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Optimal selection of rain gauge number and location will improve the 

accuracy of areal average precipitation estimations with minimum cost. In 

this study, the impacts of rain gauge density and distribution on lumped 

hydrological modelling uncertainty with different catchment sizes are 

analysed. To this end, the performances of a lumped hydrological model, 

the Xinanjiang model, in a densely gauged river basin, the Xiangjiang 

River basin, and its sub-basins under different gauge density and 

distribution are compared. First, seven levels of rain gauge density are 

defined. For each density level, several samples of different rain gauge 

distributions are randomly selected. Then, the areal average 

precipitation of each sample is estimated and used as input to the 

Xinanjiang model. Finally, the model is calibrated using the shuffled 

complex evolution (SCE-UA) algorithm, and model uncertainty is evaluated 

via the Bayesian method. The results show that 1) imperfect precipitation 

inputs measured by a sparse and irregular rain gauge network will lead to 

substantial uncertainty in model parameter estimation and flood 

simulation; 2) the impacts of imperfect precipitation estimates on model 

efficiency can be reduced to some extent through the adjustment of model 

parameters; 3) modelling uncertainty is reduced by increasing the rain 

gauge density or optimizing the rain gauge distribution pattern; and 4) 

the improvement in lumped model efficiency is no longer significant when 

the rain gauge density exceeds a certain threshold, but a further 

increase in rain gauge density will reduce model parameter uncertainty 

and the width of the runoff confidence interval. 
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Abstract 11 

Most lumped hydrological models use areal average precipitation data as model input. Though 12 

weather-radar-based and satellite-based precipitation estimation methods have been proposed in 13 

recent years, the rain gauge is still the most widely used precipitation-measuring tool. Optimal 14 

selection of rain gauge number and location will improve the accuracy of areal average precipitation 15 

estimations with minimum cost. In this study, the impacts of rain gauge density and distribution on 16 

lumped hydrological modelling uncertainty with different catchment sizes are analysed. To this end, 17 

the performances of a lumped hydrological model, the Xinanjiang model, in a densely gauged river 18 

basin, the Xiangjiang River basin, and its sub-basins under different gauge density and distribution are 19 

compared. First, seven levels of rain gauge density are defined. For each density level, several 20 

samples of different rain gauge distributions are randomly selected. Then, the areal average 21 
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precipitation of each sample is estimated and used as input to the Xinanjiang model. Finally, the 22 

model is calibrated using the shuffled complex evolution (SCE-UA) algorithm, and model uncertainty 23 

is evaluated via the Bayesian method. The results show that 1) imperfect precipitation inputs 24 

measured by a sparse and irregular rain gauge network will lead to substantial uncertainty in model 25 

parameter estimation and flood simulation; 2) the impacts of imperfect precipitation estimates on 26 

model efficiency can be reduced to some extent through the adjustment of model parameters; 3) 27 

modelling uncertainty is reduced by increasing the rain gauge density or optimizing the rain gauge 28 

distribution pattern; and 4) the improvement in lumped model efficiency is no longer significant when 29 

the rain gauge density exceeds a certain threshold, but a further increase in rain gauge density will 30 

reduce model parameter uncertainty and the width of the runoff confidence interval. 31 

Key words: Xiangjiang River Basin, Xinanjiang model, Bayesian framework, rain gauge density, rain 32 

gauge network 33 

1. Introduction 34 

Lumped hydrological models are still widely used in flood forecasting and flood risk assessment (e.g., 35 

El Alfy, 2016; Jie et al., 2016; Refsgaard et al., 1988; Thiboult & Anctil, 2015; Huang & Hattermann, 36 

2018; Su et al., 2018), water resource assessments (e.g., Kizza et al., 2013; Xu et al., 1996; Koivusalo 37 

et al., 2017), and impact studies of climate change on water resources (e.g., Awan et al., 2016; Chen 38 

et al., 2007 & 2012; Yan et al., 2016; Guo et al., 2018; Zhuan et al., 2018). However, the performance 39 

of lumped hydrological models is substantially influenced by model inputs (Oudin et al., 2006; Chang 40 

et al., 2017; Pechlivanidis et al., 2017). Precipitation, as a fundamental process of the hydrological 41 

cycle, is the most important forcing input for hydrological modelling and forecasting. Precise 42 
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estimation of the spatial and temporal characteristics of precipitation is a key factor for accurate 43 

runoff simulation. However, precipitation input for a given basin is influenced by many factors, such 44 

as the precipitation type (convective, orographic, and frontal), the basin topography and the basin 45 

location and land use. The heterogeneous distribution of precipitation input in time and space makes 46 

its precise measurement a great challenge (Sattari et al., 2017). There are three commonly used methods 47 

for precipitation measurement: the rain gauge-based method, the weather-radar-based method and 48 

satellite-based remote sensing. Measurement by rain gauge is direct and of higher quality, but in most 49 

regions, rain gauges are too sparsely distributed to represent the spatial variability of precipitation 50 

(Villarini et al., 2008). In contrast, weather radar can characterize the spatial variability of 51 

precipitation through high spatial resolution measurement but its accuracy is influenced by many 52 

factors, including beam shielding, signal attenuation, ground cluster etc. (Germann et al., 2006). As a 53 

newly emerging precipitation measurement technology, satellite remote sensing can provide 54 

quasi-global precipitation products, but currently, the spatiotemporal resolutions of these products are 55 

low (Maggioni et al., 2016). Moreover, the measurements of radar and satellite retrieval products 56 

must be calibrated by rain gauge measurement to minimize data biases. Thus, a rain gauge network 57 

with a high gauge density and optimum gauge distribution is fundamental for the accurate 58 

measurement of precipitation. 59 

Several studies have discussed the influence of rain gauge density and gauge distribution on the 60 

accuracy of precipitation estimation and hydrological modelling (Bárdossy and Das, 2008; Bras and 61 

Rodríguez-Iturbe, 1976; Girons et al., 2015; Krstanovic and Singh, 1992; Morrissey et al., 1995). 62 

Moulin et al. (2009) observed that uncertainty in the mean areal rainfall estimation is a key factor that 63 

leads to rainfall-runoff modelling error. St-Hilaire et al. (2003) used the areal average precipitation 64 
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estimated from rain gauge networks with different densities as the input data for a lumped 65 

hydrological model to study the impact of rain gauge density on runoff simulation results. They found 66 

that the accuracy of runoff simulation was significantly improved when a dense rain gauge network 67 

was used, especially for the peak discharge simulation. Xu et al. (2013) further showed that the 68 

accuracy of rainfall estimation and hydrological model performance increased gradually with the 69 

increase of rain gauge density up to a certain threshold, while good performance of a lumped model 70 

was also observed with fewer rain gauges when an optimum rain gauge distribution pattern was used.  71 

Recently, considerable attention has been focused on the uncertainties in hydrological modelling, 72 

including input uncertainty, parameter uncertainty, model structural uncertainty and output 73 

uncertainty. Many uncertainty estimation frameworks have been developed and tested in the literature 74 

(Beven and Binley, 1992; Camacho et al., 2015; Engeland et al., 2005; Vrugt et al., 2003). With these 75 

uncertainty estimation frameworks, the research on model parameters is no longer restricted to the 76 

calibrated optimum parameter set and now includes the posterior distributions of model parameters 77 

considering the parameter equifinality. In addition, the model output is not simply a single simulated 78 

runoff series but, a confidence interval describing model uncertainty. As precipitation is the main 79 

forcing data input in hydrological models, errors embedded in it will introduce considerable 80 

uncertainty in the model parameter estimation and the runoff simulation (Younger et al., 2009). 81 

Kavetski et al. (2006a) developed a Bayesian total error analysis framework (BATEA) to 82 

transparently analyse the input uncertainty separately from other uncertainties by introducing latent 83 

variables to characterize the rainfall error. Similarly, Ajami et al. (2007) used an error model with 84 

several hyper-parameters to simulate the rainfall error and developed a framework, the Integrated 85 

Bayesian Uncertainty Estimator (IBUNE), to explicitly account for the main hydrological modelling 86 
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uncertainties. Li et al. (2011) perturbed the observed precipitation using normally distributed 87 

multipliers to simulate the systematic error and random error in precipitation data. They used the 88 

perturbed precipitation data as the input to a lumped hydrological model to study the sensitivity of 89 

two uncertainty estimation methods, the GLUE and the Bayesian method, to precipitation errors. 90 

