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SUMMARY

Several cardiovascular diseases are caused from localised abnormal blood flow such as in the case of stenosis
or aneurysms. Prevailing theories propose that the development is caused by abnormal wall-shear stress
in focused areas. Computational fluid mechanics have arisen as a promising tool for a more precise and
quantitative analysis, in particular because the anatomy is often readily available even by standard imaging
techniques such as magnetic resonance and computed tomography angiography. However, computational
fluid mechanics rely on accurate initial and boundary conditions which are difficult to obtain. In this paper
we address the problem of recovering high resolution information from noisy and low-resolution physical
measurements of blood flow (for example from PC-MRI) using variational data assimilation based on a
transient Navier-Stokes model. Numerical experiments are performed in both 3D (2D space and time) and
4D (3D space and time) and with pulsatile flow relevant for physiological flow in cerebral aneurysms. The
results demonstrate that, with suitable regularisation, the model accurately reconstructs flow, even in the
presence of significant noise. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computational simulations of blood flow have the potential to assist clinical decisions, for example
when evaluating the risk of rupture of an aneurysm [1, 2, 3]. In contrast to physical measurement
techniques, computational fluid dynamics (CFD) allows for nearly arbitrary high resolution. Further,
CFD allows the computation of non-observable variables, such as the blood pressure and wall-shear
stresses, both of which are considered important factors in vascular diseases [4, 5, 6, 3]. However, a
major challenge of current CFD models that the validity and accuracy of their results depend on the
underlying model assumptions, the model parameters [7, 8], the boundary conditions [9, 10], and
the segmentation of the vascular geometry [11, 12, 13]. These parameters are typically specific to
each patient [10, 14] and partially or fully unknown.

One reason for the lack of sufficiently good patient-specific data is that the resolution of non-
invasive measurement techniques, such as ultrasound or phase-contrast magnetic resonance imaging
(PC-MRI), is coarse compared to CFD, and their accuracy limited by the presence of noise. For
instance, PC-MRI provides 4D (3D space and time) images of velocity at a spatial resolution
between 0.3-0.7 mm with a uniform voxel size [15, 16] whereas the normal resolution in CFD
is 0.1-0.2 mm, c.f. e.g. [1, 17], and where the need for even finer CFD resolution has been
advocated [18, 19]. The temporal resolution of PC-MRI is typically limited to around 30 samples
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per heart beat. Furthermore, PC-MRI acquisitions may last 5-10 minutes, and the data are then
phase-averaged over several hundred cardiac cycles in order to reduce to signal-to-noise ratio. In
contrast, the temporal resolution in CFD simulations is typically on the order of thousands of time
steps per second. As a result, there is often a notable discrepancy between CFD simulations and PC-
MRI measurements [16, 15, 20]. To what extent these discrepancies arise from modelling errors,
the spatio-temporal averaging, or measurement errors is at present difficult to assess in particular
because of the methodological challenge of incorporating the available data and control parameters
in a simulation framework.

A promising remedy is hence to combine CFD and 4D MRI using data assimilation. The CFD
would then potentially add resolution and reduce noise. The idea of applying data assimilating
techniques to blood flow models has received significant attention in recent years, see [21] for an
overview. In particular variational data assimilation, which identifies unknown model parameters
such that the difference between physical observations and model results are minimised, has been
studied in the general setting for the optimal control of the Navier-Stokes equations [22, 23, 24]
and in the specific case of blood-flow simulations [25, 26, 27, 28, 29]. The mathematical theory
behind variational data assimilation is partially developed, in particular the well-possessedness of
the (regularized) inverse minimization problem for both flow and fluid–structure interaction problem
has been addressed in, e.g., [24, 30]. Alternative, more advanced data assimilation strategies
use reduced basis methods and/or Bayesian parameter estimating, c.f. e.g., [31, 32, 33, 34]. For
bifurcation problems, more general strategies of setting boundary conditions have been developed
in [35, 36, 37], in particular since the main problem in these cases is the determination of the flow
division rather than a complete set of boundary conditions as long as flow extensions are appropriate.

The benefits of variational data assimilation comes at a price. The adjoint model of the Navier-
Stokes equations must be derived and implemented, which is difficult, especially for transient
flow models. Further, the computational complexity is between 50–100 times higher than one
model simulation. This presents a problem especially for 4D (3D space and time) models. As
a consequence, most numerical studies on variational data assimilation for blood flow currently
assume steady-state flow and/or 2D geometries - assumptions that clearly need to be overcome for
realistic studies.

