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Abstract. In [IMA J. Numer. Anal., 29 (2009), pp. 24–42], Nielsen, Tveito, and Hackbusch
study the operator generated by using the inverse of the Laplacian as the preconditioner for second
order elliptic PDEs �r · (k(x)ru) = f . They prove that the range of k(x) is contained in the
spectrum of the preconditioned operator, provided that k(x) is continuous. Their rigorous analysis
only addresses mappings defined on infinite dimensional spaces, but the numerical experiments in
the paper suggest that a similar property holds in the discrete case. Motivated by this investigation,
we analyze the eigenvalues of the matrix L�1A, where L and A are the sti↵ness matrices associated
with the Laplace operator and second order elliptic operators with a scalar coe�cient function,
respectively. Using only technical assumptions on k(x), we prove the existence of a one-to-one
pairing between the eigenvalues of L�1A and the intervals determined by the images under k(x)
of the supports of the finite element nodal basis functions. As a consequence, we can show that
the nodal values of k(x) yield accurate approximations of the eigenvalues of L�1A. Our theoretical
results, including their relevance for understanding how the convergence of the conjugate gradient
method may depend on the whole spectrum of the preconditioned matrix, are illuminated by several
numerical experiments.
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1. Introduction. The classical analysis of Krylov subspace solvers for matrix
problems with Hermitian matrices relies on their spectral properties; see, e.g., [1, 16].
Typically, one seeks a preconditioner which yields parameter independent bounds for
the extreme eigenvalues; see, e.g., [9, 20, 27, 15, 26] for a discussion of this issue in
terms of operator preconditioning. This approach consists of considering the mapping
properties of the continuous operator between appropriate Sobolev spaces in order to
derive a discrete preconditioner. This has the advantage that only the largest and
smallest eigenvalues (in the absolute sense if an indefinite problem is solved) must
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be studied, and the bounds for the required number of Krylov subspace iterations
can become independent of the mesh size and other important parameters. However,
for problems with spatially variable coe�cients, possibly varying by many orders of
magnitudes, the condition number estimate provided by the operator preconditioning
is of limited value when the variation of the coe�cients is ignored, i.e., when the
Sobolev spaces do not involve the variable coe�cients. The corresponding condition
number will then be huge. Furthermore, convergence bounds based on single number
characteristics, such as the condition number, are too simple to capture the adaption
of Krylov subspace methods to the data. In particular, Krylov subspace methods are
strongly nonlinear in the input data (matrix and the initial residual), and therefore
the whole spectral information is needed in order to capture the actual convergence
behavior when these methods are applied to problems with self-adjoint operators with
large condition numbers but structured spectra.1

The complete spectrum mattering has been known since the introduction of the
conjugate gradient method (CG) in 1952. Chapters 14–19 of the seminal paper by
Hestenes and Stiefel [19] link CG to orthogonal polynomials and continued fractions.
They very clearly explain the link between CG and Gauss quadrature (approximating
the distribution function determined via the spectral decomposition of the involved
matrix, conveniently presented via the Riemann–Stieltjes integral); see, in particular,
[19, Chapter 14, Theorems 14:1-14:3]. This classical view and the understanding
which combines algorithmic development with approximation theory and functional
analysis (see, e.g., [38, Chapter II, section 7]) have been further developed by several
authors, including the beautiful and almost unknown monograph on the method of
moments by Vorobyev [39, Chapter III]. For a recent description, we refer the reader
to, e.g., the paper by Herzog and Sachs [18], section 5.2 in the monograph [26], and
section 3.5 and Chapter 5 in the monograph [24].

The superlinear character of CG convergence has been observed and investigated
in several studies [2, 3, 21, 22, 37, 31, 18], and the acceleration of convergence has been
linked with the presence of large outlying eigenvalues and clustering of the eigenval-
ues. Since Krylov subspace methods for systems with Hermitian matrices use short
recurrences, exact arithmetic considerations must be complemented with a thorough
rounding error analysis; otherwise, it can in practice be misleading or even completely
useless. This issue was again pointed out already by Hestenes and Stiefel in the paper
[19], where Chapter 8 is devoted to propagation of rounding errors. The authors em-
phasized that the loss of orthogonality might increase so rapidly that the computed
approximation would not be as good an estimate of the solution as desired. Simul-
taneously, the deterioration of convergence due to rounding errors in the presence of
large outlying eigenvalues was reported, based on experiments, already in [23]; see also
[8], [21, p. 72], the discussion in [37, p. 559], and the summary in [24, section 5.6.4,
pp. 279–280].

In investigating the convergence behavior of Krylov subspace methods for Hermi-
tian problems, we thus have to deal with two phenomena acting against each other.
Large outlying eigenvalues (or well-separated clusters of large eigenvalues) can in
theory, assuming exact arithmetic, be linked with acceleration of CG convergence.
However, in practice, using finite precision computations, it can cause deterioration
of the convergence rate. This intriguing situation has been fully understood thanks
to the seminal work of Greenbaum [11] with the fundamental preceding analysis of

1The spectral information may not be descriptive for the convergence of Krylov subspace methods
in general; see [12, 14] and [24, section 5.7].
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the Lanczos method by Paige [33, 34]; see also [13, 36, 29, 28] and the recent paper
[10] that addresses the question of validity of the CG composite convergence bounds
based on the so-called e↵ective condition number.

Summarizing, preconditioning that leads to favorable distributions of the eigen-
values of the preconditioned (Hermitian) matrix can lead to much faster convergence
than preconditioning that only focuses on minimizing the condition number. As
presented below, the term “favorable” is very subtle and its understanding requires
knowledge of many associated results.

Motivated by these facts and the results in [32], the purpose of this paper is to
show that approximations of all the eigenvalues of a classical generalized eigenvalue
problem are readily available. More specifically, assuming that the function k(x) is
uniformly positive, bounded, and piecewise continuous, we will study finite element
(FE) discretizations of

r · (k(x)ru) = ��u in ⌦ ⇢ Rd,

u = 0 on @⌦,
(1.1)

d = 1, 2, or 3, which yields a system of linear equations in the form

(1.2) Av = �Lv.

As mentioned above, mathematical properties of the continuous problem (1.1) are
studied in [32]. In particular, the authors of that paper prove that2

k(x) 2 sp(L�1A)

for all x 2 ⌦ at which k(x) is continuous, where

A : H1
0 (⌦) 7! H�1(⌦), hAu, vi =

Z

⌦
kru ·rv, u, v 2 H1

0 (⌦),(1.3)

L : H1
0 (⌦) 7! H�1(⌦), hLu, vi =

Z

⌦
ru ·rv, u, v 2 H1

0 (⌦).(1.4)

The authors also conjecture that the spectrum of the discretized preconditioned oper-
ator L�1A can be approximated by the nodal values of k(x). In the present text, we
show, without the continuity assumption on the coe�cient function, how the function
values of k(x) are related to the generalized spectrum of the discretized operators
(matrices) in (1.2). Our main results state the following:

• There exists a (potentially nonunique) pairing of the eigenvalues of L�1A
and the intervals determined by the images under k(x) of the supports of the
FE basis functions; see Theorem 3.1 in section 3.