Because rainfall sampling uncertainty is not well understood, for computational convenience, the 91 

precipitation error in the aforementioned studies was considered by a simple multiplicative or additive 92 

error model with model parameters calibrated or determined by experience. However, these error 93 

models are rarely validated because the “true precipitation” is difficult to acquire.  94 

For a certain rain gauge network, the errors in precipitation data are predominately of two types: (1) 95 

point measurement error and (2) spatial interpolating error (McMillan et al., 2012). For the first type, 96 

precipitation estimates are influenced by the gauge type, wind effects and evaporation, etc. For the 97 

second type, no matter which interpolation method is used, the accuracy of interpolation is affected by 98 

rain gauge density and gauge distribution. Some key papers related to the impacts of imperfect 99 

precipitation inputs on hydrological modelling are listed in Table 1. From the deterministic 100 

perspective, some studies focus on the evaluation of the impact of precipitation errors on model 101 

parameter calibration and runoff simulation accuracy. Some of these studies directly used the 102 

precipitation data from randomly or specifically selected rain gauge combinations under different 103 

gauge densities (Anctil et al., 2006; Andréassian et al., 2001; Bárdossy and Das, 2008; Dong et al., 104 

2005; St-Hilaire et al., 2003; Xu et al., 2013), whereas others used precipitation error models to 105 

simulate the two aforementioned types of error in precipitation data (Oudin et al., 2006; Xu et al., 106 

2006). With respect to uncertainty, some studies emphasize the assessment of precipitation 107 

uncertainty in lumped hydrological modelling through the Bayesian inference method (i.e., Ajami et 108 
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al., 2007; Kavetski et al., 2006b), which can explicitly or implicitly evaluate the uncertainty from 109 

diverse sources. However, to our knowledge, no paper has evaluated the impact of rain gauge density 110 

and gauge distribution on model parameter posterior distribution and the confidence interval of runoff 111 

simulation. Investigating these impacts on lumped hydrological modelling with respect to certainty 112 

and uncertainty is important for designing rain gauge networks and improving the structure and 113 

performance of hydrological models. 114 

< Table 1 here please > 115 

Thus, the objectives of this study are: (i) to assess the influence of rain gauge density and gauge 116 

distribution on lumped hydrological model performance; (ii) to investigate the effects of rain gauge 117 

density on modelling uncertainty; and (iii) to evaluate the effects of gauge distribution pattern on 118 

model parameter inference and model uncertainty using Bayesian framework. 119 

The structure of this paper is as follows. Section 2 introduces the study area and data used in this 120 

study. Then, details about the lumped model, the model calibration method and the model uncertainty 121 

estimation method are given in Section 3. In Section 4, the results corresponding to the three 122 

objectives of the study are demonstrated and analysed. These results are discussed and compared to 123 

those of other studies in Section 5. Finally, major conclusions are drawn and recommendations related 124 

to the design of rain gauge networks are given in Section 6. 125 

2. Study area and data 126 

The Xiangjiang River basin in central-south China was selected as the study area (Fig. 1). This basin 127 

covers an area of approximately 94,660 km
2
 with a total river length of 856 km. The basin elevation 128 

ranges from 2100 m above sea level on the southern boundary to 330 m a.s.l. on the northern river 129 
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plain. This basin is controlled by the Mongolia high pressure system in winter and dominated by a 130 

southeast monsoon in summer (Xu et al., 2013). The monsoon climate and undulating terrain lead to a 131 

heterogeneous distribution of precipitation in both time and space. Nearly two-thirds of the 1450 mm 132 

annual mean precipitation occur in the rainy season from April to September. The climate of this 133 

region is generally warm and humid, and the monthly mean air temperature ranges from 4°C 134 

(February) to 30°C (July). Four sub-basins—Xiangxiang, Ganxi, Hengyang and Xiangtan, with sizes 135 

of 6053, 9972, 52,150 and 81,638 km
2
, respectively—were studied. 136 

< Figure 1 here please > 137 

The study area has been densely instrumented in recent decades. There are 188 rain gauges evenly 138 

distributed in the basin, ensuring the achievement of the upscaling strategy in research on the impacts 139 

of rain gauge density on lumped modelling performance. Daily precipitation data are available from 140 

these rain gauges from 1990 to 2005. Corresponding pan evaporation data were acquired from 11 141 

evaporation gauges in this basin. The study area was divided into four sub-basins depending on the 142 

available discharge stations (Fig. 1). Information from the different sub-basins is summarized in Table 143 

2. These hydro-meteorological data are quality controlled by the Hydrology and Water Resources 144 

Bureau of Hunan Province, China. They have been used in many other studies (e.g., Li et al., 2015; 145 

Xu et al., 2015a, b) for various research purposes. 146 

< Table 2 here please > 147 

For each of the 4 basins, seven rain gauge density levels were defined, each corresponding to a 148 

percentage of the available rain gauge. Samples of rain gauge combinations were randomly selected 149 

from the complete gauge network for each density level in each basin. The maximum sampling 150 
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number was set to 1000 for density levels with possible combinations exceeding 1000. However, 151 

when the possible combinations were less than 1000, all possible combinations were enumerated. For 152 

example, when 9 rain gauges are sampled from the 188 rain gauges of Xiangtan Basin, there are 153 

188!/(179!×9!) ≈ 10
14

 possible combinations. As it is impossible to consider all these combinations, 154 

we randomly selected 1000 combinations. However, when 2 gauges were sampled from the 19 rain 155 

gauges of Xiangxiang Basin, there were only 19!/(17!×2!) = 171 possible combinations. Therefore, 156 

all the combinations were sampled for further analysis. The rain gauge number of each density level 157 

and the sampling number are listed in Table 3. After the sampling procedure, the areal average 158 

precipitation of each sample was derived by the Thiessen method. This method was chosen because it 159 

is commonly used in lumped hydrological modelling.  160 

< Table 3 here please > 161 

3. Methods 162 

3.1 Xinanjiang model 163 

The Xinanjiang model, which is a deterministic lumped hydrological model, is used in this study. This 164 

model was developed by Zhao and his colleagues (Zhao et al., 1980). “Its main feature is the concept 165 

of runoff formation on repletion of storage, which means that runoff is not generated until the soil 166 

moisture content reaches field capacity” (Zhao et al., 1995). This concept fits for the runoff generation 167 

mechanism of humid and semi-humid regions. The Xinanjiang model has been widely and 168 

successfully applied in southern China for flood forecasting (Jie et al., 2016; Zhao, 1992), design 169 

flood estimation (Zeng et al., 2016) and water resources assessment (Zhang et al., 2009). The 170 

flowchart of this model is shown in Fig. 2. Symbols in the solid boxes of Fig. 2 are the model inputs, 171 
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outputs and state variables. The model inputs are the basin average precipitation (P) and pan 172 

evaporation (Epan) measured with an “E601”-type evaporation pan with a surface area of 3000 cm
2
. 173 

Model outputs include the actual evapotranspiration (E) and the simulated runoff at the outlet of the 174 

study area (Qsim). Symbols outside the solid boxes of Fig. 2 are the parameters of this model, and their 175 

explanations are listed in Table 4. 176 

< Figure 2 here please > 177 

< Table 4 here please > 178 

The Xinanjiang model used in this study (where nearly all the precipitation falls in the form of rainfall 179 

and thus a snow routine does not need to be considered) consists of the following four major routines: 180 

(i) evapotranspiration calculation; (ii) runoff production; (iii) runoff separation; and (iv) flow routing. 181 

In this model, the study area is represented by a stack of soil layers including the upper layer, the 182 

lower layer and the deep layer with water storage capacity represented by parameters UM, LM and 183 

WM-UM-LM, respectively. Potential evapotranspiration is commonly calculated by the multiplication 184 

of a pan coefficient KE with the measured pan evaporation (McVicar et al., 2007; Xu et al., 2006) in 185 