The goal of this paper is to derive and implement variational data assimilation for transient
hemodynamics, and to investigate its feasibility and robustness on cerebral aneurysms with coarse
and noisy velocity measurements. Specifically, we consider an idealized 3D case (2D space and
time) and a 4D case (3D space and time) with PC-MRI 4D velocity data. The unknown model
parameters, to be identified by the data assimilation, are the initial and boundary conditions of the
model equations. This, and many other of our modelling choices are too simplistic to be used in
real hemodynamic studies, but the present study is a necessary and important step towards a full
assimilated blood flow model - in particular because the proposed methodology generalises to more
advanced setups, such as inclusion of periodic boundary conditions, and the assimilation of other
model parameters such as the viscosity and even the geometry through shape optimisation [38].
Our results show that the assimilation procedure is computational expensive, but yields surprisingly
robust and accurate results even for sparse and noisy measurements.

The remainder of the paper is as follows. In Section 2, we formulate the variational data-
assimilation as a mathematical optimisation problem constrained by the Navier-Stokes equations.
Special considerations will be put on the spatial and temporal regularisation, and the inclusion of
data that are coarse with respect to the time resolution. The latter is important because the number
of samples per cardiac cycle is typically in the order 20-40 while the number of timesteps in a
CFD simulation typically is 100-10,000. Section 3 presents the numerical details. In short, these
are based on the finite element method, the reduced optimisation problem and a discretise-then-
optimise approach. Section 4 presents numerical experiments of blood flow through aneurysms.
First, an idealistic 3D example (2D space and time) is used to verify the assimilation procedure, and
to test its robustness against noisy data, the regularisation amplitude, the sparsity in the physical
observations and the choice of the controlled boundaries. Second, a 4D case (3D space and time) is
presented, based on 4D data obtained from a PC-MRI scan of an arterial bifurcation with aneurysm
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DATA ASSIMILATION FOR TRANSIENT BLOOD FLOW 3

Figure 1. The model scenario considered in this paper: a small subset of the artery system with one inlet and
two outlet boundaries in 2D and 3D.

in a dog. This example shows the feasibility of 4D data assimilation for blood flow problems, and is
used to qualitatively compare variational data assimilation with a “traditional” blood flow simulation
approach where the boundary conditions are interpolated directly from the physical measurements.

2. MATHEMATICAL FORMULATION

2.1. Blood flow model

Computational modelling in cerebral aneurysm studies often assume Newtonian flow with rigid
walls, which appear to be adequate [39, 40]. Therefore, we model the blood flow through a vessel
with the incompressible Navier-Stokes equations

ut + (u · ∇)u− ν∆u+∇p = f in Ω× (0, T ],

∇ · u = 0 in Ω× (0, T ].
(1)

Here, Ω× (0, T ] is the space-time domain, u and p are the blood velocity and (scaled) pressure
fields, ν is the (kinematic) viscosity and f describes external body forces. A more complete
blood flow model could for example incorporate non-Newtonian effects [41] or the fluid structure
interactions between the blood and the vessel wall [?]. However, for the purpose of this paper it
is sufficient to consider (1) and to note that the proposed techniques also apply to more complex
models.

We only model a small subset of the artery system and the boundaries of the computational
domain consists of a physical boundary, the vessel walls, as well non-physical boundaries at inlets
and outlets. Again for simplicity, we consider the common scenario of one inlet and two outlets as
sketched in figure 1. To close the system, we specify suitable initial and boundary conditions

u = u0, on Ω× {t = 0}, (2a)
u = gD, on ΓD × (0, T ], (2b)

pn− µ∂nu = 0, on Γout2 × (0, T ], (2c)
u = 0, on Γwalls × (0, T ], (2d)

with initial velocity u0 and Dirichlet boundary value gD on the boundary ΓD := Γin ∪ Γout1 . The
normal vector is denoted as n. A traction free boundary is assumed on the outlet Γout2 , see (2c),
which implies that the vessel is straight in the surroundings of this outlet. If this assumption is
not valid, other choices for (2c) are possible, but mass conservation must be ensured, i.e. that∫

Γ
u · n dx = 0.
For data-assimilation based on PC-MRI measurement it is more appropriate to replace the initial

condition by a time-periodic condition. From a practical point of view, however, the implementation
of such a condition introduces further challenges in the implementation and we therefore resort to a
forward problem defined in terms of an initial condition.
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physics (blood flow) mathematical model F (u;m) = 0 (Navier-Stokes equations)

unknown model parameters: m (boundary conditions)

physical measurements: d (4D PC-MRI) simulated measurements: T (u) (velocity)

physical measurement device+ noise simulated measurement device T

minu,m ‖T (u)− d‖2

Figure 2. Variational data assimilation replicates the physical measurement acquisition (white boxes) in
a mathematical model (grey boxes) and minimises the discrepancy between measured and simulated

measurements by varying the unknown parameters of the model.

2.2. Variational data assimilation

Variational data assimilation is a mathematical technique to recover unknown model parameters
from physical measurements by utilizing an optimal control approach. It was introduced in the
context of metereological models [42], but has since then been applied to other areas such as
oceanography [43] and mantle convection [44]. For brevity we only give a high-level overview
of variational data assimilation. For a thorough introduction we refer the reader to [45].