• The function values of k(x) at the nodes of the FE grid can be paired with the
individual eigenvalues of the discrete preconditioned operator L�1A. Further-
more, these function values yield accurate approximations of the eigenvalues;
see Corollary 3.2 in section 3.

The text is organized as follows. Notation, assumptions, a brief note on the CG
convergence analysis, and a motivating example are presented in section 2. Section 3

2The spectrum of the operator L�1A on an infinite dimensional normed linear space is defined
as

sp(L�1A) ⌘
�
� 2 C; L�1A� �I does not have a bounded inversion

 
.
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contains theoretical results. The proof of the pairing in Theorem 3.1 uses the classical
Hall’s theorem from the theory of bipartite graphs. Corollary 3.2 then follows as
a simple consequence. The numerical experiments in section 4 illustrate the results
of our analysis. Moreover, using Theorem 3.1, the discussion at the end of section 4
explains the CG convergence behavior observed in the example presented in section 2.
The text closes with concluding remarks in section 5.

2. Notation, a brief note on the CG convergence analysis, and an in-
troductory example. We consider a self-adjoint second order elliptic PDE in the
form

�r · (k(x)ru) = f for x 2 ⌦,(2.1)

u = 0 for x 2 @⌦

and the corresponding generalized eigenvalue problem (1.1) with the domain ⌦ ⇢ Rd,
d 2 {1, 2, 3}, and the given function f 2 L2(⌦). We assume that the real valued scalar
function k(x) : Rd ! R is bounded and piecewise continuous and that it is uniformly
positive, i.e.,

k(x) � ↵ > 0, x 2 ⌦.

Let V ⌘ H1
0 (⌦) denote the Sobolev space of functions defined on ⌦ with zero trace

at @⌦ and with the standard inner product. The weak formulations of the problems
(2.1) and (1.1) are to seek u 2 V (respectively, u 2 V and � 2 R), such that

Au = f (respectively, Au = �Lu),(2.2)

where A, L : V ! V #, f 2 V # are defined in (1.3) and (1.4), and the function
f 2 L2(⌦) is identified with the associated linear functional f 2 V # defined by

(2.3) hf, vi ⌘
Z

⌦
fv .

(We use # to denote dual spaces.) Discretization via a conforming FE method, using,
for simplicity of exposition, Lagrange elements, leads to the discrete operators

A
h

, L
h

: V
h

! V #
h

,

where the finite dimensional subspace V
h

is spanned by the piecewise polynomial basis
functions �1, . . . ,�N

with the local supports

T
i

= supp(�
i

), i = 1, . . . , N.

The matrix representations A
h

and L
h

are defined as

[A
h

]
ij

= hA
h

�
j

,�
i

i =
Z

⌦
r�

i

· kr�
j

,(2.4)

[L
h

]
ij

= hL
h

�
j

,�
i

i =
Z

⌦
r�

i

·r�
j

, i, j = 1, . . . , N.(2.5)

In the text below, we will, for the sake of simple notation, omit the subscript h and
write A ⌘ A

h

and L ⌘ L
h

. Throughout this text, we assume that conforming
elements are employed.
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A brief note on the CG convergence analysis. In this short description, we
will not include the e↵ects of rounding errors; i.e., we make the unrealistic assumption
of exact computations. This description is for the purpose of this paper su�cient. For
the full account of the e↵ects of rounding errors, we refer the reader to, e.g., [29] and
[24, section 5.8].

The energy norm of the error in CG can be written as

(2.6) kx� x
j

k2A = min
'2⇧j

k'(A)(x� x0)k2A, j = 1, 2, . . . ,

where ⇧
j

denotes the set of all polynomials of degree at most j having the value 1 at
zero.3 Using the spectral decomposition of the matrix A, with �1, . . . ,�N

denoting
its eigenvalues and v1, . . . ,vN

the associated orthonormal eigenvectors, formula (2.6)
can be written as

(2.7) kx� x
j

k2A = kr0k2
NX

l=1

!
l

�
'CG

j

(�
l

)
�2

�
l

, j = 1, 2, . . . .

Here, 'CG

j

(�) represents the polynomial giving the minimum in (2.6) and

r0 = b�Ax0,

!
l

= (z,v
l

)2 , l = 1, . . . , N, z = r0/kr0k.

If we introduce the distribution function

(2.8) !(�) =

8
><

>:

0 for � < �1,P
i

l=1 !l

for �
i

 � < �
i+1,

1 for �
N

 �,

then we can express the error in terms of a Riemann–Stieltjes integral:

(2.9) kx� x
j

k2A = kr0k2
Z �

'CG

j

(�)
�2

�
d!(�), j = 1, 2, . . . .

In this way, it becomes clear that the distribution function !(�), defined by the points
of increase �1, . . . ,�N

and the individual weights !1, . . . ,!N

, “determines” the CG
convergence behavior. Indeed, the CG polynomial 'CG

j

(�) is given by

(2.10) 'CG

j

(�) =
(�� ✓

(j)
1 ) . . . (�� ✓

(j)
j

)

(�1)j✓(j)1 . . . ✓
(j)
j

, j = 1, 2, . . . ,

where ✓(j)1 , . . . , ✓
(j)
j

are the Ritz values at the jth CG iteration, i.e., the approximations
of the eigenvalues of A (implicitly) generated at the jth CG step, which are identical
to the nodes of the associated Gauss quadrature that is accurate for all polynomials of
degree at most 2j�1. We can observe that the value of �CG

j

(�) at the eigenvalue �
l

of
A vanishes whenever this eigenvalue is closely approximated by some Ritz value. (In
finite precision computations, multiple Ritz values can approximate single eigenvalues,

3Here we consider CG applied to the linear algebraic system Ax = b with the Hermitian positive
definite matrix A. An analogous formula holds for CG applied to preconditioned problems as well
as to problems in infinite dimensional Hilbert spaces; see, e.g., [18, 26].
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which causes a significant delay of convergence. This does not happen for our example
below.)

Daniel [6] presented the relations (2.7) and (2.9) in his paper published in 1967.
Subsequently, he (for the first time) presented the bound

(2.11)
kx� x

j

kA
kx� x0kA

 2

 p
(A)� 1p
(A) + 1

!
j

, (A) = �
N

/�1.