China and other countries where pan evaporation data are more available than other meteorological 186 

data needed to calculate PET. In this study, KE is considered one of the key model parameters that 187 

directly influence the achievement of water balance. Water moisture in the soil is evaporated layer by 188 

layer from top to bottom. When the precipitation input is greater than the potential evapotranspiration, 189 

runoff is generated where the soil water content reaches the water storage capacity. The excess water 190 

is first stored in a free water reservoir with areal mean storage capacity of parameter SM. The storage 191 

capacity of the free water reservoir is heterogeneously distributed in the catchment, and this uneven 192 
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special distribution is described by parameter EX. Thus, surface runoff, RS, generates in those areas 193 

where the free water content reaches its storage capacity. The rest of the water in the reservoir is 194 

separated into interflow, RI, and ground flow, RG, with the ratio of parameter KI and parameter KG, 195 

respectively. Surface runoff is further routed to the catchment outlet through a unit hydrograph with 196 

parameters N and NK. Interflow and ground flow are routed to a catchment outlet through a linear 197 

reservoir with parameters CI and CG, respectively. The runoff simulation at the catchment outlet is 198 

the sum of the three routing results. 199 

3.2 Model calibration method 200 

A global automatic optimization algorithm, the shuffled complex evolution (SCE-UA; see Duan et al. 201 

1992) algorithm, is applied in this study for model calibration. The objective of model calibration is to 202 

minimize the mean square error of modelling runoff. 203 
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t
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simQ  are the daily observed and simulated runoffs, respectively, at time t, and N is 205 

the length of daily runoff data used for model calibration. 206 

Two commonly used indices, the Nash-Sutcliffe efficiency (NS) and the relative volume error (RE), 207 

are used to evaluate the performance of the Xinanjiang model. The functions of the two indices are 208 

expressed as follows: 209 
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where 
obsQ  is the mean of the daily observed runoff series. NS represents the ratio between the 212 
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residual variance and the observed data variance. A “perfect” model fit is found when the value of NS 213 

equals one. RE determines how well the water balance is maintained. A positive RE indicates 214 

overestimation of total water volume and vice versa. 215 

To minimize the initial condition influence on model performance, data from 1990 are used for 216 

warming up the model, while data from 1991 to 2005 are used for model calibration. The areal 217 

average precipitation samples of each gauge density level are used separately as the inputs to the 218 

Xinanjiang model. For each model input, the 15 model parameters are calibrated via the SCE-UA 219 

algorithm. To achieve the first objective of this study, model calibration results are analysed and 220 

compared to investigate the impact of differences in rain gauge density and gauge distribution on 221 

hydrological modelling. The precipitation sample producing the maximum model NS efficiency is 222 

chosen to be the “best precipitation sample” of the corresponding rain gauge density level for further 223 

analysis. 224 

3.3 The Bayesian framework 225 

To achieve the last two objectives of this study, the Bayesian framework is used to investigate the 226 

modelling uncertainty under different rain gauge density and gauge distribution. In the philosophy of 227 

the Bayesian method, unknown model parameters are treated as random quantities rather than a 228 

specified parameter set (Bernardo and Smith, 1994). Parameter distributions are inferred through the 229 

Bayesian formula, which considers the information in the observed data and prior experience together. 230 

The Bayesian formula is expressed as follows: 231 
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where   represents the hydrological model parameters,   represents the statistical error model 233 

parameters, and   represents the transformed runoff observation. The priori distribution of model 234 

parameters ),( p  is modified to the posterior distribution )|,( p  through the information of 235 

the observed data, which is represented by the likelihood function ),|( p . The denominator of the 236 

right-hand side of Eq. 4 is the occurrence probability of the observed data. For a given observed data 237 

set, the denominator is a normalization constant for projecting the numerator into probability space. 238 

3.3.1 Likelihood function 239 

In the Bayesian formula, the likelihood function is a probability density function for the observed data 240 

conditioned on the model parameters, which is equal to the conditional probability of simulation 241 

errors. However, the simulation errors might be related to the hydrological processes and highly 242 

correlated in time (Engeland and Gottschalk, 2002). Their characteristics are difficult to precisely 243 

depict by any known statistically correct likelihood function (Gupta et al., 1998), but their chief 244 

components can be described by statistical models. The simulation error at time t is calculated with 245 

the following formula: 246 

 )()( ,, tobstsimt QTQT   (5) 247 

where tobsQ ,  and tsimQ ,  represent the daily observed runoff and the simulated runoff at time t, 248 

respectively, and T is a transformation function for obtaining normally distributed homoscedastic 249 

simulation errors. There are two commonly used transformation functions in the literature, including 250 

the Box-Cox transformation (Li et al., 2011; Yang et al., 2007) and the normal quantile transformation 251 

(Krzysztofowicz, 1997; Li et al., 2010). In the present study, the logarithmic transformation, which 252 

belongs to a subset of the Box-Cox transformation, is used for transformation efficiency and 253 
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computational convenience. This transformation has been used in many other studies (e.g., Beven and 254 

Freer, 2001; Engeland and Gottschalk, 2002; Thiemann et al., 2001). Furthermore, the AR(1) error 255 

model (Eq. 6) is used in this study to characterize the autocorrelation property of the simulation 256 

errors. 257 

 ttt    )( 1  (6) 258 

Here,   and   are the autoregressive coefficient and the arithmetic mean of  , respectively, and 259 

t  represents the residuals that are assumed to fit for an independent normal distribution with zero 260 

mean and constant variance 2 . As the systematic error can be avoided by the adjustment of model 261 

parameter KE,   is set to zero. Parameters of the error model,   and 2 , are inferred 262 

simultaneously with the parameters of the hydrological model.  263 

Based on the AR(1) error model assumption, the likelihood function is expressed as follows: 264 
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 
  (7) 265 

where N represents the number of days and the other notations are as defined above. 266 

3.3.2 Prior distribution 267 

To reduce the number of model runs, only the parameters sensitive to the precipitation input are 268 

inferred in this study, while the other parameters, which characterize the catchment properties, are 269 

kept at their optimum value calibrated by the SCE-UA algorithm using the areal average precipitation 270 

estimated by the complete rain gauge network as model input. These free parameters include the 271 

evaporation ratio KE, which influences the water balance; the interflow and ground flow separation 272 

parameters, KI and KG, respectively; the recession coefficients of interflow and ground flow, CI and 273 
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CG, respectively; and the surface flow routing parameter NK. In the absence of information about the 274 

free model parameters, uniform prior distribution of model parameters is used. For the error model 275 

parameters, the prior distribution of autoregressive coefficient   is considered a uniform 276 

distribution. For the standard deviation coefficient   of AR(1) residuals, Jeffreys’ non-informative 277 

prior is used, and its prior density is proportional to -1 . The prior distributions of eight parameters, 278 

including six hydrological model parameters and two error model parameters, are listed in Table 5. 279 

< Table 5 here please > 280 

3.3.3 Adaptive MCMC algorithm 281 

An adaptive Markov chain Monte Carlo method, called the single-component adaptive Metropolis 282 

(SCAM) algorithm (Haario et al., 2005), is adopted to sample from the posterior parameter 283 

distribution. This algorithm can be considered a single-component Metropolis-Hastings algorithm 284 

with the component’s proposal distribution adapted during the sampling process. In the 285 

implementation of this algorithm, the abovementioned eight parameters are updated one by one, and 286 

after the updating of all parameters, one iteration is completed. The proposal distribution of each 287 

parameter is a normal distribution centred on the present parameter value with a variance adapted 288 

iteration by iteration. The algorithm is conducted in the following steps: 289 

1. Let tix ,  be the i
th
 parameter of the t

th
 iteration, where i~[1,8]; 290 

2. Sample one candidate point tiy ,  from the proposal distribution of the i
th
 parameter,291 

),(~ ,,, tititi vxNy  normal distribution centred on current point; 292 

3. Accept the candidate point with the probability calculated as follows: 293 
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where   represents the posterior distribution of the model parameter set; 296 

4. Update the variance of the proposed distribution of the i
th
 parameter (Eq. 10); 297 
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where 0t  denotes the number of iterations below which the variance of the proposal distribution for 299 

the i
th
 parameter is a constant 0,iv . After 0t  iterations, the variance of the proposal distribution is 300 

updated to the sampling variance multiplied by a scaling factor, s, which equals 2.4 (Gelman et al., 301 