Figure 2 visualises the concept of variational data assimilation. The available measurements of
the physical system are denoted as d. Variational data assimilation requires mathematical models
that replicate both the physical processes and the measurement acquisition. The physical processes
are typically described by a partial differential equation. We denote this PDE as F (u;m) = 0, where
u is the solution and m are unknown parameters, such as the initial and boundary conditions.
Similarly, we can build a model for the physical measurement acquisition, which computes ‘virtual
measurements’ from the solution u. We denote this operation as T (u). The core idea of variational
data assimilation is now to determine the unknown parameters m such that the discrepancy between
simulated and physical measurements is minimised:

min
u,m
‖T (u)− d‖2 (3)

subject to F (u;m) = 0. (4)

The solution u of (3) can be used to extract previously unknown data.
For the variational data assimilation of blood flow, the aim is to recover the flow velocity

and pressure fields from noisy physical velocity measurements with limited spatial and temporal
resolution. The recovered fields should be physically reasonable, in the sense that they satisfy the
mathematical model considered. Hence we use equations (1) and (2) as the mathematical model
(4). For this model, the unknown parameters are the initial condition and the Dirichlet boundary,
that is m = (u0, gD). We assume that the available physical measurements are N velocity fields
on a subdomain Ωobs ⊆ Ω, that is d = (d1, . . . , dN ) ∈ L2(Ωobs)

N . For example, each observation
might be an instantaneous snapshot of the blood flow velocity, or the average over a time interval.
The observation subdomain Ωobs is introduced because the physical observations might be available
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only in parts of the computational domain. With that, the objective (3) becomes

J(u) :=

N∑
n=1

∫
Ωobs

|Tnu− dn|2 dx. (5)

Each observation operator Tn, n = 1, ..., N models the acquisition of the n’th measurement. We
consider two cases: in the first, the measurement device takes instantaneously measurements at
N timelevels t1, .., tN . In this case, the observation operators are pointwise evaluations in time,
that is Tnu(x) = u(x, tn) ∀x in Ωobs. In this second case, the measurement device takes averaged
measurements over fixed time periods. Here, the observation operators are time averaged evaluations
of the velocity state, that is Tnu(x) =

∫ tn
tn−1

u(x, t) dt/(tn − tn−1) ∀x in Ωobs.
In summary, the variational data assimilation problem can be stated as a minimisation problem

constrained by the Navier-Stokes equations:

min
(u,p)∈Y

(u0,gD)∈M

J(u) +R(u0, gD) subject to (1)-(2), (6)

whereM and Y are suitable function spaces, to be determined in section 3.3. Note that we also added
a regularisation term R, which is required to ensure well-posedeness of the problem, and needs to
be chosen depending on the amount of physical observations [26]. In particular, [27] showed that
a linearised variation of (6) is well-defined if sufficient physical observations are available. For the
following numerical examples, we apply a Tikhonov regularisation:

R(u0, gD) =
α

2
‖gD‖2ΓD×(0,T ] +

γ

2
‖u0‖2Ω, (7)

where the coefficients α and γ determine how strongly the problem is regularised in the given norms.

2.2.1. Choice of norms The choice of norms in the regularisation term (7) specifies the expected
regularity of the reconstructed blood flow. For instance, [28] has shown that a unsuitable choice can
have a negative impact on the quality of on the reconstructed data.

The norm used for the initial data is

‖u0‖Ω = ‖u0‖H1(Ω) =

(∫
Ω

|u0|2 + |∇u0|2 dx
) 1

2

,

and for the boundary

‖gD‖ΓD×(0,T ] =

(∫ T

0

∫
Ω

|gD|2 + |∇gD|2 + |ġD|2 + |∇ġD|2 dx dt

) 1
2

.

We remark that the norms used require more smoothness on the boundary and initial data than is
usually required for the variational formulation of the Navier-Stokes equations, in particular for the
time derivative ġD.

3. NUMERICAL SOLUTION

3.1. Formulation of the reduced problem

We solve the optimisation problem (6) in its reduced formulation. The idea of the reduced
formulation is to eliminate the explicit PDE-constraints by implicitly enforcing the PDE in the
functional. This strategy is common practice for solving PDE-constrained optimisation problems
and described in more detail in [46].

The reduced problem of (6) is obtained by considering the velocity u as an implicit function
of the initial and boundary conditions by solving the Navier-Stokes equations (1) and (2). We
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6 S. W. FUNKE ET AL

denote this velocity operator as u(m), where m = (u0, gD) ∈M denotes the controlled variables.
The functional (5) can now be written in its reduced form

Ĵ(m) = J(u(m)) +R(m). (8)

In words, the reduced functional Ĵ implicitly satisfies the Navier-Stokes equations. This means that
an evaluation of Ĵ for a specificm automatically invokes a Navier-Stokes solve to obtain the velocity
u(m), ensuring that (1) and (2) are always satisfies. The Navier-Stokes equations are therefore not
required as explicit constraints to reduced functional Ĵ . This bring us to the reduced optimisation
problem

min
m∈M

Ĵ(m). (9)

In contrast to (6), the reduced problem is an unconstrained optimisation problem and can hence be
solved with an unconstrained optimisation method.

