Lki . Thus, µ′i �
Li
i µ′′i

whenever the mixed strategies µ′i, µ
′′
i have these properties.

Proof of Lemma 3. Let (si, Ai) ∈ Ri(Li), implying that there exists µi ∈ ∆(Ai)

such that µi �Li
i si. Clearly, µi(si) < 1 since �Li

i is irreflexive (cf. Lemma 1). If µi(si) = 0,

so that si /∈ suppµi, then µi ∈ ∆(Ai\{si}) and µi �Li
i si, implying that (si, A

′
i) ∈ Ri(Li)

where A′i = Ai\{si}. If µi(si) = (0, 1), rewrite µi as µi(si)si + (1 − µi(si))µ′i, where µ′i is

defined by µ′i(s
′
i) = µi(s

′
i)/(1− µi(si)) for all s′i 6= si. Then

µi(si)si + (1− µi(si))µ′i = µi �Li
i si = µi(si)si + (1− µi(si))si .

Hence, by the objective independence of �Li
i (cf. Lemma 1), µ′i �

Li
i si, where µ′i ∈

∆(Ai\{si}). Thus, also in this case, (si, A
′
i) ∈ Ri(Li) where A′i = Ai\{si}.

Proof of Lemma 4. Assume there exists µi ∈ ∆(Si) such that µi �Li
i si. Then

(si, Si) ∈ Ri(Li) and si ∈ Si\Ci(Ri(Li)). Hence,

Ci(Ri(Li)) ⊆ {si ∈ Si | @µi ∈ ∆(Si) such that µi �Li
i si} . (A1)

Assume there does not exist µi ∈ ∆(Si) such that µi �Li
i si. Then there does not exist

Ai ⊆ Si with (si, Ai) ∈ Ri(Li), and si ∈ Ci(Ri(Li)). Hence,

Ci(Ri(Li)) ⊇ {si ∈ Si | @µi ∈ ∆(Si) such that µi �Li
i si} . (A2)

The first part of the lemma follows from (A1) and (A2).
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To show Ci(Ri(Li)) 6= ∅, consider an LPS λi that is consistent with some Li ∈ Li. Since

the ranking-above relation for given LPS λi is transitive and irreflexive and Si is finite,

there exists si ∈ Si such that λi ranks no s′i ∈ Si above si. Moreover, by the definition of

the ranking-above relation it now follows that λi ranks no µi ∈ ∆(Si) above si. Hence, by

Lemma 2, there does not exist µi ∈ ∆(Si) such that µi �Li
i si, implying by the first part of

the lemma that si ∈ Ci(Ri(Li)).

Proof of Lemma 5. Assume that player i with non-empty set Li of likelihoods

orderings respects R−i. Suppose s′j /∈ Cj(Rj) for some j 6= i, implying that there ex-

ists Aj such that (sj , Aj) ∈ Rj . Since i respects R−i, (L1
i ∩ {sj}) × S−i,j = ∅ for all

Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li. Therefore, if s−i ∈ L1

i for some Li = (L1
i , L

2
i , . . . , L

K
i ) ∈ Li,

then s−i ∈
∏
j 6=i Cj(Rj) = C−i(R−i). This implies that Li ⊆ C−i(R−i) for all Li =

(L1
i , L

2
i , . . . , L

K
i ) ∈ Li and establishes the lemma.

Proof of Lemma 6. Only if. If there exists µi ∈ ∆(Ai) such that µi strictly dominates

si on S′−i, then, for every (∅ 6=)S′′−i ⊆ S′−i, µi ∈ ∆(Ai) weakly dominates si on S′′−i.

If. Suppose there does not exist µi ∈ ∆(Ai) such that µi strictly dominates si on S′−i.

Hence, by Pearce (1984, Lemma 3), there exists λi ∈ ∆(S′−i) such that u(si, λi) ≥ u(s′i, λi)

for all s′i ∈ Ai. Then, by Pearce (1984, Lemma 4), there does not exist µ′i ∈ ∆(Ai) such

that µ′i weakly dominates si on S′′−i := suppλi ⊆ S′−i.

