
1 

Title: Strategies for immunohistochemical protein localization using antibodies: what 

did we learn from neurotransmitter transporters in glial cells and neurons 

Authors: Niels Christian Danbolt1*; Yun Zhou1; David N. Furness2; Silvia Holmseth1 

Affiliations of all authors: 1. Neurotransporter Group, Department of Molecular 

Medicine, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, 

Norway. 2. School of Life Sciences, Keele University, Keele, Staffs ST5 5BG, United 

Kingdom. 

Running title: Localization of transporters 

The exact number of words: 

Abstract: 226 words 

Introduction: 362 words 

Main text: 7566 words 

Acknowledgements: 27 words 

References: 4780 words 

Figure legends: 1780 words 

Table: 92 words 

Total number of words: 15108 words 

To whom correspondence should be addressed: Niels Chr. Danbolt, Department 

of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 

P.O.Box 1105 Blindern, N-0317 Oslo, NORWAY. Fax: (+47) 22 85 12 78, E-mail: 

n.c.danbolt@medisin.uio.no. 

Page 1 of 80

John Wiley & Sons, Inc.

GLIA



 

 2 

Main Points: 

 Use of immunochemical methods without sufficient controls for specificity 

results in erroneous localization data. 

 We propose a strategy for protein localization and explain why quantitative 

considerations are important for specificity assessment. 

 

Keywords: Antibody specificity, Immunocytochemistry, Western blotting, Glutamate 

uptake, Excitatory amino acid transporter 

 

ABBREVIATIONS 

The abbreviations used are: BGT1; betaine-GABA transporter (slc6a12); DTT, 

dithiothreitol; EAAT1, glutamate aspartate transporter (GLAST; slc1a3); EAAT2, 

glutamate transporter 2 (GLT-1; slc1a2); EAAT3, excitatory amino acid carrier 

(EAAC1; slc1a1); EDTA, sodium ethylenediamine tetraacetate; GABA, gamma-

aminobutyric acid; GAT1, GABA transporter 1 (slc6a1); GAT2, GABA transporter 2 

(slc6a13); GAT3, GABA transporter 3 (slc6a11; mGAT4); KO, knockout; NaPi, 

sodium phosphate buffer with pH 7.4; SDS, sodium dodecyl sulfate; VGLUTs, 

vesicular glutamate transporters; WT, wild-type mice. 
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Abstract 

Immunocytochemistry and Western blotting are still major methods for protein 

localization, but they rely on the specificity of the antibodies. Validation of antibody 

specificity remains challenging mostly because ideal negative controls are often 

unavailable. Further, immunochemical labeling patterns are also influenced by a 

number of other factors such as post mortem changes, fixation procedures and 

blocking agents as well as the general assay conditions (e.g. buffers, temperature 

etc). Western blotting similarly depends on tissue collection and sample preparation 

as well as the electrophoretic separation, transfer to blotting membranes and the 

immunochemical probing of immobilized molecules. Publication of inaccurate 

information on protein distribution has downstream consequences for other 

researchers because the interpretation of physiological and pharmacological 

observations depends on information on where ion channels, receptors, enzymes or 

transporters are located. Despite numerous reports, some of which are strongly 

worded, erroneous localization data are being published. Here we describe the 

extent of the problem and illustrate the nature of the pitfalls with examples from 

studies of neurotransmitter transporters. We explain the importance of supplementing 

immunochemical observations with other measurements (e.g. mRNA levels and 

distribution, protein activity, mass spectrometry, electrophysiological recordings, etc) 

and why quantitative considerations are integral parts of the quality control. Further, 

we propose a practical strategy for researchers who plan to embark on a localization 

study. We also share our thoughts about guidelines for quality control. 
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Introduction 

An interest in utilizing antibodies as analytical tools began in the 1930s when 

investigators started to conjugate antibodies with other molecules. Albert H. Coons 

showed in the early 1940s that it was possible to use fluorescently tagged antibodies 

to localize antigens in tissue sections (Coons and Kaplan, 1950; Coons, 1971). Since 

then a multitude of different immunochemical methods have been developed. 

Western (protein) blotting was invented (Towbin et al., 1979) after the discovery that 

sodium dodecyl sulfate (SDS) could enhance the resolving power of electrophoresis 

gels (Laemmli, 1970). The methods became popular, but along with enthusiasm 

came concerns about the validity of the data generated (Petrusz et al., 1976; Petrusz 

et al., 1980; Petrusz, 1983). Some investigators even questioned if specificity could 

ever be proven (Swaab et al., 1977). Nevertheless, the techniques have been in 

widespread use for several decades for identifying individual proteins in complex 

biological samples (e.g. tissue extracts and sections), and have resulted in an 

enormous amount of new knowledge.  

 However, despite the understanding of the principles, the field of 

immunocytochemistry is still troubled by spurious results due to insufficient controls 

for specificity (e.g. Pool and Buijs, 1988; Griffiths, 1993; Brandtzaeg, 1998; Grube, 

2004;  Ramos-Vara and Miller, 2014; Holmseth et al., 2012a; Griffiths and Lucocq, 

2014).  

 In the present review, we try to explain the difficulties and still convey a 

positive message: how to do localization well. Although there are arguments in favor 

of detailed formal guidelines, it is hard to define the exact tests that should be 

performed (e.g. Saper and Sawchenko, 2003; Saper, 2005; Holmseth et al., 2006; 

Rhodes and Trimmer, 2006; Lorincz and Nusser, 2008; Fritschy, 2008; Saper, 2009; 
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Burry, 2011; Griffiths and Lucocq, 2014). After all, each project is unique and that 

uniqueness comprises both unique challenges and unique opportunities. Instead of 

formal rules we suggest a practical strategy which we illustrate with examples mostly 

from studies of neurotransmitter transporters in the brain (Zhou and Danbolt, 2013). 

This review has, however, broader implications as the localization of transporters is 

used to exemplify the trickier aspects of antigen-antibody interactions: the same 

rationale can be applied to almost any biomarker detection in cells and in tissues 

sections.  
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The extent of the problem is such that it should be taken seriously 

Several recent reports document poor specificity of commercially available 

antibodies. For instance, seven papers appeared in Naunyn-Schmiedebergs 

Archives of Pharmacology in 2009 highlighting a lack of selectivity of 49 antibodies 

against 19 subtypes of alpha(1)- and beta-adrenoceptors, muscarinic, dopamine and 

galanin receptors as well as vanilloid (TRPV1) receptors. These data demonstrate 

that lack of selectivity appears to be the rule rather than the exception for antibodies 

against G-protein-coupled and perhaps also other receptors (Michel et al., 2009; 

Kirkpatrick, 2009). Indeed, there are several reports of poor commercial antibodies to 

adrenergic receptors (Hamdani and van der Velden, 2009; Jensen et al., 2009) as 

well as to other proteins such as acetylcholine receptors (Herber et al., 2004; Moser 

et al., 2007), histones (Egelhofer et al., 2011), CD95 ligand (Strater et al., 2001), 

angiotensin receptors (Hafko et al., 2013; Herrera et al., 2013; Elliott et al., 2013), 

dopamine receptors (Bodei et al., 2009), cannabinoid receptors (Snyder et al., 2010; 

Ashton, 2012; Morozov et al., 2013), histamine receptors (Beermann et al., 2012), 

P2X receptors (Ashour et al., 2006) and others.   

 Together, these examples describe many poorly specific antibody products to 

about 100 different proteins. Researchers have been using precious research 

funding to buy these products, and subsequently waste even more resources when 

they use them to generate data. Fortunately, most of these data do not get published, 

but some do. And that may mislead other researchers to do less interesting 

investigations than they otherwise could have done. Even worse, some of these 

antibodies are used in medical diagnostics with potential consequences for patients.  

 One problem is poor testing when a product is first put on sale. Another is 

batch differences. Thus, when a researcher purchases a product with the same 
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product number, the properties of the antibodies may be significantly different. This 

has also been pointed out by multiple investigators (e.g. Strater et al., 2001; Bodei et 

al., 2009; Jensen et al., 2009; Herber et al., 2004; Grimsey et al., 2008; Kirkpatrick, 

2009; Herrera et al., 2013; Bohmer et al., 2014; Baker, 2015; Van Liefferinge et al., 

2016). 

 We therefore fully agree with those who argue that commercial antibody 

producers should test their antibodies more rigorously before selling them to 

scientists or pathologists who often lack the resources or expertise to evaluate 

acquired antibodies (Rhodes and Trimmer, 2006; Pradidarcheep et al., 2008; 

Couchman, 2009; Boenisch, 2006; Kalyuzhny, 2009; Bohmer et al., 2014; Baker, 

2015).  

 However, not all testing can be done in advance because the overall labeling 

specificity is affected by so many parameters that antibodies have to be tested for 

each application (e.g. Ottersen, 1987; Holmseth et al., 2006; Lorincz and Nusser, 

2008; Rhodes and Trimmer, 2006). Virtually all assay conditions can affect antibody 

binding, including protein conformation and hydrophobic interactions (e.g. pH, buffer 

composition, ionic strength), tissue handling steps (e.g. time to fixation, type of 

fixation, fixative composition, fixation time, storage after fixation) and antigen retrieval 

techniques.  

 So although the antibody producers do deserve criticism as explained above, 

neither the researchers themselves (Roth, 2006; Rhodes and Trimmer, 2006; 

Schonbrunn, 2014; Lorincz and Nusser, 2008) nor the editors of journals should 

avoid their responsibility (Smith, 2006). 