1996) in this study. The   used in Eq. 10 is a small constant for preventing the variance of the 302 

proposal distribution from shrinking to zero. 303 

To avoid the convergence of the Markov chain into a local optimum region, four independent Markov 304 

chains with different initial states randomly chosen from the parameter space are adopted in this study. 305 

The widely used potential scale reduction score R  is used to check the convergence of the Markov 306 

chains. The detailed calculation steps of R  were illustrated by (Gelman and Rubin, 1992). 307 

3.3.4 Confidence intervals for runoff simulation 308 

To study the impacts of rain gauge density on hydrological modelling uncertainty, the “best 309 

precipitation sample” with the largest NS value for each rain gauge density level is used as a model 310 

input. Two hundred thousand parameter sets of each of the four Markov chains are sampled after 311 

convergence. Thus, a total of 800,000 parameter sets are sampled from their posterior distributions. 312 

Then, the parameter posterior distribution and runoff confidence interval under different rain gauge 313 
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densities are derived and compared. These parameter posterior distributions and runoff confidence 314 

intervals are further used as a model uncertainty baseline for evaluating the model uncertainty due to 315 

the difference of rain gauge distribution. To analyse the influence of rain gauge distribution on 316 

hydrological modelling uncertainty, all the 1000 precipitation samples, derived from randomly 317 

sampled gauge combinations for a given rain gauge density level, are separately used as model input. 318 

Eight hundred parameter sets for each precipitation sample are generated after convergence. Then, 319 

these parameter sets are combined to represent the parameter uncertainty caused by the difference of 320 

rain gauge distribution for a given rain gauge density. In addition, a total of 800,000 parameter sets 321 

are sampled out for the 1000 precipitation samples of a certain rain gauge density level.  322 

The 95% confidence intervals for runoff simulation due to parameter uncertainty are estimated from 323 

the modelling runoffs with parameter sets sampled above. The 95% confidence intervals for runoff 324 

simulation considering the parameter uncertainty and model uncertainty are derived from the 325 

modelling runoffs adding the model residuals that are characterized by an AR(1) model. Indices used 326 

to measure the derived 95% confidence intervals of runoff simulations are the average relative 327 

interval length (ARIL) (Jin et al., 2010) and the percentage of observations that are contained in the 328 

intervals (CI95) (Li et al., 2009). These two indices are calculated as follows: 329 

 95 100%inN
CI

N
   (11) 330 

 



tobs

tLowertUpper

Q

LimitLimit

N
ARIL

,

,,1
 (12) 331 

where inN  is the number of observations contained in the 95% confidence interval; N represents the 332 

number of days; tUpperLimit ,  and tLowerLimit ,  are the upper and lower boundaries of the 95% 333 

confidence interval, respectively; and other notations are as defined above. 334 
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4. Results 335 

In the following three sections, the model performances under different rain gauge density and 336 

distribution patterns for the four sub-basins are first analysed. Then, the influence of rain gauge 337 

density and gauge distribution on model parameter posterior distribution and on total modelling 338 

uncertainty is investigated. 339 

4.1 Model performance under different rain gauge density and distributions 340 

The Nash-Sutcliffe efficiency, NS, and the relative volume errors, RE, for the runoff simulations with 341 

the precipitation samples as model inputs for each rain gauge density level were calculated. The 342 

boxplots of the two indices under different rain gauge densities for each sub-basin are shown in Fig. 3. 343 

For the four sub-basins, model performance is improved with the increase of rain gauge density, while 344 

the improvement is no longer significant when the rain gauge number exceeds a threshold. For the 345 

smallest basin, Xiangxiang, approximately 10 rain gauges (approximately 605 km
2
 per gauge) are 346 

required to achieve stable model performance. For the largest basin, Xiangtan, 38 rain gauges 347 

(approximately 2148 km
2
 per gauge) are necessary. This phenomenon indicates that a denser rain 348 

gauge network is required for a smaller basin to achieve stable model efficiency. Fig. 3 also shows 349 

that a higher rain gauge density leads to robust model performance with a better value of indices and a 350 

smaller variability of indices. When rain gauge density is lower than the threshold, the impacts of rain 351 

gauge distribution on model performance is more obvious. For illustrative purposes, Fig. 4 and Fig. 5 352 

show the rain gauge distributions with maximum, median and minimum NS values for the Ganxi 353 

Basin and Hengyang Basin, respectively. For both basins, it is seen that when the gauge density is low, 354 

relatively evenly distributed rain gauges (Fig. 4(a), (d) and Fig. 5(a), (d)) will give better model 355 
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simulation efficiency. If there are some gauges evenly distributed in the study area already, adding 356 

more gauges in the upstream mountainous region (see Fig. 4(g), (j) and Fig. 5(g), (j)) is beneficial for 357 

the improvement of model efficiency. However, if rain gauges are all concentrated in parts of the 358 

study area (Fig. 4(l) and Fig. 5(i)), then it is difficult to achieve good model efficiency even with a 359 

large rain gauge number. 360 

< Figure 3 here please > 361 

< Figure 4 here please > 362 

< Figure 5 here please > 363 

To demonstrate the impacts of rain gauge density on model parameter estimation, the standard 364 

deviations (STDs) of the 1000 calibrated parameter sets corresponding to the 1000 precipitation 365 

samples for each rain gauge density level were calculated. For illustrative purposes, Hengyang Basin 366 

and Xiangtan Basin are considered here. The STD value of each parameter was normalized by 367 

subtracting the minimum value and then dividing by the difference between the maximum value and 368 

the minimum value. The normalized STD values of each parameter for different rain gauge densities 369 

are shown in Fig. 6. In general, the normalized STD values for almost all model parameters (except 370 

for EX and IMP in Xiangtan Basin) display a descending trend with the increase of rain gauge density, 371 

which means the difference of rain gauge distribution will have less influence on model parameter 372 

estimation when more rain gauges are used for areal average precipitation estimation. The abnormal 373 

trends of parameters EX and IMP may be caused by the equifinality problem in model calibration. In 374 

the Xinanjiang model, EX describes the spatial distribution of free water storage capacity. Its value is 375 

influenced by the areal mean free water storage capacity SM. These parameters together determine the 376 
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amount of surface water generation for a precipitation event. Fig. 6(b) shows that although the 377 

normalized STD value of EX increases when the rain gauge number changes from 19 to 38, the STDs 378 

of both parameters generally show a decreasing trend with the increase in rain gauge number. For 379 

parameter IMP, which represents the ratio of impermeable area to basin area, the STD ranges from 380 

0.0023 to 0.0027 when different rain gauge densities are used. Therefore, this parameter is not 381 

sensitive to the rain gauge density, and thus an abnormal behaviour of the normalized STD of this 382 

parameter is found in Fig. 6 (b). 383 

< Figure 6 here please > 384 

The impact of rain gauge density on runoff simulation is investigated by comparing the flow duration 385 

curves (FDCs) of the observed runoff and those of the simulated runoffs. The results of the Xiangtan 386 

Basin are shown in Fig. 7 as a demonstration. Fig. 7 shows that a wider 95% confidence interval of 387 

simulated FDC is found when fewer rain gauges are used for model calibration, especially for an 388 

extreme flood with low exceedance probability. This phenomenon indicates that (1) the impact of rain 389 

gauge density on runoff simulation is greater for high floods and (2) this impact is reduced with the 390 

increase in the number of rain gauges used for model calibration. 391 

< Figure 7 here please > 392 

The above results reveal that rain gauge density and gauge distribution have considerable impacts on 393 

the model parameter estimation as well as the runoff simulation. Although the improvement of model 394 

performance is no longer significant when the rain gauge density exceeds a threshold (Fig. 3), reduced 395 

uncertainties in model parameter estimation (Fig. 6) and high flood simulation (Fig. 7) are observed 396 

with further increases in rain gauge density. 397 
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4.2 Influence of rain gauge density on modelling uncertainty 398 

This section investigates how much the model uncertainty varies with the gauge density for the 399 

optimum rain gauge distribution pattern obtained under each rain gauge density. The “best 400 

precipitation sample” of each rain gauge density derived in Section 3.2 is first used as the model input. 401 

