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2Departamento de Astronomia, Observatório Nacional, 20921-400, Rio de Janeiro, RJ, Brasil

3Núcleo Cosmo-ufes & Departamento de Física, Universidade Federal do Espírito Santo,
29075-910 Vitória, ES, Brasil

4International Institute of Physics, Universidade Federal do Rio Grande do Norte,
59078-970 Natal, RN, Brasil

5Institute of Theoretical Astrophysics, University of Oslo, 0315 Oslo, Norway
6Departamento de Física, Universidade Federal de Sergipe, 49100-000 Aracaju, SE, Brasil

7Departamento de Física, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN, Brasil

(Received 11 December 2018; published 15 February 2019)

Since there is no known symmetry in nature that prevents a nonminimal coupling between the dark
energy (DE) and cold dark matter (CDM) components, such a possibility constitutes an alternative to
standard cosmology, with its theoretical and observational consequences being of great interest. In this
paper, we propose a new null test on the standard evolution of the dark sector based on the time dependence
of the ratio between the CDM and DE energy densities which, in the standard ΛCDM scenario, scales
necessarily as a−3. We use the latest measurements of type Ia supernovae, cosmic chronometers and
angular baryonic acoustic oscillations to reconstruct the expansion history using model-independent
machine learning techniques, namely, the linear model formalism and Gaussian processes. We find that
while the standard evolution is consistent with the data at 3σ level, some deviations from the ΛCDMmodel
are found at low redshifts, which may be associated with the current tension between local and global
determinations of H0.
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I. INTRODUCTION

According to the standard model of cosmology about 5%
of the energy content of the universe is made of particles
belonging to the standard model of particle physics. The
remaining 95% is attributed to the so-called dark sector.
Roughly 25% are thought to consist of a yet-undetected
cold dark matter component (CDM), while dark energy
(DE), the fuel that drives the current cosmic acceleration,
would be responsible for the missing 70%. The fact that DE
and CDM have comparable energy densities today—the so-
called coincidence problem—has motivated the study, at
great depth, of dynamical models of DE that feature
interactions between dark energy and dark matter [1–4],
and references therein], hoping to shed light on the
nature of the dark sector. In this context, an important
topic of research that has been extensively explored
relies on considering some specific models for this inter-
action between the dark components in order to assess its
cosmological consequences [5–11].
Here, we adopt a different approach, i.e., instead

of constraining the interaction parameter of a specific
model we present a model-independent way to investigate
whether or not such a interaction in the dark sector really

exists. For this, we introduce a new null test that is sensitive
to the existence of a possible interaction between the dark
components. Equivalently, if this null test is failed, then one
may suspect that there may be new physics beyond the
standard model and, in particular, that dark matter and dark
energy are not independent entities. In other words, this
null test has the ability to extract information that one may
miss when the analysis performed is restricted to parameter
estimation within a specific class of interacting dark energy
models.
The proposed null test is based on the time dependence

of the ratio between CDM and DE energy densities, i.e.,
rðzÞ ¼ ρCDM=ρDE, which in the ΛCDM model is given by
rðzÞ ¼ r0ð1þ zÞ3, where r0 is the current value of this
ratio. Since an interaction in the dark sector affects the
dynamics of the components involved, this quantity is
directly sensitive to the existence of such interaction.
In order to carry out this new null test, we will recon-
struct the expansion history of the universe, in a model-
independent way, using machine learning (ML) techniques
applied to cosmic chronometers (CC) measurements, type
Ia supernovae (SNe Ia) data and also angular baryon
acoustic oscillation (BAO) determinations. In particular,
we will use the linear model formalism (LM) and Gaussian
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processes (GP). Regarding LM, we improve the so-called
“learning curve” methodology by generalizing the “mean
square error” (MSE) and “mean square prediction error”
(MSPE) to the case of data that have an arbitrary covariance
matrix and by taking into account the covariance matrix on
the model parameters obtained from the training set. We
call this generalization the “calibrated learning curves.”
The outline of this paper is as follows. In Sec. II, we

present the theoretical description of a rather general class
of unified/interacting models, which is used to derive the
rðzÞ null test in Sec. III. Section IV is devoted to present the
data sets used to perform the null test and to discuss about
the priors on the further “external” parameters. In Secs. V
and VI, the two methods used to perform the null test,
i.e., LM and GP are discussed. The results are presented
in Sec. VII, while Sec. VIII is dedicated to conclusions.
The paper has also two appendixes: Appendix Awhere we
present the theoretical basis of the calibrated learning
curves, and Appendix B where the python script lear-
ning_curve is released as an automatic tool to compute
and plot the (calibrated) learning curves for any given data
set with a covariance matrix.1

II. INTERACTING/UNIFIED DESCRIPTION

A simple and viable alternative to the standard cosmo-
logical model is to consider an interaction between the dark
components of the universe. The unknown nature of the
dark sector does not allow us to provide a microphysical
description of this interaction, which can only be modeled
phenomenologically via a source term in the energy
conservation equation,