This bound is based on replacing 'CG

j

(�) by the jth (shifted and scaled) Chebyshev
polynomial that uses, instead of the whole distribution function !(�), only the infor-
mation about the smallest and largest eigenvalues �1 and �

N

, respectively.4 Immedi-
ately after presenting the associated Theorem 1.2.2, Daniel issues a clear statement
concerning the assumptions and the interpretation of the bound (we reformulate it
using our notation):

“... assuming only that the spectrum of A lies inside the interval
[�1,�N

], we can do no better than Theorem 1.2.2.”

Most unfortunately, the existing thorough insight present in the early papers was
soon, to a large extent, overshadowed by the following narrow algorithmic simplifi-
cation concerning the bound (2.11), which is here presented as a quote that can be
found (with slight variations) in many papers:

“This estimate shows that a smaller condition number results in faster
convergence. Hence, the convergence may be improved by reducing
the condition number.”

Such a view identifies CG convergence behavior with the linear bound (2.11); i.e., it
ignores the assumption of Theorem 1.2.2 emphasized by Daniel. This methodological
misconception has been harmful for decades to theory as well as to practical compu-
tations. (Further details and references concerning this issue can be found in Chapter
11 of the monograph [26].) While mentioning this, we do not deny the use of the con-
dition number bound (2.11) where appropriate. It can be very useful under particular
circumstances, as mentioned at the beginning of this paper.

An example. The following example illustrates in detail the motivation outlined
in section 1, i.e., that the condition number may be misleading in the characterization
of the convergence behavior of the CG method. Consider the boundary value problem

(2.12) �r · (k(x)ru) = 0 in ⌦ , u = u
D

on @⌦ ,

where the domain ⌦ ⌘ (�1, 1) ⇥ (�1, 1) is divided into four subdomains ⌦
i

, i =
1, 2, 3, 4, corresponding to the axis quadrants numbered counterclockwise. Let k(x)
be piecewise constant on the individual subdomains ⌦

i

, k1 = k3 ⇡ 161.45, k2 = k4 =
1. The Dirichlet boundary conditions are described in [30, section 5.3].

The numerical solution u of the problem (2.12) and the linear FE discretization,
using the standard uniform triangulation, are shown in the left part of Figure 1. The
resulting algebraic problem Ax = b is preconditioned and solved by CG (algorithmi-
cally, Ax = b is solved by the preconditioned conjugate gradient method (PCG)). In
the right panel of Figure 1, we see the relative energy norm of the error as a function

4The early works relating iterations based on Chebyshev polynomials to CG are thoroughly
recalled in the Historical note 5.5.3 of the monograph [24, pp. 254–256].
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Fig. 1. Left: The numerical solution of the problem (2.12) on the background of the linear
FE triangulation. Right: The relative energy norm of the PCG error as a function of the iteration
steps. The Laplace operator preconditioning (solid line) is much more e�cient than the incomplete
Cholesky preconditioning (dashed line), despite the fact that the condition numbers are 161.54 and
close to 16, respectively. This can be explained by the di↵erences in the associated distribution
functions (see the end of section 4 below).

of iteration steps for the Laplace operator preconditioning (solid line) and for the
preconditioning using the algebraic incomplete Cholesky factorization of the matrix
A (ICHOL) with the drop-o↵ tolerance 10�2 (dashed line) where the problem has
N = 3969 degrees of freedom. Despite the fact that the spectral condition number
�
max

/�
min

of the symmetrized preconditioned matrix for the Laplace operator pre-
conditioning is an order of magnitude larger than for the ICHOL preconditioning,
close to 161 and close to 16, respectively, PCG with the Laplace operator precondi-
tioning clearly demonstrates much faster convergence.5 This is due to the di↵erences
in the distribution of the eigenvalues with the nonnegligible components of the initial
residuals in the direction of the associated eigenvectors and e↵ects of rounding errors.

The spectra and distribution functions associated with the discretized precondi-
tioned problems are given in Figure 2 forN = 49 degrees of freedom and in Figure 3 for
N = 3969 degrees of freedom. Here, L = L1/2L1/2 is the matrix associated with the
discretized Laplace operator and CC⇤ ⇡ A is the matrix resulting from ICHOL using
the drop-o↵ tolerance 10�2, with the eigenvalues and eigenvectors of the associated
generalized eigenvalue problems (see (1.2))

AvL
i

= �L
i

LvL
i

, i = 1, . . . , N,

AvC
i

= �C
i

CC⇤vC
i

, i = 1, . . . , N.

The weights of the distribution function !L(�) (respectively, !C(�)), associated with
the eigenvalues �L

i

(respectively, �C
i

, i = 1 . . . , N), related to the preconditioned
algebraic systems

AL (L1/2x) = L�1/2b, AL = L�1/2AL�1/2,

5Here we do not compare the overall computational cost, which can be a↵ected by the cost of
the individual preconditioned iterations depending on the domain and the discretization as well as
on the function k(x).
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Fig. 2. Top: Comparison of the spectra of the matrices A, AL, and AC, N = 49 degrees of
freedom. The dashed-dotted line in the upper left panel shows the eigenvalues of the discrete Laplace
operator L (2.5). Due to a small drop-o↵ tolerance, the eigenvalues of A and CC⇤ are graphically
indistinguishable. Therefore, the right part only shows the eigenvalues of AC (using a scale di↵erent
from the left part of the figure). Bottom: Comparison of the distribution functions !

L(�) (left) and
!

C(�) (right) associated with the preconditioned problems. The vertical axes are in the logarithmic
scale, and �

L
1

= 1, �L
N

= 161.45, �C
1

= 0.91, �C
N

= 1.07.

respectively

AC (C⇤x) = C�1b, AC = C�1AC�⇤,

are given by

(2.13)
!L
i

= |(v̄L
i

)⇤qL|2, i = 1, . . . , N,

!C
i

= |(v̄C
i

)⇤qC|2, i = 1, . . . , N.

Here,

v̄L
i

=
L1/2vL

i

kL1/2vL
i

k
and v̄C

i

=
C⇤vC

i

kC⇤vC
i

k
are the eigenvectors of the Hermitian and positive definite matrix AL (respectively,
AC), and

qL =
L�1/2b

kL�1/2bk
, qC =

C�1b

kC�1bk .

(We use the initial guess x0 = 0.) The distribution function !C(�) has its points
of increase much more evenly distributed in the spectral interval [�1(AC),�N

(AC)],
which leads to a di↵erence in the PCG convergence behavior. We will return to this
issue, and o↵er a full explanation of the observed CG convergence behavior, after
proving the main results and presenting their numerical illustrations.
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Fig. 3. Top: Comparison of the spectra of the matrices A, AL, and AC, N = 3969 degrees of
freedom. The dashed-dotted line in the upper left panel shows the eigenvalues of the discrete Laplace
operator L (2.5). Due to a small drop-o↵ tolerance, the eigenvalues of A and CC⇤ are graphically
indistinguishable. Therefore, the right part only shows the eigenvalues of AC (using a scale di↵erent
from the left part of the figure). Bottom: Comparison of the distribution functions !