3.2. Optimisation

The minimisation problem (9) is solved with the Broyden-Fletcher-Goldbarb-Shanno (BFGS)
algorithm. This section presents a brief overview of the method in a function space setting, which is
crucial to obtain discretisation-independent convergence, and its implementation.

BFGS solves the minimisation problems iteratively by generating a sequence of points
m0,m1, . . ., which approximate a minimiser of Ĵ . In each iteration, evaluations of the derivative
DĴ(mk) ∈M∗ are used to determine a direction dk ∈M in which the functional is decreasing.
This general descent algorithm in Hilbert spaces is formulated in algorithm 1.

Choose an initial point m0

for k = 0, 1, . . . do
Evaluate J(mk) {requires solving (1) and evaluating (5) }
Choose a search direction dk = −HkDĴ(mk) {requires solving (21) and evaluating (22)}
Choose a step length αk > 0 such that Ĵ(mk + αkdk) < Ĵ(mk) {requires solving (1) and
evaluating (5) }
Set mk+1 = mk + αkdk
if converged then

return
end if

end for
Algorithm 1: A general descent algorithm in Hilbert spaces, applied to the reduced minimisation
problem (9).

The search direction dk = HkDĴ(mk) is a descent direction if the operator Hk : M∗ →M
is positive definite and self-adjoint. The choice of operators Hk mapping derivatives to search
directions essentially characterises the method. For example, taking Hk = H as the Riesz operator
for M (i.e. choosing dk to be the gradient of Ĵ at mk) results in a steepest algorithm. Setting
Hk = D2Ĵ(mk)−1, assuming Ĵ is convex, results in a Newton algorithm.

The BFGS algorithm is a descent method of quasi-Newton type, which have good convergence
properties. Furthermore, they do not require evaluations of the Hessian, but instead maintain an
iteratively constructed inverse Hessian approximation. The update formula specific to the BFGS
algorithm is

Hk+1 =

(
1− sk+1 ⊗ yk+1

ρk+1

)
Hk

(
1− yk+1 ⊗ sk+1

ρk+1

)
+
sk+1 ⊗ sk+1

ρk+1
(10)
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see e.g. [47, Chapter 6]. Here, ⊗ : X × Y → B(Y ∗, X) denotes the outer product defined by
(x⊗ y)(z) = x〈z, y〉Y ∗,Y , for x ∈ X and y ∈ Y , where 〈·, ·〉Y ∗,Y denotes duality coupling, and

sk+1 = mk+1 −mk,

yk+1 = DĴ(mk+1)−DĴ(mk),

ρk+1 = 〈yk+1, sk〉M∗,M .

Note that the initial H0 : M∗ →M has to prescribed. A natural choice is to take H0 to be Riesz
operator for the space M . That is, H0 is the unique operators such that

(m0,m1)M = 〈H−1
0 m0,m1〉M∗,M (11)

for all m0,m1 ∈M . This definition of H0 allows for mesh-independent convergence [48], and
is readily seen to coincide with the second order partial derivative of Ĵ with respect to M . If
D2Ĵ(m)−H−1

0 is compact, the method converges superlinearly, see e.g. [49].
For practical implementations, it is common to truncate the update formula (10) and store only

the last 3− 10 pairs of vectors yk and sk. The step lengths αk in algorithm 1 should chosen to satisfy
the Wolfe conditions, which ensures the convergence of the method [47, chapter 6].

3.3. Discretisation

The optimisation method in section 3.2 requires evaluations of the reduced functional Ĵ(m) and
its derivative DĴ(m). The former requires the numerical solution of the Navier-Stokes equations,
which is described in section 3.3.1. The derivatives are computed by solving the adjoint equations
as described in section 3.3.2.

3.3.1. Discretisation of the Navier-Stokes equations The Navier-Stokes equations are discretised
with a θ time-stepping scheme and the finite element method. Other discretisation schemes, such as
Runge-Kutta methods, may be employed if desired [50, 51, 52]. The controlled Dirichlet boundary
conditions are weakly enforced with the Nitsche method [53]. An advantage of the Nitsche approach
is that the boundary values are explicitly included in the variational formulation, which simplifies
the automated derivation of the adjoint equations, which is exploited in our implementation.