_ρc þ 3Hρc ¼ −Q; ð1Þ

_ρx ¼ Q: ð2Þ

From now on, the subscripts c and x denote the dark
matter and dark energy components, respectively, the dot
denotes the derivative with respect to the cosmic time, and
it was assumed that the dark energy equation of state (EoS)
parameter is wx ¼ −1. In the individual conservation
equations above, the interaction has opposite sign so that
the total energy–momentum tensor is conserved.
Let us now assume that the interaction source can be

parametrized via

Q ¼ 3HγRðρc; ρxÞ; ð3Þ

where the dimensionless parameter γ gives the interaction
strength and the function R specifies the type of interaction
(see [12] for details). It is then convenient to introduce the
ratio r:

r≡ ρc
ρx

⇒ _r ¼ r

�
_ρc
ρc

−
_ρx
ρx

�
: ð4Þ

Note that this quantity can be directly associated to the
cosmic coincidence problem [13]. Substituting Eqs. (1) and
(2) in the equation above, it is possible to obtain a
differential equation for r,

_rþ 3Hr

�
γR

ρc þ ρx
ρcρx

þ 1

�
¼ 0: ð5Þ

We are interested in the case in which the ratio between
CDM and DE energy densities depends only on the scale
factor (or, equivalently, on the redshift) and we assume, as
an ansatz, that the first term in the parentheses is a function
of r, that is,

_rþ 3Hr½γfðrÞ þ 1� ¼ 0: ð6Þ

This formalism to describe interactions in the dark sector
was introduced in [12] and is at the core of the null test
proposed in this work.
If Eq. (6) has a solution that depends only on the scale

factor, then we have an interacting model that can be
associated to a unified model, i.e., we can combine the
CDM and DE components in order to describe a single dark
fluid. For this dark fluid, we define its energy density and
pressure as the sum of the energy densities and pressures of
CDM and DE,

ρd ≡ ρc þ ρx; ð7Þ

pd ≡ pc þ px ¼ px: ð8Þ

In Eq. (7), one can express the unified dark energy density
in terms of r and only one of the energy densities of the
dark sector’s components:

ρd ¼ ρc

�
1þ 1

r

�
or ρd ¼ ρxð1þ rÞ; ð9Þ

and Eq. (8), using the second equation in (9), can be
rewritten as

pd ¼ wdρd with wd ≡ −
1

1þ r
; ð10Þ

where we defined the dark EoS parameter wd. Note that
Eq. (10) is completely general, but it describes a unified
model only if r ¼ rðaÞ. Since this dark fluid must be
conservative, energy conservation must be satisfied,

_ρd þ 3Hð1þ wdÞ ¼ 0: ð11Þ
This unified description for the dark sector has been

extensively explored in the literature [14–16].
1The python scripts can be downloaded from github.com/

rodrigovonmarttens/learning_curve.

RODRIGO VON MARTTENS et al. PHYS. REV. D 99, 043521 (2019)

043521-2

github.com/rodrigovonmarttens/learning_curve
github.com/rodrigovonmarttens/learning_curve
github.com/rodrigovonmarttens/learning_curve


III. THE NULL TEST r0ðzÞ
For convenience, from now on, we will use the redshift z

instead the scale factor a. The ΛCDMmodel is recovered if

rðzÞ ¼ r0ð1þ zÞ3 with r0 ¼
Ωc0

Ωx0
; ð12Þ

and, in order to obtain a null test for interactions in the dark
sector, we use (10) together with (12) so that the Friedmann
equation becomes

H2

H2
0

¼ Ωd0
1þ r0ð1þ zÞ3

1þ r0
þ Ωb0ð1þ zÞ3; ð13Þ

where we have assumed spatial flatness, so that
Ωd0 ≡Ωc0 þ Ωx0 ¼ 1 −Ωb0, and we have neglected radi-
ation because we will consider only low-redshift data. The
above equation is the Friedmann equation for ΛCDM in
terms of r0 and Ωd0. Note that, since we are interested in an
interacting scenario in which the interaction affects only the
dark components, it is necessary to describe baryons and
dark matter separately [17].
The null test for interacting models is obtained solving

Eq. (13) for r0:

r0ðzÞ ¼
1 −Ωb0 þΩb0ð1þ zÞ3 −H2=H2

0

H2=H2
0 − ð1þ zÞ3 : ð14Þ

Within the standard flat ΛCDM model one expects a
constant r0ðzÞ ¼ Ωc0=Ωx0. If a deviation is detected one
may suspect not only that ΛCDM is falsified but also
that dark matter and dark energy are not independent
entities.

IV. COSMOLOGICAL DATA

In order to carry out the null test of Eq. (14), it is
necessary to determine the three quantities HðzÞ, H0 and
Ωb0. The expansion history HðzÞ will be reconstructed
using CC, SNe Ia and BAO data. The parameters H0 and
Ωb0 will be discussed in Sec. IV D.

A. Cosmic chronometers

Cosmic chronometers are passively evolving old gal-
axies whose redshifts are known, and the expansion history
of the universe can be inferred directly from their differ-
ential ages [18–24]. Here we will adopt the latest data as
presented in [[25], Table I]. Figure 1 illustrates the data
points as well as the fitted Hubble function obtained using
the linear model formalism presented in Sec. V at the first,
second and third order.