L(�) (left) and
!

C(�) (right) associated with the preconditioned problems. The vertical axes are in the logarithmic
scale, and �

L
1

= 1, �L
N

= 161.45, �C
1

= 7.4⇥ 10�2, �C
N

= 1.16.

3. Analysis. As mentioned above, we will not only show that some function
values of k(x) are related to the spectrum of L�1A, but also that there exists a one-
to-one correspondence, i.e., a pairing, between the individual eigenvalues of L�1A and
quantities given by the function values of k(x) in relation to the supports of the FE
basis functions. The proof does not require that k(x) is continuous. If, moreover, k(x)
is constant on a part of the domain ⌦ that contains fully the supports of one or more
basis functions, then the function value of k(x) determines the associated eigenvalue
exactly and the number of involved supports bounds from below the multiplicity of
the associated eigenvalue. If k(x) is slowly changing over the support of some basis
function, then we get a very accurate localization of the associated eigenvalue.

Our approach is based upon the intervals

(3.1) k(T
j

) ⌘

inf
x2Tj

k(x), sup
x2Tj

k(x)

�
, j = 1, . . . , N,

where T
j

= supp(�
j

).6 We will first formulate two main results. Theorem 3.1 localizes
the positions of all the individual eigenvalues of the matrix L�1A by pairing them
with the intervals k(T

j

) given in (3.1). Using the given pairing, Corollary 3.2 describes
the closeness of the eigenvalues to the nodal function values of the scalar function k(x).

6If k(x) is assumed only to be measurable and bounded (i.e., k(x) 2 L

1(⌦)), then the intervals
can be defined as k(T

j

) ⌘ [ess inf
x2Tj k(x), ess sup

x2Tj
k(x)]. On the other hand, if k(x) is continuous

on T
j

, then k(T
j

) coincides with the closure of the range of k(x) over T
j

.
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The proof of Theorem 3.1 combines perturbation theory for matrices with a clas-
sical result from the theory of bipartite graphs. For clarity of exposition, the proof
will be presented after stating the corollaries of Theorem 3.1.

Fig. 4. Illustration of Theorem 3.1. The diameters of the dashed circles indicate the size of the
intervals k(T

j

), j = 1, . . . , N . The dots represent the eigenvalues �

j

, j = 1, . . . , N , of the matrix
L�1A. We can find a pairing between the intervals k(T

j

) and the eigenvalues �

i

, but the pairing
may not be uniquely determined.

Theorem 3.1 (pairing the eigenvalues and the intervals k(T
j

), j = 1, . . . , N).
Using the previous notation, let 0 < �1  �2  · · ·  �

N

be the eigenvalues of

L�1A, where A and L are defined by (2.4) and (2.5), respectively (with the subscript

h dropped). As in (1.1), let k(x) be bounded and piecewise continuous. Then there

exists a (possibly nonunique) permutation ⇡ such that the eigenvalues of the matrix

L�1A satisfy

(3.2) �
⇡(j) 2 k(T

j

), j = 1, . . . , N,

where the intervals k(T
j

) are as defined in (3.1).

The statement is illustrated in Figure 4. The proof of the following corollary uses
the one-to-one pairing of the intervals k(T

j

) defined in (3.1), and therefore also the
values of k(x̂

j

) at any associated representatives x̂
j

2 T
j

, with the eigenvalues �
⇡(j).

Corollary 3.2 (pairing the eigenvalues and the nodal values; see Figure 5).
Using the notation and assumption of Theorem 3.1, consider any point x̂

j

such that

x̂
j

2 T
j

. Then the associated eigenvalue �
⇡(j) of the matrix L�1A satisfies

(3.3) |�
⇡(j) � k(x̂

j

)|  sup
x2Tj

|k(x)� k(x̂
j

)|, j = 1, . . . , N.

If, in addition, k(x) 2 C2(T
j

), then

|�
⇡(j) � k(x̂

j

)|  sup
x2Tj

|k(x)� k(x̂
j

)|

 ĥkrk(x̂
j

)k+ 1
2 ĥ

2 sup
x2Tj

kD2k(x)k, j = 1, . . . , N,(3.4)

where ĥ = diam(T
j

) and D2k(x) is the second order derivative of the function k(x).7

In particular, (3.3) and (3.4) hold for any discretization mesh node x̂
j

such that

x̂
j

2 T
j

.

Proof. Since both �
⇡(j) 2 k(T

j

) and k(x̂
j

) 2 k(T
j

), it trivially follows that

|�
⇡(j) � k(x̂

j

)|  sup
x2Tj

|k(x)� k(x̂
j

)|.

7See [5, section 1.2] for the definition of the second order derivative.
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k(x̂
j

)

k(T
j

)

(3.4)

(3.3)

�

⇡(j)

Fig. 5. Illustration of Corollary 3.2. The relation (3.2) (indicated by the dashed blue circle)
can give significantly better localization of the position of the individual eigenvalues than the bounds
(3.3) (indicated by the dotted red circle) and (3.4) (indicated by the solid red circle). When k(x) is
constant over T

j

, then k(T
j

) reduces to one point �

⇡(j)

; see also (3.3). The bound (3.4) is weaker
than (3.2) and (3.3), but the evaluation of its first term might be easier in practice.

Moreover, for any x 2 T
j

, the multidimensional Taylor expansion (see, e.g., [5, p. 11,
section 1.2]) gives for k(x) 2 C2(T

j

) that

k(x)� k(x̂
j

) = rk(x̂
j

)(x� x̂
j

)

+ 1
2D

2k(x̂
j

+ ↵(x� x̂
j

))(x� x̂
j

, x� x̂
j

),

where ↵ 2 [0, 1], with the absolute value obeying

|k(x)� k(x̂
j

)|  krk(x̂
j

)kk(x� x̂
j

)k
+ 1

2kx� x̂
j

k2kD2k(x̂
j

+ ↵(x� x̂
j

))k,

giving the statement.

We now give the proof of Theorem 3.1. Lemma 3.3 below and its Corollary 3.4,
identify the groups of eigenvalues in any union of intervals

(3.5) k̄(TJ ) ⌘
[

j2J
k(T

j

), J ⇢ {1, . . . , N}.

This enables us to apply Hall’s theorem (see [4, Theorem 5.2] or, e.g., [17, Theorem 1])
to prove Theorem 3.1. (For the sake of completeness, we have also formulated Hall’s
result below in Theorem 3.5.)