For the spatial discretisation, we consider conforming finite element spaces

Vh ⊂ H1
0,Γwalls

(Ω) = {u ∈ H1(Ω) : u|Γwalls
= 0}

Qh ⊂ L2(Ω).
(12)

For the time discretisation we assume a partition of the interval [0, T ] with a constant timestep
δt. Applying a standard θ time-stepping scheme to the Navier-Stokes equations (1), we obtain
a sequence of nonlinear problems: For k = 0, . . . , N − 1, let uk+θ = θuk+1 + (1− θ)uk and find
(uk+1, pk+1) ∈ Vh ×Qh such that

uk+1 − uk

δt
− ν∆uk+θ + (uk+θ · ∇)uk+θ −∇pk+1 = 0,

∇ · uk+1 = 0,

(13)
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8 S. W. FUNKE ET AL

subject to the boundary conditions (2). The equations (13) are integrated against test functions
v ∈ Vh and q ∈ Qh in order to obtain a nonlinear variational problem at each time tk,

0 =

∫
Ω

(
uk+1 − uk

δt

)
· v + ν∇uk+θ : ∇v dx

+

∫
Ω

(uk+θ · ∇)uk+θ · v dx

+

∫
Ω

q∇ · uk+1 + pk+1∇ · v dx

−
∫

ΓD

(
ν
∂uk+θ

∂n
− pk+1n

)
· v ds

−
∫

ΓD

(
θν
∂v

∂n
− qn

)
· (uk+1 − gk+1) ds

+

∫
ΓD

νσ

h
(uk+1 − gk+1

D ) · v ds.

(14)

The nonlinear variational problem (14) consists of a volume integral and a boundary integral over
ΓD. The volume integral coincides with the “standard” variational form of (13) obtained when the
boundary condition (2b) is strongly imposed. The second, boundary integral part of the variational
problem arises from the weakly imposing the Dirichlet boundary condition (17) with Nitsche’s
method, and is discussed in detail below.

The discrete spaces for the state and control variables are

Y = V Nh ×QNh
M = Vh × (TΓVh)N ,

and we introduce the notation

y = (u, p) ∈ Y,
u = (u1, . . . , vN ) ∈ V Nh
p = (p1, . . . , qN ) ∈ QNh
m = (u0, g1, . . . , gN ) ∈M

The sequence of variational problems (14) is reformulated as an operator equation combining all
the timesteps,

F(m, y) =

N−1∑
k=0

{
Fk,Ω(m, y) + Fk,ΓD

(m, y)
}

= 0, (15)

where Fk,Ω : Y → Y ∗ is the operator combining all the volume integrals in (14), i.e.

Fk,Ω(m, y; v, q) =

∫
Ω

(
uk+1 − uk

δt

)
· vk+1 + ν∇uk+θ : ∇vk+1 dx

+

∫
Ω

(uk+θ · ∇)uk+θ · vk+1 dx

+

∫
Ω

qk+1∇ · uk+1 + pk+1∇ · vk+1 dx,

(16)

for all (v, q) = {(vk, qk)}Nk=1 ∈ Y ∗, for k = 0, . . . , N − 1. Note that that this part only involves the
initial data u0 from m. The operator Fk,ΓD

: Y ×M → Y ∗ combines all the boundary integrals in
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(14) and reads

Fk,ΓD
(m, y; v, q) = −

∫
ΓD

(
ν
∂uk+θ

∂n
− pk+1n

)
· vk+1 ds

−
∫

ΓD

(
θν
∂vk+1

∂n
− qk+1n

)
· (uk+1 − gk+1) ds

+

∫
ΓD

νσ

h
(uk+1 − gk+1) · vk+1 ds.

(17)

The first integral in (17) arises when the integration by parts formula is applied to (13), and the
integral would vanish if the Dirichlet boundary condition (2b) were strongly imposed on the space
Vh. The remaining terms are added to obtain a variational problem that is consistent and stable,
see e.g. [54, 55]. The form (17) is linear and symmetric, and positive definite provided that the
parameter σ is sufficiently large. We must also require θ > 0 to apply the Nitsche method.

The numerical examples in section 4 use two common finite element pairs: P2-P1 (Taylor-Hood)
and P1-P1. The lowest order discretisation does not satisfy the LBB conditions, and hence requires
stabilisation. We used the stabilisation −βh2 (∇p,∇q)Ω where h is the local mesh element size and
β = 10−3 is the stabilisation coefficient.

3.3.2. Adjoint equations The adjoint approach is used to efficiently compute the functional
derivative DĴ(m) ∈M∗, at the approximate cost of one linearised Navier-Stokes solve, namely
solving the adjoint Navier-Stokes equations.

To derive the adjoint equations, consider the Navier-Stokes equations in the operator form
F(m; y) = 0 ∈ Y ∗ and a functional J(y,m) ∈ R. For brevity, we will use the simplified notation F
instead of F (m; y) in the following derivation.