 Unfortunately, the problem is increasing due to highly sensitive imaging 

techniques, the ease by which images can be acquired and the pressure to publish. 
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Immunocytochemistry is a method that is able to produce publishable, but potentially 

incorrect data, at a high rate and low cost (Rhodes and Trimmer, 2006) This is a 

major concern considering the widespread use of these methods, the considerable 

effort required to correct inaccurate results and the downstream consequences for 

other researchers (e.g. Morrow and Friedrich, 2003; Roth, 2006; Rhodes and 

Trimmer, 2006; Steingart et al., 2007; Smith, 2006; Fritschy, 2008; Couchman, 2009; 

Kalyuzhny, 2009; Holmseth et al., 2012a; Herrera et al., 2013; Griffiths and Lucocq, 

2014). After all, the biomedical research community relies directly or indirectly on 

precise protein localization data because interpretation of the other methods (e.g. 

electrophysiological and pharmacological observations) depends on information on 

where ion channels, receptors, enzymes or transporters are located.  

[Figure 1 about here] 

 

Why it is difficult to verify labeling specificity 

A good antibody binds to the desired target with high affinity, allowing it to be used at 

concentrations well below the concentration where it starts to bind to other targets 

(see Fig. 1). The challenge, however, is that the number of possible antibody binding 

sites (epitopes) in a tissue section is virtually infinite, and their affinities for a given 

antibody are unknown. Consequently, it is hard to rule out the existence of unknown 

epitopes with high affinity for the antibody.  

 Obviously, antibodies are protein molecules which recognize the antigens 

much like receptor proteins recognize ligands or enzymes recognize substrates (Pool 

and Buijs, 1988; Griffiths, 1993; Holmseth et al., 2005). It should be recalled how 

medicinal chemists manage to develop new molecules that can compete with 

endogenous ligands despite very different chemical structures. From this perspective 
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it is not surprising that antibodies may cross-react with seemingly unrelated 

molecules. Since we made the first antibodies to a glutamate transporter (Danbolt et 

al., 1992), our laboratory has produced about one thousand different antibodies. 

Even after affinity purification, most still displayed some degree of cross-reactivity 

with unrelated molecules (Holmseth et al., 2012a). Thus, cross-reactivity is common 

(Davies et al., 2007) although the identities of the cross reacting molecular species 

are rarely determined.   

 Cross-reactivity does not have to imply that an antibody preparation is 

contaminated with unwanted antibodies derived from other B-cell clones. It can be 

due to the same antibodies as those recognizing the antigen under study (Danbolt et 

al., 1998; Holmseth et al., 2005; Wilson et al., 1996). Consequently, even monoclonal 

antibodies can display cross-reactivity. In fact, when we made monoclonal antibodies 

to EAAT2 (Levy et al., 1993) we also isolated clones producing polyreactive 

antibodies (Danbolt et al., 1998). The cross-reactivity is often unexpected. For 

instance, antibodies to a glutamate transporter (Holmseth et al., 2005) and carbonic 

anhydrase (Li et al., 2009) cross-reacted with tubulin. Similarly, anti-DNA antibodies 

recognized peptide sequences (Sibille et al., 1997; James et al., 1999), dextran 

sulfate (Kinoshita et al., 1989) and even the NR2 glutamate receptor (DeGiorgio et 

al., 2001). Mitochondria represent a frequent site of cross-reactivity (e.g. Holmseth et 

al., 2006; Yang et al., 2006; Morozov et al., 2013). Reactivity with unrelated epitopes 

is elegantly illustrated when phage display is used to test antibodies (Sibille et al., 

1997; Menendez and Scott, 2005).  

 It should also be realized that tissue processing and fixation chemically 

modifies the tissue (Rasmussen and Albrechtsen, 1974; Somogyi and Takagi, 1982; 

Berod et al., 1981; Leong and Gilham, 1989; Korogod et al., 2015), leading to the 
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creation and elimination of epitopes. For instance, a monoclonal antibody to vimentin 

reacted with enamel proteins, but only after glutaraldehyde fixation (e.g. Josephsen 

et al., 1999; Willingham, 1999). Fixation of immunoblots prior to immunolabeling is a 

simple inexpensive way to get some assessment of the effect of this manipulation 

(Holmseth et al., 2006; Holmseth et al., 2012a). 

 

Reporter mice as an independent verification 

A large number of genetically modified mouse lines (Table 1) are now available to the 

public (e.g. Heintz, 2001; Nagy and Mar, 2001; Mori et al., 2006; Pfrieger and Slezak, 

2012). The genetic modifications not only comprise deletion of genes (knockout 

mice), but also insertion of DNA that was not there originally. The inserted DNA can 

for instance be encoding enzymes or fluorescent proteins (e.g. Livet et al., 2007). 

Reporter mice, where promotor activation results in expression of fluorescent 

proteins, can be used as an alternative, or as a supplement, to immunocytochemistry 

(Nolte et al., 2001). This offers new opportunities for studies of cell progeny (e.g. 

Malatesta et al., 2003; Zhu et al., 2008; Platel et al., 2009; Huang et al., 2014), 

visualization of astrocytes and astrogliosis in living brain tissue (Nolte et al., 2001; 

Weimer et al., 2008; Tang et al., 2009) and other dynamic interactions which are hard 

to study immunocytochemically (e.g. Reichenbach et al., 2010; Young et al., 2010; 

Herzog et al., 2011). There are, however, issues with reporter mice also as the 

transcriptional activity can be influenced by multiple factors. Therefore the expression 

patterns can be altered depending on how promotor elements are affected (Yeo et 

al., 2013). Nevertheless, the distribution of fluorescence in reporter lines for the 

EAAT1, EAAT2 and EAAT4 glutamate transporters (Regan et al., 2007; Gincel et al., 

2007; de Vivo et al., 2010a; de Vivo et al., 2010b) is in good agreement with previous 
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immunocytochemistry (Lehre et al., 1995; Dehnes et al., 1998; Zhou and Danbolt, 

2014). A review of the potential of genetically modified animals, however, is beyond 

the scope of this review.  

 

The expression levels required for physiologically significant function 

How much protein is necessary to account for the proposed or measured function? 

This question becomes more important as increasingly sensitive detection techniques 

are developed. In this context, it is worth noting that most DNA is transcribed (Birney 

et al., 2007). Although it is not known if all mRNA is translated, it should be asked 

whether the detected molecules have the capacity to accomplish the proposed or 

measured tasks at physiologically relevant rates. The number of molecules needed to 

accomplish a given task depends on what that task is. Some proteins (e.g. primary 

activators of a cascade system such as the complement system) can deliver 

significant effects when present in minute quantities, while other proteins may only 

make a difference if highly expressed.  

 Neurotransmitter transporters are examples of proteins that need to be 

present in high numbers because co-transport is a relatively slow process requiring 

tens of milliseconds for completion of a single transport cycle (e.g. Grewer and 

Rauen, 2005; Karakossian et al., 2005; Gonzales et al., 2007; Gameiro et al., 2011; 

Zhou et al., 2014a; Hanson et al., 2015). Thus, one transporter molecule can only 

transport a couple of dozen substrate molecules per second at Vmax. Sub-

millisecond transmitter removal requires more vacant binding sites (transporter 

molecules) than released neurotransmitter molecules. This is because low molecular 

mass compounds, such as amino acid neurotransmitters, diffuse quickly out of the 

synaptic cleft on a low microsecond timescale until they bind to transporters and are 
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removed (e.g. Clements, 1996; Tzingounis and Wadiche, 2007). Another reason why 

high numbers of transporters are required follows from the low resting levels of 

extracellular GABA (e.g. Westergren et al., 1994) and glutamate (Herman and Jahr, 

2007) despite rapid neurotransmitter release (e.g. Jabaudon et al., 1999). 

Maintenance of resting levels far below the Km-values of the transporters (Danbolt, 

2001; Conti et al., 2004) requires a vast excess of transporters (Bergles and Jahr, 

1997; Otis and Kavanaugh, 2000; Herman and Jahr, 2007) in agreement with 

biochemical measurements of transporter concentrations (Lehre and Danbolt, 1998; 

Holmseth et al., 2012b).  

 In contrast to fast transmitter removal, less demanding needs that can be 

satisfied in minutes or hours rather than milliseconds may require fewer transporters. 

Thus, if a physiological role can be demonstrated and the numbers of protein 

molecules are insufficient, then it should be asked whether the protein can mediate 

its effect via novel mechanisms that require fewer molecules e.g. by acting as a 

receptor or ion channel. For instance, tens of thousands of ions may pass through an 

ion channel per second implying that relatively few channels can mediate significant 

ion fluxes. In fact, the EAAT4 (slc1a6) and the EAAT5 (slc1a7) glutamate 

transporters may function as glutamate gated anion channels (Dehnes et al., 1998; 

Veruki et al., 2006; Gameiro et al., 2011; Schneider et al., 2014). 

 Another parameter to consider is if the cells supposed to be expressing a 

given transporter can make use of it, e.g. do they have enough energy to operate all 

of the transporters, and is their plasma membrane surface area large enough to 

accommodate all of the transporter molecules? This argument is particularly relevant 

when reporting expression of transporter proteins in endothelial cells which are flat 

with few mitochondria and fairly smooth plasma membranes. The opposite are cells 
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like those found in the proximal tubules in the kidneys that are packed with 

mitochondria and have huge surface areas due to abundant microvilli. Consequently, 

a large number of transporter molecules can fit into their plasma membranes, and the 

cells have energy to fuel them.  