The model parameters’ posterior distributions are then investigated using the Bayesian method. The 402 

95% confidence intervals of simulated runoffs are finally derived to analyse the model uncertainty 403 

under different rain gauge densities. Boxplots of 800,000 model parameter sets sampled from their 404 

posterior distribution with the SCAM algorithm are shown in Fig. 8. It can be seen that the posterior 405 

distribution of parameter KE, which is related to water balance, varies significantly when different 406 

rain gauge densities are used for areal average precipitation estimation. The insufficiency of the rain 407 

gauge number and the shortcoming of the areal average precipitation estimation method cause 408 

significant variation of KE when different rain gauge densities are used. For the other parameters, 409 

difference of posterior distributions are also significant when the rain gauge density is low. However, 410 

when the rain gauge density is greater than a certain threshold, this difference is no longer obvious 411 

and model parameters converge to a stable posterior distribution. These thresholds are different for 412 

different parameters. For the interflow separation parameter KI and recession parameter CI, 56 rain 413 

gauges are needed to obtain a stable posterior distribution. For the ground water separation parameter 414 

KG and the surface runoff routing parameter NK, 94 rain gauges are required. The ground water 415 

recession parameter CG seems less sensitive to the rain gauge density, as only 19 rain gauges are 416 

needed to derive a stable CG posterior distribution. Generally, from the variation of model parameters 417 

with rain gauge density, it seems that the impact of rain gauge density is different on different model 418 
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parameters, and a greater impact is found on model parameters related to the water balance 419 

calculation.  420 

< Figure 8 here please > 421 

The 95% confidence intervals of simulated runoffs under different rain gauge density levels are 422 

derived, and then the interval measures are calculated and listed in Table 6. There is no significant 423 

difference in the interval length and containing ratio of the 95% confidence interval due to parameter 424 

uncertainty under different rain gauge density levels. However, when both the parameter uncertainty 425 

and the model uncertainty are considered, the interval length decreases with the increase of rain gauge 426 

number, which means that model uncertainty can be reduced by increasing the rain gauge density. 427 

However, this improvement is no longer significant when the number of rain gauges exceeds 38. This 428 

threshold is also applicable for the model performance index, the NS value. For illustrative purposes, 429 

the 95% confidence intervals due to parameter uncertainty and those due to both parameter 430 

uncertainty and model uncertainty for floods with a peak value exceedance probability (PEP) of 5%, 431 

50% and 95% are shown in Fig. 9. When the same rain gauge number is used, the interval length due 432 

to parameter uncertainty is much shorter than that due to parameter uncertainty and model uncertainty. 433 

Thus, parameter uncertainty is less significant than model uncertainty in this case. Under different 434 

rain gauge density levels, the 95% confidence intervals seem to be narrower when more rain gauges 435 

are used, especially for high flood runoffs (Fig. 9 (c), (f)). 436 

< Table 6 here please > 437 

< Figure 9 here please > 438 

4.3 Influence of rain gauge distribution on modelling uncertainty 439 
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Parameters sampled from their posterior distributions with the 1000 random precipitation samples as 440 

separate model inputs are merged together to represent the impacts of rain gauge distribution on 441 

model parameter estimation. Fig. 10 shows the boxplots of these 800,000 sampled parameter sets. 442 

When the rain gauge density is low, a difference in rain gauge distribution will lead to biased 443 

parameter estimation to compensate for the errors in areal average precipitation estimation. With the 444 

increase of rain gauge density, this parameter bias is reduced as the medians of parameter samples 445 

approach a constant value. A reduced box width in Fig. 10 is also found for each parameter with the 446 

increase of rain gauge density. Thus, the parameter estimation uncertainty caused by the difference of 447 

rain gauge distribution can be reduced by the increased rain gauge density. However, when more than 448 

38 rain gauges are used, this improvement is no longer significant except for parameter KE.  449 

< Figure 10 here please > 450 

The STDs of parameter samples are shown in Table 7. The STDs of almost all parameters are reduced 451 

with the increase in rain gauge density. For certain model parameters, the STD of parameter samples 452 

with random precipitation inputs (1000 random precipitation samples) is larger than that of parameter 453 

samples with fixed precipitation inputs (“best precipitation sample”). The difference between the two 454 

STDs represents the parameter uncertainty induced by the difference of rain gauge distribution. Fig. 455 

11 demonstrates the ratio of parameter STD between random precipitation input and fixed 456 

precipitation input under different rain gauge densities. It seems that (1) the larger ratios between the 457 

two STDs indicate greater uncertainty in parameter estimation, which is caused by the rain gauge 458 

distribution, especially when the rain gauge number is less than 38 for the Xiangtan Basin; (2) for 459 

parameter KE, no matter how many gauges are used, obvious parameter uncertainty caused by gauge 460 
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distribution still exists; and (3) the large ratio of the STDs of KE indicates the severe impact of rain 461 

gauge distribution on model water balance. 462 

< Table 7 here please > 463 

< Figure 11 here please > 464 

The 95% confidence intervals of runoff simulations for flows with peak exceedance probability (PEP) 465 

of 5%, 50%, and 95% using randomly selected precipitation samples as model inputs are shown in Fig. 466 

12. This figure shows that under the same rain gauge density, the confidence interval due to model 467 

parameter uncertainty is smaller than that due to model uncertainty. It also demonstrates a significant 468 

reduction in the interval length when more gauges are available, especially for the confidence interval 469 

due to parameter uncertainty. Comparing Fig. 12 and Fig. 9, the parameter uncertainty induced 470 

confidence interval is larger when the uncertainty caused by the rain gauge distribution is considered. 471 

For the entire simulated runoff series, the indices of the 95% confidence intervals are listed in Table 8. 472 

For the confidence interval due to model parameter uncertainty, Table 8 shows that the average 473 

relative interval length is reduced when more rain gauges are available. The same conclusion applies 474 

to the confidence interval due to both model uncertainty and parameter uncertainty. However, it 475 

seems the improvement of total model uncertainty is not significant when the rain gauge number is 476 

larger than 94. Comparing Table 8 and Table 6, the confidence interval length due to both parameter 477 

uncertainty and model uncertainty is wider if the impact of rain gauge distribution is considered, 478 

especially when the number of rain gauges is less than 94. This increase of interval length seems to be 479 

mainly caused by the parameter uncertainty, as the interval due to parameter uncertainty increased 480 

most significantly with decreased rain gauge density. 481 
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< Table 8 here please > 482 

< Figure 12 here please > 483 

5. Discussion 484 

5.1 Model performance under different rain gauge density and distributions 485 

Section 4.1 revealed the impacts of rain gauge density and gauge distribution on lumped hydrological 486 

modelling performance. It is worth noting that precipitation interpolation will also cause errors in 487 

daily areal average precipitation estimation, which, however, is not the main focus of this paper. The 488 

impacts of diverse gauge distributions on lumped hydrological modelling are comparable as long as 489 

the same areal average precipitation derivation method is used. Many precipitation interpolation 490 

methods are available in the literature, such as the Thiessen polygons, Kriging, thin smooth plate 491 

splines, etc. (Ruelland et al., 2008), and some studies suggest using factors such as topography 492 

indexes or terrain elevation as covariates in precipitation interpolation (Diodato, 2005). However, it 493 

seems that the relationships between precipitation and these factors are less clear on a daily time scale 494 

than on longer time scales (Johansson and Chen, 2003). Moreover, when the gauge density is low, it is 495 

impossible to implement some complicated interpolation methods. For example, the Kriging method 496 

requires relatively high-density gauge network data to derive the semi-variogram (Ruelland et al., 497 

2008). Thus, we chose the Thiessen polygons method because it is the most widely used method in 498 

lumped hydrological modelling and it requires much less computation time than other sophisticated 499 

precipitation interpolation methods such as Kriging or thin smooth plate splines (Ruelland et al., 500 

