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Preface

This work is part of the Industrial PhD-scheme funded by the Norwegian Research Council (NRC),
initiated by Lundin Norway AS, the University of Oslo, Department of Geosciences and Kalkulo
AS (recently merged with Bluware AS). The supervisors are Dr. Jan Erik Lie, chief geophysicist
at Lundin Norway AS, Prof. Jan Inge Faleide from the University of Oslo and Dr. Stuart Clark
from the University of New South Wales. From November 2016 — October 2019, author A. Bugge
was employed with Kalkulo AS, where Lyuda Vannytska (Kalkulo AS) was the project leader of
the NRC project: 268622/030. Most of this work was conducted at the offices of Lundin Norway
AS, the offices of Kalkulo AS and at the University of Oslo, Department of Geosciences. During
the course of the PhD, A. Bugge had a 4-month research stay at the University of California, San
Diego (2017) and a 1-month research stay at the University of New South Wales, Sydney (2019).

This thesis, entitled “Aspects of automated seismic interpretation”, was submitted to the Faculty
of Mathematics and Natural Sciences at the University of Oslo in accordance with the requirements
for the degree of Philosophiae Doctor (Ph.D.), November 2019. The first chapter of the thesis
covers the motivation, objectives and scope. The second chapter gives the scientific background
relevant for this thesis. The third chapter gives a summary of the results and implications of each
of the papers resulting from this work, while chapter four takes on the conclusions and outlook.
The articles themselves, two published, one submitted, and one manuscript prepared for
submission, are documented in chapter six. To supplement our published journal papers, we have

created open-source code repositories at github.com/ajbugge.
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Chapter 1. Introduction
1.1 Motivation

Seismic reflection data have been acquired since the late 1920’s and have played an important
part of oil and gas exploration since the early 1950’s. Seismic reflections represent changes in
acoustic impedance in the subsurface, and the geologist interprets these reflections to develop
maps of geological surfaces and obtain a conceptual understanding of the geological evolution,

such as sedimentation history and tectonic events.

Today, the geologist interprets large fully migrated 3D seismic volumes which are created from
acquisition and processing of seismic reflection data. The seismic processing is crucial for the
seismic image quality which in turn will affect the seismic interpretation. Due to the subjective
parameterization and the many possible realizations of the same seismic volume, the seismic
processing is also an interpretive process. Thus, seismic processing and seismic interpretation are

both iterative operations in a workflow seeking to accumulate subsurface understanding (Figure

).

Build a conceptual
subsurface
understanding

S o s g i Seismic A
Seismic acquisition (= Seismic processing
W]

—_ interpretation

Figure 1. In order to build an understanding of the subsurface from seismic images, seismic
reflection data is first acquired and processed to create a seismic image. Then, the seismic images
are interpreted. Typically, this is a nonlinear workflow that loops through several iterations of
both processing and interpretation.

Ideally, the process of interpreting seismic images is an integrated process based on geophysical
knowledge and an intuitive geological understanding. The state-of-the-art seismic interpretation
workflow aims to extract qualitative and quantitative information from the seismic data. This
typically involves manually placing seed points along targeted geological features, followed by an
interpolation between these seed points using coherency-based autotracking tools. Geological
features of interest may include seismic horizons, sequence boundaries such as unconformities,
and faults. While the interpretation of seismic data is essential in order to accumulate knowledge

and build an understanding of the subsurface, some elements of the interpretation workflow, such
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as the placing of seed points and the manual quality checking of miscorrelations, can be tedious,

subjective and in some cases even trivial.

With increasing computational power, data science continues to evolve and provide new digital
tools applicable to various disciplines, including geoscience and thereby seismic interpretation.
Most of these tools are based on open-source signal processing, image processing and machine
learning algorithms. By utilizing these digital tools to automate the extraction of information from
seismic images, we hope to accumulate knowledge and build a subsurface understanding faster
and better. However, in order to move towards more data-driven and digitalized seismic
interpretation, there is a need to both understand these digital tools, how to adapt them for

geophysical data, and how to integrate them with existing geophysical workflows.
1.2 Objective and scope

This thesis investigates aspects of automated seismic interpretation. The overall objective has been
to implement digital tools with geological and geophysical knowledge and workflows in order to
automatically extract information from seismic data. To reach this objective, we have developed
new data-driven methods that take advantage of existing methods and algorithms from the fields
of image processing, signal processing and machine learning. In order to address a broad range of

key elements of the seismic interpretation workflow, the thesis work has included:

(1) Semi-automatic extraction of individual faults and unconformities from 3D seismic data
using image processing tools (Paper I)

(2) Automatic correlation and extraction of seismic multi-horizons from 3D seismic data using
non-local pattern recognition for trace matching (Paper II)

(3) Data-driven identification of stratigraphic units in 3D seismic data using unsupervised
machine learning (Paper I1I)

(4) Image to image transformation in order to improve seismic images and to extract attribute

information using supervised machine learning (cGAN’s) (Paper IV)

16



Chapter 2. Scientific background

This chapter gives an overview of the scientific background relevant for this thesis. As this thesis
covers a scientific field in very rapid development, important papers have been published during
the course of this Ph.D study. Some of these papers are included in this chapter, while some of the

most recent ones are discussed in the concluding remarks and outlook.

Sub-chapter 2.1, seeks to summarize the evolution of automated seismic interpretation of faults,
unconformities, horizons and stratigraphic sequences. The second sub-chapter, 2.2, discusses the
use of conditional generative adversarial networks for seismic image to image translation and its
implications towards seismic processing and interpretation. Sub-chapter 2.3 summarizes the
geological settings on the Loppa High and the Polhem Sub-Platform in the SW Barents Sea, where

most of our case examples are taken from.
2.1 Automated seismic interpretation

The last decades, substantial effort has been put into trying to automate the seismic interpretive
workflow, e.g. by automatically extracting faults and sequence boundaries or by automatically

tracking seismic horizons.

Automatic identification of sequence boundaries and faults was first introduced with the coherence
cube in 1995 by Bahorich and Farmer (Figure 2). The coherence cube is generated with a
coherence algorithm that obtain similarity measurements of neighboring seismic traces in order to
identify and quantify both stratigraphic and structural discontinuities in seismic data. Today, the
most commonly used coherence algorithms include cross-correlation (Bahorich and Farmer,
1995), eigenstructure (Gerztenkorn and Marfurt, 1999; Chopra, 2002), and semblance (Marfurt et
al., 1998; Hale, 2013). Other geometric attributes, such as curvature (Roberts, 2001) and flexure

(Di and Gao, 2016) have also been suggested as alternatives to the coherence cube.
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Salt

slice (left) and the same time slice from the coherence
cube of the same dataset (right). The coherency cube reveals faults and discontinuities in seismic
volumes without the need for manual seismic interpretation (Bahorich and Farmer, 1995).

Autotracking tools for seismic horizon interpretation have been readily available since the mid
1990’s and a range of different methods exist. Some of the more interesting ones are based on
local reflection slopes (e.g. Bakker, 2002; Lomask et al., 2006), unwrapped instantaneous phase
(e.g. Stark, 2003; 2005; Wu and Zhong, 2012) and dynamic time warping (Wu and Hale, 2016a;
Wu and Fomel, 2018). However, even with autotracking tools, seismic interpretation relies on
some manual effort by an experienced seismic interpreter, such as picking seed points along target
horizons or a prior interpretation of unconformities or faults, in addition to manual quality

checking of miscorrelated seismic reflections.

Lately, methods using machine learning have been proposed to aid seismic interpretation by
highlighting and extracting important information automatically or semi-automatically from the
seismic reflection data. Machine learning, often subdivided into supervised and unsupervised, is a
subset of artificial intelligence that allows computers to learn from experience and make new

predictions on multidimensional data (Figure 3). Supervised machine learning algorithms have
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typically been used in interpretive workflows in order to target specific seismic features. Some
recent publications on supervised seismic interpretation uses convolutional neural networks
(CNN) in order to automate the interpretation of faults (Huang et al., 2017), salt bodies (Waldeland
et al., 2018; Di et al., 2018) and seismic facies (Zhao, 2018). With these supervised machine
learning workflows, good training data are required, and good training data rely on interpretive
experience and prior geological knowledge. Unsupervised learning differs from supervised
learning, most importantly because it does not require manually labelled training data. Instead,
unsupervised machine learning algorithms find patterns in unlabeled datasets. A typical approach
using unsupervised machine learning for automated seismic interpretation is to cluster one or
several appropriate seismic attributes. Interesting publications on unsupervised interpretation
include automated facies recognition (de Matos et al., 2007; Zhao et al., 2015; Qi et al., 2016), and
interpretation of direct hydrocarbon indicators and thin beds causing tuning (Roden et al., 2015;
2017). With unsupervised machine learning, no labels are required, but the approach is sensitive
to the structure of the input data and therefore, the selection of different seismic attributes is the

limiting factor.

Classification

Supervised

Train predictive models from
labelled input data

Regression

Machine learning

Unsupervised ]
Find and group structure in Clusterlng

unlabeled input data

Figure 3: The two main subdivisions of machine learning are supervised and unsupervised
learning. Supervised machine learning is usually used for regression or classification, and
requires labelled input data, while unsupervised machine learning is used for clustering of
unlabeled data.

2.1.1 Unconformities

Unconformities are stratigraphic sequence boundaries that represent changes in a depositional
environment due to an erosional event or a non-depositional hiatus. Erosional events are often

related to uplift, and erosional boundaries are particularly important to interpret in order to
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understand the tectonic movements and the subsequent fill of sedimentary basin. As
unconformities represent geological time gaps in seismic images, they can be complicated to

identify and interpret both manually and with automatic tools.

Since the introduction of the coherence cube (Bahorich and Farmer, 1995), methods proposed for
automated detection of sequence boundaries have typically been based on the principles of
traditional seismic sequence stratigraphy (e.g. Barnes et al., 2000; Hoek et al., 2010; Qayyum et
al., 2017, 2018). Both Barnes (2000) and Hoek et al. (2010) characterized seismic reflection
patterns to generate attributes that highlight angular unconformities and Qayyum et al. (2017,
2018) discussed how one can use semi-automatic Wheeler diagrams (Wheeler, 1958) to detect
unconformities. A recent method on automatic unconformity detection, proposed by Wu and Hale
(2015a) highlights both angular and parallel unconformities from the calculated difference of two

seismic normal structure fields and two structure-tensor fields.
2.1.2 Faults

Faults are discontinuities in the Earth caused by fracturing and displacement of rock volumes. A
variety of existing computational and computer-assisted fault interpretation methods are based on
the identification of fault attributes such as the coherence cube (Figure 2) (Bahorich and Farmer,
1995) or fault likelihood (Figure 4) (Hale, 2013). One example is “Ant tracking”, proposed by
Pedersen et al. (2002, 2003) where virtual ants track discontinuities within a coherence cube.
Torabi et al. (2016) proposed a way of extracting and digitizing manually selected fault segment
coordinates from filtered fault likelihood time slices. Wu and Hale (2016b) defined fault samples
based on measured fault likelihood, dip and strike for each pixel in an input image and then used

these fault samples to construct fault surfaces with a 3D sampling grid.

Besides attribute-based fault identification, supervised machine learning has shown to be a
promising tool for automated fault interpretation Huang et al. (2017) proposed the use of
convolutional neural networks trained to learn fault characteristics and predict faults from
extracted features in a fault likelihood cube. Some more recent contributions to fault detection

using machine learning are included in Chapter 4; Concluding remarks and outlook.
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Figure 4. Fault likelihood computed from fault dips 0, (a) before and (b) after thinning (Hale,
2013b)

2.1.3 Seismic horizons

Extracting key horizons and surfaces from seismic images is an important element of the seismic
interpretation workflow. The state-of-the art seismic horizon interpretation involves manually
selecting seed points along target horizons. However, a range of automated horizon extraction
methods has been introduced as alternatives to the process of manually picking seed points
(Bakker, 2002; Lomask et al., 2006; Stark, 2003, 2005; Wu and Zhong, 2012; Wu and Hale 2015b,
2016a; Wu and Janson, 2017; Wu and Fomel, 2018). Generally, seismic horizons that are truncated
by unconformities or dislocated by faults present difficulties for both manual and automated

horizon interpretation.

Bakker (2002) and Lomask et al. (2006) proposed to estimate local reflection slopes using structure
tensors and then iteratively fit horizon slopes with the local reflection slopes. These local reflection

slopes methods typically track coherent seismic horizons successfully but are sensitive to faults
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and other discontinuities. Additionally, local reflection slope methods often cause a tracked
horizon to jump from peak to trough or vice versa, due to the lack of amplitude or phase
information (Bakker, 2002). Instantaneous phase is commonly used to complement seismic
amplitude information for seismic interpretation (Taner et al., 1979). In 2003, Stark introduced a
method using unwrapped instantaneous phase to generate relative geologic time (RGT) cubes, and
then extracted seismic horizons directly from these RGT cubes. Stark’s method was based on the
assumptions that coherent seismic horizons follow constant instantaneous phase values and that
the unwrapped phase represents relative geologic time in a given seismic volume or image (Stark,
2003, 2005). Wu and Zhong (2012) proposed an extension to Stark’s method by implementing
horizon and unconformity constraints into a 3D unwrapping process. They showed that the
implementation of these constraints significantly improves the reliability of the RGT volume,
assuming that the user has unconformities and reliable horizons or segments of reliable horizons

prior to the unwrapping operation.