 

Suggested strategy when embarking on a localization project 

1. Does the tissue of interest perform functions attributable to the protein to be 

localized?  

Before embarking on a project, it is a good idea to verify that the tissues of interest 

actually express the antigen to be studied at levels that may be functionally relevant. 

Can protein function be measured (e.g. transport activity or enzymatic activity)? Will 

these protein levels be detectable? Are other proteins with similar function expressed 

in the same tissue at higher concentrations? Glutamine transporters illustrate this 

point as there are at least 14 of them (Bhutia and Ganapathy, 2015). It may be 

worthwhile to search available microarray, transcriptome and proteome datasets (e.g. 

Lu et al., 2009; Walther and Mann, 2011; Ulrich et al., 2014; Holtman et al., 2015) as 

these may give good indications of which proteins it may be possible to detect. 

 

2. Sample quality - proteolysis and true oligomers versus in vitro aggregation 

Since the tissue samples to be studied represent the material on which the entire 

study is founded, both the quality and the processing of the samples are key factors.  

 Several general descriptions are available on how to preserve protein stability 

(e.g. Deutscher, 1990), how to purify (e.g. Linn, 1990), how to isolate membranes 

and make extracts (e.g. Dignam, 1990; Ozols, 1990) and how to solubilize (e.g. 

Neugebauer, 1990; Hjelmeland, 1990). In fact, multitudinous methods have been 
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developed for different purposes, but this is beyond the scope of this review. Here we 

only want to point out two factors that have caused some confusion within studies of 

glutamate transporters, namely (a) post-mortem proteolysis and (b) differences 

between true oligomers and cross-linking resulting from sample preparation.  

 (a) Post-mortem artifacts (Figs. 2 and 3): Tissue from autopsies has proven 

invaluable in studies of diseases, including neurological diseases, but the post-

mortem interval (time from death to tissue preservation) can influence the results of 

the investigations. Changes are readily detected by proteomic analyses after 6 hours 

(Machaalani et al., 2010). If all proteins had been degraded at the same rate in all 

cells, then the post-mortem interval would only have affected the sensitivity. 

However, this is not the case. The rates of degradation vary greatly between different 

proteins and between brain regions (Patel et al., 1993; Martin et al., 2003; Wang et 

al., 2000; Li et al., 2012; Rutkiewicz and Basu, 2012). This might in fact be expected 

considering that the distributions of proteins (enzymes included) are not uniform, and 

that many of the post-mortem alterations result from dynamic processes (Geddes et 

al., 1995; Goni-Oliver et al., 2009; Yeh et al., 2009; Li et al., 2012). For instance, the 

N- and C-termini of EAAT2 glutamate transporter (GLT-1; slc1a2) degrade faster 

than those of its close relative, EAAT1 (GLAST; slc1a3) which in turn degrade faster 

than the C-terminus of EAAT3 (EAAC1; slc1a1). In contrast, epitopes within central 

parts of the EAAT2 protein, e.g. residues 107-120 and 493-508 (Beckstrøm et al., 

1999; Li et al., 2012) as well as to residues 146-161 (Fig. 2) are far more resistant. 

Similarly, the NR2A and NR2B glutamate receptor subunits are proteolyzed faster 

than the other NMDA and AMPA types of glutamate receptors (Wang et al., 2000). 

Further, EAAT2 is proteolyzed faster in the cerebral cortex than in the striatum (Li et 
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al., 2012).Thus, the labeling pattern obtained depends both on the post mortem 

interval and the antibodies used (Tessler et al., 1999; Li et al., 2012).  

[Figure 2 about here] 

[Figure 3 about here] 

 (b) True oligomers vs artifactual cross-linking: Another factor that has been 

confusing to researchers studying glutamate transporters is preservation of in vivo 

oligomeric structure versus in vitro cross-linking or aggregation (Figs. 4 and 5). The 

EAAT2 glutamate transporter exists in the brain as homo-trimers where the subunits 

are non-covalently attached to each other (Haugeto et al., 1996; Yernool et al., 2004; 

Gendreau et al., 2004). When fresh brain tissue is rapidly homogenized directly in 

sodium dodecyl sulfate (SDS), only monomers are seen on the Western blots 

regardless of whether reducing agents have been added (Fig. 4, Lane 1). The native 

oligomers can be visualized if they are preserved by chemical cross-linking prior to 

solubilization of the membranes in which they reside (see Fig. 5A).  

 If the intact brain membranes are oxidized (Fig. 4, Lane 2), then covalent 

bonds form between one EAAT2 subunit and other molecules (Trotti et al., 1998; 

Danbolt, 2001). Whether this is another EAAT2 subunit, or something else, is not 

known at the moment. These complexes, however, are not seen if the samples are 

subjected to reducing agents or if oxidation occurs after solubilization in SDS. 

[Figure 4 about here] 

The phenomenon that causes confusion is therefore a different one: the solubilization 

procedure affects the electrophoretic mobility pattern of EAAT2. If the tissue is 

solubilized with mild detergents (e.g. cholate or Triton X-100) and not in SDS, then 

complexes form even under reducing conditions (Fig. 5B). Once formed, these 

complexes are resistant to SDS. The formation is enhanced at elevated temperatures 
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(Fig. 5B) and prevented by addition of phospholipids (not shown). To what extent this 

reflects irreversible attachment of subunits in endogenous oligomeric complexes or 

later aggregation in vitro depends on the in vitro conditions (e.g. protein and salt 

concentrations). Thus, it is important to realize that variations in sample handling 

have major effects and that it should not be taken for granted that changes in the 

proportions between monomers and oligomers observed on Western blots reflect real 

differences in oligomeric structure in vivo. Unfortunately, this assumption is now 

commonly found in the literature. For instance, a number of investigators have used 

the so called "RIPA Lysis and Extraction Buffer" which contains SDS in combination 

with deoxycholate and sometimes a non-ionic detergent. When brain tissue is 

solubilized in this buffer, oligomeric bands are seen. This buffer is not suitable for 

quantitative examination of glutamate transporters. 

[Figure 5 about here] 

A related point that merits emphasis is the difficulty in quantifying proteins on 

Western blots when the proteins are distributed between monomers and dimers or 

higher order aggregates. The reason is that the labeling intensity measured depends 

on several factors such as the efficiency of solubilization of the protein under study, 

the entry into the electrophoresis gel, the percentage that leaves the gel during 

electrophoretic transfer, the percentage that is captured on the blotting membrane 

and the availability of the epitopes for antibody binding. One or more of these 

parameters are likely to differ between monomers and multimers.     

 

3. Acquisition of antibodies 

When obtaining antibodies from others, it is important to make sure that all relevant 

documentation is available. We fully agree that data obtained with insufficiently 
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documented antibodies, should not be published (e.g. Saper and Sawchenko, 2003; 

Saper, 2005; Rhodes and Trimmer, 2006; Fritschy, 2008; Holmseth et al., 2012a). 

Both the source of the antibody and the exact antigen used for immunization should 

be known to the investigators, at least for main antibodies that a study relies on. If the 

antiserum was purified in some way, then this should also be recorded. As explained 

above, there may be significant differences between antibody batches so it is 

important to refer to the exact batch (e.g. batch number, production date). When 

monoclonal antibodies are produced in the form of ascites fluid, then they will be 

contaminated with other antibodies from the host mouse. These contaminating 

antibodies may vary from batch to batch. The batch number should therefore be 

recorded also when monoclonal antibodies are used. 

  Obviously, it is an advantage if several different antibodies to the same target 

can be obtained. Then it can be seen whether they all give the same results.  

 If the plan is to do extensive studies of a particular protein, it is worthwhile to 

make the antibodies rather than buying them. That is costly, but if large amounts are 

needed, then it may still be cheaper and safer than purchasing and testing several 

small aliquots from different batches from commercial suppliers. Antibody production 

is straight forward. We typically immunize with synthetic peptides and prefer a 

"shotgun-approach": we select the hydrophilic portions of the termini (the longer the 

better) as well as other parts of the protein, mix the peptides together with carrier 

protein and glutaraldehyde, and inject this subcutaneously (for details see: Danbolt et 

al., 1998; Holmseth et al., 2005). We avoid intracutaneous injections as they cause 

unnecessary suffering.  

 

4. What is the evidence that the antibody recognizes the antigen? 
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Unfortunately, it cannot even be taken for granted that an antibody binds to the 

antigen at all. Therefore, one of the first things to do is to obtain a positive control: a 

sample that contains the native antigen of interest in high concentrations. For 

instance, mature forebrain tissue is a very good source of EAAT1, EAAT2, GAT1 and 

GAT3 (Lehre et al., 1995; Ribak et al., 1996; Conti et al., 2004; Melone et al., 2015), 

while cerebellum and kidney are, respectively, good sources of EAAT4 (Dehnes et 

al., 1998) and EAAT3 (Holmseth et al., 2012b). Transfected cell cultures may be 

chosen for proteins of unknown distribution or for proteins only expressed at low 

levels.  