Proof of Proposition 1. Consider, for all players i, the sequence 〈Sni 〉∞n=0 defined

in Definition 6. We show, by induction on n, that Ci(Ri(Lni )) = Sn+1
i for all players i and

every n ≥ 0.

Part (i). For n = 0, we have that L0
i = L∗i and hence,

Ri(L0
i ) = {(si, Ai) | ∃µi ∈ ∆(Ai) such that si is weakly dominated by µi on S−i} .

Therefore, Ci(Ri(L0
i )) = ai(S−i) = bi(S

0
−i) ∩ ai(S−i) = S1

i for all players i, since S0
−i = S−i

and ai(S−i) ⊆ bi(S−i).
Part (ii). Now, let n ≥ 1, and assume that for all players i, Ci(Ri(Ln−1

i )) = Sni . We

show that, for all players i, Ci(Ri(Lni )) = Sn+1
i .

Fix a player i. By definition, Lni = Lbi (R−i(L
n−1
−i )). We have that

Lbi (R−i(Ln−1
−i )) = {Li ∈ L∗i | Li believes C−i(R−i(Ln−1

−i ))}

= {Li ∈ L∗i | Li believes Sn−i}

= {Li ∈ L∗i | L1
i ⊆ Sn−i},

by our induction assumption. But then,

Ri(Lni ) = {(si, Ai) | for every L1
i ⊆ Sn−i there is µi ∈ ∆(Ai) such that

si is weakly dominated by µi on L1
i or on S−i}

and
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Ci(Ri(Lni )) = {si ∈ Si | ∃(∅ 6=)L1
i ⊆ Sn−i s.t. si ∈ ai(L1

i ) ∩ ai(S−i)}

= bi(S
n
−i) ∩ ai(S−i) = Sn+1

i

by (1) and Definition 6, thus concluding the proof.

The proof above would also apply to the case where L0
i = L̃∗i , considering only likelihood

orderings that consist of one or two levels only. The reason is that the restrictions on the

sets Lni of likelihood orderings only apply to the top level of the likelihood orderings.

Proof of Proposition 2. Consider, for all players i, the sequence 〈Sni 〉∞n=0 defined

in Definition 7. We show, by induction on n, that Ci(Ri(Lni )) = Sn+1
i for all players i and

every n ≥ 0.

Part (i). For n = 0, it follows by part (i) of the proof of Proposition 1, that Ci(Ri(L0
i )) =

ai(S−i) = ai(S
0
−i) ∩ Si = S1

i for all players i.

Part (ii). Let n ≥ 1, and assume that, for all players i, Ci(Ri(Lmi )) = Sm+1
i for every

m ∈ {0, . . . , n− 1}. We show that, for all players i, Ci(Ri(Lni )) = Sn+1
i .

Fix a player i. By definition, we have that

Lni = Lai (R−i(L0
−i)) ∩ Lai (R−i(L1

−i)) ∩ ... ∩ Lai (R−i(Ln−1
−i )).

By the induction assumption, we know that C−i(R−i(Lm−i)) = Sm+1
i for everym ∈ {0, . . . , n− 1},

and hence

Lai (R−i(Lm−i)) = {Li ∈ L∗i | Li assumes C−i(R−i(Lm−i))}

= {Li ∈ L∗i | Li assumes Sm+1
−i }

= {Li ∈ L∗i | ∃k ∈ {1, . . . ,K} such that L1
i ∪ · · · ∪ Lki = Sm+1

−i }

for every m ∈ {0, . . . , n− 1}. This implies that

Lni = {Li ∈ L∗i | ∀m ∈ {1, . . . , n},∃k ∈ {1, . . . ,K} such that L1
i ∪ · · · ∪ Lki = Sm−i} .

Therefore, Ri(Lni ) contains exactly those preference restrictions (si, Ai) such that si is

weakly dominated by some µi ∈ ∆(Ai) on some Sm−i with m ≤ n:

Ri(Lni ) = {(si, Ai) | there are m ∈ {0, . . . , n} and µi ∈ ∆(Ai)

such that si is weakly dominated by µi on Sm−i}
and

Ci(Ri(Lni )) = ai(S
0
−i) ∩ ai(S1

−i) ∩ · · · ∩ ai(Sn−i) = Sn+1
i ,

which completes the proof.