Wu and Hale (2016a) introduced a full interpretive workflow to automatically extract horizons
from flattened seismic images (Figure 5). Their workflow included (1) fault identification and
unfaulting of seismic images, (2) unconformity identification, (3) unconformity-constrained image
flattening and (4) horizon extraction from the flattened seismic image (Wu and Hale, 2015a;
2015b; 2016b). Wu and Hale’s (2016a) interpretive workflow addresses many important
challenges in seismic interpretation. However, some of the steps related to their fault processing
and unconformity processing are complex, which may affect the quality of the flattening operation

and in turn, the horizon extraction.
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Figure 5. Two 3D sections of automatically extracted seismic horizons from Wu and Hale (2016).

In 2018, Wu and Fomel proposed to extract horizons by fitting, in least-squares sense, the local
slopes and multi-grid correlations of seismic traces. Here, the local slopes are used to fit smooth
and coherent horizons without structural discontinuities. They calculate the multi-grid correlation
using dynamic time warping (Sakoe and Shiba, 1978), and implement this in order to follow
consistent phases (e.g., zeros, peaks or troughs) and to track horizons that follow dislocations

across faults.
2.1.4 Stratigraphic units

In a typical seismic image, stratigraphic sequences are distinguishable by the different properties
of the seismic reflections such as continuity, amplitude and frequency spacing (Badley, 1975).
These sequences are units of relatively conformable seismic reflections, i.e. time intervals of
similar sedimentation conditions governed by sediment supply and relative sea level, where the
top and base sequence boundaries are defined as unconformities or correlative conformities caused
by change in sediment deposition or non-deposition (Mitchum et al., 1977). Stratigraphic units can
be further divided into packages representing the depositional strata, such as lowstand, highstand
and transgressive system tracts. Hence, stratigraphic units and their boundaries that define a fixed
geological time are key features in understanding the evolution of sedimentary basins (Vail et al.,

1977).
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Automated identification of stratigraphic units often involves some sort of texture attribute, either
alone, to indicate stratigraphic changes, or in combination with unsupervised machine learning. A
typical approach using unsupervised machine learning is to cluster one or several appropriate
seismic attributes (de Matos et al., 2007; Zhao et al., 2015; Qi et al., 2016). Additionally,
supervised machine learning has been suggested to identify stratigraphy, such as a method by Zhao

et al. (2018) that uses a convolutional neural network (CNN) to interpret different seismic facies.
2.2 Seismic image to image translation

In 2017, Isola et al. introduced the use of a conditional generative adversarial network (cGAN) to
perform image to image translation to change the style of an image (such as to colorize grayscale
images) or to transform real photographs to artistic images. Generative adversarial network
(GAN’s) was proposed by Goodfellow et al. (2014) and consists of two trained models, a generator
and a discriminator. The generator is trained to produce output data, while the discriminator is
trained to evaluate if the output data produced by the generator is “real” reference data or “fake”
generated data. As for all neural networks, GAN’s have a loss function that measures the
inconsistency between predicted and actual data, and that optimizes the network parameters.
Whereas this loss function must be carefully decided when working with more traditional
convolutional neural networks, it is automatically computed for GAN’s. Therefore, GAN’s are
more generic and can be used to solve a range of image classification problems. Whereas as GAN’s
learn a mapping from random noise vector z to output data y, G: z — y, conditional GAN’s
(cGAN’s) condition the generator and/or the discriminator using additional information. This way
the cGAN’s learn a conditional generative model to map from an observed data x and random

noise vector z, to an output data y, G: {x, z} —y.

In the image-to-image translation by Isola et al. (2017), their architectural choice for the generator
is a U-Net-based network, while the discriminator is a convolutional “PatchGAN” classifier. The
U-net architecture, proposed by Ronneberger et al. (2015), is illustrated with Figure 6. This
network has 23 convolutional layers and consists of a contracting path (left side) and an expansive
path (right side). The expansive path is close to symmetric to the contracting path, which gives the
network its u-shaped architecture. Compared to more traditional CNN’s, the U-Net has proven to

be successful even with less data to train on (Ronneberger et al., 2015).
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Figure 6. The U-Net architecture is named by the (almost) symmetrical contracting part (left) and
expensive path (right). The green and blue arrows illustrate the 23 convolutions in the U-Net
(Ronneberger et al., 2015)

The advances in machine learning open for faster and more generic workflows related to seismic
processing and seismic interpretation. , Some recent publications on GAN’s or cGAN’s for seismic
image to image translations include generalized seismic forward and inverse modeling (Mosser et
al. 2019), translation from sketches to synthetic seismic images (Ferreira, 2019), low-quality
migrated image to high-quality migrated image (Picetti et al., 2018) and migrated image to
deconvolved reflectivity image (Picetti et al., 2018).

2.3 Geological settings of the datasets studied

In this thesis, we present generic methods for automated seismic interpretation applied on a range
of datasets. The geological settings of these seismic datasets are still important as they allow us to
evaluate and explain our results. Most of the datasets we have used are provided by Lundin Norway
AS and cover areas in the SW Barents Sea north of Norway, near the Loppa High and the Polhem

Subplatform. These areas have commercial interest as they contain the Alta, Gotha and Filicudi
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discoveries by Lundin Norway AS and the Johan Castberg discovery by Equinor ASA. Figure 7
shows a regional map of the SW Barents Sea annotating the structural elements, such as the Loppa

High and the Polhem Subplatform.

) AT

Figure 7. Regional map of the SW Barents Sea north of Norway, where the color bar indicates the
depth of the Base Cretaceous Unconformity in TWT. The map shows structural elements such as
the Loppa High and the Polhem Subplatform.

The SW Barents Sea has a complex geology with sedimentary packages ranging in age from Late
Paleozoic to present and a history of crustal thinning through several rift phases that contributed
to a series of rifting, subsidence, tilting, uplift, erosion and inversion events (Faleide et al., 1993;
Breivik et al., 1998; Glerstad-Clark et al., 2010). These rift-phases have led to the formation of the
basins and highs in the Barents Sea, such as the Loppa High (Gabrielsen et al., 1990, 1993; Faleide
et al. 1993; Gudlaugsson et al., 1998; Glerstad-Clark et al., 2010).

The Loppa High was, prior to its inversion in the Early Cretaceous (Indrever et al., 2017), a
Mesozoic sedimentary depocenter with a strong sedimentary influx and accumulation of
prograding deltaic wedges providing thick, mainly Triassic, successions across the area (Glerstad-

Clark et al., 2010, 2011). Subsequent tectonic activity caused the Mesozoic strata to experience
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normal faulting and fault block rotation in the Jurassic (Gabrielsen et al., 1990, 1993; Faleide et
al., 1993). During Early Cretaceous uplift, the Loppa High became subaerially exposed and
subjected to erosion (Wood et al. 1989; Faleide et al. 1993; Glerstad-Clark et al., 2010). As a
consequence of the Early Cretaceous uplift, Jurassic and Cretaceous sedimentary beds are eroded
and thin or absent on the Loppa High, while they thicken into the deeper basins surrounding it.
The Cenozoic strata on the Loppa High include a thin layer of Quaternary glacial sediments, while

Paleogene strata accumulated in the basins surrounding the high (Fiedler and Faleide, 1996).

The Polhem Subplatform is separated from the Loppa High by the Jason Fault Complex which
defines the western flank of the Selis ridge, a late Paleozoic structure (Glerstad-Clark et al., 2011).
Southwest of the Polhem Subplatform, the Ringvassey-Loppa Fault Complex defines the transition
into the Tromse Basin (Gabrielsen et al., 1990), while the Bjerngyrenna Fault Complex bounds
the subplatform towards the Bjorneya Basin in the northwest. The major faults on the Polhem
Subplatform are in general extensional faults of Jurassic to early Cretaceous age, following the
trends of the Polhem Subplatform boundary faults; the N-S trending Jason Fault Complex in the
east, and the NW-SE trending Ringvassegy-Loppa Fault Complex in the west (Gabrielsen et al.,
1993; Faleide et al., 1993; Glerstad-Clark et al., 2011). The N-S trend is believed to have been
formed in Permian, and re-activated later in Mesozoic, and it continues north of the Polhem
Subplatform along the eastern boundary fault of the Bjorngya Basin and the western boundary

fault of the Fingerdjupet Basin (Serck et al., 2017).

Figure 8 illustrates a 2D seismic image across the Loppa High where the stratigraphic sequences
are manually outlined with different colors. Two major unconformities, annotated with black lines,
are interpreted to be the Upper Regional Unconformity (URU) and the Base Cretaceous
Unconformity (BCU).
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Figure 8. Manually outlined stratigraphic sequences superimposed onto a 2D seismic image of
the Loppa High in the SW Barents Sea, north of Norway. Major unconformities are annotated with
black lines, while the stratigraphic sequences are illustrated with unique colors.

The Base Cretaceous Unconformity (BCU) separates Paleocegne sediments from underlying pre-
Cretaceous, Mesozoic sediments. The BCU is associated with several phases of uplift and erosion
and is in many places a composite unconformity of the Base Cretaceous unconformity and the
Base Paleocene unconformity. The upper regional unconformity (URU) developed in Quarternary
time when glaciers eroded the Norwegian shelf. It is believed to have eroded 500-1000 m of section
off the area around the Loppa High. Today the URU separates glacially derived Quarternary
sediments from underlying pre-glacial Paleocene sediments deposited during the time the Atlantic

Ocean opened between Norway and Greenland (Fiedler and Faleide, 1996; Dimakis et al., 1998).
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Chapter 3. Summary and implications of papers

This chapter presents a summary of the papers this thesis consists of; two published peer-reviewed
journal papers, one submitted, and one manuscript prepared for submission. In all of these, A. J.
Bugge is the first author. The peer-reviewed journal papers and the submitted manuscripts are

included in Chapter 6.
3.1 Paper 1

The first paper covered in this thesis presents semi-automatic seismic interpretation based on
image processing tools. The semi-automatic interpretation is presented through two independent
methods, one on the identification and extraction of 3D unconformities, and one on 3D fault
extraction and individualization. The proposed methods are implemented with a case-study on the
well imaged Polhem Subplatform in the SW Barents Sea. The Polhem Subplatform has a complex
structural geology with normal faults reactivated through several rift phases, and two major
unconformities, the Upper Regional Unconformity and the Base Cretaceous Unconformity, which

in some places is a composite unconformity with the Base Paleocene Unconformity.
3.1.1 Data

The conventional 8-80 Hz PSTM seismic data used in this case study covers most of the Polhem
Subplatform covering approximately 120 km? with bin size 25 meters, and a (studied) record
length of 3,5 seconds TWT. Two seismic attributes were extracted from the dataset. The attribute
data included global 2D autotracked reflection data and fault likelihood data (Hale, 2013). The
global 2D autotracked reflection data represent coherent seismic reflective interfaces and was

generated with a seedless algorithm proprietary to Lundin Norway AS.
3.1.2 Summary

In this paper, unconformities were semi-automatically identified based on the assumption that the
stratigraphic stacking patterns and the seismic amplitudes above and below an unconformity are
significantly different. Instead of generating new attributes to highlight the unconformities (e.g.
Barnes et al., 2000; Wu and Hale, 2015a; Qi et al., 2017), we used combined information from the

available attribute data to extract detected unconformities as individual binary 3D surfaces.
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To define a stacking pattern, reflections with similar orientation with a close distance to each other
were grouped together. Next, Sobel edge-detection was applied on the seismic data in order to
detect changes in the seismic amplitudes. Then, each stratigraphic stacking pattern was combined
with the edge detection data to define one seismic sequence, meaning that one defined sequence
had a stacking pattern and seismic amplitudes that in general differed from the sequences
surrounding it. Finally, its top or base boundary was extracted and stored in a binary 3D matrix,
assumed to represent an unconformity. Figure 9 shows 2D and 3D views of the Polhem
Subplatform, where the proposed method has identified and extracted three surfaces; the seabed,

the Upper Regional unconformity (URU) and the Base Cretaceous unconformity (BCU).

Figure 9. The figure shows a 2D and 3D view of three detected unconformities on the Polhem
subplatform. In (b), each unconformity ha been exported to Petrel as individual ascii-files.