 It is important that the antigen used as a positive control resembles the natural 

one as much as possible. For instance, immunization with peptides usually gives 

antibodies that recognize the peptides, but many of these antibodies (the majority in 

fact) do not recognize the intact protein for various reasons (see: Danbolt et al., 

1998). The choice of method for testing depends on how the antibodies have been 

made. Immunoblotting is excellent for most antibodies to synthetic peptides or 

purified proteins, but is not optimal in cases where the antibodies have been 

produced and selected for their ability to recognize protein complexes or specific 

conformations. However, conformation specific antibodies are exceptions so positive 

proof is required before arguments that antibodies work for immunocytochemistry 

and not for immunoblotting can be accepted. It is also worth checking that the 

antibodies recognize the antigen after the same treatment as the tissue will be 

subjected to (fixation, embedding, antigen retrieval etc: Josephsen et al., 1999; 

Holmseth et al., 2006; Holmseth et al., 2012a). This will also give a first indication of 

the sensitivity that can be obtained.  
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5. Specificity testing by immunoblotting 

As stated above, most antibodies should be tested by immunoblotting. It is important 

to make extracts from the tissues in which the distribution of the antigen is going to 

be studied because the gene expression profiles vary greatly between cell types. It is 

essential to test the antibodies on blots containing as many tissue antigens as 

possible, so whole tissue homogenates should be used. However, non-transporter 

molecules present in the samples may block binding of the transporters to the 

membranes (Fig. 6). This was noted a long time ago (Danbolt et al., 1992) and can, 

at least partly, be avoided by homogenizing the tissue in water and centrifuging to 

separate water soluble and water insoluble proteins. In fact, when we made 

antibodies to the betaine-GABA transporter (BGT1; slc6a12) we initially thought that 

the antibodies did not work and we made new antibodies. About ten years later, we 

homogenized the transfected cells in water to remove the water soluble proteins. 

Then we realized that many of the antibodies were excellent, but that BGT1 had not 

been immobilized on the blotting membranes due to interference from non-BGT1 

proteins (Zhou et al., 2012a).  

[Figure 6 about here] 

Separation of water soluble and water insoluble proteins can be used to test 

specificity. Because transporter proteins are integral membrane proteins, they are 

supposed to be found in the membrane fraction. If the immunoreactivity is in the 

water soluble fraction, this is a warning that the antibodies bind to something other 

than an integral membrane protein. Extracts from mouse pancreas illustrate this (Fig. 

7). EAAT2 antibodies cross-react with a water soluble protein with a molecular mass 

that is similar to that of EAAT2. This cross-reactive protein is present in both wildtype 

mice and EAAT2 knockout mice. EAAT2 protein itself is not detectable in young adult 
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mouse pancreas (Zhou et al., 2014b). The identity of the cross-reacting antigens is 

unknown, but it is interesting that islet cells contain several proteins that often give 

rise to autoantibodies (Arvan et al., 2012). Some of these proteins have molecular 

masses similar to that of EAAT2, and such antibodies may be present in rabbit sera. 

 Contaminating cross-reactive antibodies often require active removal by 

absorption. This is illustrated with antibodies to a peptide representing residues 479-

492 of rat EAAT3 (Bjørås et al., 1996). This peptide gave rise to antibodies with high 

affinity to both tubulin and EAAT3 (Holmseth et al., 2005). The antisera had first to be 

passed through a column with immobilized tubulin to remove antibodies reacting with 

tubulin. Then the remaining antibodies with affinity to EAAT3 could be isolated.  

[Figure 7 about here] 

In our experience, immunoblots are informative: antibodies that look specific on blots 

are often specific in sections. Nevertheless, exceptions are common so immunoblots 

should be supplemented with other tests whenever possible (Holmseth et al., 2005; 

Holmseth et al., 2012a). Further, cross-reactivity can be highly specific and localized 

(Josephsen et al., 1999; Holmseth et al., 2012a). It is not surprising that antibodies 

may display different degrees of specificity when tested on immunoblots and on 

sections considering that the former is based on molecules that have been 

solubilized. The molecules may have different conformations and are likely to be 

separated from their natural molecular neighbors during electrophoresis. Further, the 

smallest and the largest molecules are lost, and the three dimensional structure of 

the tissue is destroyed. In contrast, the three dimensional structure is preserved in 

sections, but the tissue is often chemically modified and some components may be 

lost depending on the tissue processing used. It is also important to remember that 
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one band on an immunoblot may contain more than one protein (Holmseth et al., 

2012a).  

 

6. Testing on tissue sections 

If a signal cannot be obtained on tissue sections, then the technique has to be 

modified. However, as illustrated (Fig. 1), a signal can usually be obtained by 

adjusting fixation conditions, blocking conditions, salt concentrations, pH and 

antibody concentrations or by employing antigen retrieval techniques (e.g. Shi et al., 

2011) and methods for labeling enhancement such as gold-silver intensification (e.g. 

Dobo et al., 2011) and tyramide signal amplification (Kerstens et al., 1995; 

Silahtaroglu et al., 2007). It is therefore necessary to ask critical questions such as: 

does this labeling only represent the antigen of interest or is it due to something else 

instead of, or in addition to, the antigen of interest? Immunolabeling does not in itself 

prove that the protein is present. Beware of sampling error: "Finally I found an 

antibody that worked!" What is the definition of a good antibody? Unfortunately, quite 

often a good antibody is one that gives the expected or desired labeling. This brings 

up another factor, namely quality control by an experienced scientist and proper 

training of new recruits. Thus, sampling errors like this may occur if the 

communication between a junior team member and the principal investigator is 

insufficient.  

 If the labeling represents the right antigen, then the tissue distribution in 

sections should match the labeling of the corresponding bands on immunoblots. A 

simple test is to dissect regions with different labeling intensities and then check if the 

labeling intensities obtained on immunoblots match those seen in tissue sections. 

Discrepancies should raise concerns about antibody specificity. However, differences 
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in tissue water content may affect fixation and thereby antibody penetration into the 

tissue (see discussion about the use of detergents in: Danbolt et al., 1998; Heffer-

Lauc et al., 2007). Also as explained above, (Fig. 5), non-transporter proteins may 

interfere with the binding of transporters to the blotting membranes causing 

underestimation of expression levels.  

 The strength of these tests will be greater if several antibodies give the same 

result. However, variable splicing can be a reason they may not. And if they give the 

same result, then it is still possible that they all have the same cross-reactivity as 

illustrated above with pancreas (Fig. 6) and shown by others (Davies et al., 2007). 

Further, if the antibody concentration needed for obtaining labeling of sections is 

considerably higher than that needed to label Western blots, then this may be due to 

the fundamental differences between blots and sections (see above). Alternatively, it 

might be a sign that the data do not quite fit with the working hypothesis. 

 

7. Testing on genetically modified tissue 

If the antibodies look promising, it is worthwhile to find out if suitable genetically 

modified organisms exist. Knockout animals are animals where a gene has been 

deleted and represent very powerful negative controls (e.g. Herber et al., 2004; 

Holmseth et al., 2005; Holmseth et al., 2012a; Li et al., 2013; Cecyre et al., 2014; 

Van Liefferinge et al., 2016; Baek et al., 2013; Bohmer et al., 2014). The main 

problem is their availability and the fact that most are mice while most 

immunocytochemistry is done on rat and human tissue. However, with human 

samples in particular, there may not be any good negative controls at all. So despite 

obvious limitations, tissue from knockout mice may still be the best negative control 

available. Fortunately, a huge number of animals with various modifications of their 
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genomes are now available and the list is rapidly becoming longer (e.g. Nagy and 

Mar, 2001; Skarnes et al., 2011; Table 1). For instance, knockout mice for most of 

the glutamate and GABA transporter genes are available: EAAT1 (Watase et al., 

1998), EAAT2 (Tanaka et al., 1997; Zhou et al., 2014b), EAAT3 (Peghini et al., 

1997), EAAT4 (Huang et al., 2004), glutamate-cystine exchanger (xCT; slc7a11; Sato 

et al., 2005), GAT1 (Chiu et al., 2005), GAT2 (Zhou et al., 2012b) and BGT1 (Lehre 

et al., 2011; Zhou et al., 2012a). In conventional (global) knockout animals the target 

gene is absent already before conception and is therefore absent in all cells during 

development. One advantage for use as negative controls in immunocytochemistry 

experiments is that all cells lack the gene. On the other hand no mice will be born if 

the deletion is lethal early in development. Although compensatory changes or 

downstream consequences of the deletion may complicate interpretation, such 

animals have nevertheless been extremely useful. 

 The EAAT2 knockout mice (Tanaka et al., 1997) illustrate several points. They 

are inconspicuous at birth because EAAT2 is hardly expressed (Ullensvang et al., 

1997), but become hyperactive and develop epilepsy after three weeks. About half of 

them die suddenly before the end of the fourth week. This agrees with biochemical 

studies showing that EAAT2 is the major glutamate transporter in adult brain (Danbolt 

et al., 1992; Otis and Kavanaugh, 2000).  

 Another limitation of knockout animals can be other genes containing the 

same sequence, or residual expression of the deleted gene. It is common to select a 

few critical exons that are necessary for function. Although this eliminates the 

function, a truncated protein may still be expressed unless the DNA is deleted in such 

a way that a frame-shift is introduced resulting in both a stop codon and a 
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meaningless protein sequence. Unfortunately, not all knockouts have been 

constructed with this in mind.  