B. Type Ia supernovae

The second data set that we use to reconstruct HðzÞ
is the compressed supernova Ia Pantheon compilation

(40 bins) [26].2 Note that, since we are performing a null
test, the fact of we are using the binned catalog is not a
problem in the sense of favoring the ΛCDM model.
Type Ia Supernovas provide determinations of the

distance modulus μ, whose theoretical prediction is related
to the luminosity distance dL according to

μðzÞ ¼ 5 log

�
dLðzÞ
1 Mpc

�
þ 25; ð15Þ

where the luminosity distance is given in Mpc. In the
standard statistical analysis, one adds to the distance
modulus the nuisance parameter M, an unknown offset
sum of the supernova absolute magnitude (and other
possible systematics), which is degenerate with H0. In this
analysis, as will be discussed in more details in Sec. IV D,
the value of M is related to the prior on H0. As we are
assuming spatial flatness, the luminosity distance is related
to the comoving distance D via

dLðzÞ ¼
c
H0

ð1þ zÞDðzÞ; ð16Þ

where c is the speed of light, so that, using (15), one obtains

DðzÞ ¼ H0

c
ð1þ zÞ−110μðzÞ

5
−5: ð17Þ

Finally, the normalized Hubble function EðzÞ≡HðzÞ=H0

can be obtained by taking the inverse of the derivative of
DðzÞ with respect to the redshift (denoted with a prime):

DðzÞ ¼
Z

z

0

dz̃
Eðz̃Þ ⇒ EðzÞ ¼ 1

D0ðzÞ : ð18Þ

FIG. 1. The black dots are the cosmic chronometer data. The
solid lines are the reconstructions of the Hubble function using
the linear model formalism. The data is presented in [[25],
Table I].

2All the data (binned and full), as well as their covariance
matrices, can be downloaded from github.com/dscolnic/
Pantheon.
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The binned Pantheon data points (subtracting M ¼
−19.25) are shown in Fig. 2 together with the fitted
distance modulus obtained using the linear model formal-
ism at the first, second and third order.

C. BAO

The last data set that we use to reconstruct HðzÞ are
model-independent angular BAO determinations obtained
using the angular correlation function [27]. In this case, we
use 14 uncorrelated data points from [28–31], which are
presented in Table I and illustrated in Fig. 3 (with its first
order fit). Model-independent determinations of the radial
BAO scale were recently obtained in [32].
The theoretical BAO angular scale, in degrees, is given by

θðzÞ ¼ rs
dAðzÞð1þ zÞ

�
180

π

�
; ð19Þ

where rs is the sound horizon of the primordial photon-
baryon fluid at the drag time and dAðzÞ is the angular

diameter distance, which, in a flat universe, is related to the
comoving distance by

dAðzÞ ¼
c

H0ð1þ zÞDðzÞ: ð20Þ

Substituting the equation above in Eq. (19), one obtains the
following explicit relation between θðzÞ and DðzÞ,

DðzÞ ¼ H0

c
rs
θðzÞ

�
180

π

�
: ð21Þ

The normalized Hubble function EðzÞ is then obtained
using Eq. (18).

D. Further parameters

As mentioned earlier, in order to perform the null test
of Eq. (14), it is necessary to determine also H0 and Ωb0.

3

We will adopt two different sets of values for these
parameters. The first set is related to model-independent
measurements: the local determination ofH0 obtained from
low-redshift SN Ia data calibrated with loca Cepheids [33],
and the measurement of the baryon density parameter from
big bang nucleosynthesis [34],

H0 ¼ 73.52� 1.62
km=s
Mpc

; ð22Þ

ωb ¼ 0.0223� 0.0009: ð23Þ

The second set of values comes from the most recent
results from Planck [35]. In this work, we use the results
obtained with TT;TE;EEþ lowEþ lensingþ BAO,

FIG. 2. Distance modulus as a function of the redshift. The
black dots are the Pantheon data (subtracting M ¼ −19.25). The
solid lines are the reconstructions of the distance modulus using
the linear model formalism.

FIG. 3. Angular BAO scale as a function of the redshift. The
black dots are the data of Table I. The solid line is the
reconstruction of the BAO angular scale using the linear model
formalism.

TABLE I. Angular BAO data.

Catalog z θðzÞ σθðzÞ Ref.

SDSS-DR7 0.235 9.06 0.23 [29]
SDSS-DR7 0.365 6.33 0.22 [29]
SDSS-DR10 0.450 4.77 0.17 [28]
SDSS-DR10 0.470 5.02 0.25 [28]
SDSS-DR10 0.490 4.99 0.21 [28]
SDSS-DR10 0.510 4.81 0.17 [28]
SDSS-DR10 0.530 4.29 0.30 [28]
SDSS-DR10 0.550 4.25 0.25 [28]
SDSS-DR11 0.570 4.59 0.36 [30]
SDSS-DR11 0.590 4.39 0.33 [30]
SDSS-DR11 0.610 3.85 0.31 [30]
SDSS-DR11 0.630 3.90 0.43 [30]
SDSS-DR11 0.650 3.55 0.16 [30]
SDSS-DR12Q 2.225 1.77 0.31 [31]

3When using SNe Ia data or angular BAO measurements, only
Ωb0 is necessary as one obtains directly H=H0.
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H0 ¼ 67.66� 0.42
km=s
Mpc

; ð24Þ

ωb ¼ 0.02242� 0.00014: ð25Þ

When using SNe Ia, we have the additional nuisance
parameter M. Since H0 is fixed according to (22) or (24),
we choose the respective values of M from a statistical
analysis of the ΛCDM model with the Pantheon data
obtained by fixing H0 to the values previously mentioned.
In order to perform the analysis, we have used the statistical
code MONTEPYTHON [36,37]. When H0 is fixed to the
local determination (22), we found the best-fit value
M ¼ −19.25, while when H0 is fixed to the Planck result
(24) we obtained M ¼ −19.42. The complete result of the
statistical analysis with 1σ confidence levels is shown in
Table II and illustrated in Fig. 4.
When using the angular BAO determinations, one has

the sound horizon rs as an additional parameter that must
be specified. Maintaining the idea of the two sets of
values we choose for the first set the model-independent
result obtained from low-redshift standard rulers [38]

rs ¼ ð101.0� 2.3Þh−1 Mpc. Using the local measurement
of H0 of (22), one has:

rs ¼ 146.6� 4.1 Mpc: ð26Þ

For the second set of values, we use the same Planck
determination from [35]:

rs ¼ 147.21� 0.23 Mpc: ð27Þ

V. LINEAR MODEL FORMALISM

Here, we will describe how to reconstruct the cosmo-
logical functions, and also their derivatives, using the linear
model formalism (LM); see, also, [25,39,40].