To separate and extract faults, we assumed that each fault surface could be targeted as a 3D object
in a binary representation of the fault likelihood cube (Hale, 2013). Prior to this, intersecting faults
were addressed using morphological filter operations and assigning the objects to different dip
cubes. Objects that met a set of user-defined filter criteria related to fault size were extracted from
each of the dip cubes. The separation of intersecting faults involved a series of 2D and 3D
processing steps where the first step was to remove branch points within the cube. A branch point
was defined where a pixel connected to 3-or-more neighboring pixels and the operation required
infinitely thinned faults in time slice view. Next, objects were separated into dip cubes, where the

measured dip of one assumed fault was defined as the measured 2D orientation of the main axis
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of each object on a seismic line in relation to the x-axis of the line. The new dip cubes then
consisted of 3D objects dipping in similar direction and assumed fault surfaces were extracted

individually from each dip cube (Figure 10).
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Figure 10. This figure shows (a) a 2D line of the Fault likelihood attribute superimposed onto the

seismic data covering the Polhem Subplatform, (b) a 2D line of the semi-automatically extracted
3D faults after application of the method proposed in this paper, and (c) a 3D view of three large
faults extracted and exported to Petrel.

3.2 Paper 11

In this paper, we present a data-driven three-dimensional method to automatically correlate, track
and extract seismic horizons from seismic volumes. The method uses non-local dynamic time
warping to simultaneously correlate multiple seismic events. Because the method does not require
manually picked seed points or prior structural restoration, it does not rely on interpretive
experience or geological knowledge. With different case examples, the proposed method was used
to extract seismic horizons from real 3D seismic volumes containing well imaged but complex

structures such as heavily faulted successions and rotated fault blocks.
3.2.1 Data

The case examples included in this paper are (1) Triassic successions on the Loppa High with large
Jurassic normal faults, (2) Rotated fault blocks on the Polhem Sub-platform and (3) a subset from
the open-source data Netherlands F3 with salt intrusions and a few major faults. The Loppa High
3D seismic data are PSTM TopSeis™ data from the first ever marine source-over-cable acquisition
(Lie et al., 2018) with bandwidth 4-110 Hz. The Polhem data are conventional 8-80 Hz PSTM
seismic data. The Netherlands F3 data from the North Sea offshore Netherlands are provided by
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dGB Earth Sciences B.V. through OpendTect. The subset used in this paper covers a vertical range
from 0.8 to 1.8 s.

3.2.2 Summary

Dislocated and truncated horizons in seismic images cause difficulties for both manual and
automatic interpretation. The method proposed in this paper correlates seismic horizons across
discontinuities and does not require user input in the form of seed points or prior identification of
faults. Furthermore, the method is robust towards amplitude changes along a seismic horizon and

does not change polarity from peak to trough or vice versa.

To extract horizons from 3D seismic images, we set up a grid of seismic traces, and use a large
sliding window to iteratively match every pair of the gridded traces at all window locations. The
grid step and the window size are key parameters for this operation, and it is crucial to ensure that
enough traces are represented on each side of a discontinuity within a window for optimal
correlation of displaced horizons. The sliding window matches full-length seismic traces using
non-local dynamic time warping to extract grids of correlated points for target horizons. We can

correlate horizon grids for any number of target horizons simultaneously. (Figure 11).

Time (samples)

Figure 11. The figure illustrates two reflector events, annotated with red and blue dots,
superimposed onto a small offset faulted seismic image. The reflectors are correlated using
dynamic time warping.

Since the sliding window iteratively matches seismic traces, each trace will be re-visited multiple

times and this iterative process may produce several possible locations for a reflective event in the

correlated grids. We exploit this iterative process to record an uncertainty measure for each grid
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point and to keep the most accurate correlations and discard less-accurate ones. The accuracy
measurement is a calculated relationship between how many times a trace is re-visited and how

many of these re-visitations provide the same location for a point along a target horizon.

Each horizon grid is interpolated using a linear interpolation approach (curve fitting) between
neighboring correlated points, where an implemented phase constraint only allows interpolation
when the unwrapped phase values are continuous. This results in interpolation along coherent
segments of the horizons, where the reflective event consistently follows a peak or trough, and no
interpolation across faults or other disruptions in the seismic image (Figure 12). The
implementation of this constraint will therefore discard potential outliers in the correlated horizon

grid.
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Figure 12. The figure shows inline and crossline views for one correlated target horizon in a
heavily faulted seismic image from the SW Barents Sea before (a, b) and after (c, d) interpolation.
The color bars in (a) and (b) illustrate correlation accuracy.
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3.3 Paper III

Paper 111 presents a data-driven method for first-order identification of major stratigraphic units in
3D seismic images. With this method we introduce a new 3D texture descriptor for seismic data
and a new way of computing feature vectors that describe seismic stratigraphy for given seismic
sub-volumes. The motivation behind this work was to automate different interpretation and
processing tasks, such as to constrain horizon tracking for better automated correlation of seismic

horizons and to roughly outline structure in initial models for seismic inversion.
3.3.1 Data

The proposed method is applied on modern broadband 3D seismic data covering the Loppa High,
where the stratigraphy includes Caledonian basement rocks and sedimentary packages from Late
Paleozoic to present. The Loppa High data are 4-110 Hz PSTM TopSeis™ data (Lie et al., 2018)
that covers 1000 inlines and 400 crosslines laterally and 3 seconds TWT vertically. In order to
illustrate robustness of the method, we also tested it on another 3D PSDM dataset over the Utsira

High in the North Sea.
3.3.2 Summary

To automatically identify stratigraphic units, we assume that seismic sequences honor a layer-cake
model of the earth with layers that can be discriminated by their differences in seismic amplitudes
and texture. First, we compute feature vectors that represent the amplitudes, texture and depth for
given 3D sub-cubes from the seismic data. In order to describe the seismic texture, a new texture
descriptor that quantifies a 3D binary pattern around each pixel in the seismic data is proposed.
The feature vectors are then preprocessed and clustered using the HDBSCAN algorithm (Campello
et al., 2013). The HDBSCAN is an unsupervised machine learning algorithm based on the
DBSCAN algorithm proposed by Ester et al. (1996). With the HDBSCAN, a hierarchy of all
possible DBSCAN solutions for all possible cluster density thresholds is constructed, and clusters
are condensed from this hierarchy based on a minimum cluster size. We assume that each
condensed cluster represents one stratigraphic unit with relatively conformable seismic reflections
(Figure 13). Filling of holes and removal of small mis-labelled and mis-placed patches is done

with binary morphological operations by removal of objects that are significantly smaller than the
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connected identified clusters. The assumed boundaries are smoothed with a Savitzky-Golay filter;
a digital low-pass filter that increases signal to noise ratio without distorting the original signal too

much.

Figure 13. The figure shows a seismic cube (a), final identified stratigraphic units using the
proposed method in this paper, and (c) the ldentified units superimposed onto the input seismic
cube.

With a prior identification of stratigraphic units, we perform constrained automatic horizon
tracking within targeted seismic units (Figure 14). Each target unit is constrained using the upper
and lower boundary of the identified unit, and in order to correlate seismic horizons we use the

non-local dynamic time warping approach described in Paper II.

Identified stratigraphic units

Constrained horizon tracking

|

Figure 14. The figure shows automatically correlated seismic horizons within a constrained
seismic unit. The constrained unit is identified with the method proposed in this paper, and the
seismic horizons are tracked with the approach described in Paper II. The combination of these
methods allows us to automatically interpret seismic horizons in structurally and stratigraphically
complex seismic volumes.

3.4 Paper IV

This paper utilizes the methods proposed in Paper I, Il and III, and introduces the use of conditional
generative adversarial networks (cGAN’s) in order to discuss key aspects of an automated seismic

interpretation workflow. These aspects include:
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(1) Seismic quality improvement using a cGAN

(2) Identification and individualization of faults using a cGAN and
image processing.

(3) Identification of stratigraphic units with hierarchical clustering

(4) Horizon tracking using dynamic time warping
3.4.1 Data

The paper presents a range of case examples on a variety of real seismic datasets provided by

Lundin Norway AS in the SW Barents Sea and in the North Sea.
3.4.2 Summary

Here, we use both supervised and unsupervised machine learning, together with image processing
and signal processing to discuss some of the key aspects with automated seismic interpretation.
First, we introduce the use of conditional generative adversarial networks for both seismic image
quality improvement and fault detection. Further, we implement the fault individualization
technique from Paper I, the multi-horizon tracking method from Paper II and the stratigraphic unit
identification from Paper III, and we show how these methods can be combined in order to extract

information on the timing and orientation of faults and to generate wheeler seismic.

Seismic quality is an important limiting factor when interpreting seismic data, and the notion of
improving seismic image-quality can be a time consuming process consisting of many steps and
re-tuning of parameters. Here, we show the use of a modified cGAN in order to automate the
process of improving the seismic quality and reduce the time spent on seismic processing (Figure

15).
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Figure 15. A seismic section before (a) and after (b) image to image translation. Here a cGAN is
trained improve the signal-to-noise ratio. This figure shows a 2D slice from a large 3D seismic
volume from the North Sea. Note how the low frequency near-horizontal multiples crossing the
dipping section are attenuated on the right image

Further, we train a cGAN to translate from seismic images to fault likelihood images and use the
method from Paper I to extract individual 3D fault surfaces from the fault likelihood images. The
method from Paper I also allows us to simultaneously extract information, or filter the faults, based
on specific features related to e.g. orientation or time of last reactivation (Figure 16). This may be
of relevance to the interpreter to help understand timing and importance of different tectonic

phases.

w0 18 20
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Figure 16. (a) A 2D view of filtered and individualized 3D faults, (b) faults filtered into two phases
of activity, older (purple) and younger (red), and (c) fault separated into two dip orientations,
positive (red) and negative (blue).

Wheeler seismic is produced by considering interpreted surfaces as snapshots of geologic time
linked with transit cycles of the base level. The base level can be regarded as an ultimate ‘time’
reference for stratigraphic units. Here, we generate wheeler seismic by flattening each identified

stratigraphic sequence on a target horizon within each unit. Figure 17 shows all the identified

37



stratigraphic sequence (a) before flattening, and (b) after flattening to produce wheeler seismic
which illustrates missing sections and time gaps. This operation is an effective way of validating
both the stratigraphic unit identification and the horizon tracker. More importantly, this is a step
towards generating automated wheeler seismic, which can provide important information when

trying to understand the evolution of the subsurface.

M - NO DATA

Figure 17. By automatically identifying stratigraphic units (a), and then performing constrained
horizon tracking within each unit, we can flatten key seismic horizons within each of the identified
units to generate wheeler seismic (b). In (a), each identified sequence is labelled with a letter, and
in (b), we have annotated candidate disconformities and unconformities not detected or not
accurately delineated with our method with dashed red lines.
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Chapter 4. Concluding remarks and Outlook

In this thesis, we have presented data-driven methods towards automated seismic interpretation
through four papers. This chapter presents some concluding remarks related to these papers and

suggestions for further research.
4.1 Concluding remarks

Automated seismic interpretation is a broad topic; In this thesis, we have focused on the
identification and extraction of features from seismic data, such as faults, unconformities, seismic
horizons and discrete stratigraphic sequences. The common objective in Paper I, II, III and IV

was to automate the state-of-the art seismic interpretation workflow.

Paper I introduced semi-automatic methods for extracting unconformities and faults from seismic
data using image processing tools. With the method for unconformity extraction, we identified
noncoherent unconformities on the Polhem Subplatform in the SW Barents Sea. Further, we
individualized, filtered and extracted major normal faults in the same area with our method for
fault extraction. In contrast to other seismic attributes and methods that highlight different seismic
features, the most important outcome of this paper was that the methods we proposed allow for
extraction of unconformities and faults as individual 3D objects. In Paper IV, we used the method
for fault individualization to automatically obtain information of fault timing, orientation and

different tectonic phases.

In Paper II we proposed a 3D data-driven method to correlate and extract seismic horizons across
structurally complex geological settings. This new method uses pattern recognition to correlate
multi-horizons simultaneously, which proved to be robust with regards to horizons dislocated by
faults. Because dislocated horizons can be correlated and tracked without any manually selected
seed points or any prior structural restoration, the proposed method does not rely on interpretive

experience or geological knowledge (provided the seismic image quality is good enough)

Paper III is a continuation of Paper II. In Paper II we showed that the data-driven multi-horizon
tracker benefitted from the implementation of stratigraphic constraints, specifically when

constraining the horizon tracker within relatively conformable stratigraphic units. Therefore, in

39



Paper I1I, we proposed a method to automatically identify major first-order stratigraphic units in
3D seismic data. This is a composite method consisting of several steps, where we (1) introduce a
new 3D texture attribute, (2) compute feature vectors that describe the seismic texture, amplitudes
and two-way travel time, and (3) structure and group these feature vectors into assumed
stratigraphic units using unsupervised machine learning. A limitation with this method is that,
while it does identify major stratigraphic units, it does not (yet) accurately delineate the actual

sequence boundaries that separate them.