Proof of Proposition 4. Consider, for both players i, the sequence 〈Σni 〉∞n=0 defined

in Definition 8. Consider also, for both players i, the sequence 〈L̃ni 〉∞n=0 defined by

Ini* For both players i, let L̃0
i = L̃∗i .
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and FP. Note that L1
i ⊆ L̃0

i ⊆ L0
i , so by induction, for every n ≥ 1, Ln+1

i ⊆ L̃ni ⊆ Lni .

Since also the algorithm defined by Ini* and FP converges after a finite number of rounds,

as the set of likelihood orderings is finite, we have that L̃∞i :=
⋂∞
n=1 L̃ni equals L∞i . Thus,

it is sufficient to show that there exists Li ∈ L̃ni such that Ai = Ci(Ri(Li)) if and only if

Ai ∈ Σn+1
i , for both players i and every n ≥ 0. We show this by induction on n.

Part (i). For n = 0, we have that L̃0
i = L̃∗i and thus, Li ∈ L̃0

i if and only if Li = (L1
i ) = Sj

or Li = (L1
i , L

2
i ) = (S′j , Sj\S′j) for some non-empty proper subset S′j of Sj . Hence, there is

Li ∈ L̃0
i such that (si, Ai) ∈ Ri(Li) if and only if there exist (∅ 6=)S′j ⊆ Sj and µi ∈ ∆(Ai)

such that si is weakly dominated by µi on S′j or Sj . Therefore, there is Li ∈ L̃0
i such that

Ai ∈ Ci(Ri(Li)) if and only if Ai = ai(S
′
j) ∩ ai(Sj) for some (∅ 6=)S′j ⊆ Sj . It now follows

from the definition of the operator αi(Σ
′
j) that there is Li ∈ L̃0

i such that Ai ∈ Ci(Ri(Li))
if and only if Ai ∈ αi(Σj) = αi(Σ

0
j ) = Σ1

i , since Σ0
j = Σj .

Part (ii). Now, let n ≥ 1, and assume that for both players i, there exists Li ∈ L̃n−1
i

such that Ai = Ci(Ri(Li)) if and only if Ai ∈ Σni .

Fix a player i. By FP, Li ∈ L̃ni is equivalent to there existing (∅ 6=)Lj ⊆ L̃n−1
j such

that Li = (S′j , Sj\S′j) if S′j 6= Sj and Li = (Sj) otherwise, where S′j = ∪Lj∈Lj
Cj(Rj(Lj)).

By the induction assumption this is equivalent to there existing (∅ 6=) Σ′′j ⊆ Σnj such that

Li = (S′j , Sj\S′j) if S′j 6= Sj and Li = (Sj) otherwise, where S′j = ∪Aj∈Σn−1
j

Aj . Therefore,

there is Li ∈ L̃ni such that Ai = Ci(Ri(Li)) if and only if Ai = ai(∪Aj∈Σ′′j
Aj) ∩ ai(Sj) for

some (∅ 6=) Σ′′j ⊆ Σnj . It now follows from the definition of the operator αi(Σ
′
j) that there is

Li ∈ L̃ni such that Ai = Ci(Ri(Li)) if and only if Ai ∈ αi(Σnj ) = Σn+1
i , which completes the

proof.

Proof of Proposition 5. Let 〈Ln1 ,Ln2 〉∞n=1 be the sequence of likelihood orderings

according to the algorithm for proper rationalizability (cf. Section 3.3). It is sufficient to

show, under the assumptions of the proposition, that for every n ≥ 0 and both players i, it

holds that, for every si ∈ Si\Sn+1
i , (si, {ai}) ∈ Ri(Lni ) for every ai ∈ An+1

i . In this case,

namely, every properly rationalizable strategy is in
⋂∞
n=1 S

n
i . We show by induction that

the statement above is true.