2008). 501 
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In accordance with other studies (Anctil et al., 2006; Bárdossy and Das, 2008; Dong et al., 2005; Xu 502 

et al. 2013), our results show that there is a threshold of rain gauge density above which the 503 

improvement in model efficiency indices is no longer significant. We also found that for lumped 504 

hydrological modelling in a smaller basin, a denser rain gauge network is required to achieve good 505 

model efficiency. One interesting finding of our research is that even though no significant 506 

improvements in model efficiency indices are found when the rain gauge density is greater than a 507 

given threshold, a further increase in rain gauge density will reduce the variability of model 508 

parameters and increase the accuracy of the peak flow simulation. 509 

Similar to the findings of Andréassian et al. (2001) and Xu et al. (2013), we found that only a few 510 

gauges can lead to very good model performance if these gauges are properly distributed. Thus, we 511 

can achieve good model efficiency through the optimization of rain gauge network. Dong et al. (2005) 512 

and Xu et al. (2013) revealed that the geographical location of rain gauges will impact the model 513 

simulation results. They also suggested that orographic precipitation should be considered in 514 

designing the spatial configuration of rain gauges. Through the comparison of rain gauge distributions 515 

that lead to different model efficiencies at several gauge density levels (Fig. 4 and Fig. 5), it seems 516 

that when gauge density is low, an evenly distributed network of rain gauges is beneficial for lumped 517 

hydrological modelling. When more gauges are available, additional gauges should be installed in 518 

mountainous regions, where orographic rain is more likely. This is only a qualitative suggestion of 519 

rain gauge network design. To quantitatively determine the number and location of rain gauges, 520 

Anctil et al. (2006) used the Genetic algorithm to optimize the rain gauge network. However, the 521 

method they used is only suitable for discarding redundant rain gauges from a dense gauge network. 522 
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To expand a rain gauge network, methods based on entropy or Kriging theory (Chen et al. 2008) are 523 

recommended. 524 

5.2 Influence of rain gauge density on modelling uncertainty 525 

Though some rain gauge networks will lead to good mean model efficiency, model uncertainty under 526 

these gauge networks should be analysed regarding the well-known parameter equifinality problem. 527 

Kavetski et al. (2006b) and Ajami et al. (2007) investigated the model input uncertainty in 528 

hydrological modelling through Bayesian theory. They found that precipitation errors will affect the 529 

confidence interval of simulated runoff considerably. However, they focused on the development and 530 

testing of uncertainty estimation frameworks, and no specific attention was paid to evaluating the 531 

impacts of rain gauge density and distribution on modelling uncertainty. In Section 4.2, we tested how 532 

much model uncertainty varies with the rain gauge density if the “best precipitation sample” of each 533 

density level is used as a model input. We found that the parameter equifinality-induced modelling 534 

uncertainties are similar for each gauge density level. In addition, the parameter uncertainty is 535 

relatively smaller than the model uncertainty, which is consistent with the results of other uncertainty 536 

evaluation papers (Engeland et al., 2005; Li et al., 2011). However, the model parameter posterior 537 

distribution varies considerably under different rain gauge densities, while no significant difference in 538 

the modelling efficiency is found, especially when the rain gauge number exceeds 38 for the Xiangtan 539 

Basin, indicating that precipitation errors can be compensated by adjusting model parameters. 540 

5.3 Influence of rain gauge distribution on modelling uncertainty 541 

When the impacts of rain gauge distribution are considered in Section 4.3, it seems that the parameter 542 

uncertainty under each gauge density level is much greater than the parameter uncertainty when the 543 
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“best precipitation sample” is used as a model input. This phenomenon indicates that precipitation 544 

errors due to the rain gauge distribution will substantially affect model parameter estimation. Similar 545 

to the findings of Andréassian et al. (2001), this study reveals that the responses of model parameters 546 

to precipitation errors are different. For parameters related to the water balance calculation, more rain 547 

gauges are required to obtain stable parameter posterior distributions. With the increase in rain gauge 548 

number, both model uncertainty and parameter uncertainty induced by differences in gauge 549 

distribution reduce gradually. However, there is still a threshold (94 for the Xiangtan Basin) above 550 

which the reduction of model uncertainty is no longer obvious. The reason for this may be that the 551 

increased rain gauge number can only reduce the model input error, whereas the uncertainty due to the 552 

model conceptualization and model parameter equifinality still exists. 553 

6. Conclusions 554 

This study analysed the influence of rain gauge density and gauge distribution on the performance of 555 

a lumped hydrological model with different catchment sizes both in a deterministic sense and in terms 556 

of model uncertainty. The model inputs were the areal average precipitation samples estimated from 557 

randomly selected rain gauge combinations for different density levels. The performance of the 558 

Xinanjiang model was compared using different model inputs. The modelling uncertainty was further 559 

investigated using a Bayesian framework. 560 

The results revealed that with the increase in rain gauge number, the model performance indices of the 561 

four sub-basins increase significantly when the rain gauge number is less than a certain threshold. 562 

Above this threshold, a further increase in the number of rain gauges will provide less improvement 563 



28 
 

for these indices, although decreases of uncertainty in model parameter estimation and flood 564 

simulation continue.  565 

The study shows that required rain gauge density for achieving adequate modelling results depends on 566 

the basin size. In this study area, for medium-size sub-basins with a drainage area of thousands of 567 

square kilometres, 10 to 15 evenly distributed rain gauges are necessary to obtain a stable model 568 

performance. For large sub-basins with a drainage area larger than 50,000 square kilometres, 30 to 50 569 

evenly distributed rain gauges are required. Though the threshold number of rain gauges decreases 570 

with the decrease in basin size, the corresponding gauge density increases. Thus, a smaller basin 571 

requires a denser rain gauge network. However, below the threshold, there are still some rain gauge 572 

networks that lead to good model performance, indicating the potential to improve model efficiency 573 

through rain gauge network optimization. Furthermore, the threshold number of rain gauges is not 574 

only related to the basin size but also to the spatiotemporal characteristics of the precipitation. For 575 

different regions, this threshold may be different. The numerical relationship between the required 576 

rain gauge number and basin size needs to be investigated in further studies in diverse climatic 577 

regions.  578 

The comparison of model parameter posterior distribution and modelling uncertainty between 579 

different rain gauge density levels indicates that when the best rain gauge network of each density 580 

level is used, the total modelling uncertainty is reduced with the increase in rain gauge number, 581 

especially for the high flood runoffs. However, the posterior distributions of some parameters are 582 

quite different for different gauge density levels. To enable a robust parameter estimation, different 583 

rain gauge numbers are required for different model parameters. A higher rain gauge density is 584 

necessary for those parameters that are directly involved in calculating the water balance.  585 
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This study also found that when differences in rain gauge distribution are considered, a lower rain 586 

gauge density leads to biased parameter estimation and large parameter uncertainty. Through the 587 

increased rain gauge density, this parameter uncertainty can be reduced, but no significant 588 

improvement of model performance is found when the gauge density level is greater than a certain 589 

threshold due to the uncertainty embedded in the model conceptualization. 590 

The aforementioned conclusions may be suitable for other basins when lumped hydrological models 591 

are used to characterize the relationships between precipitation and runoff, but the threshold of the 592 

rain gauge density will be different. Moreover, the behaviour of distributed hydrological models with 593 

the number of rain gauges and their spatial distributions will be different. Additional studies in other 594 

basins using different hydrological models are needed to reach a general conclusion and guidance for 595 

the design of rain gauge networks. 596 
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Tables 786 

Table 1 Summary of papers related to the impacts of imperfect precipitation inputs on hydrological modelling. The relation of these papers to the objectives of this study is assessed in one or all 787 
of three aspects: (a) assessed the precipitation errors related to rain gauge density and gauge distribution, (b) assessed impacts of precipitation errors on hydrological modelling in a deterministic 788 
sense, (c) assessed impacts of precipitation errors on hydrological modelling considering uncertainty. NG indicates the information is not given in the paper. 789 

Study Basin/Basin area (km2) 

/Gauge number 

Rain gauge network scenario Precipitation 

preparation 

method 

Hydrological model/  

Time scale 

Key results/in relation to the abovementioned three 

aspects 

1-Andréassian 

et al. (2001) 

(1) Yonne, France/ 10700/ 33; 

(2) Serein, France/ 1120/ 33; 

(3) Réal Collobrier, France/ 

71/ 20; 

For each gauge number, randomly 

select 60 subsets from all the 

gauges. 