Paper IV discusses elements and consequences of data-driven seismic interpretation, both through
utilization of the methods proposed in Paper L, II and III, and by introducing the use of conditional
generative adversarial networks for seismic image quality improvement (e.g. multiple removal)
and fault attribute generation. Further, Paper IV uses these methods to automatically extract
information on fault timing and fault orientation, as well as to generate wheeler seismic. These are
steps towards an automated interpretive workflow where, ideally, the interpreter is given more

time to analyze and interpret, without having to first manually map and extract data.

4.2 Outlook

Chapter 2 discussed the scientific background relevant for the research presented in this thesis.
However, there has been a rapid evolution in automated seismic interpretation occurring in parallel
to our work, particularly with the use of machine learning. Consequently, both research papers and
commercial products for automated seismic interpretation have been introduced and developed
since the initiation of this Ph.D study. Among the seismic features that we cover in this thesis, fault
interpretation has showed particularly successful results using machine learning. Typically, these
new fault identification methods use supervised machine learning trained either on manually
interpreted faults or on synthetic seismic data. Several of these show that when trained on a
significant amount of data, the networks are able to successfully identify faults in new unseen
datasets more successfully than state-of-the art fault attributes (Huang et al., 2017; Di et al., 2018;
Guitton, 2018; Guo et al., 2018; Larsen et al., 2018, Zhao and Mukhopadhyay, 2018; Wu et al.,
2018, and Wu et al., 2019). The most recent method for fault identification provided by Wu et al.
(2019) (FaultSeg3D) uses an end-to-end CNN to detect faults from 3D seismic images. With a
simplified U-net architecture (Ronneberger et al., 2015), they train on 3D synthetic seismic images
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and corresponding labelled fault images. Although trained on synthetic data, the network

successfully identifies faults in unseen seismic volumes.

Based on the results from this Ph.D. research, we present suggestions for further work to optimize

the methods developed in this thesis:

To further improve the fault individualization introduced in Paper I, we suggest combining
this method with more recent advances in fault identification (e.g. the FaultSeg3D
proposed by Wu et al., 2019). In Paper I, we showed individualization and extraction of
3D fault surfaces from a fault likelihood attribute (Hale, 2013). Since this, new machine
learning-based methods for fault identification have proved more successful than state-of-
the art fault attributes (Guo et al., 2018; Zhao and Mukhopadhyay, 2018; Wu et al., 2018,
Larsen et al., 2018 and Wu et al., 2019). However, even with the recent advances in fault
identification, few new attempts have yet been made in order to extract individual fault

surfaces and this opens for new research potential.

To optimize the correlative multi-horizon tracker presented in Paper II, we suggest that
an automatically adaptive window size can be implemented by constraining the horizon
tracker to both identified (as in Paper III) and cl/assified stratigraphic units. The horizon
tracker from Paper II showed robustness towards faults and discontinuities, however, this
required a large window size for the sliding window. With a large window size, the
computing time increases, especially if the window is not vertically constrained. We
suggest further work on this method that involves an adaptive window size that can
automatically decrease in areas with flat or dipping non-faulted reflectors and increase
when the structural complexity increases. With this implementation, we also suggest that
the window size should be decreased, particularly when horizons are correlated in non-
faulted prograding stratigraphy if the number of reflectors changes rapid laterally. An
alternative to an adaptive window size could be to dynamically re-sample the seismic data

or the seismic unit to fit the window size.

In Paper IV, we combine information from automatically extracted seismic features to

generate wheeler volumes and to structure information on fault timing and fault orientation.
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We hope that this work is considered a step towards an automated dynamic tectono-
stratigraphic seismic restoration. Whereas traditional seismic reconstruction uses manually
interpreted reference horizons and faults, we propose to implement our methods for 3D
horizon correlation (Paper II) and 3D fault extraction and individualization (Paper I) to
speed up and automate this process. It is also likely that our method for identification of
stratigraphic units (Paper III) could be implemented in this process. As our methods
allows for 3D extraction of faults, horizons and stratigraphic units, they can be used in a

3D structural restoration.

The recent advances in automated seismic interpretation indicate that there is a huge potential in
the integration of data science and geoscience. As the industry continues to focus on the
implementation of digital tools into geophysical workflows, we will continue to see a range of new
Al-driven solutions for seismic interpretation. Particularly U-Net’s and GAN’s have proven to be
very efficient machine learning tools for seismic interpretation with high success rates even when
trained on limited training data. With an extensive focus on faults the last few years, we hope to
see more focus on supervised machine learning for automatic interpretation of other seismic
features as well, such as seismic horizons, unconformities and stratigraphic sequence patterns such

as onlaps, downlaps and truncations.
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A case study on semiautomatic seismic interpretation of unconformities
and faults in the southwestern Barents Sea

Aina J. Bugge', Stuart R. Clark?, Jan E. Lie®, and Jan |. Faleide*

Abstract

Recently, there has been a growing interest in automatic and semiautomatic seismic interpretation, and we
have developed methods for extraction of 3D unconformities and faults from seismic data as alternatives to
conventional and time-consuming manual interpretation. Our methods can be used separately or together,
and they are time efficient and based on easily available 2D and 3D image-processing algorithms, such as mor-
phological operations and image region property operations. The method for extraction of unconformities de-
fines seismic sequences, based on their stratigraphic stacking patterns and seismic amplitudes, and extracts
the boundaries between these sequences. The fault-extraction method extracts connected components from
a coherence-based fault-likelihood cube where interfering objects are addressed prior to the extraction. We
have used industry-based data acquired in a complex geological area and implemented our methods with a
case study on the Polhem Subplatform, located in the southwestern Barents Sea north of Norway. For this
case study, our methods result in the extraction of two unconformities and twenty-five faults. The unconform-
ities are assumed to be the Base Pleistocene, which separates preglacial and postglacial Cenozoic sediments,
and the Base Cretaceous, which separates the severely faulted Mesozoic strata from prograding Paleocene
deposits. The faults are assumed to be mainly Jurassic normal faults, and they follow the trends of the eastern
and southwestern boundaries of the Polhem Subplatform; the north-south-trending Jason Fault complex; and
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the northwest—southeast-trending Ringvassgy-Loppa Fault complex.

Introduction

Unconformities and faults are considered key fea-
tures in understanding the evolution of sedimentary
basins. Unconformities are stratigraphic sequence
boundaries that typically represent changes in a depo-
sitional environment due to an erosional event or non-
depositional hiatus, whereas faults are discontinuities
in the earth caused by brittle fracturing and displace-
ment of rock volumes. Interpreting these features
and building a geological model can be time consuming,
and a variety of computational and computer-assisted
interpretative methods have been developed to speed
up the interpretive process. Some of the more interest-
ing methods proposed include fully automated interpre-
tation (e.g., Bahorich and Farmer, 1995; Wu and Hale,
2015, 2016; Huang et al., 2017).

Automatic identification of sequence boundaries and
faults was introduced by Bahorich and Farmer (1995)
with the coherence cube. The coherence cube is gener-
ated with an algorithm that obtains measurements of a
multitrace relationship based on the similarity of neigh-

boring seismic signals to identify and quantify disconti-
nuities in seismic data. Today, the most commonly used
coherence algorithms are based on crosscorrelation
(Bahorich and Farmer, 1995), eigenstructure (Gerszten-
korn and Marfurt, 1999; Chopra, 2002), and semblance
(Marfurt et al., 1998; Hale, 2013). Qi et al. (2017)
propose a seismic image skeletonization algorithm to
sharpen locally planar features, such as faults and
stratigraphic edges, and improve the quality of coher-
ence attributes. Additionally, seismic geometric attrib-
utes, e.g., curvature (Roberts, 2001) and flexure (Di and
Gao, 2016), have been suggested as alternatives to the
coherence cube.

Since the introduction of the coherence cube (Bahor-
ich and Farmer, 1995), proposed methods for automated
detection of sequence boundaries have typically been
based on the principles of traditional seismic sequence
stratigraphy (e.g., Barnes, 2000; Hoek et al., 2010,
Qayyum et al., 2017, 2018). Barnes (2000) and Hoek et al.
(2010) exploit the characterization of seismic reflection
patterns to generate attributes that highlight angular
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unconformities, and Qayyum et al. (2017, 2018) discuss
how one can use semiautomatic Wheeler diagrams to de-
tect unconformities (Wheeler, 1958). Among the most re-
cent work on automatic unconformity, detection is a
method proposed by Wu and Hale (2015) that highlights
angular and parallel unconformities from the calculated
difference of two seismic normal structure fields and two
structure-tensor fields.

Numerous methods on automated interpretation
of faults have been proposed in the last decades, and
“ant tracking,” where virtual ants track discontinuities
within a coherence cube, was among the first (Pedersen
et al., 2002, 2003). Recently, Araya-Polo et al. (2017)
propose a deep-learning system to map out a subsur-
face fault network for raw (synthetic) seismic record-
ings, where the need for seismic processing is
bypassed. More generally, existing methods for auto-
matic fault interpretation are based on the use of coher-
ence data, and Hale’s (2013) fault-likelihood attribute,
generated with a semblance-based coherence algorithm
is frequently used (such as that by Torabi et al., 2016;
Wu and Hale, 2016; Huang et al., 2017; Lomask et al.,
2017). Torabi et al. (2016) propose a way of extracting
and digitizing manually selected fault-segment coordi-
nates from filtered fault-likelihood time slices. Lomask
et al. (2017) use the fault-likelihood attribute to better
constrain fracture models between wells, and with this
suggest a way to automatically track and extract faults.
Huang et al. (2017) introduce the use of convolutional
neural networks trained to learn fault characteristics
and predict faults from extracted features in a fault-
likelihood cube. Wu and Hale (2016) define fault
samples based on measured fault likelihood, dip, and
strike for each pixel in an input image, and then they
use these fault samples to construct fault surfaces with
a 3D sampling grid. They address the problem of inter-
secting faults as their sampling grid searches for neigh-
boring samples and create new ones if they are missing
in the directions best aligned with the local dip and
strike.

In this paper, unconformities are semiautomatically
identified on the assumption that the stratigraphic
stacking pattern and the seismic amplitudes above and
below an unconformity are significantly different. This
assumption limits the method to detect only angular
unconformities and nonconformities. Instead of gener-
ating new attributes to highlight the unconformities (as,
e.g., Barnes, 2000; Wu and Hale, 2015; Qi et al., 2017),
we use combined information from available data (origi-
nal seismic reflection data and global 2D autotracked
reflection data) to extract detected unconformities as
individual binary 3D surfaces. For our fault extraction,
we use a binary representation of fault-likelihood data
(Hale, 2013). Whereas existing methods typically grow
fault surfaces from defined fault samples (Torabi et al.,
2016) or fault pixels (Wu and Hale, 2016), we assume that
each fault surface can be represented as one binary 3D
object. We separate intersecting objects with the use of
morphological filter operations and by assigning the
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objects to different dip cubes prior to the actual fault ex-
traction. Finally, objects that meet a set of user-defined
filter criterions, related to fault size, are extracted from
each of the dip cubes.

All of our extracted unconformities and faults are
stored in separate 3D matrices (ASCII format), and they
can easily be exported to different seismic software
platforms. Here, we export them to a commercial soft-
ware platform to demonstrate the use of our methods
in a case study. With this work, we aim to show how
unconformities and faults can be extracted from seis-
mic data semiautomatically with relatively basic image
processing tools and, further, to show how this can be
used to aid, supplement, or even avoid manual seismic
interpretation. Our focus is on the application of the
methods, and we have applied them on industry-based
data in a well-studied area; the Polhem Subplatform
in the southwestern Barents Sea north of Norway (Fig-
ure 1). The Polhem Subplatform developed through
several stages of rifting, inversion, and subsidence in-
terrupted by erosional events, and it is today situated
on the western margin of the Loppa High (Gabrielsen
et al., 1990). The area has commercial interest because
it contains the Alta, Gotha, and Filicudi discoveries by
Lundin Norway AS and the Johan Castberg discovery
by Statoil ASA, and its complex geology makes it suit-
able for evaluation of our methods.

Data

Lundin Norway AS has provided 3D seismic data and
associated attribute data for this study. Seismic attrib-
utes are derivatives of the original seismic data and can
be used to highlight specific features such as disconti-
nuities (Bahorich and Farmer, 1995), thin beds (Roden
et al., 2017), or direct hydrocarbon identifiers (Roden
et al.; 2015). The attribute data used in this paper in-
clude global 2D autotracked reflection data and fault-
likelihood data. The global 2D autotracked reflection
data, from here on referred to as tracked reflection
data, represent coherent seismic reflective interfaces
and are generated with a seedless algorithm proprietary
to Lundin Norway AS. This algorithm is completely au-
tomatic, and it tracks all reflective events, peaks, and
troughs, on all vertical slices (inlines or crosslines) in a
seismic cube. The fault-likelihood data represent quan-
tified discontinuities based on their tendency to disrupt
seismic data and are generated with a semblance-based
coherence algorithm developed by Hale (2013). The
seismic data are acquired in the Barents Sea north of
Norway and cover most of the Polhem Subplatform,
with a lateral size of approximately 120 km? and a ver-
tical depth of 3, 5 s.