Part (i). Let n = 0. If S1
i = Si, so that there is no si ∈ Si\S1

i , then the statement

is trivially true. If S1
i 6= Si, then, by the premise of the proposition, for every si ∈ Si\S1

i ,

si is weakly dominated by every ai ∈ A1
i on Sj . Hence, by the full support assumption,

(si, {ai}) ∈ Ri(L∗i ) = Ri(L0
i ), implying that the statement is true also in this case.

Part (ii). Let n ≥ 1, and assume that, for every m ∈ {0, . . . , n− 1} and both players i,

it holds that, for every si ∈ Si\Sm+1
i , (si, {ai}) ∈ Ri(Lmi ) for every ai ∈ Am+1

i .

Fix a player i. We first make the observation that, for every m ∈ {1, . . . , n}, every

Li = (L1
i , . . . , L

K
i ) ∈ Lmi satisfies that there exists k ∈ {1, . . . ,K} such that Amj ⊆ L1

i ∪
· · · ∪ Lki ⊆ Smj . This is true by the full support assumption if Smj = Sj (and thus Amj = Sj ,

by the last bullet point of Proposition 5 and fact that A0
j = Sj). Assume now Smj 6= Sj .

By the algorithm for proper rationalizability, every Li ∈ Lmi respects Rj(Lm−1
j ), implying
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that there exists k ∈ {1, . . . ,K} such that (L1
i ∪ · · · ∪Lki )∩ {aj} 6= ∅ for every aj ∈ Amj and

(L1
i ∪· · ·∪Lki )∩{sj} = ∅ for every sj ∈ Sj\Smj , and the observation follows also in this case.

If Sn+1
i = Si, then the statement is trivially true also for n ≥ 1.

If Sn+1
i 6= Si, let (0 ≤) m ≤ n satisfy Sn+1

i = Sm+1
i 6= Smi . By a premise of the

proposition, for every si ∈ Si\Sm+1
i , si is weakly dominated by every ai ∈ Am+1

i on either

(Amj and Smj ) or Sj . If si is weakly dominated by ai on Amj and Smj , then si is weakly

dominated by ai on each strategy set S′j satisfying Amj ⊆ S′j ⊆ Smj . By the observation

that every Li = (L1
i , . . . , L

K
i ) ∈ Lmi satisfies that there exists k ∈ {1, . . . ,K} such that

Amj ⊆ L1
i ∪ · · · ∪ Lki ⊆ Smj it follows that (si, {ai}) ∈ Ri(Lmi ). If si is weakly dominated by

ai on Sj , then by the full support assumption, (si, {ai}) ∈ Ri(L∗i ) = Ri(L0
i ). Hence, since

the sequence of sets of likelihood orderings is non-increasing, so that Lni ⊆ Lmi ⊆ L0
i and

thus, Ri(Lni ) ⊇ Ri(Lmi ) ⊇ Ri(L0
i ), for every si ∈ Si\Sn+1

i , (si, {ai}) ∈ Ri(Lni ) for every

ai ∈ An+1
i .

Proof of Proposition 6. The proof is divided into two parts. In part (i) we show

that the strategies in Si\ ({k} ∪ {w}) are not properly rationalizable. In part (ii) we show

that k and w are properly rationalizable.

Part (i). Let 〈Ln1 ,Ln2 〉∞n=1 be the sequence of sets of likelihood orderings for the finite

version of Ellingsen and Miettinen’s (2008, Section I) bilateral commitment bargaining game

with zero commitment cost, according to the algorithm for proper rationalizability (cf. Sec-

tion 3.3). In order to show that the strategies in Si\ ({k} ∪ {w}) = {0, 1, . . . , k− 1} are not

properly rationalizable, it is sufficient to show that for each player i, it holds that (a) for

every si ∈ {0, 1, . . . , βi}, (si, {w}) ∈ Ri(L0
i ), and (b) for every si ∈ {βi+1, βi+2, . . . , k−1},

(si, {k}) ∈ Ri(L1
i ), keeping in mind that the sequence of sets of likelihood orderings is

non-increasing, so that Lni ⊆ L1
i ⊆ L0

i and thus, Ri(Lni ) ⊇ Ri(L1
i ) ⊇ Ri(L0

i ) for every n ≥ 1.