The total derivative of the functional in direction m̃ is〈
DĴ, m̃

〉
M∗,M

=

〈
dJ
dm

, m̃

〉
M∗,M

=

〈
∂J

∂y
,

dy
dm

m̃

〉
Y ∗,Y

+

〈
∂J

∂m
, m̃

〉
M∗,M

. (18)

Evaluating the right hand side of (18) directly is challenging because computing dy/dm ∈ L(M,Y )
is computationally expensive. The adjoint approach eliminates this term by taking the derivative of
the PDE equation

∂F
∂y

dy
dm

+
∂F
∂m

= 0. (19)

and substituting it into (18):〈
dJ
dm

, m̃

〉
M∗,M

= −

〈
∂F
∂m

m̃,

((
∂F
∂y

)−1
)∗

∂J

∂y

〉
Y ∗,Y

+

〈
∂J

∂m
, m̃

〉
M∗,M

. (20)

The functional derivative is then computed in two steps:

1. Compute the adjoint solution λ ∈ Y by solving the adjoint PDE(
∂F
∂y

)∗
λ = −∂J

∂y
(21)

2. Evaluate the derivative with
dJ
dm

=

(
∂F
∂m

)∗
λ+

∂J

∂m
(22)

The computationally expensive part is the solution of (21), which involves the solution of a linear
PDE.

The adjoint equations (21) can be derived before or after the discretisation of the Navier-Stokes
equations [56]. Here, we apply the discretise-then-optimise approach, which has the advantage that
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the discretised derivative is the exact derivative of the discretised system. Alternative approaches
do not guarantee this property and simple descent methods like algorithm 1 may fail and must be
replaced by a more robust optimisation algorithm.

Applying (21) to the discretised Navier-Stokes operator (15) yields〈(
∂F
∂y

)∗
λ,w

〉
=

〈(
∂F
∂y

)
w, λ

〉
= −

〈
∂J

∂u
, v

〉
∀w = (v, q) ∈ Y. (23)

Note that functional’s regularisation term does not depend on y and hence vanishes in the
derivative. Since the adjoint operator is linear, (∂F/∂y)∗ can be written in matrix form, with each
row corresponding to one timestep:

(
∂F
∂y

)∗
=


∂F0

∂y1 0 0 · · ·
∂F1

∂y1
∂F1

∂y2 0
. . .

...
. . . . . . . . .

· · · 0 ∂FN−1

∂yN−1

∂FN−1

∂yN


∗

=


∂F∗

0

∂y1
∂F∗

1

∂y1 0 · · ·

0
∂F∗

1

∂y2
. . . . . .

...
. . . . . . ∂F∗

N−1

∂yN−1

· · · 0 0
∂F∗

N−1

∂yN

 (24)

or more compactly,

(
∂F
∂yk

)∗
λ =


(
∂Fk−1

∂yk

)∗
λk +

(
∂Fk

∂yk

)∗
λk+1 for 1 ≤ k < N(

∂Fk−1

∂yk

)∗
λk for k = N.

Note that the last adjoint operator, for k = N , has the same structure as the other adjoint operators
if one introduces a zero terminal adjoint value λN+1. Since the adjoint operator (24) is upper-
triangular, the adjoint system (23) is solved by backwards substitution. Written explicitly, the adjoint
equation is: find adjoint solutions λk = (λku, λ

k
p) for k = 1, . . . , N such that∫

Ω

(
λku − λk+1

u

δt

)
· vk dx+

∫
Ω

ν∇λk+θ̃
u : ∇vk dx

+θ

∫
Ω

(uk−1+θ · ∇)vk · λku dx+ θ

∫
Ω

(vk · ∇)uk−1+θ · λku dx

+θ̃

∫
Ω

(uk+θ · ∇)vk · λk+1
u dx+ θ̃

∫
Ω

(vk · ∇)uk+θ · λk+1
u dx

+

∫
Ω

λkp∇ · vk + qk∇ · λku dx−
∫

ΓD

(
ν
∂vk

∂n

)
· λk+θ̃

u ds

+

∫
ΓD

(
qkn
)
· λku ds−

∫
ΓD

(
θν
∂λku
∂n
− λkpn

)
· vk ds

+

∫
ΓD

νσ

h
vk · λku ds = −

〈
∂J

∂uk
, vk
〉
∀vk, qk.

(25)

with θ̃ = 1− θ and λN+1
u = 0. From (25), we observe that the adjoint system employs the same θ

timestepping scheme as the forward discretisation, but with a modified advective velocity. Further,
the adjoint system enforces homogeneous velocity Dirichlet boundary conditions on the controlled
surfaces using a Nitsche like approach.

3.4. Implementation and verification

The Navier-Stokes solver was implemented in the FEniCS finite element framework [57] and the
adjoint solver was automatically derived via the algorithmic differentiation tool dolfin-adjoint [58].