Geological framework of the study area

The Polhem Subplatform sits on the western flank of
the Loppa High in the southwestern Barents Sea on the
Norwegian continental shelf (Figure 2). The western
Barents Sea constitutes a 300 km wide rift zone, thought
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to have been formed mainly in the mid-Carboniferous
(Gudlaugsson et al., 1998).

A general northeastern structural trend in the south-
west Barents Sea has long been explained by a fracture
system in the basement rocks, thought to have been
established during the Caledonian orogeny (Gabrielsen
et al,, 1990, 1993; Ritzmann and Faleide, 2007). This
model proposes a fracture system that influenced the
tectonic phases in post-Caledonian times, with new
stress regimes adapting to the established trend and
reactivating preexisting faults. However, a more recent
publication based on aeromagnetic surveys indicates a
dominant north-northwest/south-southeast orientation
in the basement rocks (Gernigon and Bronner, 2012),
and new deep regional seismic profiles acquired in
2016 makes it possible to interpret deep features and
therefore address the implications of Caledonian thrust
tectonics (Lie et al., 2017).

In the southwestern part of the Barents Sea, the sub-
surface consists of Caledonian metamorphic basement
rocks covered by sedimentary packages ranging in ages
from the Late Paleozoic to the present (Breivik et al.,
1998; Ritzmann and Faleide, 2007; Glgrstad-Clark et al.,
2010). The area has experienced a complex history of

crustal thinning, with four assumed main rift phases; in
Mid Carboniferous, Late Permian, Late Jurassic to Early
Cretaceous, and in Late Cretaceous-Paleocene. The
phases of extension have contributed to a series of rift-
ing, subsidence, tilting, uplift, erosion, and inversion
events, and they have led to the formation of basins
and highs in the Barents Sea, such as the Loppa High
(Gabrielsen et al., 1990, 1993; Gudlaugsson et al., 1998).

The Loppa High was a sedimentary depocenter in the
Triassic to Jurassic that was uplifted during early
Cretaceous rifting and became subaerially exposed
and subjected to erosion (Wood et al., 1989; Faleide
et al., 1993; Glgrstad-Clark et al., 2010). A recent study
on inversion structures in the southwest Barents Sea by
Indrevaer et al. (2016) suggests that the initiation of
uplift of the Loppa High can be dated to Barremian
time. As a consequence of the Early Cretaceous uplift,
Jurassic and Cretaceous sedimentary beds are eroded
and thin to not present on the Loppa High, whereas they
thicken into the deeper basins surrounding it. The
Cenozoic strata on Loppa include a thin layer of Neo-
gene glacial sediments, whereas Paleogene strata only
can be found in the basins surrounding the high (Fiedler
and Faleide, 1996).

NPD Classifications
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Figure 1. Map of the regional structures in the southwestern Barents Sea, north of Norway. The study area is annotated with a red
square and covers parts of the Polhem Subplatform at the left flank of the Loppa High. The map includes topography by NOAA and
geological classification by NPD, as well as Norway’s northern coastline and the city of Hammerfest.
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The Polhem Subplatform is separated from Loppa by
the Jason Fault complex, which defines the western flank
of the Selis ridge, a Late Paleozoic structure (Glgrstad-
Clark et al, 2011a). Southwest of Polhem, the Ring-
vassgy-Loppa Faults complex defines the transition into
the Tromsg Basin (Gabrielsen et al., 1990). The major
faults on the Polhem Subplatform are in general exten-
sional faults of Jurassic to Early Cretaceous age (Gabri-
elsen et al., 1993).

Semiautomatic seismic feature extraction

We present two independent methods for semiauto-
matic extraction of unconformities and faults from seis-
mic data in this paper. As stated in the “Introduction”
section, automatic detection and extraction of uncon-
formities and faults usually require different approaches,
with Bahorich and Farmer's (1995) coherence cube
being an exception. Both methods use commonly known
image processing functions such as morphological
operations and filter operations for image region proper-
ties, and all processing has been executed in MATLAB
with use of the Image Processing Toolbox. Prior to
processing, the seismic volumes are converted from
SEG-Y format to matrices with the segyMAT library
(Thomas, 2001). Our methods rely on 2D and 3D oper-
ations, where the 2D operations are used on inlines,
crosslines, and/or time slices, and the 3D operations
are used on seismic volumes.

Tromse Basin

A Polhem

Unconformity extraction

Unconformities represent time gaps, and they can usu-
ally be recognized by dating or by using Hutton’s princi-
ple. Here, we semiautomatically detect and extract un-
conformities from seismic data based on the assumption
that they separate sequences of significantly different
stacking patterns and brightness in the seismic ampli-
tudes. Unconformities that do not separate significantly
different sequences, such as paraunconformities or dis-
conformities, will not be detected with this method.

To define different stacking patterns, each reflection
(in the tracked reflection data) is treated as one binary
object with a measured orientation and with measured
distances to its neighbor objects. The orientation is
measured on 2D seismic lines as the angle between
the main axis of the reflection and the x-axis of the seis-
mic line. Distances are measured as the smallest dis-
tance between two reflections on a seismic line in
number of pixels. Reflections with similar orientation
and within a close distance to each other are grouped
and assigned to the same stacking pattern (Figure 3).
This process is semiautomatic because the user defines
how large the distance between reflections in the same
pattern can be and the range of orientations for each
pattern. Thus, the user controls the number of stacking
patterns, and prior knowledge of the sequence stratig-
raphy in the given area is helpful, but not required as the
computational efficiency of the method allows the user
to test and reset parameters for optimal results.

Loppa High

* ' Subplatform

" Ringvassoy-Loppa oW i
M - Fault Complex tltorl (e, i

Figure 2. A manually interpreted seismic line of the Polhem Subplatform with the Loppa High to the northeast and the Tromsg Basin
to the southwest. The figure is modified from Glgrstad-Clark et al. (2011b). Megasequences are given distinct colors, and some
important sequence boundaries are annotated: BP, Base Pleistocene; BE, Base Eocene; BT, Base Triassic; BPa, Base Paleocene;
and BCU, Base Cretaceous Unconformity. The Base Paleocene and the Base Cretaceous merge together on Polhem and Loppa.
The Ringvassgy-Loppa Fault Complex and the Jason Fault Complex are the boundary faults of the Polhem Subplatform.
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To detect changes in the seismic ampli-
tudes, we have applied a Sobel edge-de-
tection algorithm on the original seismic
data. Edge detection is an intensity-based
image analysis that computes an approxi-
mation of the gradient of the image inten-
sity function, and it is generally used
to find sharp changes in brightness in dig-
ital images. When applied to seismic data,
the edge detection highlights edges be-
tween reflections that show significant
amplitude differences, and (more impor-
tantly for us) indicate transitions between
high- and low-intensity regions in the seis-
mic data (Figure 4).

Each stratigraphic stacking pattern is
combined with the edge-detection data to
define one seismic sequence. One se-
quence will thus have a stacking pattern
and seismic amplitudes that in general
differ from those of the sequences sur-
rounding it. Further, its top or base boun-
dary is extracted and stored in a binary
3D matrix, assumed to represent one
unconformity (Figure 5). The method in-
volves 2D processing of 3D data and is
applied in the inline and crossline direc-
tions. For robust results, only intersect-
ing results from the inline and crossline
processings should be kept.

Fault extraction

With our method for semiautomatic
fault extraction, we assume that each
fault surface can be targeted as a 3D ob-
ject in a binary representation of the
fault-likelihood cube (Hale, 2013). Prior
to this, we address interference within
the cube by separating intersecting
faults through binary image operations.
See Bugge (2016) for a discussion on the
use of binary operations to filter coher-
ence data.

The separation of intersecting faults in-
volves a series of 2D processing steps,
where the first step is to use morphologi-
cal operations to remove branch points
within the cube. A branch point is defined
as where a pixel is connected to three-or-
more neighboring pixels, and the opera-
tion requires a skeletonized input image
(infinitely thinned faults). This process re-
moves too much information when ap-
plied on inlines and crosslines, and it is
thus applied only on time slices here.
Our finally extracted faults will thus be
slightly thinned compared with their origi-
nal shape in the fault-likelihood cube. Be-
cause the branch points are removed

a) b)
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Figure 3. (a) Two-dimensional seismic lines of the tracked reflection data and
(b) the semiautomatically defined stratigraphic stacking patterns. The stacking
patterns are defined based on the orientation of each reflection and the distances
between them. Each pattern is given a distinct color: blue, red, or green.
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Figure 4. (a) Two-dimensional seismic lines of the original seismic data and
(b) adjacent edge-detection data. The edge-detection data are generated with a
Sobel edge-detection algorithm applied on the original seismic data and indicate
changes in the seismic amplitudes.
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Figure 5. Our method on semiautomatic extraction of one unconformity illus-
trated step-by-step on one 2D line. First, one defined stratigraphic stacking pat-
tern is combined with the edge-detection data to create a seismic sequence, and
then all top pixels in the sequence are extracted to give the top boundary. This
boundary is the assumed unconformity.
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solely on time slices, further separation of interfering ob-
Jjects is necessary. We address this by assigning objects to
new empty dip cubes based on their apparent dip in 2D.
This dip is defined as the measured 2D orientation (in de-
grees) of the main axis of each object on a seismic line in
relation to the x-axis of the line. When this is done for all
seismic lines in the fault cube, the new dip cubes will con-
sist of 3D objects with little to no interference because all
objects dip in a similar direction. We chose to use two dip
cubes here because this sufficiently separates intersect-
ing faults and because choosing too many dip cubes
tends to cause major listric faults to break with depth.

Further, each dip cube is processed individually. From
each cube, objects that pass a set of user-defined criteri-
ons are extracted and assumed to represent individual
fault surfaces. The criterions are related to 3D measure-
ments of the volumetric size and longest length of each
object, where size is measured in the number of con-
nected pixels and length is measured as the length of
the object’s principal axis, also in the number of pixels.
The main steps of the fault-extraction method are illus-
trated in Figure 6.

Our method for fault extraction is time efficient and
relatively comprehensible, and the user can change
filter criterions to adapt the method and optimize the
result for different input data and use. The method does
not rely on the initial fault-likelihood values, only a
binary representation of them, and it is likely that we
could have used other, less computationally expensive,
fault attributes than the fault likelihood.

Results

In our case study, we use the presented methods
for feature extraction to semiautomatically interpret
unconformities and faults on the Polhem Subplatform.
This outputs three surfaces (S1-S3) and 25 faults
(F1-F25). Each extracted feature is a 3D binary object
that can be exported to different software platforms for
visualization and for various uses. Figure 7 shows cross
sections of the surfaces and faults on a seismic line, and

in Figure 8, all three surfaces and the three largest faults
are exported to Petrel E&P Software Platform and
visualized in 3D from different views. No smoothing
or filling of holes has been done here, but such tools
(manual and/or automatic) are available in most seis-
mic interpretive software.

The three extracted surfaces, S1-S3, all represent
significant changes in stratigraphic stacking patterns
and in seismic amplitudes. However, only the latter
two are assumed to be unconformities because S1 rep-
resents the seabed. S2 is a near-horizontal and continu-
ous surface, where the over- and underlying sequences
have consistent and significantly different seismic char-
acter within the study area. This surface is assumed to
represent the Base Pleistocene, which was developed in
the Late Neogene when glaciers eroded the Norwegian
shelf, and it separates glacially derived Pliocene to
Pleistocene sediments from underlying preglacial Pale-
ocene sediments deposited during the time the Atlantic
Ocean opened between Norway and Greenland (Fiedler
and Faleide, 1996; Dimakis et al., 1998). The glaciers are
believed to have eroded 500-1000 m in the area around
the Loppa High, and consequently, Paleocene sediments
are not present on the high itself (Wood et al., 1989). They
can, however, be found on the Polhem Subplatform and
in the basins surrounding it, such as in the Tromsg Basin,
where they have A westward dip and an increasing thick-
ness into the center of the basin (Henriksen et al., 2011).