A. Linear models

Let us choose a set of base functions gαðzÞ whose
linear combination will constitute the template function
tðz; fcαgÞ:

tðz; fcαgÞ ¼
Xαmax

α¼0

cαgαðzÞ; ð28Þ

where α is an integer. The assumption is that tðz; fcαgÞ can
describe the actual functions that we want to reconstruct:
HðzÞ, μðzÞ or θðzÞ. Clearly, this is conditional to an
appropriate choice of gαðzÞ and the order αmax. Usually,
g0 is a constant, often unity. The template will have
αmax þ 1 coefficients.
Let us then assume that the data are given by

di ¼ ti þ ei; ð29Þ

where ti ¼ tðzi; fcαgÞ and ei are Gaussian errors with
covariance matrix Σij.
Next, we fit the template t to the data and use the LM

formalism to calculate the Fisher matrix relative to the
parameters cα, which gives an exact description of the
likelihood as the template is linear in its parameters.
The Fisher matrix is:

Fαβ ¼ gβiΣ−1
ij gαj ð30Þ

where gαi ¼ gαðziÞ, and the best-fit values of cα are

cα;bf ¼ F−1
αβBβ ≡ ΣαβBβ; ð31Þ

where Bα ¼ diΣ−1
ij gαj and we defined the covariance matrix

Σαβ on the parameters. Summarizing, this formalism had
allowed us to exactly propagate the data covariance matrix
Σij into the parameter covariance matrix Σαβ.

FIG. 4. Statistical analysis for the ΛCDM model using the
Pantheon sample of type Ia SN data. The result in red was
obtained fixing H0 to (22) (model independent priors), and the
blue result was obtained fixing H0 to (24).

TABLE II. Result of the statistical analysis with the type Ia SN
data from the Pantheon sample.

H0 ωb M Ωc0

R18/BBN 73.52 0.0223 −19.25þ0.01
−0.01 0.256þ0.022

−0.023
Planck 67.66 0.02242 −19.42þ0.01

−0.01 0.249þ0.022
−0.023
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B. Error on null test reconstruction

The null test r0ðz; fθαgÞ is a nonlinear function of the
template parameters and of the additional parameters of
Sec. IV D. The corresponding covariance matrix Sαβ is
obtained by forming an appropriate block diagonal matrix
using the covariance matrices of the corresponding para-
meters (e.g., Σαβ). As we have chosen independent data,
correlations among different data sets are not expected to be
important.
In order to compute the error on r0ðz; fθαgÞ due to the

uncertainty encoded in the covariance matrix Sαβ, a
straightforward approach is to apply a change of variable
from fθαg to r0. At the first order, the error is then given by:

σ2r0 ¼ JαSαβJβ; ð32Þ

where

Jα ¼
∂r0ðz; fθαgÞ

∂θα
����
θα;bf

: ð33Þ

C. Base functions

In order to reconstructHðzÞ, μðzÞ and θðzÞ, we will adopt
the following base functions, respectively:

tHðz; fcαgÞ ¼
X
α

cαzα; ð34Þ

tμðz; fcαgÞ ¼
X
α

cα½ln z�α; ð35Þ

tθðz; fcαgÞ ¼
X
α

cαz−α: ð36Þ

In order to choose αmax, we will use the so-called “learning
curves,” a machine learning tool.

D. Calibrated learning curves

The availability of large data sets is increasingly
a defining feature of modern cosmology, in which
data analysis has become an important component.
Computations that were not possible a few decades ago
can now be performed on GPU-based laptops. Machine
learning includes a set of statistical techniques that allows
computer systems to learn from examples, data, and
experience, rather than following preprogrammed rules.
A simple method that is commonly used to choose the

template order αmax is the computation of the reduced chi-
square χ2ν:

χ2ν ¼
ðdi − t̄iÞΣ−1

ij ðdj − t̄jÞ
Ntot − αmax − 1

; ð37Þ

where di are the Ntot data of the full data set D with
covariance matrix Σij, and t̄i ¼ tðzi; fcα;bfgÞwhere cα;bf are
the best-fit parameters. If one finds that χ2ν is compatible
with its corresponding distribution with Ntot − αmax − 1
degrees of freedom, then the null hypothesis that tðz; fcαgÞ
is the correct model is not rejected (it is “ruled in”). While
powerful in its simplicity, this method is somewhat sub-
jective as it strongly depends on the p-value threshold (e.g.,
p ¼ 0.01) that one is supposed to use. For example, two or
more values of αmax could be acceptable.
In order to overcome this difficultly and extract more

information from the data, we will study the learning
curves. These usually are used in contexts in which the
data covariance matrix is not available and so a perfor-
mance statistics with a known distribution (like χ2ν) cannot
be built. Therefore, we will have to first generalize the
standard learning curves to what we call the “calibrated
learning curves.”
Let us then consider two disjoint subsets of the data setD

of Ntot elements: the training set d and the validation set d̃.4

The basic idea behind the learning curves consists in
using the training set to fit the model and then test the
latter with the validation set. Within machine learning the
fit is usually obtained by minimizing the “mean squared
error” (MSE):