Arithmetic 

mean 

(1) Lumped GR3J model; 

(2) Lumped IHACRES model; 

(3) Lumped TOPMO model; /daily 

(1) Improved accuracy in rainfall input will increase 

model performance and reduce model efficiency 

variability; (2) Smaller watersheds need a higher 

concentration of rain gauges. /(a, b) 

2-St-Hilaire et 

al. (2003) 

Five basins in the Mauricie 

area, Canada/10142, 9320, 

3800, 2680, 2770/48 

Sparse scenario: 22 gauges; 

Dense scenario: 27 gauges; 

Ordinary 

Kriging 

Lumped HSAMI model; /daily (1) Denser network relates to better modelling efficiency; 

(2) Peak flows were better simulated with a denser 

network. /(a, b) 

3-Anctil et al. 

(2006) 

Bas-en-Basset, France/ 3234/ 

23 

(1) For each of the five rain gauge 

numbers (20, 15, 10, 5, 2), 50 

subsets were randomly selected; 

(2) 2500 gauge combinations 

were tested within the genetic 

algorithm for network 

optimization 

Arithmetic 

mean 

Lumped neural network 

rainfall-runoff forecasting model. 

/daily 

(1) Ten rain gauges are the minimum requirement; (2) 

Genetic search can be used to find the optimal gauge 

combination for hydrological forecasting. /(a,b) 

4-Bárdossy and 

Das (2008) 

The upper Neckar with 13 

subcatchments, Germany/ 

3961/ 51 

Seven networks consisting of 

different rain gauge numbers were 

selected by simulated annealing 

algorithm. 

Kriging with 

external drift 

Semi-distributed HBV model. 

/daily 

(1) Overall model performance will not be significantly 

improved by increasing the number of rain gauges over a 

threshold; (2) Models using different rain gauge networks 

may need their parameters recalibrated. /(a,b) 

5-Xu et al. 

(2013) 

Xiangjiang, China/ 94660/ 

181 

For each of the six rain gauge 

numbers (10, 19, 38, 57, 93, 128), 

100 subsets are randomly 

selected. 

NG 

 

Lumped Xinanjiang model /daily (1) The probability of achieving poor model performance 

is increased when the number of rain gauges falls below a 

threshold; (2) Better model performance can be achieved 

with fewer rain gauges if an optimum spatial 

configuration is provided. /(a,b) 

6-Dong et al. 

(2005) 

The upper Qingjiang, China/ 

12209/ 26 

All possible combinations are 

enumerated when gauge number 

ranges from 1 to 7 and from 20 to 

26; 5000 subsets are randomly 

selected for gauge numbers 

Arithmetic 

mean 

Lumped HBV model /daily (1) Five rain gauges are enough for lumped HBV model 

in this basin; (2) Setting more gauges in the mountainous 

regions with heavy orographic rainfall will lead to better 

model performance. /(a,b) 
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ranging from 8 to 19; 

7-Xu et al. 

(2006) 

26 watersheds in the Mälaren 

basin, Sweden/ ranging from 

6 to 1293/ 41 

Corrupt the precipitation 

measurement by adding random 

errors and systematic errors. 

Arithmetic 

mean 

Lumped water balance model, 

NOPEX-6 /monthly 

(1) Systematic precipitation errors have significant 

impacts on model quality; (2) Systematic precipitation 

errors affect model parameters systematically; (3) 

Random precipitation errors affect model parameters 

randomly. /(b) 

8-Oudin et al. 

(2006) 

12 watersheds in the United 

States/ ranging from 1021 to 

4421/ NG 

Corrupt the precipitation 

measurement by adding random 

errors and systematic errors. 

NG (1) Lumped GR4J model; 

(2) Lumped TOPMO model /daily 

(1) Random errors in precipitation significantly affect 

model performance and model parameters; (2) Systematic 

errors in precipitation, when large enough, can be 

detrimental to model performance. /(b) 

9-Kavetski et 

al. (2006b) 

(1) French Broad River, the 

United States/ 2450/ 5; (2) 

Potomac River, the United 

States/ 2250/ 8; 

Use Gaussian multiplier model as 

input uncertainty model. The 

multipliers were inferred by 

Bayesian theory. 

NG Single-bucket version of the VIC 

model. /daily 

(1) Precipitation errors have considerable effects on the 

predicted hydrographs (prediction limits) and the 

calibrated parameters. /(c) 

10-Ajami et al. 

(2007) 

Leaf River Basin, the United 

States/ 1949/ NG 

Use random multipliers sampled 

from Gaussian distribution to 

represent precipitation errors 

NG (1) Lumped SAC-SMA model; 

(2) Lumped HYMOD model; 

(3) Lumped SWB model. /daily 

(1) Ignoring input error or model error will cause 

unrealistic model simulation and incorrect uncertainty 

bounds. /(c) 

11-This study Four sub-basins of the 

Xiangjiang Basin, China/ 

6053, 9972, 52150, 81638/ 

188 

For each of six gauge densities, 

randomly select 1000 subsets 

from available gauges. 

Thiessen 

polygons 

Lumped Xinanjiang model /daily (1) The impacts of imperfect rainfall estimates on model 

efficiency can be reduced to some extent through the 

adjustment of model parameters; (2) modelling 

uncertainty can be reduced through the increase of rain 

gauge density or the optimization of rain gauge 

distribution pattern. /(a,b,c) 

 790 
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Table 2. The drainage area and number of available rain gauges in each sub-basin. 791 

NO. Gauging Station Name Drainage Area (km2) Available Rain Gauges 

1 Xiangxiang 6053 19 

2 Ganxi 9972 26 

3 Hengyang 52150 120 

4 Xiangtan 81638 188 

  792 
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Table 3. The rain gauge number and its spatial density for each density level. The table also shows the sampling number for 793 

each density level. 794 

Station Name 
Density level 1 2 3 4 5 6 7 

Percentage (%) 5 10 20 30 50 70 100 

Xiangxiang 

Gauge Number 1 2 4 6 10 13 19 

Sampling Number 19 171 1000 1000 1000 1000 1 

Density (number per 103 km2) 0.17 0.33 0.66 0.99 1.65 2.15 3.14 

Ganxi 

Gauge Number 1 3 5 8 13 18 26 

Sampling Number 26 1000 1000 1000 1000 1000 1 

Density (number per 103 km2) 0.10 0.30 0.50 0.80 1.30 1.81 2.61 

Hengyang 

Gauge Number 6 12 24 36 60 84 120 

Sampling Number 1000 1000 1000 1000 1000 1000 1 

Density (number per 103 km2) 0.12 0.23 0.46 0.69 1.15 1.61 2.30 

Xiangtan 

Gauge Number 9 19 38 56 94 132 188 

Sampling Number 1000 1000 1000 1000 1000 1000 1 

Density (number per 103 km2) 0.11 0.23 0.47 0.69 1.15 1.62 2.30 

  795 
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Table 4. Parameters of the Xinanjiang model. 796 

Number Parameter Explanation Unit Uncertainty analysis 

1 KE Ratio of potential evapotranspiration to pan evaporation -- Yes 

2 WM Areal mean tension water storage capacity mm No 

3 UM Upper layer tension water storage capacity mm No 

4 LM Lower layer tension water storage capacity mm No 

5 B Tension water distribution index -- No 

6 IMP Impermeable coefficient -- No 

7 SM Areal mean free water storage capacity mm No 

8 EX Free water distribution index -- No 

9 KI Outflow coefficient of free water storage to interflow day-1 Yes 

10 KG Outflow coefficient of free water storage to groundwater flow day-1 Yes 

11 C Deep layer evapotranspiration coefficient -- No 

12 CI Interflow recession coefficient -- Yes 

13 CG Groundwater recession coefficient -- Yes 

14 N Parameter of Nash unit hydrograph -- No 

15 NK Parameter of Nash unit hydrograph -- Yes 

  797 
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Table 5. The prior distributions of parameters to be inferred. 798 

Parameter KE KI KG CI CG NK     

Prior distribution Uniform Uniform Uniform Uniform Uniform Uniform Uniform Jeffreys 

Range [0.8,1.4] [0,0.5] [0,0.5] [0.7,0.95] [0.95,1.0] [2,5] [0,1) (0,inf) 