Result (a) follows from the fact that, for each player i and for every si ∈ {0, 1, . . . , βi},
w weakly dominates si on Sj . (To see this, note that if the opponent chooses w, then player

i’s payoff by choosing w is βi, while it is {0, 1, . . . , βi} if player i commits to one of these

demands, and if the opponent chooses sj ∈ {0, 1, . . . , k}, then player i’s payoff by choosing w

is 1−sj , while it is no more than 1−sj and sometimes 0 if si ∈ {0, 1, . . . , βi}.) Hence, for each

player i and for every si ∈ {0, 1, . . . , βi}, (si, {w}) ∈ Ri(L∗i ) = Ri(L0
i ). This result implies

that, for each player i, every Li = (L1
i , . . . , L

K
i ) ∈ L1

i = Lri (Rj(L0
j )) satisfies that there exists

k ∈ {1, . . . ,K} such that {w} ⊆ L1
i∪· · ·∪Lki ⊆ {βj+1, βj+2, . . . , k}∪{w}. Result (b) follows

from the fact that, for each player i and for every si ∈ {βi + 1, βi + 2, . . . , k − 1}, k weakly

dominates si on each strategy set S′j satisfying {w} ⊆ S′j ⊆ {βj + 1, βj + 2, . . . , k} ∪ {w}.
Hence, for each player i and for every si ∈ {βi + 1, βi + 2, . . . , k − 1}, (si, {k}) ∈ Ri(L1

i ).

Part (ii). We establish that k and w are properly rationalizable in the finite version

of Ellingsen and Miettinen’s (2008, Section I) bilateral commitment bargaining game with

zero commitment cost, by showing that both k and w can be used with positive probability

in a proper equilibrium; thus, they are properly rationalizable (Asheim, 2001, Proposition
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2). To prove this claim, consider the likelihood orderings

L1 = {{w}, {1}, {2}, . . . , {β2 − 1}, {k}, {k − 1}, . . . , {β2 + 1}, {β2}, {0}} ,

L2 = {{k}, {k − 1}, . . . , {β1 + 1}, {w}, {β1}, {β1 − 1}, . . . , {1}, {0}} .

Since each element in either of these partitions contains only one strategy, they determine

a pair of LPSs. It is straightforward to check that this pair of LPSs determines a proper

equilibrium, according to Blume et al.’s (1991b, Proposition 5) characterization, where player

1 chooses k with probability 1 and player 2 chooses w with probability 1.

Claim Consider the finite version of Ellingsen and Miettinen’s (2008, Section I) bilateral

commitment bargaining game with zero commitment cost. Assume that x1(s1, s2) = s1 and

x2(s2, s1) = s2 if s1 + s2 ≤ k.

(i) There exists a proper equilibrium where both players assign probability 1 to k.

(ii) For both players i and any strategy ` ∈ {βi+1, βi+2, . . . , k−1}, there exists a perfect

equilibrium where player i assigns positive probability to both w and ` and player j

assigns probability 1 to k.

Proof. Part (i). Consider the LPSs

λ1 = {λ1
1, . . . , λ

k+1
1 }

λ2 = {λ1
2, . . . , λ

k+1
2 } ,

where for both players i and each ` ∈ {1, . . . , k + 1}, the support of λ`i is included in

{w, k+1−`} for ` ∈ {1, . . . , βj+1}, {w, 1} for ` = βj+2, {w, k+2−`} for ` ∈ {βj+3, . . . , k},
and {w, 0} for ` = k + 1. Let, for each ` ∈ {1, . . . , k + 1}, λ`i be determined by ui(w, λ

`
i) =

ui(k − 1, λ`i). This means that

λ1
i (w) = 0 λ1

i (k) = 1

λ2
i (w) = 1

βj
λ2
i (k − 1) =

βj−1
βj

λ3
i (w) = 2

βj+1 λ3
i (k − 2) =

βj−1
βj+1

· · · · · ·

λ
βj+1
i (w) =

βj

2βj−1 λ
βj+1
i (βi) =

βj−1
2βj−1

λ
βj+2
i (w) = 0 λ

βj+2
i (1) = 1

λ
βj+3
i (w) =

βj+1
2βj

λ
βj+3
i (βi − 1) =

βj−1
2βj

· · · · · ·

λki (w) = k−2
βj+k−3 λki (2) =

βj−1
βj+k−3

λk+1
i (w) = 1

βj
λk+1
i (0) =

βj−1
βj
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The LPSs λ1 and λ2 determine the following likelihood orderings:

L1 = {{k}, {w, k − 1}, {k − 2}, . . . , {β1 + 1}, {β1}, {1}, {β1 − 1}, . . . , {2}, {0}} ,

L2 = {{k}, {w, k − 1}, {k − 2}, . . . , {β2 + 1}, {β2}, {1}, {β2 − 1}, . . . , {2}, {0}} .

It can be checked that L1 respects the preference restrictions that u2 and λ2 give rise to,

and L2 respects the preference restrictions that u1 and λ1 give rise to. To see this in the

case of L1 (the demonstration for L2 is symmetric), note:

(a) Player 2 ranks the commitment strategies 0, 2, 3, . . . , k according to size since

u2(s2, λ
1
2) = 0 and u2(s2, λ

2
2) = s2/β1 for s2 ∈ 0, 2, 3, . . . , k.

(b) Player 2 is indifferent between the commitment strategy k − 1 and waiting w since,

by construction, u2(w, λ`2) = u2(k − 1, λ`2) for all ` ∈ {1, . . . , k + 1}.

(c) Player 2 ranks the commitment strategy 1 between the commitment strategies β1 and

β1 − 1 since

u2(β1, λ
1
2) = u2(1, λ1

2) = u2(β1 − 1, λ1
2) = 0 ,

u2(β1, λ
2
2) = u2(1, λ2

2) = 1 > u2(β1 − 1, λ2
2) = β1−1

β1
,

u2(β1, λ
3
2) = 2β1

β1+1 > u2(1, λ3
2) = 1 ,

since β1 > 1 and x2(1, k − 2) = 1.

It follows from Blume et al.’s (1991b, Proposition 5) characterization that (λ1
1, λ

1
2), where

λ1
2 is the mixed strategy of player 1 and λ1

1 is the mixed strategy of player 2, is a proper

equilibrium. Note that, for both players i, λ1
i (k) = 1.

Part (ii). Let ` be any player 1 strategy in {β1 + 1, β1 + 2, . . . , k − 1}. Consider the

LPSs λ1 = {λ1
1, . . . , λ

k+1
1 } and λ2 = {λ1

2, λ
2
2} defined by

λ1
1(w) = 0 λ1

1(k) = 1 λ1
2(w) = β2

k λ1
2(`) = 1− β2

k

λ2
1(w) = 0 λ2

1(k − `) = 1 λ2
2(s1) = 1

k for all s1 ∈ S1\{w, `}

λ3
1(w) = 1

`−β1+1 λ3
1(k − 1) = `−β1

`−β1+1

· · · · · ·

λ`+1
1 (w) = `−1

2`−β1−1 λ`+1
1 (k − `+ 1) = `−β1

2`−β1−1

λ`+2
1 (w) = 1

`−β1+1 λ`+2
1 (k − `− 1) = `−β1

`−β1+1

· · · · · ·

λk1(w) = k−`−1
k−β1−1 λk1(1) = `−β1

k−β1−1

λk+1
1 (w) = k−`

k−β1
λk+1

1 (0) = `−β1

k−β1
,

with, for each level of these LPSs, zero probability assigned to other strategies.

These LPSs imply that player 1 is indifferent between w and ` and that player 1 prefers

each of these strategies to any strategy in S1\{w, `}, and that player 2 prefers k to any

strategy in S2\{k}. To see this, note:
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(a) It follows that player 1 strictly prefers each of w and ` to any strategy in S1\{w, `} since

u1(s1, λ
1
1) = 0 for all s1 ∈ S1 and u1(w, λ2

1) = u1(`, λ2
1) = `, while u1(s1, λ

2
1) = s1 < `

if s1 is a commitment strategy in {1, 2, . . . , ` − 1} and u1(s1, λ
2
1) = 0 < ` if s1 is a

commitment strategy in {` + 1, ` + 2, . . . , k}. It follows that player 1 is indifferent

between w and ` since λ3
1, λ

4
1, . . . , λ

k+1
1 have been constructed so that u1(w, λm1 ) =

u1(`, λm1 ) for each m ∈ {3, 4, . . . , k + 1}.