Lemma 3.3. Using the notation introduced above and the assumption of Theo-

rem 3.1, let J ⇢ {1, . . . , N} and TJ =
S

j2J T
j

. Then there exist at least p = |J |
eigenvalues �̃1, . . . , �̃p

of L�1A such that

(3.6) �̃
`

2


inf
x2TJ

k(x), sup
x2TJ

k(x)

�
, ` = 1, . . . , p.

Proof. In brief, the proof is based on the theory of eigenvalue perturbations of
matrices. We locally modify the scalar function k(x) by setting it equal to a positive
constant K in the union TJ of the supports T

j

, j 2 J . This will result, after dis-
cretization, in a modified matrix ÃJ such that K is an eigenvalue of L�1ÃJ of at
least p multiplicity. An easy bound for the eigenvalues of

(3.7) L�1EJ , where EJ = A� ÃJ ,
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combined with a standard perturbation theorem for matrices, then provides a bound
for the associated p eigenvalues of L�1A. A particular choice of the positive constant
K will finish the proof.

Let

k̃J (x) =

(
K for x 2 TJ ,

k(x) otherwise,

with
D
ÃJ ,h

u, v
E
⌘
Z

⌦
ru · k̃Jrv , u, v 2 V

h

,

where, analogously to (2.4),

[ÃJ ]
ij

=
D
ÃJ ,h

�
j

,�
i

E
=

Z

⌦
r�

i

· k̃Jr�
j

, i, j = 1, . . . , N.

Since k̃J is constant on each T
j

, j 2 J , and the support of the basis function �
j

is T
j

, it holds for any v 2 V
h

that

D
ÃJ ,h

�
j

, v
E
=

Z

⌦
r�

j

· k̃Jrv =

Z

Tj

r�
j

· k̃Jrv(3.8)

= K

Z

Tj

r�
j

·rv = K hL
h

�
j

, vi , j 2 J .(3.9)

Thus, K is an eigenvalue of the operator L�1
h

ÃJ ,h

associated with the eigenfunctions
�
j

, j 2 J , and thereforeK is the eigenvalue of the matrix L�1ÃJ with the multiplicity
at least p. This can also be verified by construction by observing that

ÃJ e
j

= K Le
j

, j 2 J .

Consider now the eigenvalues of L�1EJ ; see (3.7). The Rayleigh quotient for

an eigenpair (✓,q), kqk = 1, and the associated eigenfunction q =
P

N

j=1 ⌫j�j

, where

qT = [⌫1, . . . , ⌫N ], satisfies

✓ =
qTEJq

qTLq
=

qT (A� ÃJ )q

qTLq
=

D
(A

h

� ÃJ ,h

)q, q
E

hL
h

q, qi

=

R
⌦ rq · (k(x)� k̃J (x))rq dxR

⌦ krqk2 dx
=

R
TJ

(k(x)�K)krqk2 dx
R
⌦ krqk2 dx

,

giving

(3.10) |✓|  sup
x2TJ

|k(x)�K|.

Next, consider the symmetric matrices

AL = L�1/2AL�1/2, EL = L�1/2EJL�1/2, ÃL = L�1/2ÃJL�1/2.

According to a standard result from the perturbation theory of symmetric matrices
(see, e.g., [35, Corollary 4.9, p. 203]), we find that

�
s

(AL) = �
s

(ÃL +EL) 2 [�
s

(ÃL) + ✓
min

,�
s

(ÃL) + ✓
max

], s = 1, . . . , N,
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where ✓
min

and ✓
max

are the smallest and largest eigenvalues of EL, respectively. Since
the matrices L�1A, L�1EJ , and L�1ÃJ have the same spectrum as the matrices
AL, EL, and ÃL, respectively, it follows that

�
s

(L�1A) = �
s

(L�1ÃJ + L�1EJ ) 2 [�
s

(L�1ÃJ ) + ✓
min

,�
s

(L�1ÃJ ) + ✓
max

].

Due to (3.10),

✓
min

� � sup
x2TJ

|k(x)�K|,

✓
max

 sup
x2TJ

|k(x)�K|,

and thus, since K is at least a p-multiple eigenvalue of L�1ÃJ , there exist p eigen-
values �̃1, . . . , �̃p

of L�1A such that

(3.11) �̃
`

2

K � sup

x2TJ

|k(x)�K|, K + sup
x2TJ

|k(x)�K|
�
, ` = 1, . . . , p.

Setting

K = 1
2 ( inf

x2TJ
k(x) + sup

x2TJ

k(x))

gives

�̃
`

2


inf
x2TJ

k(x), sup
x2TJ

k(x)

�
, ` = 1, . . . , p.

Applying Lemma 3.3 N times with J = {1}, J = {2}, . . . , J = {N}, we see
that, for the support of any basis function �

j

, there is an eigenvalue �̃ of L�1A such
that �̃ 2 k(T

j

). Moreover, as an additional important consequence, for any subset
J ⇢ {1, . . . , N} the associated union of intervals k̄(TJ ) (see (3.5)) contains at least
p = |J | eigenvalues of L�1A; see the following corollary.

Corollary 3.4. Let, as above, J ⇢ {1, . . . , N} and TJ = [
j2J T

j

. Then there

exist at least p = |J | eigenvalues �̃1, . . . , �̃p

of L�1A such that

(3.12) �̃
`

2 k̄(TJ ) ⌘
[

j2J
k(T

j

), ` = 1, . . . , p.

Moreover, taking J = {1, . . . , N}, (3.12) immediately implies that any eigenvalue �̃
of L�1A belongs to (at least one) interval k(T

j

), j 2 {1, . . . , N}.
Proof. Since k̄(T

j

) = k(T
j

), for any j 2 J , is an interval (3.1), the set k̄(TJ )
consists of at most p intervals. We decompose k̄(TJ ) into p̃ mutually disjoint intervals,
p̃  p, and denote

k̄(TJi) ⌘
[

j2Ji

k(T
j

), i = 1, . . . , p̃.

Lemma 3.3 then ensures that each interval k̄(TJi) contains at least |J
i

| eigenvalues
of L�1A. Summing up, at least

P
i=1,...,p̃ |Ji

| = |J | eigenvalues of L�1A must be

contained in the union k̄(TJ ).



1382 GERGELITS, MARDAL, NIELSEN, AND STRAKOŠ

In order to finalize the proof of Theorem 3.1, we still need to show the existence
of a one-to-one pairing between the individual eigenvalues and the individual intervals
k(T

j

), j = 1, . . . , N . The relationship between the intervals k(T
j

), j = 1, . . . , N , and
the eigenvalues of L�1A described in Lemma 3.3 and Corollary 3.4 can be represented
by the following bipartite graph. Let, as above, 0 < �1  �2  · · ·  �

N

be the
eigenvalues of L�1A. Consider the bipartite graph

(3.13) (S, I, E)

with the sets of nodes S = I = {1, . . . , N} and the set of edges E, where

{s, i} 2 E if and only if �
s

2 k(T
i

), s 2 S, i 2 I.