 Further, when a gene is deleted, this may affect expression of other genes 

(Teng et al., 2013; Ghule et al., 2015). Cross-reactive molecules may be down-

regulated or up-regulated. However, if an antibody gives rise to labeling in knockout 

tissue, then this should not be taken lightly. Unless proven otherwise, labeling of 

samples from knockout animals should be considered cross-reactivity. Obviously, this 

argument is only valid if the protein is truly absent in the knockout animals as 

explained above. 

 It is also important that the conditions used during specificity testing have to 

match the conditions during data acquisition (e.g: Lorincz and Nusser, 2008; Rhodes 

and Trimmer, 2006). The optimal solution is to process tissue from wild-type and 

knockout littermates together. This may not always be possible, but the testing 

should at least be done with the same method. Further antibody specificity tests 

should be conducted in the specific tissue to be examined, as the cross-reactivity can 

be regional or tissue-specific (Everaerts et al., 2009; Holmseth et al., 2012a; Ashour 

et al., 2006).  

 

Comment on the pre-adsorption control 

Antigen pre-adsorption was originally introduced to validate antisera containing 

mixtures of antibodies with a large variety of specificities (e.g. Pool and Buijs, 1988). 

This test tells if the labeling is due to the same antibodies as those recognizing the 

antigen. Importantly, it does not tell if the observed labeling represents a specific 

visualization of the antigen under study or if it is due to cross-reaction with other 

molecules (e.g. Swaab et al., 1977; Pool and Buijs, 1988; Burry, 2000). Despite this, 

Page 24 of 80

John Wiley & Sons, Inc.

GLIA



 

 25

pre-adsorption is still regarded by many as an obligate control for the verification of 

immunocytochemical labeling - even labeling obtained with monoclonal and affinity 

purified antibodies. This is unfortunate as the pre-adsorption test can give a 

misleading impression of specificity (for illustrations see: Holmseth et al., 2012a). 

Compounding this problem, it is often costly to obtain enough free antigen to perform 

the test, diverting time and resources from more definitive experiments. 

 

Correlation between labeling intensity in tissue sections and protein levels   

As noted above, quantitative considerations are important, not only to understand 

function, but also to judge specificity. Are the expression levels high enough to be 

detectable? If not, then the labeling may be artifactual. 

 The high expression levels of glutamate transporters (Lehre and Danbolt, 

1998) are part of the reason why the first post-embedding immunogold electron 

micrographs of EAAT1, EAAT2 and EAAT4 (Chaudhry et al., 1995; Dehnes et al., 

1998) were so successful: there were sufficient numbers of EAAT molecules in the 

plane of the section to give convincing labeling. This also explains, at least partly, 

why we initially failed to detect EAAT2 in axon-terminals. Despite early reports 

suggesting glutamate uptake by nerve terminals, it took a long time to realize that this 

was due to EAAT2 (Danbolt et al., 2016).   

 The reasons why post-embedding immunogold electron microscopy (van den 

Pol, 1989; Ottersen, 1989) has relatively low sensitivity is that only the proteins that 

are in the exact sectioning plane are detected (for method see: Danbolt et al., 1998; 

Amiry-Moghaddam and Ottersen, 2013). The tissue sections used for electron 

microscopy are thin (45-90 nm) and not much thicker than the outer diameter of 

synaptic vesicles (40 nm), and only a few times thicker than the width of the neuronal 
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synaptic cleft (usually 20 nm). Further, despite the thinness, the antibodies do not 

penetrate well into the sections because of the resins in which the tissue is 

embedded. To maximize labeling intensity, sections are often labeled on both sides. 

Thus, the antibodies label only the molecules exposed at the surface. Chemical 

modification (fixation etc) can reduce the availability of epitopes even more. A high 

density of gold particles along a cut membrane is therefore only expected if the 

expression levels are very high. The sensitivity of post-embedding is thus low 

compared to e.g. fluorescent based labeling of free-floating sections. Consequently, if 

labeling is seen with immuno-gold and not with fluorescence based microscopy, then 

there is a mismatch which probably warrants extra control experiments. 

Another challenge follows from the vulnerability of the ultrathin sections and 

thereby also the labeling. These sections are easily damaged during processing. 

Parts of the sections may be missing and the labeling uneven on the remaining parts. 

Consequently, there is variability and this leads to another challenge: enforcing strict 

quality controls in image acquisition to avoid sampling error. This challenge comes in 

addition to those mentioned above (specificity, proteolysis etc) and represents 

another example of a situation where results may depend on experience. Students 

may be inspired by an exciting hypothesis and go to the microscope to photograph 

unconsciously what the principal investigator hypothesized. A number of images are 

acquired and subjected to statistical analyses. The principal investigator may not 

realize that image collection is already biased. 

To understand brain tissue, it is important to relate to the sizes of the cellular 

extensions. The following calculation may serve as an illustration: There is about one 

synapse per cubic micrometer brain tissue (gray matter; for references see: Danbolt, 

2001), and there are 1015 cubic micrometers in one liter. If this number is divided by 
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Avogadros number, it follows that the concentration of synapses is in the equivalent 

of approximately 1 nanomol/liter. The purpose of this rather unorthodox way of 

expressing synapse density is to illustrate that a protein has to be highly expressed if 

it is present in several copies per glutamatergic synapse (which represents the 

majority of brain synapses).  

 The sizes of the tiny cellular extensions making up brain tissue (the neuropil 

part of it) may be easier to grasp if they are compared to a red blood cell 

(erythrocyte). A human erythrocyte is about 7 µm in diameter. This means that the 

diameter of a red blood cell is about 9 times larger than the scale bar shown in figure 

8. A plasma membrane is about 5 nm thick and the width of the extracellular space 

(the distances between neighboring cellular extensions) is typically in the range 20-

40 nm, while the diameter of a glutamate transporter trimer is believed to be about 8 

nm (Yernool et al., 2004). Cellular elements are tightly intermingled (Kirov et al., 

1999; Sorra and Harris, 2000; Witcher et al., 2010; Harris and Weinberg, 2012; 

Mathiisen et al., 2010). This is schematically illustrated in figure 8. This means that 

the total amount of plasma membrane is large: about 14 µm2/µm3 in the stratum 

radiatum, rat hippocampus CA1 (Lehre and Danbolt, 1998). 

[Figure 8 about here] 

 The closeness of neuronal and glial membranes also adds problems with 

tissue localization, even at the resolution of electron microscopy. In attempting to 

reconcile data suggesting that EAAT2 was present in both neurons and astrocytes, 

we went to some lengths before we could be sure of the distribution of this 

transporter. Localization to astrocytes was clearly evident from the distribution of 

immungold label over astrocyte membrane/profiles; but how could a low level of 

expression of EAAT2 be ruled in or out, since the membranes are close together 
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(Fig. 9)? Although much higher resolutions can be achieved by electron microscopy 

than by light or confocal microscopy, even for electron microscopy the lateral 

resolution of immunogold labeling (~28 nm with 15 nm gold particles, Matsubara et 

al., 1996) means labeling on membranes within 40 – 50 nm or each other is 

ambiguous. One way around this was by embedding a suspension of synaptosomes 

where nerve terminals could be distinguished completely from glial membranes. A 

low level of expression in the nerve terminal membrane was then observed (Fig 9) 

(Furness et al., 2008)). 

[Figure 9 about here] 

[Figure 10 about here] 

 

Beware - convincing images are seductive 

If the hypothesis is intriguing and the images appear to match it closely, it is easy to 

be carried away and accept the appearance at first sight (Roth, 2006). For instance, 

during the work to localize the EAAT3 glutamate transporter subtype (Holmseth et al., 

2012b) we wanted to test if we could reproduce the perisynaptic distribution observed 

by others (He et al., 2001). To do this, post-embedding immuno-gold labeling was 

performed (Furness et al., 2008). Very convincing images were obtained (Fig. 11). 

Afterwards (but before publication) we obtained EAAT3 knockout mice (Peghini et al., 

1997) and used them as negative controls. The same labeling pattern was seen. This 

was very disappointing and our reaction was accordingly: "This cannot not be true! It 

must be something wrong with the knockout mouse!" However, after more hard work 

testing the knockout mouse, we had to accept that we could not find anything wrong 

with it. The consequence was that the labeling pattern observed was an artifact. We 

had to scrap the data. This was a double knockout, indeed.  
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[Figure 11 about here]  

 

Some thoughts about guidelines for immunocytochemistry 

Since the field of immunocytochemistry is, as outlined above, still troubled by 

spurious results due to insufficient controls of antibody specificity, the arguments for 

improvements in quality control are strong. It is, however, hard to define the exact 

tests that should be performed. Although there are arguments for formal rules, we 

fear that such rules may cause problems. To improve quality and help advancing 

science, formal rules will have to be exact and very complex. Worse, they will be 

based on present knowledge. Because each project has unique challenges, but also 

opportunities, freedom is important. Skilled investigators will come up with smart 

solutions exploiting the opportunities and trying to circumvent the obstacles. Further, 

the demand for rigorous testing depends on the type and focus of each study. The 

testing has to be more rigorous if immunocytochemistry is the main focus than if it is 

a side issue. Similarly, testing can be less stringent if the data are confirmatory. On 

the other hand if the authors report that previous investigators have overlooked 

something, then the question is whether this is really the case or whether the 

antibodies in the new study cross-react with other molecules. Further, the technical 

difficulties involved need to be considered. It is for instance more difficult to localize 

proteins expressed at low levels than highly expressed proteins. Although highly 

sensitive techniques are available (e.g. tyramide signal amplification: Kerstens et al., 

1995; Silahtaroglu et al., 2007), the specificity becomes more challenging as it 

becomes more likely that a cross-reacting molecular species might contribute more to 

the overall labeling than those under study. 
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 To give room for novel approaches, perhaps it would be sufficient to ask the 

authors to explain in detail why they believe their labeling is specific. If the authors 

are pushed to explain the logic behind their conclusions, a judgment can be made 

whether this is good enough for the present purpose and situation. Because it is 

logically impossible to prove absolute specificity, some uncertainty must be 

acceptable. The degree of permissible uncertainty must be judged in each case. 