MSE ¼ 1

N

XN
i¼1

ðdi − t̄iÞ2; ð38Þ

where N is the number of data points di and t̄i ¼
tðzi; fcα;bfgÞ, where cα;bf are the parameters that minimize
the MSE. From now on we will denote the minimized MSE
with just MSE. The test on the validation set is then
performed by computing the “mean squared prediction
error” (MSPE):

MSPE ¼ 1

Ñ

X̃N
i¼1

ðd̃i − t̄iÞ2: ð39Þ

The use of the new Ñ data points d̃i justifies the alternative
name “out-of-sample mean squared error”. Note that
Ntot ≥ N þ Ñ.
The learning curves are then the values of the MSE and

the MSPE as a function of the training-set size N while
keep the validation-set size Ñ fixed. Usually, Ñ is 20%–
30% of Ntot. The expectation is that the MSE will increase
as the same number of parameters will be fitted to more
data, and the MSPE will decrease as the training will
produce a more reliable fitted model. In particular,

(i) an under-fitting model will feature converging but
high (poor) MSE and MSPE;

4From now on d will refer to the training set and not to the full
data set.
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(ii) an over-fitting model will feature low MSE but high
MSPE because the model is fitting the noise in the
training set which is different with respect to the
validation set;

(iii) an optimal model will feature converging and low
MSE and MSPE. Moreover, the sooner the con-
vergence is reached, the better. Indeed, if the MSE
and MSPE converge at N < Ntot − Ñ reaching a
plateau, it means that there were enough data to
optimally train the model.

For more details, see, for instance [41–44].
The MSE and the MSPE do not use the data covariance

matrix and, therefore, it is difficult to assess statistically
their values. For example, it is not clear how to define
“high”, “low” and “close to each other”. Therefore, we will
calibrate the learning curve method by introducing new
performance estimators that can be interpreted quantita-
tively in a statistical way.
A natural alternative to the MSE is the reduced chi-

square function χ2ν,

χ2ν ¼
ðdi − t̄iÞΣ−1

ij ðdj − t̄jÞ
N − αmax − 1

; ð40Þ

where Σ is the covariance matrix of the training set d and
αmax þ 1 is the number of fitted parameters. Assuming that
tðz; fcαgÞ is the correct model and that the data di are
distributed according to a multivariate Gaussian distribu-
tion of covariance matrix Σ, it is hχ2νi ¼ 1.
A natural alternative to MSPE is,

χ̃2ν ¼
ðd̃i − t̄iÞΣ̃−1

ij ðd̃j − t̄jÞ
Ñ

; ð41Þ

where Σ̃ is the covariance matrix related to the validation
set d̃. As these data were not used to obtain the best-fit
parameters fcα;bfg the denominator only contains Ñ.
However, the expected value of χ̃2ν is not unity as t̄i is
not the true value. Consequently, χ2ν and χ̃2ν will not
converge to the same numerical value. Here, we propose
a new generalization of the MSPE:

χ̃2δ ¼
ðd̃i − t̄iÞΣ̃−1

ij ðd̃j − t̄jÞ
Ñ

−
ΣαβΣ̃−1

αβ

Ñ
; ð42Þ

whose expectation value is unity as discussed in
Appendix A.
In order to obtain smooth learning curves, we compute,

for a fix N, χ2ν and χ̃2δ for 2000 partitions, from which we
then compute mean and standard deviation. Note that the
performance estimators χ2ν and χ̃2δ have an expectation value
of unity independently of the training set size N, but this is
true only if the expectation value is taken using independent
training sets while here the training sets all come from the
same data set. In other words, the 2000 partitions are used

to extract the average behavior of a training set of size N
from the full data set D.
For smaller N it is quite likely to obtain low values of χ2ν

as its distribution is skewed towards lower values, while for
larger N one expects χ2ν and χ̃2δ to converge to the common
value of unity. If they converge reaching a plateau it means
that tðz; fcαgÞ is the correct model and that the latter has
been trained optimally by the data.
In our analysis, we adopt the following criterion in order

to choose the best order αmax: the optimal αmax is the one for
which χ2ν and χ̃2δ converge fastest to unity with a plateau. It
is very important to emphasize that this learning curve
procedure is completely independent of any physical
assumption, depending only on data.

E. Learning curve results

In the following, we present the results of the learning
curve analysis for the data sets of Sec. IV.

1. Cosmic chronometers

For the cosmic chronometers, we divide the 31 data
points in a training set with N up to 20 and a validation set
with Ñ ¼ 11. Figure 5 shows the learning curves obtained
with the template of Eq. (34) with αmax ¼ f0; 1; 2; 3g (top
to bottom).
The case αmax ¼ 0 is a clear case of under-fitting and is

disfavored by the data: forN ¼ 20 the χ2ν is well outside the
corresponding 3σ interval of [0.26, 2.17] (relative to the χ2

distribution with 19 degrees of freedom). This case corre-
sponds to a constant Hubble rate; see Eq. (34). For the case
αmax ¼ 1, χ2ν and χ̃2δ converge with a plateau to a value close
to 1 and within the corresponding 3σ interval [0.24, 2.21].
According to our criteria, this is an optimal value of αmax.
The case αmax ¼ 2 is similar to the case αmax ¼ 1: χ2ν and