S3 is less continuous and is thought to be the base
Cretaceous unconformity (BCU); the unconformable
sequence boundary that separates Paleocene sediments
from underlying pre-Cretaceous, Mesozoic sediments in
the study area. This unconformity is associated with
several phases of uplift and erosion and is in many pla-
ces a composite unconformity of the BCU and the Base
Paleocene unconformity. The Base Paleocene intersects
the BCU on the transition to the Polhem Subplatform
from the Tromsg Basin (Figure 7) and the extraction
of S3 is inconsistent near this transition. The Mesozoic
strata below the BCU are mainly of Triassic age and

| Unfiltered fault likelihood data I—bl

Dip cubes

]

Extracted main 3D faults |

Figure 6. Step-by-step illustration of the semiautomatic fault extraction on one 2D line. Fault-likelihood data are first subjected to
morphological filter operations before objects are assigned to different dip cubes. Further, the major faults are extracted from each

of the dip cubes, based on 3D user-defined criterion.
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are the results of a strong sedimentary influx, which led
to thick accumulation of west to northwest prograding
deltaic wedges (Glgrstad-Clark et al., 2011a). Subsequent
tectonic activity caused the Mesozoic strata to experi-
ence massive normal faulting and fault block rotation,
and they generally have a downward dip to the east.
Due to this tectonic activity, the Mesozoic stacking pat-
tern shows significant lateral differences and S3 has gaps
of missing data in the most heavily faulted areas. Even
though Jurassic bedrock is almost nonexistent on the
Loppa High, there are (assumed) local deposits of sand
wedges of Late Jurassic to Early Cretaceous age in the
study area (Figure 7). These are thought to be erosional
products from the time when Loppa was uplifted (Indre-
veer et al., 2016), and they cause inconsistent extraction
of S3 because their characteristics do not match their
over- or underlying (Paleogene or Mesozoic) seismic se-
quence.

The 25 extracted faults are assumed to be Mesozoic
faults because they are in general normal faults that
separate fault blocks in the Mesozoic strata, below the
BCU. Some of the main faults (e.g., F1 and F2) cut
through the Mesozoic and the overlying Paleogene
successions and indicate activity in more than one tec-
tonic event, presumably in the Late Jurassic to Early
Cretaceous and in the (less prominent) Late Cretaceous
to Paleocene rift phase. The faults follow the trends of
the Polhem Subplatform boundary faults; the north—
south-trending Jason Fault complex in the east, and
the northwest—southeast-trending Ringvassgy-Loppa
Fault complex in the west (Glgrstad-Clark et al., 2011a;
Serck et al., 2017). The north—-south trend is believed to

have been formed in the Permian, it reactivated later
in the Mesozoic, and it continues north of the Polhem
Subplatform along the eastern boundary fault of the
Bjsrngya Basin and the western boundary fault of the
Fingerdjupet Basin (Serck et al., 2017).

The fault extraction is generally successful in
extracting the dominating faults in the study area and
in separating intersecting faults. However, the method
fails to separate similarly dipping faults that merge
into the same fault plane, as is the case for F2. In
Figure 7, F2a and F2b appear as two objects, whereas
the 3D view in Figure 8 shows how they merge together.
Separating such faults and/or applying smoothing
must be done carefully (if at all). Faults seldom act
as individual fault planes, but rather as fault segments
in fracture zones, and attempts to single out segments
from these zones before the application of filter
operations could lead to loss of information (at least
with our method). Because no smoothing or filling of
holes have been done here, faults that are connected
in 3D may appear as broken on 2D cross sections (Fig-
ure 7). Also, where the data quality is poor, the faults
tend to break. This is a common issue with automatic
fault detection and is here best observed with F7 in
Figure 7.

Discussion

It takes less than 10 min to extract the 3D uncon-
formities and faults in the study area (see the recorded
processing times in Table 1). For the processing, we
have used an Intel Core i7-6500U CPU processor, and
our input data have 169,419,276 data points. Note that

Figure 7. A 2D seismic line of the Polhem
Subplatform with superimposed cross sections
of 3D semiautomatically extracted unconform-
ities (S1-S3) and faults (F1-F8). As the figure
shows 2D cross sections of 3D objects, the ap-
parent continuity of them can be delusive.
Each object has a distinct color indicating that
it is connected in 3D.
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this is not including the time it takes to generate the
attribute data. Both methods are considered semiauto-
matic because they rely on some user interaction. The
unconformity extraction is based on user-defined cri-
terions to define the stratigraphic stacking patterns.
As the tracked reflection attribute is generated with a
2D algorithm, we can only measure reflector orienta-
tion and define stacking patterns in 2D. This is consid-

Figure 8. Three-dimensional visualization of the semiautomatically the ex-
tracted unconformities (S1-S3) and of three selected major faults (F1-F3), here
exported to Petrel E&P Software as ASCII-files (IRAP points). The green arrow
indicates the way up and points north. Each 3D object has its own color.

Table 1. Processing times for 3D semiautomatic
feature extraction on the Polhem Subplatform.

Unconformity extraction Fault extraction

5594 s
3 surfaces

557.9 s
25 faults

Processing time
Output
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ered a limitation with the method, and a potential
improvement would be to instead use true 3D orienta-
tion in space (magnitude and direction). The fault
extraction is near completely automatic because the
only required user interaction is the definition of the fil-
ter criterions — the minimum size and length of the
extracted faults. No geological knowledge is necassary
as the criterions can be decided by testing, depending
on the wanted number of extracted
faults. As discussed in the “Introduc-
tion” section, many methods for auto-
matic fault extraction already exist,
but our method benefits from being
time-efficient, relatively comprehen-
sible, and requiring only easily available
tools.

To test the generic use of our meth-
ods, we have applied them on new data
outside of the main study area. These re-
sults are displayed in Figure 9. The
unconformity extraction is applied on
a 2D seismic line covering approxi-
mately 56 km laterally, where five 2D
boundaries are identified and extracted.
Because these new input data are a 2D
seismic line, the results are less robust
than the results obtained with the 3D
data presented in the case study. Also,
because this seismic line covers a larger
area laterally, there are more variations
within each stacking pattern and the
method fails to detect the full extent of
some of the extracted unconformities.
This could potentially be avoided by
processing on smaller overlapping sub-
slices (or subcubes in 3D). The fault
extraction is applied on a new 3D
fault-likelihood cube, approximately six
times larger than the one used in the
case study. We successfully extract the
largest faults within this cube, with no
additional remarks beyond what was
observed in the case study.

A detailed analysis of the strati-
graphic stacking patterns beneath the
BCU reveal that the Mesozoic fault
blocks, in addition to having the general
eastern dip explained in the “Results”
section, also dip either north or south
in an alternating sequence (Figure 10).
A few of the fault blocks even indicate a concave/con-
vex dip. These dipping fault blocks fit well together with
the extracted normal faults, and the characterization of
the relationship between the Mesozoic fault blocks can
be used to better understand the development of the
Loppa High and the Polhem Subplatform. Additionally,
knowledge of how the fault blocks are tilted and rotated
with respect to each other could be used to aid seismic
reconstruction in time and space. The process of recon-
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Edge-detection data
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Figure 9. The two presented methods are applied on data outside our main study area. (a) This results in six semiautomatically in-
terpreted boundaries, extracted from a 2D line covering approximately 56 km laterally, and (b) semiautomatic extraction of major faults
in a fault-likelihood volume approximately six times the size of our study area. The faults are here displayed on a time slice, and they are
slightly thickened for better visualization. For comparison, a binary unfiltered time slice from the same fault-likelihood volume is included.

a) b)
Vertical slice

Figure 10. (a) A seismic line and (b) a seismic time slice from the tracked reflection data, where the color indicates the dip of the
reflections. Semiautomatically extracted faults are superimposed to the tracked reflection data. This reveals an alternating northern
(green) and southern (blue) dip of the Mesozoic fault blocks. Faded colors indicate a concave/convex dip.
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Figure 11. Automated seismic reconstruction in time and space is one of the motivations behind this work. Reconstructed seis-
mic data make it possible to instantly pick horizon slices (which can be used in, e.g., a search for geobodies), as illustrated with this
figure. Here, amplitude extraction from top Snadd horizon slice (Late Middle-Early Late Triassic) reveals a massive paleochannel
system in the Loppa High area. Data are provided by Lundin Norway AS.

structing seismic data is time consuming and difficult,
especially step wise, and a lot could be gained from au-
tomating the process. Structural and temporal seismic
reconstructions are important for understanding the
earth’s subsurface and its evolution and make it pos-
sible to instantly pick horizon slices without the need
for manual interpretation. This could, for example,
aid the search for geobodies, such as paleochannels,
which are usually best detected and interpreted on hori-
zon slices (see Figure 11).

Conclusion

In this paper, we have presented methods for semi-
automatic seismic interpretation through the extraction
of 3D unconformities and faults. The two methods are
independent, and they are based on existing 2D and 3D
image processing algorithms. Both methods are time-
efficient and are considered as useful tools in seismic
interpretive studies because they can be used to aid,
reduce, or avoid traditional manual seismic interpreta-
tion. In this study, we have implemented the proposed
methods with a case study on the Polhem Subplatform
in the Barents Sea, a geologically complex area, which
has experienced a series of rifting, subsidence, tilting,
uplift, erosion, and inversion events. In the study area,
the methods extract two unconformities; the Base
Pleistocene and the Base Cretaceous, and 25 faults;
large Jurassic normal faults with north—south or north-
west—southeast structural trends.
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Automatic extraction of dislocated horizons from 3D seismic data using

nonlocal trace matching

Aina Juell Bugge', Jan Erik Lie?, Andreas Kjelsrud Evensen?, Jan Inge Faleide®, and Stuart Clark*

ABSTRACT

Extracting key horizons from seismic images is an impor-
tant element of the seismic interpretation workflow. Although
numerous computer-assisted horizon extraction methods exist,
they are typically sensitive to structural and stratigraphic dis-
continuities. As a result, these computer-assisted methods have
difficulties in extracting noncoherent dislocated horizons. We
have developed a new data-driven method to correlate, track,
and extract horizons from seismic volumes with complex geo-
logic structures. Our method correlates seismic horizons across
discontinuities and does not require user input in the form of
seed points or prior identification of faults. Furthermore, the
method is robust toward amplitude changes along a seismic
horizon and does not jump from peak to trough or vice versa.
We use a large sliding window and match full-length seismic
traces using nonlocal dynamic time warping to extract grids of
correlated points for our target horizons. Through computed
accuracy measurements, we discard nonaccurate correlations
before interpolating complete seismic horizons. Because our
method does not require manually picked seed points or prior
structural restoration, it does not rely on interpretive experi-
ence or geologic knowledge. The proposed method is applied
on different real and complex seismic images, with two case
examples from the southwestern Barents Sea, and one on the
open source Netherlands F3 seismic data.

INTRODUCTION

Tracking dislocated and truncated horizons in seismic images
presents difficulties for manual and automatic interpretation. Figure |
illustrates a manually interpreted complex seismic image of the

Polhem Subplatform in the southwestern Barents Sea. Whereas the
horizons of the Pleistocene and Paleocene sequences (green and
yellow) are relatively coherent laterally, the rotated and eroded fault
blocks of the Mesozoic sequence (blue) are challenging to interpret
because the seismic horizons are vertically and laterally dislocated as
well as truncated by an unconformity.

The state-of-the-art seismic interpretation workflow offered in
numerous software packages involves manually picking seed points
along seismic horizons in seismic images and interpolating bet-
ween these seed points using coherency-based autotracking tools.
Although autotracking tools simplify the interpretation process,
picking seed points and manually quality-checking miscorrelations
require significant interpretive experience and geologic knowledge.
One reason for this is that the autotracking may not stop tracking a
horizon at major faults, forcing the user to generate new seed points
within adjacent fault blocks corresponding to the same stratigraphic
unit (as illustrated in Figure 1). Unconformities caused by signifi-
cant erosion are particularly challenging to address because they
tend to truncate seismic horizons.

In the past few decades, different computational and computer-
assisted horizon extraction methods have been introduced as alter-
natives to the process of manually picking seed points, aiming to
further automate the seismic interpretive workflow, process multi-
dimensional data concurrently, and reduce the need for user inter-
action. Some of the more interesting horizon-extraction methods are
based on local reflection slopes (e.g., Bakker, 2002; Lomask et al.,
2006), unwrapped instantaneous phase (e.g., Stark, 2003, 2005; Wu
and Zhong, 2012), and dynamic time warping (DTW) (e.g., Hale,
2013; Wu and Hale, 2016a; Wu and Fomel, 2018)

Local reflection slope methods involve using structure tensors and
an iterative least-squares fitting of horizon slopes with local reflec-
tions slopes (Bakker, 2002; Lomask et al., 2006). In general, horizon
tracking using local reflection slopes effectively tracks coherent
seismic horizons but is sensitive to faults and other discontinuities.
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Additionally, local reflection slope methods often cause a tracked
horizon to jump from peak to trough or vice versa, due to the lack
of amplitude or phase information (Bakker, 2002).