A subset of edges M ⇢ E is called matching if no edges from M share a common
node; see [4, section 5.1]. We will use the following famous theorem.

Theorem 3.5 (Hall’s theorem). Let (S, I, E) be a bipartite graph. Given J ⇢ I,
let G(J ) ⇢ S denote the set of all nodes adjacent to any node from J , i.e.,

G(J ) = {s 2 S; 9i 2 J such that {s, i} 2 E}.

Then there exists a matching M ⇢ E that covers I if and only if

(3.14) |G(J )| � |J | for any J ⇢ I;

see, e.g., [4, Theorem 5.2] and the original formulation [17, Theorem 1].

Now we are ready to finalize our argument.

Proof of Theorem 3.1. Consider the bipartite graph defined by (3.13), and
let G(J ) ⇢ S be the set of all nodes (representing the eigenvalues) adjacent to any
node from J , J ⇢ I (representing the intervals). In other words, G(J ) represents the
indices of all eigenvalues {�

s

; s 2 G(J )} located in k̄(TJ ) = [
j2J k(T

j

). Corollary 3.4
of Lemma 3.3 ensures that assumption (3.14) in Theorem 3.5 is satisfied, i.e.,

(3.15) |G(J )| � |J |.

Thus, according to Theorem 3.5, there exists a matching M ⇢ E that covers I. Since
|I| = |S|, this matching defines the permutation ⇡(i), i = 1, 2, . . . , N , such that

�
⇡(i) 2 k(T

i

), i = 1, . . . , N,

which finishes the proof.

4. Numerical experiments. In this section, we will illustrate the theoretical
results by a series of numerical experiments. We will investigate how well the nodal
values of k correspond to the eigenvalues and assess the sharpness of the estimates in
Corollary 3.2 in a few examples, including both uniform and local mesh refinement.
Furthermore, we will compute the corresponding intervals k(T

i

), i = 1, . . . , N , and
consider the pairing in Theorem 3.1.

Test problems. We will consider four test problems defined on the domain
⌦ ⌘ (0, 1) ⇥ (0, 1), where we slightly abuse notation above and let k = k(x, y). The
first three problems use a continuous coe�cient function k(x, y):

(P1) k(x, y)= sin(x+ y),

(P2) k(x, y)= 1 + 50 exp(�5(x2 + y2)),

(P3) k(x, y)= 27(x7 + y7).
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The fourth problem uses a discontinuous function k(x, y),

(P4) k(x, y) =

(
(P1) for (x, y) 2 (0, 1)⇥ ( 12 , 1),

(P2) otherwise.

Numerical experiments were computed using FEniCS [25] and MATLAB.8 If not
specified otherwise, we consider a triangular uniform mesh with piecewise linear dis-
cretization basis functions.

4.1. Illustration of Theorem 3.1 and Corollary 3.2. Throughout this sec-
tion, we consider the increasingly sorted eigenvalues �1  �2  · · ·  �

N

and the
increasingly sorted values k1  k2  · · ·  k

N

of the coe�cient function k at the
nodes (x

j

, y
j

), �
i

(x
j

, y
j

) = �
ij

, which determines the reordering R,

(4.1) k
R(i) = k(x

i

, y
i

), i = 1, 2, . . . , N.

In Figure 6, we show the nodal values k1, . . . , kN and the eigenvalues �1, . . . ,�N

for
the problem with N = 81 degrees of freedom. Clearly, there is a close correspondence
between the nodal values and the eigenvalues even at this relatively coarse resolution,
but there are some notable di↵erences for (P3) and (P4) that are clearly visible: The
nodal values of k provide much better approximations of the eigenvalues in the cases
(P1) and (P2) than in the examples (P3) and (P4). In (P3), even though the function
k(x, y) is smooth, the norm of the gradient krkk is large in significant subregions,
which results, in accordance with Corollary 3.2, in less accurate correspondence be-
tween the nodal values and the eigenvalues at the coarse grid. In (P4), a discontinuous
coe�cient function is used.

Theorem 3.1 states that there exists a permutation ⇡ such that �
⇡(i) 2 k(T

i

) for
every i = 1, . . . , N . The proof is not constructive, and it is therefore interesting to
consider potential pairings. In Figure 7, we show the results for the pairing defined
by sorting the eigenvalues and the nodal values of k increasingly (which gives the
ordering of the associated intervals). The pairing appears to work quite well, except
for the case (P4), where in particular the eigenvalues between 30–40 are outside the
intervals provided by this pairing.

In order to ensure that we employ a proper pairing, i.e., to guarantee that �
⇡(i) 2

k(T
i

), i = 1, . . . , N , we construct the adjacency matrix G such that

(4.2) G
si

=

(
1, �

s

2 k(T
i

),

0, �
s

/2 k(T
i

).

By using the Dulmage–Mendelsohn decomposition9 of this adjacency matrix G (pro-
vided by the MATLAB command dmperm) we get a pairing ⇡ satisfying �

⇡(i) 2 k(T
i

)
for every i = 1, . . . , N . Figure 8 illustrates the pairing ⇡ from Theorem 3.1 for (P4)
and the comparison of the eigenvalues �

⇡(i) with the nodal values k(x
i

, y
i

) associated
with the basis function �

i

and the interval k(T
i

) (the plots in Figure 8 should be
compared with the lower right panels of Figures 6 and 7). To summarize, the pairing
⇡ from the Theorem 3.1 can be for problems (P1)–(P3) identified with the reordering
R in (4.1). For problem (P4), the pairing can be given via the Dulmage–Mendelsohn
decomposition of the adjacency matrix.

8FEniCS version 2017.2.0 and MATLAB Version: 8.0.0.783 (R2012b).
9See, e.g., the original paper [7].
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Fig. 6. Comparison of the eigenvalues �

s

, s = 1, . . . , N (red dots), and the increasingly sorted
nodal values of k (blue circles). Top left: (P1), top right: (P2), bottom left: (P3), bottom right:
(P4). As in Figure 7, we use the semilogarithmic scale in the lower right panel (P4).

The di↵erence between the nodal values and the corresponding eigenvalues is
estimated in (3.4), and to assess the sharpness of this estimate, Figure 9 compares
the quantities |�

⇡(i) � k(x
i

, y
i

)| (red dots) with the first term on the right-hand side
of (3.4) (black stars). We observe that the first term of (3.4) in general overestimates
the di↵erences at this coarse resolution.