χ̃2δ converge to the expected value with a plateau. Therefore,
this case is also optimal, although χ̃2δ converges to a value a
little higher as compared with χ2ν, signaling a minor over-
fitting. It is worth pointing out that the training curves of
Fig. 5 feature error bars (relative to the mean) computed, as
mentioned before, from 2000 partitions. Therefore, the fact
that there is a gap between χ2ν and χ̃2δ is statistically
significant. It is also interesting to note how the learning
curves characterize the models: the case αmax ¼ 1 is clearly
simpler than the case αmax ¼ 2 as less data is necessary to
train it (it converges faster).
The last case αmax ¼ 3 shows a lack of convergence with

plateau, signaling that the model is too complex to be
trained by the data. Therefore, we conclude that this case is
disfavored by the data. Finally, we found that αmax ¼ 1 and
αmax ¼ 2 are both acceptable. If we were to use the standard
analysis based on the χ2ν of Eq. (37) for the full data set, we
would have obtained the results presented in Table III.
According to these results αmax ¼ 3 is also acceptable,
while the learning curve analysis disfavors it.
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2. Type Ia Supernovae

We divide the Pantheon sample of supernovas in a
training set with N up to 28 data points and a validation
set with Ñ ¼ 12. Figure 6 shows the learning curves

obtained with the template of Eq. (35) with αmax ¼
f1; 2; 3; 4g (top to bottom). The case αmax ¼ 1 is a clear
case of under-fitting and is disfavored by the data. Note that
this case coincides with the first order in the cosmographic
series expansion [45]. For the case αmax ¼ 2 and αmax ¼ 3,
χ2ν and χ̃2δ converge with a plateau to a value close to 1 and
within the corresponding 3σ interval [0.3, 2.0]. According
to our criteria, these are optimal values of αmax. Finally,
αmax ¼ 4 shows both a lack of convergence and of plateau,
signaling over-fitting.
Therefore, we found that αmax ¼ 2 and αmax ¼ 3 are both

acceptable. If we were to use the standard analysis based on
the χ2ν of Eq. (37) for the full data set, we would have

FIG. 5. Learning curve analysis for the CC data with αmax ¼ 0,
1, 2, 3 from top to bottom.

TABLE III. Analysis based on the χ2ν for the full CC data set.

αmax χ2ν 3σ interval ν

0 4.1 [0.37, 1.90] 30
1 0.57 [0.36, 1.92] 29
2 0.53 [0.35, 1.94] 28
3 0.48 [0.34, 1.96] 27

FIG. 6. Learning curve analysis for the Pantheon data set with
αmax ¼ 1, 2, 3, 4 from top to bottom.
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obtained the results presented in Table IV. According to
these results αmax ¼ 4 is also acceptable, while the learning
curve analysis disfavors it.

3. BAO determinations

With the BAO analysis we divide the 14 data points in a
training set with N up to 10 data points and a validation set
with Ñ ¼ 4. Figure 7 shows the learning curves obtained
with the template of Eq. (36) with αmax ¼ f1; 2g (top to
bottom).
For the case αmax ¼ 1, χ2ν and χ̃2δ converge with a plateau

to a value close to 1. According to our criteria, this is the
optimal value of αmax. The case αmax ¼ 2 shows both a lack
of convergence and of plateau, signaling over-fitting. We
found, therefore, that only αmax ¼ 1 is acceptable. If we
were to use the standard analysis based on the χ2ν of Eq. (37)
for the full data set, we would have obtained the results
presented in Table V. According to these results αmax ¼ 2
is also acceptable, while the learning curve analysis
disfavors it.

VI. GAUSSIAN PROCESSES

A Gaussian Process (GP) is the generalization of the
gaussian distribution of a random variable to the infinite
function space. This mathematical approach has been
successfully used as a nonparametric reconstruction method
in cosmology since the pioneering works of [46,47]. For
instance, it has been applied to different data sets in order to
calculate the dark energy equation of state [46–49], the
Hubble constant [39,50–52], the cosmological matter per-
turbations [53–55], and the gas depletion factor in galaxy
clusters [56], among others.
A GP as a regression method is nonparametric. This

means that their predictions are not restricted to a specific
functional class (e.g., polynomial), but span an infinite
family of classes with properties of continuity and differ-
entiability. As this method is based on Bayesian statistics,
we need to use prior and likelihood distributions to
calculate the posterior distribution. Both prior and posterior
distributions are defined via a mean function and a
covariance matrix. The covariance quantifies the correla-
tion between different functional values, fðzÞ and fðz̃Þ, at
arbitrary independent variable points z and z̃.
For the prior mean function we adopt the zero function as

a conservative choice (this choice is recommended to avoid
biased results) and, as commonly used in the literature, we
choose square exponential covariance function:

kðz; z̃Þ ¼ σ2f exp

�
−
ðz − z̃Þ2
2l2

�
: ð43Þ

The so-called hyperparameters σf and l are related with the
error/variation of the reconstruction and with its smooth-
ness, respectively. These hyperparameters can be fixed by
maximizing the likelihood distribution given the observa-
tional data (for a complete description of the GPmethod see
[48,57]). To perform the GP regression, we use the python
package GaPP.5

VII. RESULTS

Now, we present the reconstructions of r0ðzÞ that we
obtained using the methods discussed in the previous
sections. The results are divided according to the method
and the data used in order to reconstruct r0ðzÞ. In all plots, for
comparisonpurposes,we include a dotted line corresponding

FIG. 7. Learning curve analysis for the angular BAO data with
αmax ¼ 1 (top) e αmax ¼ 2 (bottom).