To verify that the gradients are computed correctly, we performed a Taylor test for 2D setup
described in section 4.1. Table I lists the results of the Taylor test applied to the initial condition
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|δu0| R0(δu0) order R1(δu0) order

0.005 0.5072 0.00240
0.01 0.253 1.00 0.000599 2.00
0.005 0.126 1.00 0.000150 1.99
0.0025 0.0632 1.00 3.78e-05 1.99
0.00125 0.0316 1.00 9.00e-06 2.01

Table I. Taylor remindersR0 = |Ĵ(u0 + δu0)− J(u0)| andR1 = |Ĵ(u0 + δu0)− Ĵ(u0)−DĴ(u0)δu0| for
the 2D example described in section 4.1 and a random initial condition perturbation δu0. The instantaneous

observation operators were used in the functional (5). The other setup parameters are listed in table II.

3 mm

4.6 mm

27 mm

Figure 3. The computational domain for the 2D aneurysm experiment in section 4.1. The grey area indicates
the extended domain Ω which is used to generate the physical observations.

control. The convergence rates are the expected orders of convergence for a correctly computed
gradient.

The implementation and data to reproduce the Taylor test and the 2D results in section 4.1 are
available online†. The website contains a Readme file with instructions how to reproduce the results.
The 3D data of section 4.2 could not be shared due to license restrictions.

4. NUMERICAL EXPERIMENTS

The data assimilation approach was tested on two numerical experiments. The first experiment
consists of an idealistic, aneurysm-like 2D domain where the true velocity is known (section 4.1).
The second experiment reconstructs the flow conditions in a real aneurysm from a 4D MRI scan
(section 4.2).

4.1. 2D Aneurysm

The computational domain for this experiment resembles a 2D blood vessel bifurcation with an
aneurysm, see figure 3. The main goal of this experiment is to test the robustness of the assimilated
solution against i) incomplete observations, ii) noisy observations, and iii) the regularisation
parameters. In addition, we compare the quality of the reconstruction for two types of observation
operators.

In order to be able to quantify the quality of the assimilated solution, we create a test environment
where the “true” blood flow is known. This is achieved by generating the observations dn, n =

†https://bitbucket.org/biocomp/navier_stokes_data_assimilation
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Parameter Symbol Value Unit
Viscosity ν 3.5 m2/s
Model timestep ∆t 0.00925 s
End time T 0.629 s
Time discretisation θ 0.5
Spatial discretisation P1-P1
Mesh triangles in Ω 20, 989
Mesh triangles in Ωobs 13, 296
Mesh element size 0.03− 0.20 mm
Nitsche coefficient σ 100.0
Number of physical observations N 17
Regularisation α = γ 10−5

Table II. The model settings for the 2D aneurysm experiment in section 4.1 if not otherwise stated.

1, ..., N from a numerical reference solution. The reference solution was obtained by solving the
Navier-Stokes equations on an extended domain that included the grey area in figure 3. On the
inlet and right outlet boundaries, a parabolic velocity profiles was enforced with peak values of
1000 mm/s and 870 mm/s, respectively, multiplied by sin(π(1− t)3) to obtain a pulse like flow
pattern‡. The simulation started at t = 0 s with zero velocity, reached the peak inflow velocity
at t = 0.206 s, and stopped at t = 0.629 s when the inflow velocity dropped below 5% of the
peak velocity. The remaining model settings are listed in table II. The value for the regularisation
coefficients α = γ were determined manually such that the reconstruction is robust while ensuring
that the regularisation does not dominate the solution. The effect of this choice will be studied
in more detail in section 4.1.1. Alternative approaches for choosing α and γ are the discrepancy
principle [59, 60, 61], which selects the regularisation parameter such that the perturbation of the
regularisation term affects the solution with the same order of the discrepancy induced by the noise,
or the computationally more efficient approach proposed by [27, 26].

The physical observations were obtained by applying the observation operators Tn to the reference
solution. We compared two types of observation operators: first, the instantaneous observation
operators T inst

n which take instantaneous snapshots of the velocity profile in Ωobs at evenly
distributed levels, that is:

T inst
n u(x) := RΩobsu(x, tn) ∀x in Ωobs, (26)

with tn = Tn/N, n = 0, ..., N − 1. Here RΩobs restricts the velocity to the observation domain, the
white area in figure 3. Second, the time-averaging observation operators, which measure time-
averaged velocities over a time interval:

T avg
n u(x) :=

1

tn − tn−1

∫ tn

tn−1

RΩobsu(x, t)dt ∀x in Ωobs (27)

with evenly distributed time levels tn = Tn/N , n = 0, ..., N . Both observation operators simulate
spatial and temporal incompleteness of physical measurements, due to the restriction to Ωobs and by
limiting to N observations which is less than the number of model time steps.