(b) It follows that player 2 strictly prefers k to any strategy in S2\{k} since u2(k, λ1
2) = β2

and u2(s2, λ
1
2) < β2 for all s2 ∈ S2\{k}.

Since both λ1 and λ2 have full support on the set of opponent strategies, it follows from

Blume et al.’s (1991b, Proposition 4) characterization that (λ1
1, λ

1
2), where λ1

2 is the mixed

strategy of player 1 and λ1
1 is the mixed strategy of player 2, is a perfect equilibrium where

player 1 assigns positive probability to both w and ` and player 2 assigns probability 1 to k.

In a simular fashion we can show that, for any player 2 strategy ` ∈ {β2 + 1, β2 +

2, . . . , k−1}, there exists a perfect equilibrium where player 1 assigns probability 1 to k and

player 2 assigns positive probability to both w and `.
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B Tables

Table 1: The functioning of the algorithms in game G1.

Permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L∞1 = L̃∗1 L∞2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

Iterated admissibility

L0
1 = L∗1 L0

2 = L∗2
L1

1 = L∗1 L1
2 = {({U,M}, {D}), ({U}, {M}, {D}), ({M}, {U}, {D})}

L2
1 = {({L}, {R})} L2

2 = {({U,M}, {D}), ({U}, {M}, {D}), ({M}, {U}, {D})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {M}, {D})}

Proper rationalizability

L0
1 = L∗1 L0

2 = L∗2
L∞1 = L∗1 L∞2 = {({U}, {M,D}), ({U,M}, {D}),

({U}, {M}, {D}), ({U}, {D}, {M}), ({M}, {U}, {D})}

Full permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L1

1 = L̃∗1 L1
2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

L2
1 = {S2, ({L}, {R})} L2

2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

L∞1 = {S2, ({L}, {R})} L∞2 = {({U}, {M,D}), ({U,M}, {D})}
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Table 2: The functioning of the algorithms in game G2.

Permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L∞1 = L̃∗1 L∞2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

Iterated admissibility

L0
1 = L∗1 L0

2 = L∗2
L1

1 = L∗1 L1
2 = {({U,M}, {D}), ({U}, {M}, {D}), ({M}, {U}, {D})}

L2
1 = {({L}, {R})} L2

2 = {({U,M}, {D}), ({U}, {M}, {D}), ({M}, {U}, {D})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {M}, {D})}

Proper rationalizability

L0
1 = L∗1 L0

2 = L∗2
L1

1 = L∗1 L1
2 = {({U}, {M,D}), ({U,M}, {D}),

({U}, {M}, {D}), ({U}, {D}, {M}), ({M}, {U}, {D})}

L2
1 = {({L}, {R})} L2

2 = {({U}, {M,D}), ({U,M}, {D}),

({U}, {M}, {D}), ({U}, {D}, {M}), ({M}, {U}, {D})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {D}, {M})}

Full permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L1

1 = L̃∗1 L1
2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

L2
1 = {S2, ({L}, {R})} L2

2 = {({U}, {M,D}), ({M}, {U,D}), ({U,M}, {D})}

L3
1 = {S2, ({L}, {R})} L3

2 = {({U}, {M,D}), ({U,M}, {D})}

L4
1 = {({L}, {R})} L4

2 = {({U}, {M,D}), ({U,M}, {D})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {M,D})}
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Table 3: The functioning of the algorithms in game G3.