4.2. E↵ects of h-adaptivity. Corollary 3.2 states that the estimated di↵erence
|�

⇡(i) � k(x
i

, y
i

)| improves at least linearly as the mesh is refined. Figure 10 shows
the improvement of both the nodal value estimates of k and the associated intervals
k(T

i

) for problems (P1) and (P3) with N = 592 = 3481 degrees of freedom.
Corollary 3.2 is a local estimate which allows local mesh refinement for improving

accuracy of the eigenvalue estimate. To see the e↵ect of locally refined mesh on the
spectrum of the preconditioned problem, we consider the test problem (P2), where we
refine the mesh in the subdomain [0, 0.2]⇥ [0, 0.2], i.e., in the area with large gradient
of the function k(x, y). Figure 11 shows the discretization mesh (top), the eigenvalues
with the associated intervals (middle), and the associated nodal values (bottom). As
expected, we observe more eigenvalues in the upper part of the spectrum as well as
their better localization; see also, for comparison, the top right panels of Figures 6
and 7.
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Fig. 7. The eigenvalues �

1

 · · ·  �

N

(red dots) and the associated intervals (black vertical
lines), where the corresponding pairing is defined by sorting of the nodal values of k increasingly;
see (4.1) and Figure 6. Top left: (P1), top right: (P2), bottom left: (P3), bottom right: (P4). We
observe that for (P4) some of the eigenvalues are not inside the associated intervals, and therefore
the ordering based on pairing the eigenvalues with increasing nodal values of k does not in this case
conform to ⇡ from Theorem 3.1.

4.3. Re-entrant corner domain. The local considerations of Corollary 3.2
do not require additional regularity for the solutions of the associated PDEs, and our
theoretical results are valid for domains of any shape. To illuminate that no additional
regularity is needed, we conduct experiments with function k(x, y) from test problem
(P3) on a domain with a re-entrant corner, i.e.,

⌦ = [0, 1]⇥ [0, 1] \ {(x, y) : x > 0.8y + 0.1 and y < 0.8x+ 0.1} .

The domain is shown in the left panel in Figure 12. The right panel shows the
eigenvalues �1, . . . ,�N

(red dots) with the increasingly sorted nodal values k1, . . . , kN
(green circles) and the associated intervals.

4.4. Convergence of the introductory example explained. We will now
finish our exposition by returning back to the motivation example presented in sec-
tion 2 and by explaining the di↵erence in the behavior of PCG with the Laplace
operator preconditioning and with the ICHOL preconditioning; see the right part of
Figure 1.

First we present Figure 13, a modification of Figure 1, showing that at the fifth
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Fig. 8. Illustration of the pairing ⇡ computed by the Dulmage–Mendelsohn decomposition of
the corresponding adjacency matrix G (see (4.2)) for problem (P4). Left: The intervals k(T

i

) (black
vertical lines) are paired with the associated eigenvalues �

⇡(i)

(red dots). The pairs are then plotted
(for nicer graphical appearance) in increasing order of the size of the eigenvalues (not in the order
⇡(i), i = 1, . . . , N). Right: The comparison of the eigenvalues (using the same ordering as in the
left part) and the associated nodal values k(x

i

, y

i

) (blue circles).

10 20 30 40 50 60 70 80

10
−2

10
−1

 

 

difference

estimate

10 20 30 40 50 60 70 80

10
−2

10
−1

10
0

10
1

 

 

difference

estimate

10 20 30 40 50 60 70 80

10
−3

10
−2

10
−1

10
0

10
1

 

 

difference

estimate

10 20 30 40 50 60 70 80

10
−2

10
−1

10
0

10
1

 

 

difference

estimate

Fig. 9. Illustration of Corollary 3.2. Comparison of the absolute di↵erence |�
⇡(i)

� k(x
i

, y

i

)|
(red dots) and its estimate by the first term on the right-hand side of (3.4) (black stars). Top left:
(P1), top right: (P2), bottom left: (P3), bottom right: (P4).
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Fig. 10. Top: The intervals k(T
i

) (black vertical lines) and the associated eigenvalues �

⇡(i)

(red dots) (plotted in increasing order of their size). Bottom: Comparison of the eigenvalues �

⇡(i)

(plotted in increasing order of their size) and the associated nodal values k(x
i

, y

i

) (blue circles).
Here we use uniform mesh with N = 3481 degrees of freedom. Left: (P1), right: (P3). We can
observe a dramatic improvement of the approximation accuracy; cf. Figures 6 and 7.

iteration we can identify with remarkable accuracy the slope of the PCG convergence
curves for most of the subsequent iterations, with the convergence being almost linear
without a substantial acceleration. The rate of convergence is for the Laplace operator
preconditioning remarkably faster than for the ICHOL preconditioning.

The convergence of the PCG method with the Laplace operator preconditioning
can be completely explained using Theorem 3.1 and the results about the CG con-
vergence behavior from the literature. Since k(x) is in the given experiment constant
for most of the supports of the basis functions (being equal to one (respectively, to
161.45)), according to Theorem 3.1 the preconditioned system matrix must have many
multiple eigenvalues equal to one (respectively, to 161.45). This is illustrated by the
computed quantities presented in Table 1. We see that 1922 eigenvalues are equal to
one, 1922 are equal to 161.45, and the rest are spread between ⇡ 28 and ⇡ 134 (with
the eigenvalues between 81.226 and 134 of weight so negligible (see (2.13)) that they
do not contribute within the small number of iterations to the computations; they are
for CG computations within the given number of iterations practically not visible; see
[24, section 5.6.4]).

Assuming exact arithmetic, van der Sluis and van der Vorst prove in the seminal
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Fig. 11. The influence of the locally refined mesh in the subdomain (0, 0.2)⇥(0, 0.2) for the test
problem (P2). Left: One refinement step. Right: Three refinement steps. We use the same symbols
as in Figures 6 and 7.

paper [37] that if the Ritz values approximate (in a rather moderate way) the eigen-
values at the lower end of the spectrum, the computations further proceed with a rate
as if the approximated eigenvalues are not present. Analysis of rounding errors in CG
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N

(green circles) and the associated intervals (black vertical lines) for the
test problem (P3) on the re-entrant corner domain.

and Lanczos by Paige, Greenbaum, and others, mentioned above in section 1, then
proves that this argumentation concerning the lower end of the spectrum remains valid
also in finite precision arithmetic computations. At the fifth iteration, the eigenvalues
1, 28.5, 61.4, 75.3 at the lower end of the spectrum and also the largest eigenvalue
161.45 are approximated by the Ritz values; see Figure 14. Therefore, from then on
PCG converges, using the e↵ective condition number upper bound

(4.3)
kx� x

k

kA
kx� x0kA

 2

 p
L
e

� 1p
L
e

+ 1

!
k�5

, L
e

=
�L
2039

�L
1926

= 1.02, k > 5,

at least as fast as the right-hand side in (4.3) suggests. The convergence is in the
iterations 6–9 very fast, and there are no further well separated eigenvalues that can
be approximated within these iterations by the Ritz values. Therefore, we do not
practically observe any further acceleration. At iteration 10, the convergence slows
down. This is due to the e↵ect of rounding errors that cause the forming of a second
Ritz value that approximates the largest eigenvalue 161.45 (as mentioned above, the
appearance of large outlying eigenvalues can cause deterioration of convergence due
to roundo↵; the detailed explanation is given, e.g., in [13], [24, section 5.9.1; see, in
particular, Figures 5.14 and 5.15], and [10]).