Testing is expensive and time-consuming. The following points may be addressed: 

# What is the evidence that the antibody recognizes the target antigen, and still does 

so after the treatment that the tissue has been subjected to? 

# Why is it likely that the labeling represents the antigen of interest and nothing else? 

# Does the tissue express the target antigen at detectable levels? Is the labeling 

intensity in reasonable agreement with expression levels? Multiple factors can affect 

the labeling intensity so definite conclusions can only be made if the antibody has 

been calibrated against known protein concentrations under identical conditions. 

However, strong labeling of sections despite low mRNA levels and weak or absent 

signal on Western blots are examples of mismatches that warrant extra specificity 

controls.  

# Does the labeling pattern in sections correlate with data from other methods, e.g. 

Western blots and in situ hybridization? For instance, if the labeling seen in sections 

is stronger in the hippocampus than in the cerebellum, then a similar difference is 

expected on immunoblots. Another example, if intact cells display very little, but still 

detectable glutamate uptake activity, then one or more glutamate transporting 

proteins must be present in their plasma membranes. If in this situation antibodies to 

relevant transporters fail to detect labeling in the plasma membranes, but give rise to 

strong labeling of mitochondria, then the most likely interpretation is that the 
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mitochondrial labeling is due to cross-reactivity and the absence of plasma 

membrane labeling is due to expression levels below the detection limit.  

# Can the tissue or subcellular localization be confused? Can specific structures be 

adequately isolated from each other microscopically to be certain where the labeling 

is distributed? 

# Quantitative considerations are necessary when discussing physiological roles. 

What can a given number of molecules accomplish? 

# In the case of protein antigens, the authors should state if relevant genetically 

modified organisms exist. If they do, and are not used as controls, then the authors 

should explain why.  

 

Conclusions 

High quality data on protein localization and expression levels are important as the 

biomedical research community relies on them directly or indirectly. Publication of 

misleading data happens too often and has down-stream consequences. Rather than 

introducing more formal rules and regulations, it may be more effective to simply ask 

authors to explain why they believe their data are valid. The perfect negative control 

is usually unavailable and the pre-absorption test can give a false impression of 

specificity. It is important to combine immunocytochemistry both with other methods 

and with quantitative considerations, and then see if all the pieces of information add 

up. Finally, when doubt about validity arises in a late phase of a project, there may 

not be any good solutions at all. If money has run out and a PhD is at stake, non-

scientific factors will influence decisions. We hope that sharing our personal 

experiences will sensitize others to early warning signs and thereby facilitate 

navigation around some of the difficult situations we have found ourselves in, where 
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a lot of hard work and effort has turned out to have been wasted. 
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FIGURE LEGENDS 

Figure 1. Immunocytochemical labeling can always be obtained by adjusting assay 

conditions and cannot be used as proof of protein expression without a good 

negative control. Determination of optimal antibody concentrations is straightforward 

when tissues from knockout animals are available as negative controls. Sections 

from wild-type (WT) and EAAT3 (slc1a1)-deficient mice (KO) were incubated with 

either anti-C491 (Ab#371) or anti-C510 (Ab#565) antibodies to EAAT3 in 

concentrations as indicated. Note both that labeling is obtained in the EAAT3-

deficient tissue at high antibody concentrations, and that the anti-C491 antibody 

cross-reacts with a non-EAAT3 epitope even at low antibody concentrations in some 

regions (arrowheads: hippocampus and striatum). Scale bar = 2 mm. (Reproduced 

from Holmseth et al., 2012a, doi: 10.1369/0022155411434828). 

 

Figure 2. The C-terminus of EAAT2 is degraded faster than the central portion of the 

protein. Mouse brain tissue that stored for the indicated time after death (for methods 

see: Li et al., 2012), was subjected to Western blotting with the anti-B563 antibody 

(Ab#355; Holmseth et al., 2009) to the extreme C-terminus (residues 563-573) of rat 

EAAT2 and with the anti-B146 antibodies (Cat. No. 250 203; Synaptic Systems 

GmbH, Goettingen, Germany, www.sysy.com) central parts (residues 146-161). Each 

lane contained 30 µg total protein. Note that most of the immunoreactivity detected 

with Anti-B563 is gone after 24 hours post-mortem (at room temperature) while there 

is still substantial immunoreactivity after 72 hours with the anti-B146 antibodies. 

Tissue extracts from the EAAT2 knockout mice (GLT1-KO; Tanaka et al., 1997) were 

used as negative controls. 
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Figure 3. Confocal images of sections double labeled with anti-B563 antibodies 

(Ab#355; 0.1 µg/ml) to the C-terminus of EAAT2 and with anti-B493 antibodies to 

central parts of the protein (residues 493-508; Ab#8; 0.1 µg/ml; Li et al., 2012). Note 

that there is co-localization in freshly fixed tissue (0 h), but not in tissue stored at 

room temperature for 24 h before fixation. Tissue from EAAT2 knockout mice (GLT1-

KO; Tanaka et al., 1997) was used as negative controls. Scale bar: 20 µm. 

 

Figure 4. Oxidation of the EAAT2 makes higher molecular mass species appear on 

immunoblots (Trotti et al., 1998; Danbolt, 2001). These bands, however, are not seen 

if reducing agents (e.g. DTT, dithiothreitol) are added. Note that EAAT2 is mostly in 

monomer form if homogenized directly in SDS (Lane 1). On the other hand, if 

exposed to an SH-group oxidizer (DTNB, 5-(3-carboxy-4-nitrophenyl)disulfanyl-2-

nitrobenzoic acid) oligomer bands appear (Lane 2) unless excess DTT is added prior 

to electrophoresis (Lane 4). PMSF (phenylmethanesulfonyl fluoride) was added to 

inhibit proteases and NaPi (sodium phosphate) was chosen as buffer. The blot was 

developed with 0.2 µg/ml anti-B12 antibody (Ab#360 Holmseth et al., 2005). 

 

Figure 5. Protein aggregation with unknown relationship to the native oligomeric 

structure occurs at elevated temperatures when solubilized with mild detergents 

(Danbolt, 2001). Panel A: Brain membranes (the water insoluble pellet produced 

after homogenization in water followed by centrifugation) have been incubated with 

increasing concentrations of crosslinker as indicated, solubilized in SDS with 

dithiothreitol (DTT), mixed with SDS-sample buffer (2 % SDS) and subjected to 

electrophoresis (7 % acrylamide) followed by immunoblotting with anti-EAAT2 

antibodies (anti-B12 Ab#360; 0.2 µg/ml). Note that dimers and trimers are seen when 
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crosslinker is added. Panel B: Brain membranes were kept under reducing 

conditions (DTT added to all samples: Lanes 1-8). The membranes were solubilized 

in SDS (Lanes 1 and 2), cholate (Lanes 3-5) or Triton X-100 (Lanes 6-8). The 

extracts were either kept at room temperature (RT), at 0°C or at 37°C as indicated, 

and subjected to electrophoresis and immunoblotting as above. Note that monomers 

predominate in the SDS extracts. In the cholate and Triton extracts dimers and 

trimers are seen. The fraction of EAAT2 that runs as dimers or trimers increases if 

the extracts have been incubated at elevated temperatures. NB: Note that these 

dimers and trimers do not dissolve in the SDS sample buffer. Both panels: 

Proteases were inhibited with 5 mM EDTA (ethylenediaminetetraacetic acid) and 1 

mM PMSF (phenylmethylsulfonyl fluoride). 

 

Figure 6: Non-EAAT2 proteins interfere with EAAT2 immunodetection possibly by 

competition for binding sites on the nitrocellulose membrane. Panel A: application of 

increasing amounts 1.25, 2.5 and 5 µl of SDS solubilized transfected HEK293T cells 

leads to increased EAAT2 immunoreactivity on the blots. Panel B: SDS solubilized 

adult rat hippocampus (HC, 1 µg total tissue protein) was mixed with increasing 

amounts of SDS solubilized un-transfected HEK293T cells. Lanes 1-4 contain, 

respectively, (about 3, 9 or 30 µg total HEK293T cell protein. Note that the detection 

of hippocampal EAAT2 decreases with increasing amounts of cell extract. EAAT2 

was detected with anti-EAAT2a antibodies (Ab#355: 0.1 µg/ml) followed by HRP-

conjugated secondary antibodies. This figure is based on materials produced 

previously (Holmseth et al., 2009). 
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Figure 7. Antibodies to EAAT2 cross-react with a pancreatic water soluble protein 

(Zhou et al., 2014b). Pancreas from wildtype (WT) and EAAT2 knockout (KO) mice 

(Tanaka et al., 1997) were homogenized in water with protease inhibitors and 

centrifuged to separate the water soluble proteins (supernatant) from membrane 

proteins (pellet). Both the pellets and the supernatants were mixed with SDS-sample 

buffer and Western blotted with anti-B493 antibodies (Ab#95; 0.1 µg/ml) to EAAT2. 