TABLE IV. Analysis based on the χ2ν for the full type Ia SNe
data set.

αmax χ2ν 3σ interval ν

1 5.3 [0.42, 1.79] 38
2 1.2 [0.42, 1.80] 37
3 1.1 [0.41, 1.81] 36
4 1.2 [0.40, 1.83] 35

TABLE V. Analysis based on the χ2ν for the full angular BAO
data set.

αmax χ2ν 3σ interval ν

1 1.0 [0.14, 2.53] 12
2 1.1 [0.12, 2.62] 11

5Available at acgc.uct.ac.za/∼seikel/GAPP/index.html.
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to thevalue of r0 predicted for theΛCDMmodel according to
the last results by the Planck satellite [35].

A. Linear model results

Using the formalism developed in Sec. V, we obtain the
following results:

1. Cosmic chronometers

Figure 8 shows r0ðzÞ using in Eq. (14) the Hubble
rate function reconstructed via cosmic chronometer data.

For the case αmax ¼ 1 one detects a deviation from the
standard model when the model-independent priors
discussed in Sec. IV D are used. This is clearly caused
by the determination of the local Hubble constant (22)
which is known to be in tension with the Planck indirect
determination.6 Furthermore, the r0ðzÞ test seems to
suggest that there is tension only for z≲ 0.25 while at
higher redshift the local determination of H0 gives a
reconstruction in agreement with the value expected from
Planck.
However, this interesting results loses its significance

when αmax ¼ 2 is adopted, which was also found viable.
Therefore, we conclude that better CC data are needed in
order to conclude on this low-redshift tension.

2. Type Ia supernovae

Figure 9 shows the r0ðzÞ test using the reconstruction of
the distance modulus as in Eqs. (17) and (18). We do not
detect significant deviations from the Planck refer-
ence value.

3. BAO

Figure 10 shows the r0ðzÞ test using the reconstruction
of the BAO angular scale (19) from which EðzÞ is obtained
via Eqs. (21) and (18). When using Planck priors we detect
a tension at z ≈ 0.3 with respect to the Planck reference
value (but not with a higher constant reference value). This
again suggests a low-redshift deviation from the stan-
dard model.

B. Gaussian process results

Using the nonparametric reconstruction of HðzÞ
obtained via GP regression and the H0 and ωb priors
described in Sec. IV D, we calculate the null test r0ðzÞ and
its confidence levels by Monte Carlo sampling.

1. Cosmic chronometers

In this case, the Hubble rate is reconstructed directly
from the CC data which reduces the error propagation and
the probability of wiggles in the HðzÞ reconstruction.
Figure 11 shows the r0ðzÞ calculation using GP method
and Monte Carlo sampling. It is evident the similarity of
these results for the two sets of fH0;ωbg priors with the
results obtained using the LM formalism with αmax ¼ 2
(see Fig. 8). This emphasizes the possibility that the tension
in low-z for the reconstruction via LM with αmax ¼ 1 may
be not fundamental.

FIG. 8. r0ðzÞ obtained from CC data using a LM with αmax ¼ 1
(top) and αmax ¼ 2 (bottom).

6See [58,59] for analyses that considered the effect of cosmic
variance on local H0.
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2. Type Ia supernovae

Figure 12 shows r0ðzÞ from type Ia SN data using GPs.
In this case, to calculate the null test we need to transform
the distance modulus data to comoving distance and then
reconstruct the derivative of this quantity to obtain the
Hubble rate (see Sec. IV B). The determination of the
derivative of D propagates the error and its effect can be
seen at high-z where the density of the data is reduced.
However, the null test is compatible with the ΛCDMmodel
in the entire redshift range.

3. BAO

Because of the large gap in redshift between the first
thirteen data points and the last one, it is not possible to
find a suitable GP reconstruction compatible with a
cosmological scenario without assuming a nontrivial prior
mean function.

FIG. 9. r0ðzÞ obtained from type Ia SN data using a LM with
αmax ¼ 2 (top) and αmax ¼ 3 (bottom).

FIG. 10. r0ðzÞ obtained from BAO data using a LM with
αmax ¼ 1.

FIG. 11. r0ðzÞ obtained from CC data using GPs.
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VIII. CONCLUSIONS

Interacting models of CDM and DE constitute an
alternative description of the dark sector which have been
largely investigated. In this paper, we proposed a new null
test in which any deviation of the standard cosmological
scenario indicates a nonminimal interaction between these
two dark components. Using linear models and Gaussian
processes the expansion rate is reconstructed from the latest
CC, SNe Ia and BAO data. For each formalism, the same
analysis was performed using two sets of values for the
“external” parameters fH0;Ωb; rs;Mg: the first set is based
on model-independent results whereas the second one is
obtained from the latest results of the Planck Collaboration.
The test performed shows compatibility with the stan-

dard ΛCDM model within 3σ confidence level, but some
cases deserve a careful analysis. For the LM analysis using
the CC data, except the case in which αmax ¼ 1 and the
model-independent priors are used, all the other results are
compatible with a constant value for r0ðzÞ. The latest
Planck result is satisfied in all cases for z≳ 0.25. For
z≲ 0.25 only the result with Planck priors reaches sat-
isfactory results. When the model-independent priors
are used, there is a considerable tension with the latest
Planck result at z ¼ 0: in the case αmax ¼ 1 there is a severe
tension whereas for αmax ¼ 2 there is a 3σ tension, which is
compatible with the current H0 tension. For all cases, the
error range increases when z≲ 0.25, which means that a
possible interaction becoming dynamically relevant at
recent times may be a viable possibility.
Still in theLMapproach, all the resultswithSNe Ia data are

compatible with a constant value and are in agreement with

the latest Planck result. As for the CC result, for z < 0.25 the
results are degenerate. Lastly, for the angular BAO data, the
result obtained with model-independent priors is clearly
inconclusive since, for all values of z, within a 3σ-range all
interval [0, 1] is admissible for r0ðzÞ. This degenerate result is
related to the big error in the model-independent determi-
nation of rs. However, using Planck priors, there is a
disagreement signature when z ≈ 0.3. For the GP analysis,
all the results are consistentwith a constant value and also are
in agreement with the ΛCDM Planck result.
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APPENDIX A: CALIBRATED MSPE