  799 
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Table 6. Measures of model uncertainty with precipitation input estimated from the best gauge distribution of each rain 800 

gauge density level for the Xiangtan Basin. 801 

Gauge Number 9 19 38 56 94 132 188 

CI95P (%) 15.5 14.6 14.4 15.0 14.9 14.8 15.0 

ARILP 0.09 0.08 0.08 0.08 0.08 0.08 0.08 

CI95PM (%) 94.8 94.7 95.1 94.8 94.8 94.8 94.8 

ARILPM 1.06 0.99 0.95 0.94 0.95 0.95 0.95 

Min NS 0.906 0.910 0.923 0.923 0.923 0.925 0.922 

Max NS 0.923 0.929 0.935 0.936 0.936 0.937 0.934 

Indices with subscript P measure the 95% confidence interval due to parameter uncertainty; indices with subscript PM 802 

measure the 95% confidence interval due to parameter uncertainty and model uncertainty. 803 

  804 
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Table 7. The standard deviation of model parameters sampled from their posterior distributions under different rain gauge 805 

density levels for the Xiangtan Basin. 806 

Gauge Number KEF KER KIF KIR KGF KGR CIF CIR CGF CGR NKF NKR 

9 19.4 100.4 10.4 18.3 6.0 12.3 4.86 8.77 0.44 0.65 37.0 97.4 

19 17.8 68.5 10.3 13.4 5.7 8.2 4.62 6.59 0.43 0.56 36.9 58.1 

38 16.8 47.5 10.2 12.3 5.5 6.8 4.68 6.03 0.42 0.55 36.8 42.7 

56 17.9 37.1 9.8 11.9 5.5 6.3 4.66 5.57 0.39 0.54 36.0 38.9 

94 16.7 28.4 10.0 11.7 5.4 6.1 4.72 5.69 0.41 0.55 36.0 37.3 

132 16.6 22.4 10.0 11.5 5.3 5.9 4.66 5.26 0.41 0.51 36.0 36.8 

Subscript F represents model parameters with precipitation input estimated from the best gauge distribution pattern of each 807 

density level; subscript R represents model parameters estimated with 1000 randomly selected precipitation samples as 808 

separate model inputs for each density level. For illustration convenience, the standard deviations of all the parameters listed 809 

in the table are multiplied by a factor of 1000. Units of the parameters are shown in Table 4. 810 

  811 
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Table 8. Measures of model uncertainty with the 1000 precipitation samples as separate model inputs for each rain gauge 812 

density for the Xiangtan Basin. 813 

Gauge Number 9 19 38 56 94 132 

CI95P (%) 70.2 54.6 41.3 34.6 26.8 21.8 

ARILP 0.49 0.32 0.23 0.19 0.14 0.11 

CI95PM (%) 97.4 96.5 95.8 95.5 95.2 95.0 

ARILPM 1.26 1.08 1.01 0.98 0.96 0.96 

Min NS 0.723 0.819 0.883 0.884 0.885 0.905 

Max NS 0.921 0.928 0.934 0.935 0.936 0.936 

 814 

  815 
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Figures 816 

 817 

Figure 1. Distribution diagram of discharge stations, evaporation gauges and rain gauges in the Xiangjiang Basin. 818 

  819 
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 820 
Figure 2. The flowchart of the Xinanjiang model. 821 
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  823 

 
(a) Xiangxiang Basin (6053 km2) 

 
(b) Ganxi Basin (9972 km2) 

 
(c) Hengyang Basin (52,150 km2) 

 
(d) Xiangtan Basin (81,638 km2) 

Figure 3. Boxplots of model performance indices under different rain gauge densities. The boxplots show the 25th, 5th, and 824 

75th percentiles and the minimum and maximum value of the indices. 825 
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(a) 3 rain gauges, max NS=0.909 

 
(b) 3 rain gauges, median NS=0.844 

 
(c) 3 rain gauges, min NS=0.611 

 
(d) 5 rain gauges, max NS=0.926 

 
(e) 5 rain gauges, median NS=0.888 

 
(f) 5 rain gauges, min NS=0.701 

 
(g) 8 rain gauges, max NS=0.932 

 
(h) 8 rain gauges, median NS=0.914 

 
(i) 8 rain gauges, min NS=0.746 

 
(j) 13 rain gauges, max NS=0.937 

 
(k) 13 rain gauges, median NS=0.924 

 
(l) 13 rain gauges, min NS=0.870 

Figure 4. Gauge distributions of 3, 5, 8 and 13 rain gauges with maximum, median and minimum NS values for the Ganxi 827 

Basin. 828 
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(a) 6 rain gauges, max NS=0.915 

 

(b) 6 rain gauges, median NS=0.868 

 

(c) 6 rain gauges, min NS=0.735 

 

(d) 12 rain gauges, max NS=0.932 

 

(e) 12 rain gauges, median NS=0.909 

 

(f) 12 rain gauges, min NS=0.800 

 

(g) 24 rain gauges, max NS=0.941 

 

(h) 24 rain gauges, median NS=0.928 

 

(i) 24 rain gauges, min NS=0.879 

 

(j) 36 rain gauges, max NS=0.942 

 

(k) 36 rain gauges, median NS=0.935 

 

(l) 36 rain gauges, min NS=0.919 

Figure 5. Gauge distributions of 6, 12, 24 and 36 rain gauges with maximum, median and minimum NS values for the 830 

Hengyang Basin. 831 
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(a) Hengyang Basin 

 
(b) Xiangtan Basin 

Figure 6. The normalized STD values of model parameters under different rain gauge numbers. (a) Hengyang Basin; (b) 833 

Xiangtan Basin. 834 
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 836 

Figure 7. Flow duration curve of the observed runoff and the 95% confidence interval of the 1000 simulated runoffs under 837 

different rain gauge densities for the Xiangtan Basin. 838 
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 840 

Figure 8. Boxplots of 800,000 model parameter sets sampled from their posterior distributions for the Xiangtan Basin. The 841 

boxplots show the 5th, 25th, 50th, 75th, and 95th percentiles of the model parameters. 842 

  843 
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(a) 9 rain gauges, PEP=95% 

 

(d) 132 rain gauges, PEP=95% 

 

(b) 9 rain gauges, PEP=50% 

 

(e) 132 rain gauges, PEP=50% 

 

(c) 9 rain gauges, PEP=5% 

 

(f) 132 rain gauges, PEP=5% 

Figure 9. The 95% confidence intervals of simulated runoffs for floods with a peak exceedance probability (PEP) of 5%, 50% 844 

and 95% using “best precipitation samples” as model input for density levels with 9 and 132 rain gauges in the Xiangtan 845 

Basin. The dark shaded region represents the 95% confidence interval only considering parameter uncertainty; the light 846 

shaded region represents the 95% confidence interval considering both parameter uncertainty and model uncertainty. 847 
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 849 

Figure 10. Boxplots of 800,000 model parameter sets sampled from their posterior distributions with the 1000 precipitation 850 

samples as model inputs for each rain gauge density level in the Xiangtan Basin. The boxplots show the 5th, 25th, 50th, 75th, 851 

and 95th percentiles of the model parameters. 852 
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 854 

Figure 11. The ratio between parameter standard deviations of random rainfall input and fixed rainfall input in the Xiangtan 855 

Basin. 856 
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(a) 9 rain gauges, PEP=95% 

 

(d) 132 rain gauges, PEP=95% 

 

(b) 9 rain gauges, PEP=50% 

 

(e) 132 rain gauges, PEP=50% 

 

(c) 9 rain gauges, PEP=5% 

 

(f) 132 rain gauges, PEP=5% 

Figure 12. The 95% confidence intervals of simulated runoffs for floods with a peak exceedance probability (PEP) of 5%, 50% 858 

and 95% using 1000 randomly selected precipitation samples as separate model inputs for density levels with 9 and 132 rain 859 

gauges in the Xiangtan Basin. The dark shaded region represents the 95% confidence interval only considering parameter 860 

uncertainty; the light shaded region represents the 95% confidence interval considering both parameter uncertainty and 861 

model uncertainty; the white bar graphs with whiskers represent the 2.5%, 50%, and 97.5% percentiles of the 1000 862 

precipitation samples at different times. 863 
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