The protein loading was first verified by Ponceau S staining (A), then destained and 

probed with the antibodies (B). Note that something with an electrophoretic mobility 

similar to EAAT2 was labeled, but that this was in the supernatants and from both 

WT and KO animals. There was no labeling of the membrane proteins. Spinal cord 

samples (C) were run for comparison. This was on the same electrophoresis gel and 

blot, but the blot was cut to hide lanes that were irrelevant in this context. Similar 

results were obtained with the anti-B12 antibody (Ab#360) to EAAT2 (not shown). 

Conclusion, EAAT2 could not be detected in pancreas.  

 

Figure 8. A high magnification transmission electron micrograph showing an 

asymmetric synapse in the cochlear nucleus of a guinea pig (section courtesy of Dr S 

Mahendrasingam, image by DNF). An axon terminal (T) with a mitochondrion (m) and 

multiple synaptic vesicles (sv) is synapsing onto a dendritic spine (S). The 

postsynaptic density (PSD) is the darker zone in the middle. The synaptic cleft is the 

narrow lighter line between the two arrowheads. Note the large amounts of plasma 

membranes. At least 10, possibly 11, different cellular compartments (cellular 

extensions) can be identified in the image. They are all separated by extracellular 

space bordered by the plasma membranes of neighboring cells. However, the 

membranes cannot be seen clearly in places where the membrane surface is oblique 
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relative to the image plane. The area indicated with the black box is shown at higher 

magnification (inset at the top right corner). The arrows point to the plasma 

membranes (dark lines). These are separate by a narrow zone which is the 

extracellular space. Note the thin astroglial extension in the lower right corner 

(asterisk). This extends upwards curving to the left (asterisk) in between three other 

cellular compartments. Scale bar 0.5 µm. 

 

Figure 9. Schematic illustration of the differences between pre-embedding 

peroxidase labeling (Upper panel) and post-embedding immunogold labeling (Lower 

panel). Two glutamatergic terminals are shown forming synapses onto spines (A and 

B) with asymmetric specializations post-synaptic specializations (Note prominent post 

synaptic densities, PSD, one of which is labeled). Nerve terminals are the structures 

with many synaptic vesicles (small open circles). GABAergic synapses (C) are often 

onto dendritic trunks rather than spines, and the synaptic specializations are typically 

symmetric. Three fine astrocyte branches are also indicated (g). The figure illustrates 

the typical labeling pattern obtained when using antibodies to intracellular epitopes 

on the EAAT2. EAAT2 is predominantly expressed in astrocytes (Danbolt et al., 

1992), but there is also some (about 10 %) in hippocampal nerve terminals (Furness 

et al., 2008; Danbolt et al., 2016). The upper panel shows labeling with 

immunoperoxidase (Lehre et al., 1995), while the lower panel shows immunogold 

labeling (Chaudhry et al., 1995). The peroxidase reaction product is electron dense, 

and therefore appears dark in the electron microscope. Note that it diffuses a little bit 

before it precipitates and thereby causes some labeling of the cytoplasm even when 

the proteins are predominantly at the surface. Also note that the labeling is 

intracellular. This pattern is seen when the antibodies bind to intracellular epitopes 
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and the plasma membranes are still intact (no freezing, no organic solvents and no 

detergents). This labeling is hard to quantify, but is excellent for identification of the 

labeled cell types. However, the images are monochromatic (gray scale) and it can 

be difficult to determine if a structure is naturally electron dense, dense due to 

contrasting (e.g. the PSDs and membranes) or dense because of antibody labeling. 

The latter problem is avoided by immunogold labeling (lower panel). But here the 

labeling is done after cutting of ultrathin sections. Note the scale bar at the bottom 

comparing the figure to a red blood cell. The gold particles (solid black dots) are 

attached to antibodies and can swing from side to side. Because the labeling is at a 

surface, the particles can swing freely and therefore can swing all the way over to the 

neighboring membrane (Amiry-Moghaddam and Ottersen, 2013). Thus, in this case it 

can be hard to be sure if only one of two neighboring membranes is labeled or if both 

are labeled. This high number of gold particles is only seen if the expression levels of 

the antigen are as high as those of EAAT2 (Lehre and Danbolt, 1998). (Copyright: 

Neurotransporter.org; Reproduced with permission). 

 

Figure 10. Panel A: Post-embedding immunogold labeling for EAAT2 on a 

hippocampal slice. Two terminals (T), an associated spine (Sp) and glial process (G) 

are visible. Gold-labeling is clearly predominant in the glial process, but there are 

ambiguous particles that could be localized either to the terminal membrane or the 

membrane of glial process (arrows).  Panel B: In a synaptosome preparation, 

isolated terminals (T) are separated from the associated glial membranes (G) and so 

unambiguous identification of terminal membrane labeling becomes possible 

(arrows). Scale bar = 200 nm. 
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Figure 11. An example of a convincing artifact that was discoveredbecause the 

labeling pattern was reproduced in the knockout mouse: Transmission electron 

microscopy of post-embedding immunogold labeling for EAAT3 (slc1a1) in the rat 

stratum radiatum (hippocampus CA1). The images show examples of varying 

synaptic morphology and patterns of immunogold labeling with an antibody (Ab#371) 

to EAAT3.  In all of these figures, spines are located to the left (sp in A) and 

presynaptic terminals to the right (pre in A). Unfortunately, these patterns were 

artifacts. We show the image here to illustrate the danger. We had worked hard to 

produce this figure, and when we had to scrap it, we had to scrap the entire paper. 

And that was a hard decision to make.  
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Figure 1. Immunocytochemical labeling can always be obtained by adjusting assay conditions and cannot be 
used as proof of protein expression without a good negative control. Determination of optimal antibody 
concentrations is straightforward when tissues from knockout animals are available as negative controls. 

Sections from wild-type (WT) and EAAT3 (slc1a1)-deficient mice (KO) were incubated with either anti-C491 
(Ab#371) or anti-C510 (Ab#565) antibodies to EAAT3 in concentrations as indicated. Note both that labeling 
is obtained in the EAAT3-deficient tissue at high antibody concentrations, and that the anti-C491 antibody 
cross-reacts with a non-EAAT3 epitope even at low antibody concentrations in some regions (arrowheads: 

hippocampus and striatum). Scale bar = 2 mm. (Reproduced from Holmseth et al., 2012a, doi: 
10.1369/0022155411434828).  
154x142mm (300 x 300 DPI)  
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Figure 2. The C-terminus of EAAT2 degrade faster than the central portion of the protein. Mouse brain tissue 
that stored for the indicated time after death (for methods see: Li et al., 2012), was subjected to Western 
blotting with the anti-B563 antibody (Ab#355; Holmseth et al., 2009) to the extreme C-terminus (residues 

563-573) of rat EAAT2 and with the anti-B146 antibodies (Cat. No. 250 203; Synaptic Systems GmbH, 
Goettingen, Germany, www.sysy.com) central parts (residues 146-161). Each lane contained 30 µg total 

protein. Note that most of the immunoreactivity detected with Anti-B563 is gone after 24 hours post-
mortem (at room temperature) while there is still substantial immunoreactivity after 72 hours with the anti-
B146 antibodies. Tissue extracts from the EAAT2 knockout mice (GLT1-KO; Tanaka et al., 1997) were used 

as negative controls.  
126x226mm (300 x 300 DPI)  
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Figure 3. Confocal images of sections double labeled with anti-B563 antibodies (Ab#355; 0.1 µg/ml) to the 
C-terminus of EAAT2 and with anti-B493 antibodies to central parts of the protein (residues 493-508; Ab#8; 

0.1 µg/ml; Li et al., 2012). Note that there is co-localization in freshly fixed tissue (0 h), but not in tissue 
stored at room temperature for 24 h before fixation. Tissue from EAAT2 knockout mice (GLT1-KO; Tanaka et 

al., 1997) was used as negative controls. Scale bar: 20 µm.  
106x67mm (300 x 300 DPI)  
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Figure 4. Oxidation of the EAAT2 makes higher molecular mass species appear on immunoblots (Trotti et al., 
1998; Danbolt, 2001). These bands, however, are not seen if reducing agents (e.g. DTT, dithiothreitol) are 
added. Note that EAAT2 is mostly in monomer form if homogenized directly in SDS (Lane 1). On the other 
hand, if exposed to an SH-group oxidizer (DTNB, 5-(3-carboxy-4-nitrophenyl)disulfanyl-2-nitrobenzoic acid) 

oligomer bands appear (Lane 2) unless excess DTT is added prior to electrophoresis (Lane 4). PMSF 
(phenylmethanesulfonyl fluoride) was added to inhibit proteases and NaPi (sodium phosphate) was chosen 

as buffer. The blot was developed with 0.2 µg/ml anti-B12 antibody (Ab#360 Holmseth et al., 2005).  
98x61mm (300 x 300 DPI)  
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Figure 5. Protein aggregation with unknown relationship to the native oligomeric structure occurs at elevated 
temperatures when solubilized with mild detergents (Danbolt, 2001). Panel A: Brain membranes (the water 
insoluble pellet produced after homogenization in water followed by centrifugation) have been incubated 

with increasing concentrations of crosslinker as indicated, solubilized in SDS with dithiothreitol (DTT), mixed 
with SDS-sample buffer (2 % SDS) and subjected to electrophoresis (7 % acrylamide) followed by 

immunoblotting with anti-EAAT2 antibodies (anti-B12 Ab#360; 0.2 µg/ml). Note that dimers and trimers are 
seen when crosslinker is added. Panel B: Brain membranes were kept under reducing conditions (DTT added 
to all samples: Lanes 1-8). The membranes were solubilized in SDS (Lanes 1 and 2), cholate (Lanes 3-5) or 
Triton X-100 (Lanes 6-8). The extracts were either kept at room temperature (RT), at 0°C or at 37°C as 

indicated, and subjected to electrophoresis and immunoblotting as above. Note that monomers predominate 
in the SDS extracts. In the cholate and Triton extracts dimers and trimers are seen. The fraction of EAAT2 
that runs as dimers or trimers increases if the extracts have been incubated at elevated temperatures. NB: 
Note that these dimers and trimers do not dissolve in the SDS sample buffer. Both panels: Proteases were 
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inhibited with 5 mM EDTA (ethylenediaminetetraacetic acid) and 1 mM PMSF (phenylmethylsulfonyl 
fluoride).  