In order to obtain a performance estimator with the same
expectation value of χ2ν, let us rewrite Eq. (41) as:

Ñχ̃2ν ¼ ðd̃i − ti þ ti − t̄iÞΣ̃−1
ij ðd̃i − ti þ ti − t̄iÞ

¼ ðd̃i − tiÞΣ̃−1
ij ðd̃j − tjÞ þ ðti − t̄iÞΣ̃−1

ij ðtj − t̄jÞ; ðA1Þ

where ti is the true value of t computed in zi, and in the
second line we have omitted cross-product terms whose
expectation value is zero because of the independence
between the data used to fit the model di and the d̃i data.

7

The expectation value of the first term is clearly Ñ. The
expectation value of the second term is not trivial:

δ≡ hðti − t̄iÞΣ̃−1
ij ðtj − t̄jÞi

¼
X
i

Σ̃−1
ii hðti − t̄iÞ2i þ 2

X
i<j

Σ̃−1
ij hðti − t̄iÞðtj − t̄jÞi:

ðA2Þ

In the following we will use the notation that t̄i is a random
variable when inside expectation values while it is
tðzi; fcα;bfgÞ when outside, that is, we use the best-fit
model in order to estimate the true model ti.
The first term in the last equation is the variance of t̄i

which can be computed, as in Sec. V B, through a change of

FIG. 12. r0ðzÞ obtained from type Ia SNe data using GPs.

7Note that, if d and d̃ are partitions of a correlated dataset, one
is neglecting the correlation between these two partitions.
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variables using the covariance matrix on the parameters Σαβ

obtained from Eq. (30) using the training set:

Jαi ¼
∂tðzi; fcβgÞ

∂cα
����
cα;bf

¼ gαi;

σ2ti ≡ hðti − t̄iÞ2i ¼ JαiΣαβJβi ¼ gαiΣαβgβi; ðA3Þ

where we have used Eq. (28). Note that, thanks to the
linearity in the parameters, the best fits fcα;bfg were not
used and this computation is exact rather than only valid at
the first order in a Taylor expansion.
The second term is,

hðti − t̄iÞðtj − t̄jÞi ¼ ht̄it̄ji − titj: ðA4Þ

Using again Eq. (28) one finds:

ht̄it̄ji ¼
X
α

gαigαjhc2αi þ
X
α<β

ðgαigβj þ gβigαjÞhcαcβi

¼
X
α

gαigαjðΣαα þ c2α;bfÞ

þ
X
α<β

ðgαigβj þ gβigαjÞðΣαβ þ cα;bfcβ;bfÞ; ðA5Þ

where we used the best-fit parameters fcα;bfg in order to
estimate the true values of the parameters. Combining the
Eqs. (A2), (A3) and (A5), the Eq. (A1) can be rewritten as:

Ñhχ̃2νi ¼ Ñ þ δ; ðA6Þ

where:

δ ¼
X
i

Σ̃−1
ii gαðziÞΣαβgβðziÞ

þ 2
X
i<j

Σ̃−1
ij

�X
α

gαigαjðΣαα þ c2α;bfÞ

þ
X
α<β

ðgαigβj þ gβigαjÞðΣαβ þ cα;bfcβ;bfÞ − t̄it̄j

�
:

It is then straightforward to obtain that:

δ ¼ ΣαβΣ̃−1
αβ ; ðA7Þ

where Σ̃αβ is the covariance matrix on the parameters
obtained from Eq. (30) using the validation set, that was not
used to fit the model.
Motivated by this results, we propose a new generali-

zation of the MSPE:

χ̃2δ ¼
ðd̃i − t̄iÞΣ̃−1

ij ðd̃j − t̄jÞ
Ñ

−
ΣαβΣ̃−1

αβ

Ñ
; ðA8Þ

whose expectation value is unity. From the previous
equation it follows that for large sets the correction δ=Ñ
should be negligible. Indeed, as training and validation sets
have usually sizes of the same order of magnitude, one
has δ ≈ αmax þ 1.

APPENDIX B: learning_curve package

All the learning curves presented in this work were
obtained using the package learning_curve. The
package learning_curve consists of three python
scripts to compute and plot learning curves. The three
python scripts are the following:

(i) learning_curve.py: general parallelized script
for computing learning curves for any linear tem-
plate function.

(ii) learning_curve_linear.py: script for com-
puting and plotting learning curves for some specific
template functions (polynomial, log, inverse or
square).

(iii) plot.py: script for plotting the learning curves
from the output files obtained using the script
learning_curve.py.

In this work, only the learning_curve_
linear.py script was used, because its template func-
tions coincide with the template functions adopted in the
present analysis. The package is available for download at
github.com/rodrigovonmarttens/learning_curve.
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