Instantaneous phase is commonly used to complement seismic am-
plitude information for seismic interpretation (Taner et al., 1979), and
methods using unwrapped instantaneous phase for horizon extraction
have been proposed by, e.g., Stark (2003, 2005) and Wu and Zhong
(2012). Stark (2003) generate relative geologic time (RGT) cubes
from unwrapped phase volumes, and then extract seismic horizons
directly from the RGT cubes. This method is based on the assump-
tions that continuous seismic horizons follow constant instantaneous
phase values, and that the unwrapped phase represents RGT in a
given seismic volume or image (Stark, 2003, 2005). Wu and Zhong
(2012) propose an extension to Stark’s method by implementing
horizon and unconformity constraints into a 3D unwrapping process.
They show that the implementation of these constraints significantly
improves the reliability of the RGT volume, assuming that the user
has unconformities and reliable horizons or segments of reliable hori-
zons prior to the unwrapping operation.

DTW was originally introduced as a pattern-matching algorithm
for speech recognition in 1978 by Sakoe and Chiba. The algorithm
finds the optimal alignment of two time series by nonlinearly stretch-
ing and shrinking of one time series along its time axis until it is
“warped” into the other. DTW is effective and accurate in matching
time series with nonlinear fluctuations along the time axis, as speech
patterns and seismic traces typically have. Since the introduction
of DTW in 1978, there have been suggested different improvements
to the algorithm. Among these suggestions is the use of slope con-
straints. The commonly used slope constraints are the Sakoe-Chiba
band (Sakoe and Chiba, 1978) and the Itakura parallelogram (Itakura,

Figure 1. A manually interpreted seismic image of the Polhem Sub-
platform in the southwestern Barents Sea. The Polhem Subplatform
is structurally and stratigraphically complex, with stratigraphic se-
quences that are separated by unconformities and rotated fault blocks
offset by major faults. The main stratigraphic sequences are annotated
with colors: green (Pleistocene), orange (Paleocene), and blue (Mes-
ozoic). Major faults are annotated with stippled black lines, and target
horizons and unconformities are annotated with complete colored
and black lines.

1975). Slope constraints will control the warping by preventing that
short segments of a pattern are matched with full-length pattern
segment or vice versa. Generally, the use of slope constraint speeds
up the DTW computation but may lead to undesirable trace correla-
tion if the choice of slope constraint and its parameters are not care-
fully selected.

In geophysics, DTW has proven useful to correlate well-to-well
logs (e.g., Anderson and Gaby, 1983; Lineman et al., 1987) and
to match seismic traces (e.g., Hale, 2013; Wu and Fomel, 2018). Hale
(2013) presents a method for dynamic warping of seismic images to
estimate fault throws in seismic images, and to estimate registration
(alignment) of PP and PS images. Hale’s method is an extension to an
approximation of the original DTW algorithm (Mottl et al., 2002),
where alignment errors are smoothed nonlinearly along each image
dimension before the DTW operation estimate shifts in the seismic
image. Wu and Hale (2016a) proposed a full interpretive workflow
to automatically extract horizons from flattened seismic images.
Their workflow includes (1) fault identification and unfaulting of
seismic images, (2) unconformity identification, (3) unconformity-
constrained image flattening, and (4) horizon extraction from the flat-
tened seismic image (Wu and Hale, 2015a, 2015b, 2016b). Wu and
Hale’s (2016a) interpretive workflow addresses many important chal-
lenges in seismic interpretation but the steps related to their fault
processing and unconformity processing are complicated and may
affect the flattening operation, which in turn affects the horizon
extraction.

More recently, Wu and Fomel (2018) proposed to extract horizons
by fitting, in the least-squares sense, the local slopes and multigrid
correlations of seismic traces. In this method, the local slopes, com-
puted from structure tensors (Hale, 2009; Wu and Janson, 2017), are
helpful to fit a horizon that smoothly and consistently follows local
reflection structures in areas without structural discontinuities. The
multigrid correlations, calculated by using DTW, are helpful to track
a horizon that is dislocated by faults and to follow consistent phases
(e.g., zeros, peaks, or troughs).

In this paper, we present a completely data-driven 3D method to
automatically correlate, track, and extract seismic horizons from
complex seismic volumes. For this, we use nonlocal DTW and un-
wrapped instantaneous phase. The method that we present does not
rely on manually selected seed points, and it is insensitive to am-
plitude changes along a reflector. Furthermore, it is robust to fault-
ing without the requirement of prior fault identification or image
flattening. With different case examples, we test the proposed in-
terpretive method and extract seismic horizons from real 3D seismic
images containing complex structures such as heavily faulted suc-
cessions and rotated fault blocks.

METHOD

We present a fully data-driven method on horizon extraction from
complex seismic images. First, we use DTW to match nonlocal seis-
mic traces within a large sliding 3D window and correlate horizon
grids for any target horizon. Next, to interpolate these horizon grids
we use linear interpolation and implement an unwrapped instantane-
ous phase-constraint.

Dynamic time warping

We use the original DTW algorithm as described by Sakoe and
Chiba (1978) to match seismic traces and extract seismic horizons.
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Sakoe and Chiba (1978) define a warp function F' between two time
series X and Y (sampled with the same sample rate) as

F=C.Cy. ....Cy. ....Ck, (1)

where C is a point C (i, j), K is the length of the warp path, and the
time series can be written as

trace X = xy, Xy, ..., X;, ..., X;, and
traceY = y1,¥2, o s Vjs oo en Yy (2)

Then, the optimal warp function is obtained by finding the mini-
mum distance warp path that describes the relationship of all the
samples along the two time series:

T
>

=1

>~

The minimum distance warp path provides a pair-wise matching of
all trace indexes, meaning that every time sample along trace X is
optimally matched with at least one time sample along trace Y and
Dist(Cy;, Cy;) is the distance between a time sample in trace X and
the correlated time sample in trace Y. The warp path is a 2D matrix
in which each row represents a pair of matched time samples along
trace X and trace Y. Figure 2 shows the optimal alignment of two
seismic traces with DTW, as well as their warp path. We use this
warp path to track and extract reflective events, assumed to represent
seismic horizons. Because DTW is a pattern matching operation, it
does not mainly rely on amplitude values. This is an advantage as
seismic amplitudes can vary a lot along the same seismic horizon.

Although several suggestions to optimize DTW include the use
of slope constraint (Itakura, 1975; Sakoe and Chiba, 1978), we do
not implement this here. Conventional slope constraints as the Sa-
koe-Chiba band and the Itakura parallelogram set the limit on how
much the warp path can differ from a diagonal line with fixed bands,
and implementing such slope constraints in this study would require
known true geologic dip and known fault throws. Because optimal

Trace X

implementation of slope constraints for DTW of seismic traces in
structurally complex geologic settings is particularly challenging,
we use the original DTW algorithm without slope constraints. In-
stead, we deal with potential nonaccurate correlations (outliers) by
measuring correlation consistency and implement an accuracy cri-
terion. To correlate seismic traces, we perform nonlocal trace
matching with DTW for every trace-pair within a defined window
to get their warp path. Then, we extract any number of seismic hori-
zons from the matched time samples stored in the warp paths. Fig-
ure 3 illustrates how two matched reflective events (red and blue)
represent the same seismic horizon, and how we use DTW to track
seismic horizons. The pseudocode in Table 1 shows how we apply
nonlocal DTW within a given window.

To extract horizons from 3D seismic images, we set up a grid of
seismic traces, e.g., every Sth, 10th, or 20th inline and crossline lo-
cation, and then we use a large sliding window to iteratively match
every pair of the gridded traces within the window. The grid step and
the window size are the key parameters for this operation, and it is
crucial to ensure enough traces represented on each side of a discon-
tinuity for optimal correlation of displaced horizons. By increasing
the grid step, we increase computational efficiency. Figure 4 illus-
trates the importance of a large window size for a seismic scale fault.
The lateral size of the window has to be larger than the horizontal
fault displacement to properly correlate a dislocated horizon across
a fault. In the example illustrated in Figure 4, a successful correlation
requires a window size of at least 0.75 X 0.75 km (30 x 30 traces).
For larger and more structurally complex seismic volumes, as we
show with case examples in the next section, larger window sizes
are necessary.

The DTW operation matches all time samples, and it is possible
to extract a seismic horizon for any given time sample along a se-
lected trace. However, we extract only horizons that follow distinct
peaks and troughs, selected automatically with a peak detection al-
gorithm (illustrated in Figure 2). The peak detection identifies the
most significant peaks and troughs along an arbitrary trace, where
each selected peak and trough can be thought of as a seed point for
one horizon. Therefore, the number of selected peaks and troughs
along the arbitrary trace defines the starting point and decides which
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Figure 2. Selected peaks and troughs indicated with colored markers along two traces, X and Y, show their optimal alignment using DTW.
DTW provides a minimum distance warp path that describes the relationship of all of the time samples along the two traces.
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and how many seismic horizons we extract. By tracking matched
points from the stored warp paths, we obtain correlated grids of
points where each correlated grid represents a target horizon
(Figure 3).

Because we use a sliding window and iteratively match traces,
each trace will be revisited multiple times, and this iterative process
may produce several possible locations for a reflective event in the
correlated grids. We exploit this iterative process to record an

Time (samples)

by
'a,_.s‘l_

C‘e}'

uncertainty measure for each point along a tracked horizon, keep
the most accurate correlations, and discard nonaccurate correla-
tions. The accuracy measurement is a calculated relationship
between how many times a trace is revisited and how many of these
revisitations provide the same location for a point along a target
horizon. Figure 5 displays a correlated grid for a target horizon ex-
tracted from a small seismic section, before and after removal of
nonaccurate correlations. The color bar in Figure 5a-5b indicates

\
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-
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Figure 3. The figure illustrates two reflective events, annotated with red and blue dots, superimposed onto a small faulted seismic image. The
reflective events are extracted (left) from the warp path of two seismic traces, X and Y, and then (right) from the warp paths of multiple seismic traces.

Table 1. Simplified Python pseudocode for DTW of gridded seismic traces in a given window.

# non-local DTW of gridded seismic traces within a given window
#Define a grid of seismic traces and a window size for the sliding window
#Do DTW for every pair of traces within the window

#Move the sliding window one grid step and repeat DTW operation for all window locations in the seismic
volume

from tslearn import DynamicTimeWarping
grid_step=10
window_size=100
Window = seismic_volume[xl:grid_step:xl+window_size, il:grid_step:il+window_size
warp_paths=1[]
for each trace, i, in window:
traceX= window([1]
for each trace, j, in window:
traceY= window[j]
path= DynamicTimeWarping (traceX, traceY)
warp_paths.append([traceX, traceY, path])
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correlation accuracy, and we observe that all the high accurate cor-
relations lie along the same seismic horizon, whereas low-accurate
points typically are more scattered. Additionally, we observe that
there is typically one point with significantly higher accuracy than
the other at each grid location, which makes it easy to set the param-
eter for the filter operation. Figure 5b and 5c shows the correlated
grid after the removal of correlations with less than 30% accuracy.

Seismic section

TWT (s)
TWT (s)

TWT (s)
TWT (s)

Figure 4. Nonlocal DTW requires a large window size to successfully handle dislocated
seismic horizons. The figure illustrates the tracking of three target horizons with window
sizes of 0.25 % 0.25, 0.75 % 0.75, and 1.5 X 1.5 km, all with a grid step of 0.125 km.
This shows that optimal correlation is only obtained for window size of 0.75 x 0.75 km

(30 x 30 traces) or larger.

a) ) ) b)
Unfiltered horizon

v
o
Accuracy (%)

Window size: 0.25x0.25 km

Filtered horizon

Unwrapped instantaneous phase

With nonlocal DTW, we can correlate and extract horizon grids for
any target horizon. To obtain complete seismic horizons, we interpo-
late these correlated grids (illustrated in Figure 5). With many differ-
ent ways to do the interpolation, we have chosen a linear interpolation
for 3D grids, where the x-, y-, and z-coordinates represent the inline
location, crossline location, and time sample for a
given point in one horizon grid. This way, the in-
terpolation is amplitude-independent. To ensure
that we do not interpolate across faults or disconti-
nuities or include potential outliers; we implement
an unwrapped instantaneous phase constraint for
neighboring points.

The instantaneous phase shows the continuity
of weak and strong coherent amplitude reflec-
tions, and it is a wrapped phase, meaning that the
phase at a given time sample along a trace is con-
strained to the range —z to 7 of the phase offset.
Unwrapping these phase values will provide a
continuous time function, where the unwrapped
phase values should generally increase with the
increasing traveltime (Herraez et al., 2002; Ab-
dul-Rahman et al., 2005). A large number of
phase wrapping operators exist today, and there is
no standard phase wrapping operator or one stan-
dard way of solving the phase unwrapping prob-
lem. Mathematically, phase wrapping is expressed
as

xy(n) = Wix(n)], @

where x(n) is the continuous phase signal, W is
the phase-wrapping operator, and x,,(n) is the
wrapped signal.