Permissibility

L01 = L̃∗1 L02 = L̃∗2
L11 = {({d}, {fd ,ff }), L12 = L̃∗2

({fd}, {d,ff }), ({d, fd}, {ff })}

L∞1 = {({d}, {fd ,ff }), L∞2 = {({D}, {FD ,FF}),

({fd}, {d,ff }), ({d, fd}, {ff })} ({FD}, {D,FF}), ({D,FD}, {FF})}

Iterated admissibility

L01 = L∗1 L02 = L∗2
L11 = {({d, fd}, {ff }), L12 = L∗2

({d}, {fd}, {ff }), ({fd}, {d}, {ff })}

L21 = {({d, fd}, {ff }), L22 = {({D,FD}, {FF}),

({d}, {fd}, {ff }), ({fd}, {d}, {ff })} ({D}, {FD}, {FF}), ({FD}, {D}, {FF})}

L31 = {({d}, {fd}, {ff })} L32 = {({D,FD}, {FF}),

({D}, {FD}, {FF}), ({FD}, {D}, {FF})}

L∞1 = {({d}, {fd}, {ff })} L∞2 = {({D}, {FD}, {FF})}

Proper rationalizability

L01 = L∗1 L02 = L∗2
L11 = {({fd}, {d,ff }), ({d, fd}, {ff }), L12 = L∗2

({d}, {fd}, {ff }), ({fd}, {d}, {ff }),

({fd}, {ff }, {d})}

L21 = {({fd}, {d,ff }), ({d, fd}, {ff }), L22 = {({FD}, {D,FF}), ({D,FD}, {FF}),

({d}, {fd}, {ff }), ({fd}, {d}, {ff }), ({D}, {FD}, {FF}), ({FD}, {D}, {FF}),

({fd}, {ff }, {d})} ({FD}, {FF}, {D})}

L31 = {({d}, {fd}, {ff })} L32 = {({FD}, {D,FF}), ({D,FD}, {FF}),

({D}, {FD}, {FF}), ({FD}, {D}, {FF})}

({FD}, {FF}, {D})}

L∞1 = {({d}, {fd}, {ff })} L∞2 = {({D}, {FD}, {FF})}

Full permissibility

L01 = L̃∗1 L02 = L̃∗2
L11 = {({d}, {fd ,ff }), L12 = L̃∗2

({fd}, {d,ff }), ({d, fd}, {ff })}

L21 = {({d}, {fd ,ff }), L22 = {({D}, {FD ,FF}),

({fd}, {d,ff }), ({d, fd}, {ff })} ({FD}, {D,FF}), ({D,FD}, {FF})}

L31 = {({d}, {fd ,ff }), ({d, fd}, {ff })} L32 = {({D}, {FD ,FF})

({FD}, {D,FF}), ({D,FD}, {FF})}

L∞1 = {({d}, {fd ,ff }), ({d, fd}, {ff })} L∞2 = {({D}, {FD ,FF}), ({D,FD}, {FF})}
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Table 4: The functioning of the algorithms in game G4.

Permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L∞1 = L̃∗1 L∞2 = {({U}, {M,D}), ({D}, {U,M}), ({U,D}, {M})}

Iterated admissibility

L0
1 = L∗1 L0

2 = L∗2
L1

1 = L∗1 L1
2 = {({U,D}, {M}), ({U}, {D}, {M}), ({D}, {U}, {M})}

L2
1 = {({L}, {R})} L2

2 = {({U,D}, {M}), ({U}, {D}, {M}), ({D}, {U}, {M})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {D}, {M})}

Proper rationalizability

L0
1 = L∗1 L0

2 = L∗2
L∞1 = L∗1 L∞2 = {({D}, {U,M}), ({U,D}, {M}),

({U}, {D}, {M}), ({D}, {U}, {M}), ({D}, {M}, {U})}

Full permissibility

L0
1 = L̃∗1 L0

2 = L̃∗2
L1

1 = L̃∗1 L1
2 = {({U}, {M,D}), ({D}, {U,M}), ({U,D}, {M})}

L2
1 = {S2, ({L}, {R})} L2

2 = {({U}, {M,D}), ({D}, {U,M}), ({U,D}, {M})}

L3
1 = {S2, ({L}, {R})} L3

2 = {({U}, {M,D}), ({U,D}, {M})}

L4
1 = {({L}, {R})} L4

2 = {({U}, {M,D}), ({U,D}, {M})}

L∞1 = {({L}, {R})} L∞2 = {({U}, {M,D})}
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