Also, for the incomplete Cholesky preconditioning an analogous argumentation
holds with the di↵erence that the approximation of the five leftmost eigenvalues by
the Ritz values slightly accelerate convergence. The bound (4.3) is valid with replac-
ing L

e

by

(4.4) C
e

=
�C
3969

�C
6

= 3.75;

see the computed quantities in Table 2. We can see from Figure 14 that at the fifth
iteration the five smallest eigenvalues are not yet approximated by the Ritz values.
This needs about five additional iterations. From the tenth iteration the convergence
remains very close to linear and slow because no further acceleration can take place
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Fig. 13. Explanation of the PCG behavior from Figure 1. The dotted and dash-dotted lines
show the estimates of the PCG error based on the so-called e↵ective condition number, which here
(see the discussion in the text) fully describes the PCG behavior starting from the sixth iteration.

Table 1
Detail of the points of increase (Ritz values) and the weights (see (2.13)) of the distribution

function !

L(�) associated with the problem preconditioned by the Laplace operator. The e↵ective
condition number is for the given example determined by �

L
1926

and �

L
2039

; see the top part of
Figure 15.

Index 1–1922 1923 1924 1925 1926
Eigenvalues 1 28.508 61.384 75.324 �

L
1926

= 79.699
Total weight 9⇥ 10�6 ⇡ 10�3 ⇡ 10�3 ⇡ 10�3 ⇡ 10�3

Index 1927–1930 1931–2039 2040–2047 2048–3969
Eigenvalues 80.875 – 81.222 �

L
2039

= 81.224 81.226 – 133.94 161.45
Total weight ⇡ 10�3 1.8⇥ 10�2 8⇥ 10�10 0.96

due to the widespread eigenvalues and the e↵ects of roundo↵ (no further eigenvalue
approximation by the Ritz values can significantly a↵ect the convergence behavior).
The part of the spectra that practically determines the convergence rates after the
fifth iteration of the Laplace operator PCG (respectively, after the tenth iteration of
the ICHOL PCG) is illustrated in Figure 15.

Remark 4.1. Although we do not present in this section any formal statement
with a formal proof, the presented explanation is much more than a discussion of the
experimental results. Knowing the spectral information presented in Tables 1 and 2
and illustrated in Figure 15, the referenced theoretical results prove that starting
from a certain small iteration number greater than or equal to five, the convergence
behavior of CG will be very close to linear. We do know a priori the subsequent linear
rates of convergence for both cases, which are determined by the e↵ective condition
numbers presented in (4.3) (respectively, (4.4)). A formal proof of the fact that it
happens for the Laplace preconditioning case precisely at the fifth iteration (and not
at the sixth or the seventh) cannot be done due to technically complicated terms (see
the related results in the referenced literature). However, if we look at the Ritz values
at the fifth iteration (see Figure 14), we can say with certainty that the acceleration
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Fig. 14. Illustration of the Ritz values computed at the fifth PCG iteration. Top: Problem with
the Laplace operator preconditioning. We observe four Ritz values approximating the eigenvalues at
the lower end of the spectrum and one Ritz value very closely approximating the largest eigenvalue.
Bottom: Problem with the ICHOL preconditioning. We do not yet observe a good approximation of
any of the eigenvalues, but we can see that the extremal Ritz values approach the ends of the spectral
interval.

Table 2
Detail of the points of increase (Ritz values) and the weights (see (2.13)) of the distribution

function !

C(�) associated with the problem with ICHOL preconditioning. The e↵ective condition
number is for the given example determined by �

C
6

and �

C
3969

; see the bottom part of Figure 15.

Index 1 2 3 4
Eigenvalues 0.074 0.095 0.231 0.233
Total weight 8⇥ 10�5 6.4⇥ 10�3 8⇥ 10�7 10�8

Index 5 6 7–3969
Eigenvalues 0.304 �

C
6

= 0.311 0.321 – �

C
3969

= 1.1643
Total weight 6⇥ 10�5 1.5⇥ 10�3 0.992

must start at that point. Similarly, we can predict that the case with the incomplete
Cholesky preconditioner will behave as it does.

The presented spectral information determines the behavior of the PCG itera-
tions. Knowing the spectral information a priori, one can quantitatively predict the
convergence for the Laplace and incomplete Cholesky preconditioners shown in Fig-
ure 13.

5. Concluding remarks. We have analyzed the operator L�1A generated by
preconditioning second order elliptic PDEs with the inverse of the Laplacian. Previ-
ously, it has been proven that the range of the coe�cient function k of the elliptic
PDE is contained in the spectrum of L�1A but only for operators defined on infinitely
dimensional spaces. In this paper, we show that a substantially stronger result holds
in the discrete case of conforming finite elements. More precisely, we show that the
eigenvalues of the matrix L�1A, where L and A are the associated sti↵ness matrices,
lie in resolution dependent intervals around the nodal values of the coe�cient function
that tend to the nodal values as the resolution increases. Moreover, there is a pairing
(possibly nonunique) of the eigenvalues and the nodal values of the coe�cient function
due to Hall’s theory of bipartite graphs. Finally, we demonstrate that the conjugate
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Fig. 15. Distribution functions: Top: Laplace operator preconditioning. Bottom: ICHOL
preconditioning. Red dashed lines represent the position of eigenvalues associated with the e↵ective
condition numbers after five iterations.

gradient method utilizes the structure of the spectrum (more precisely, of the asso-
ciated distribution function) to accelerate the iterations. In fact, even though the
condition number involved, for instance, with incomplete Cholesky preconditioning is
significantly smaller than for the Laplacian preconditioner, the performance measured
by the number of iterations10 when using Cholesky is much worse. In this case, the
accelerated performance of the Laplacian preconditioner can be fully explained by an
analysis of the distribution functions.

As mentioned above, in the numerical experiments of this paper we use Lagrange
elements. However, the results (Theorem 3.1 and Corollary 3.2) (see, in particular,
the derivation in (3.8) and (3.9)) are valid for any conforming approximation.
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