223x285mm (300 x 300 DPI)  
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Figure 6: Non-EAAT2 proteins interfere with EAAT2 immunodetection possibly by competition for binding 
sites on the nitrocellulose membrane. Panel A: application of increasing amounts 1.25, 2.5 and 5 µl of SDS 
solubilized transfected HEK293T cells leads to increased EAAT2 immunoreactivity on the blots. Panel B: SDS 
solubilized adult rat hippocampus (HC, 1 µg total tissue protein) was mixed with increasing amounts of SDS 

solubilized un-transfected HEK293T cells. Lanes 1-4 contain, respectively, (about 3, 9 or 30 µg total 
HEK293T cell protein. Note that the detection of hippocampal EAAT2 decreases with increasing amounts of 

cell extract. EAAT2 was detected with anti-EAAT2a antibodies (Ab#355: 0.1 µg/ml) followed by HRP-
conjugated secondary antibodies. This figure is based on materials produced previously (Holmseth et al., 

2009).  
31x12mm (300 x 300 DPI)  
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Figure 7. Antibodies to EAAT2 cross-react with a pancreatic water soluble protein (Zhou et al., 2014b). 
Pancreas from wildtype (WT) and EAAT2 knockout (KO) mice (Tanaka et al., 1997) were homogenized in 
water with protease inhibitors and centrifuged to separate the water soluble proteins (supernatant) from 

membrane proteins (pellet). Both the pellets and the supernatants were mixed with SDS-sample buffer and 
Western blotted with anti-B493 antibodies (Ab#95; 0.1 µg/ml) to EAAT2. The protein loading was first 

verified by Ponceau S staining (A), then destained and probed with the antibodies (B). Note that something 
with an electrophoretic mobility similar to EAAT2 was labeled, but that this was in the supernatants and 
from both WT and KO animals. There was no labeling of the membrane proteins. Spinal cord samples (C) 
were run for comparison. This was on the same electrophoresis gel and blot, but the blot was cut to hide 

lanes that were irrelevant in this context. Similar results were obtained with the anti-B12 antibody (Ab#360) 
to EAAT2 (not shown). Conclusion, EAAT2 could not be detected in pancreas.  
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Figure 8. A high magnification transmission electron micrograph showing an asymmetric synapse in the 
cochlear nucleus of a guinea pig (section courtesy of Dr S Mahendrasingam, image by DNF). An axon 

terminal (T) with a mitochondrion (m) and multiple synaptic vesicles (sv) is synapsing onto a dendritic spine 
(S). The postsynaptic density (PSD) is the darker zone in the middle. The synaptic cleft is the narrow lighter 
line between the two arrowheads. Note the large amounts of plasma membranes. At least 10, possibly 11, 
different cellular compartments (cellular extensions) can be identified in the image. They are all separated 
by extracellular space bordered by the plasma membranes of neighboring cells. However, the membranes 
cannot be seen clearly in places where the membrane surface is oblique relative to the image plane. The 

area indicated with the black box is shown at higher magnification (inset at the top right corner). The arrows 
point to the plasma membranes (dark lines). These are separate by a narrow zone which is the extracellular 
space. Note the thin astroglial extension in the lower right corner (asterisk). This extends upwards curving 

to the left (asterisk) in between three other cellular compartments. Scale bar 0.5 µm.  
97x75mm (300 x 300 DPI)  
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Figure 9. Schematic illustration of the differences between pre-embedding peroxidase labeling (Upper panel) 
and post-embedding immunogold labeling (Lower panel). Two glutamatergic terminals are shown forming 

synapses onto spines (A and B) with asymmetric specializations post-synaptic specializations (Note 

prominent post synaptic densities, PSD, one of which is labeled). Nerve terminals are the structures with 
many synaptic vesicles (small open circles). GABAergic synapses (C) are often onto dendritic trunks rather 
than spines, and the synaptic specializations are typically symmetric. Three fine astrocyte branches are also 

indicated (g). The figure illustrates the typical labeling pattern obtained when using antibodies to 
intracellular epitopes on the EAAT2. EAAT2 is predominantly expressed in astrocytes (Danbolt et al., 1992), 
but there is also some (about 10 %) in hippocampal nerve terminals (Furness et al., 2008; Danbolt et al., 
2016). The upper panel shows labeling with immunoperoxidase (Lehre et al., 1995), while the lower panel 
shows immunogold labeling (Chaudhry et al., 1995). The peroxidase reaction product is electron dense, and 
therefore appears dark in the electron microscope. Note that it diffuses a little bit before it precipitates and 
thereby causes some labeling of the cytoplasm even when the proteins are predominantly at the surface. 
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Also note that the labeling is intracellular. This pattern is seen when the antibodies bind to intracellular 
epitopes and the plasma membranes are still intact (no freezing, no organic solvents and no detergents). 
This labeling is hard to quantify, but is excellent for identification of the labeled cell types. However, the 

images are monochromatic (gray scale) and it can be difficult to determine if a structure is naturally electron 
dense, dense due to contrasting (e.g. the PSDs and membranes) or dense because of antibody labeling. The 
latter problem is avoided by immunogold labeling (lower panel). But here the labeling is done after cutting 

of ultrathin sections. Note the scale bar at the bottom comparing the figure to a red blood cell. The gold 
particles (solid black dots) are attached to antibodies and can swing from side to side. Because the labeling 
is at a surface, the particles can swing freely and therefore can swing all the way over to the neighboring 

membrane (Amiry-Moghaddam and Ottersen, 2013). Thus, in this case it can be hard to be sure if only one 
of two neighboring membranes is labeled or if both are labeled. This high number of gold particles is only 
seen if the expression levels of the antigen are as high as those of EAAT2 (Lehre and Danbolt, 1998). 

(Copyright: Neurotransporter.org; Reproduced with permission).  
101x138mm (600 x 600 DPI)  
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Figure 10. Panel A: Post-embedding immunogold labeling for EAAT2 on a hippocampal slice. Two terminals 
(T), an associated spine (Sp) and glial process (G) are visible. Gold-labeling is clearly predominant in the 
glial process, but there are ambiguous particles that could be localized either to the terminal membrane or 

the membrane of glial process (arrows).  Panel B: In a synaptosome preparation, isolated terminals (T) are 
separated from the associated glial membranes (G) and so unambiguous identification of terminal 

membrane labeling becomes possible (arrows). Scale bar = 200 nm.  
87x119mm (300 x 300 DPI)  
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Figure 11. An example of a convincing artifact that was discoveredbecause the labeling pattern was 
reproduced in the knockout mouse: Transmission electron microscopy of post-embedding immunogold 

labeling for EAAT3 (slc1a1) in the rat stratum radiatum (hippocampus CA1). The images show examples of 
varying synaptic morphology and patterns of immunogold labeling with an antibody (Ab#371) to EAAT3.  In 
all of these figures, spines are located to the left (sp in A) and presynaptic terminals to the right (pre in A). 
Unfortunately, these patterns were artifacts. We show the image here to illustrate the danger. We had 

worked hard to produce this figure, and when we had to scrap it, we had to scrap the entire paper. And that 
was a hard decision to make.  
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1 

Table 1 

Source Web 

Allan Brain Atlas http://connectivity.brain-

map.org/transgenic/search/basic 

International Knockout Mouse Consortium www.knockoutmouse.org 

Mouse Genome Informatics www.informatics.jax.org 

NIH Mouse Initiatives - The Knockout 

Mouse Project 

http://www.genome.gov/17515708 

Gene Expression Nervous System Atlas 

(GENSAT) 

http://www.gensat.org/daily_showcase.jsp 

Cre-lines and Bac-mice http://www.gensat.org/cre.jsp 

http://cre.jax.org/data.html  

International Mouse Phenotyping 

Consortium 

http://www.mousephenotype.org/data/search 

Mutant Mouse Regional Resource Centers 

(MMRRC 

https://www.mmrrc.org/index.php 

A large number of modified animals are available. Before starting a knockout or 
conditional knockout project, it is a good idea to check if the gene of interest has 
been targeted and the availability of the targeting vector/ES cell clones/mice.  
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