As proposed by Stark (2003, 2005), the un-
wrapped instantaneous phase can be used to gen-
erate an RGT where the unwrapped phase value
represents an RGT in a given seismic volume.
However, the phase unwrapping of seismic in-
stantaneous phase volumes will suffer in the

Binary filtered horizon

Accuracy (%)
Seismic amplitude

Figure 5. A sliding DTW window allows us to record an accuracy measurement while correlating seismic horizons. This figure shows (a) an
unfiltered horizon grid, (b) the target horizon after accuracy filtering with a 30% accuracy criterion, and (c) a binary representation of the
filtered horizon. The color bars in (a) and (b) indicate the correlation consistency in percent per grid location.
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presence of faults and discontinuities, particularly unconformities.
Wu and Zhong’s (2012) suggestion to implement horizon and
unconformity constraints to the unwrapping operation will improve
the reliability of the RGT volume. This implementation requires, of
course, manual or automated interpretation of unconformities and
horizon or horizon segments, which are not trivial prerequisites. Our
approach differs in that we only use unwrapped phase to constrain
interpolation between already correlated neighboring points. We
use a 3D phase unwrapping algorithm based on sorting by reliability
(3D-SRA) following a noncontinuous path, proposed by Abdul-
Rahman et al. (2005).

We interpolate between neighboring correlated points using a lin-
ear interpolation approach (curve fitting) and use an interpolation
constraint that only allows interpolation when the unwrapped phase
values are continuous. Points in a horizon grid with no neighbors
allowed for interpolation will be discarded. This will result in inter-

a) Correlated horizon grids h} Co
1.2 g = 1.2 p=

pr— -—

Unwrapped inst. phase
TWT (s)
-
[+3]

g Interpolated horizons

polation along coherent segments of the horizons, where the reflec-
tive event consistently follows a peak or trough, with no interpolation
across faults or other disruptions in the seismic image (Figure 6). The
implementation of this constraint will therefore discard potential out-
liers in the original correlated grid, as illustrated in Figure 7. In Fig-
ure 7, we show a faulted seismic section, with the correlated grid for a
target horizon and interpolation of this grid with and without the im-
plementation of phase constraint. Without the implemented phase
constraint, the interpolated seismic horizon cuts across faults and
fault zones and includes outliers that appear as “spikes.”

RESULTS AND DISCUSSION

We test the proposed method for horizon extraction in different
complex geologic settings. For comparability and reproducibility,
we include a case study example from a publicly available seismic
volume (Netherlands F3). We also include two
case examples from the Barents Sea, one on a
= heavily faulted section with large normal faults
” from the Loppa High and one on eroded and ro-
tated Mesozoic fault blocks on the adjacent Pol-
hem Subplatform. Figure 8 shows the map of the
southwestern Barents Sea with structural elements
on the Base Cretaceous Unconformity and with
the location of the Loppa High and the Polhem
Subplatform.

Seismic amplitudes

Figure 6. The figure shows correlated horizon grids for three target horizons superim-
posed onto (a) instantaneous phase and (b) unwrapped instantaneous phase, and (c) the
original seismic image with superimposed interpolated seismic horizons. With an un-
wrapped instantaneous phase constraint, we ensure an optimal interpolation of horizon
grids that respect faults and are robust to potential outliers.

Horizon grid

km

Figure 7. The figure shows a crossline from faulted seismic section of size 350 inlines X
400 crosslines with a bin size of 25 m. The correlated grid of a target horizon (b) verifies
that the DTW operation is robust to faults. Linear interpolation of the correlated grid will
cut across faults and include outliers, which show as spikes (c), whereas interpolation
with our implemented phase constraint will respect faults and disregard outliers (d).

Offshore Netherlands F3

Figure 9 shows a subset of the publicly avail-
able Netherlands F3 dataset, acquired in the
North Sea, offshore Netherlands. The subset in-
cludes 262 samples X 300 crosslines X 951 in-
lines acquired with a sample rate of 4 ms and
a bin size of 25 m. The Netherlands F3 data
set covers a large deltaic system with deposits
from the Late Jurassic to Early Cretaceous
(Sgrensen et al., 1997). The subset is structurally
complex with salt present near the bottom of
the volume, folds, and a few large-offset faults.
With our proposed method, we extract correlated
grids of points for six target horizons. Using a
2.5% 2.5 km (100 X 100 traces) sized window
and a grid step of 0.5 km, the DTW operation
takes 68.6 min with an Intel Core i17-6500U CPU
processor for the seismic subset. To obtain a
denser grid, we reapply a small fixed DTW win-
dow around each correlated point, this time with
a 0.5 % 0.5 km window size and a grid step of
0.125 km. The second operation takes an addi-
tional 56.8 min, whereas the time it takes to ex-
tract one horizon grid is less than a minute.

Figure 9 shows sparse and dense correlated
horizon grids before the phase-constrained inter-
polation; therefore, occasional miscorrelations
occur. We observe that the more distinct seismic
horizons (such as the two darker blue, the orange,
and the red) result in more consistent tracking.
Figure 10 presents a time map and an amplitude
map (the top views) of the orange horizon in
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Figure 8. Regional map of the southwestern
Barents Sea, north of Norway, where the color bar
indicates the depth of the Base Cretaceous Uncon-
formity in two-way traveltime (TWT). The map
shows annotated structural elements, such as the
Loppa High and the Polhem Subplatform, which
are locations for two of our case examples.

©) Dense horizon grids

TWT (s}
TWT (s}

10 15 20
km

T 10 15
km

Figure 9. A subset of the F3 Netherlands seismic volume (a) with salt present near the bottom of the subset. Nonlocal DTW provides correlated
horizon grids (prior to interpolation) for six target horizons indicated with the colors dark blue, blue, cyan, yellow, orange, and red. The figure
illustrates correlated horizons with a (b) sparse and (c) dense grid.

a) Time map b) Amplitude map
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Figure 10. (a) Time map and (b) amplitude map for a correlated target horizon (the orange horizon in Figure 9). The colors in the contoured
time map can be assumed to", this is unnecessary illustrate differences in depth, where the shallow areas (red and white) indicate the lateral
extent of the salt dome. The amplitude map shows that the horizon is consistently tracked along a trough, with no jumping from trough to peak
and with seismic amplitudes mostly ranging from —4000 to —2000.
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Figure 9. The time map indicates the lateral extent of the salt dome
with shallow areas (in red and white). The amplitude map shows that
there is no jumping from peak to trough along the extracted horizon.

Heavily faulted Triassic strata, southwestern Barents
Sea

With this case example, we show horizon extraction from a
small structurally complex seismic volume, covering Triassic succes-
sions with major Jurassic normal faults from the Loppa High in
the southwestern Barents Sea, north of Norway (Figure 8). The
southwestern Barents Sea sedimentary packages range in age from
Late Paleozoic to the present (Faleide et al., 1993; Breivik et al.,

a) Correlated grid for target horizon, XL 200
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Figure 11. The figure shows inline and crossline views for one correlated target horizon in
a heavily faulted seismic image from the southwestern Barents Sea before (a and b) and
after (c and d) interpolation. The color bars in a and b illustrate correlation accuracy.
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Figure 12. To evaluate the extracted target horizon showed in Fig-
ure 11, we flatten the seismic image on the target horizon. The flattened
seismic image indicates successful extraction of the target horizon.

h) Correlated grid for target horizon, IL 420

1998; Glgrstad-Clark et al., 2010), and it has experienced a complex
history of crustal thinning with several rift phases contributing to a
series of rifting, subsidence, tilting, uplift, erosion, and inversion
events. These rift phases have led to the formation of the basins
and highs in the Barents Sea, such as the Loppa High (Gabrielsen et al.,
1990, 1993; Faleide et al., 1993; Gudlaugsson et al., 1998; Glgrstad-
Clark et al., 2010).

The Loppa High was, prior to its inversion in the Early Cretaceous
(Indreveer et al., 2017), a major Mesozoic sedimentary depocenter
with a strong sedimentary influx and an accumulation of prograding
deltaic wedges providing thick, mainly Triassic, successions in the
area (Glgrstad-Clark et al., 2010, 2011). The subsequent tectonic
activity caused the Mesozoic strata to experience massive normal
faulting and fault block rotation in the Jurassic
(Gabrielsen et al., 1990, 1993; Faleide
et al., 1993).

The seismic data used in this case example are
post stack time migrated (PSTM) TopSeis data
from the first-ever marine source-over-cable ac-
quisition (Lie et al., 2018) with a bandwidth of
4-110 Hz. The data cover 1000 inlines and 400
crosslines from 0.7 to 1.6 s, with a bin size of
25 m and a sample rate of 4 ms. We use a window
size of 2.5% 2.5 km and a grid step of 0.5 km.
Figure 11 shows the correlated grid for one target
horizon before interpolation where colors indicate
the correlation accuracy for each point (Figure 11a
and 11b), and the complete horizon after phase-
constrained interpolation (Figure 11c and 11d).
The dislocated horizon is optimally correlated
across faults. By flattening the seismic section
on our target horizon, we verify the data-driven
horizon tracking (Figure 12).

(9) Aaesndoy

7.5 10
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Rotated and eroded fault blocks,

75010 southwestern Barents Sea

With this case example, we specifically target
Mesozoic fault blocks on the Polhem Subplat-
form (Figures 1 and 8), situated on the western
margin of the Loppa High in the southwestern
Barents Sea (Gabrielsen et al., 1990). The seismic data used in this
case example are conventional 8—80 Hz PSTM data that cover 551
inlines and 351 crosslines laterally with a bin size of 25 m and 3.5 s
in time with a sample rate of 4 ms. The targeted fault blocks are
truncated by the Base Cretaceous Unconformity separating them
from the overlying Paleocene strata that prograded westward into
the Tromsg Basin (Faleide et al., 1993; Glgrstad-Clark et al.,
2010). Figure 1 shows a seismic image from the Polhem Subplat-
form with annotations of the main stratigraphic successions, uncon-
formities, and major Jurassic faults.

Unconformities are erosional events or nondepositional hiatuses
that leave geologic time gaps in seismic images. Erosional surfaces
that truncate seismic reflections are particularly challenging to ad-
dress and will complicate horizon tracking. By implementing
unconformity constraints, we can track and extract seismic horizons
from defined stratigraphic sequences (Wu and Hale, 2015b). The
data-driven methods for unconformity identification and extraction
are typically not straightforward to implement in an interpretation
workflow, but they do exist (e.g., Barnes, 2000; Hoek et al., 2010;
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Figure 13. A 3D view of an intersecting inline and crossline, with
three seismic horizons extracted from a seismic section constrained
by unconformities. The unconformities have been identified with a
semiautomatic method (Bugge et al., 2018), and the seismic horizons
are correlated with the method proposed in this study. The case ex-
ample covers part of the Polhem Subplatform in the southwestern
Barents Sea, as illustrated in Figure 1, which includes annotated
stratigraphic and structural details.

Wu and Hale, 2013, 2015a; Qayyum et al., 2017, 2018; Bugge et al.,
2018). Here, we use a semiautomated method for unconformity ex-
traction introduced by Bugge et al. (2018) to constrain our target
sequence. This method assumes that the stratigraphic stacking pat-
tern and the seismic amplitudes above and below an unconformity
are significantly different.

With known unconformities, we constrain the Mesozoic succes-
sion on the Polhem Subplatform and we correlate dislocated seismic
horizons within the fault blocks. Figure 13 shows a 3D view of the
three extracted seismic horizons within the constrained Mesozoic suc-
cession. Ongoing work for further improvements to a fully automatic
seismic interpretive workflow includes data-driven identification of
stratigraphic sequences to automatically define unconformity con-
straints. This is, however, beyond the scope of this paper.

CONCLUSION

We present a new 3D method on data-driven horizon extraction
from seismic images with nonlocal DTW and unwrapped instanta-
neous phase, and we apply the method on real and complex case
examples. With a large sliding window, we match full-length seis-
mic traces to extract a correlated grid of points for any target horizon
in a seismic cube. Through computed accuracy measurements, we
discard non-accurate correlations and implement an unwrapped
phase constraint before we interpolate the grids and extract com-
plete seismic horizons.

The proposed horizon extraction method is insensitive toward
amplitude changes along a seismic horizon without jumping be-
tween peaks and troughs. We show this with the Netherlands F3

case example. Furthermore, the method is robust to faulting without
prior identification of faults, as shown in the case example on the
heavily faulted Triassic section from the southwestern Barents Sea.
Stratigraphically complex seismic images, where seismic horizons
are truncated by erosional surfaces, require unconformity-constrained
horizon extraction. With the case example from the Polhem Subplat-
form in the southwestern Barents Sea, we show how to implement
unconformity constraints and correlate seismic horizons across ro-
tated and eroded fault blocks. Because we extract dislocated seismic
horizon without any manually selected seed points or any prior struc-
tural restoration, we do not rely on interpretive experience or geologic
knowledge.
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