The variational data assimilation was then used to recover the reference solution. To avoid
an “inverse crime“, we performed the reconstruction on the restricted domain Ωobs. This meant
that the assimilation procedure did not have knowledge about full geometry used for the data
generation. In addition, the outflow Dirichlet boundaries were swapped between the data generation
and reconstruction. In order words, the traction-free outlet boundary differed during data generation
and data assimilation.

‡Note that real flow in cerebral arteries will never go to zero, but rather pulsate between around 0.5 m/s and one third of
0.5 m/s.
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The discretised optimisation problem had 32, 440 dimensions, describing the initial condition
and the boundary conditions at each time-step. The non-linear problem arising from the discretised
Navier-Stokes equation at each time-step had 13, 784 degree of freedoms, which was solved with
a Newton-LU solver. The optimisation started with the boundary and initial conditions set to zero,
and was terminated when the relative change of the functional in one iteration dropped below 10−4

or the number of iterations exceeded 100.
The remainder of this section compares this “observation generation followed by data

assimilation” procedure for different setups. To simplify the comparisons, all results are presented in
an consistent way. As an example, consider figure 4. Each column in this figure summarises one data
assimilation output and lists key characteristics: Opt.-iters denotes the number of iterations for the
optimisation solver to converge. The J +R value is the functional value (5) and the regularisation
term (7) at the optimal point. The next two graphics (Observation and Assimilation) visualise the
observed and reconstructed flow speeds at t = 0.296 s, which corresponds to the observation time
with peak velocities inside the aneurysm. The colour scale is logarithmic in order to better highlight
differences in the results. Note that the reconstruction can be accurate even if these two graphics
differ, for instance when noise was added to the physical observations. The last two time-plots
compare assimilated velocity profile with the “true” velocity from the reference simulation. Since
the results in the aneurysm is typically most important, these time-plots focus on the aneurysm area,
denoted as Ωane. The first time-plot shows the L2-norms of the true velocity (from the observation
generation step), the assimilated velocity and their difference over the simulation time. We also state
the relative error over space and time:

EΩane =
‖utrue − u‖L2(Ωane×(0,T ])

‖utrue‖L2(Ωane×(0,T ])
, (28)

where utrue is the true velocity. The wall shear stress on the aneurysm wall is an important
diagnostic value for aneurysm rupture risk studies. It is defined as WSS(u) = |σn− (σn · n)n| with
σ = ρ

(
−pI + ν(∇u+ (∇u)T )

)
and ρ = 1060 kg/m3. The final time-plot of each figure column

shows theL2-norm of the wall shear stress over the simulation time. As before, we defined a measure
of the relative space-time error of the reconstructed wall shear stress on the aneurysm wall

EWSS =
‖WSS(utrue)−WSS(u)‖L2(Γane×(0,T ])

‖WSS(utrue)‖L2(Γane×(0,T ])
, (29)

where Γane denotes the aneurysm wall.
The assimilation results with instantaneous observation operators T inst

n and the parameters
listed in II are shown in figure 4 (left column, Base setup with no noise). The optimisation
converged in 46 iterations, which includes in total 52 forward and adjoint Navier-Stokes solves.
The optimisation reduced the initial functional value of 9.3× 107 to 7.4× 105. Of the latter only
495 is due to the regularisation termR and the rest originates from the goal functional J , indicating
that the assimilation is not-dominated by the regularisation term. The two top plots in figure 4
(left column) show that the assimilation procedure recovered the observation well, only minor
differences in the aneurysm and the outflow boundaries are visible. Also the timeplots show that
the assimilated velocities/WSS matches well with the “true” velocity/WSS also in between the
observation snapshots. Both error metrics indicate a relative error of 10% or less.

The same plots, but with the assimilation performed based on the time-averaging observation
operators T avg

n , are shown in 5 (left column, Base setup with no noise). Overall, the quality of the
reconstruction is comparable as with T inst

n but with a slight decrease in number of optimisation
iterations and slightly higher relative error in the reconstructed wall shear stress.

4.1.1. Assimilation robustness The quality of the reconstruction might be influenced by different
factors, such as noise in the physical observations, the choice of the controlled boundaries, or the
amount of regularisation. To study the robustness of the assimilation procedure, we varied a set of
parameters independently, repeated the data assimilation and compared the “true” solution from the
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reference simulation. More specifically, the following tests are based on the configuration listed in
table II, and in each test one parameter is varied and the quality of the reconstruction investigated.

Noisy observations (figures 4 and 5). Pointwise Gaussian white noise was added to the physical
observations with zero mean and different levels of intensity. While this type of noise is not expected
in real physical measurements, in particular because it depends on the numerical mesh, we consider
it as a suitable benchmark setup. The signal-to-noise ratio was computed as the ratio of the energy
of the unperturbed measurement data to the energy of the added Gaussian noise. The results of
the reconstruction for different signal-to-noise ratios are shown in figure 4 for the instantaneous
observation operators T inst

n , and figure 5 for the time-averaging observation operators T avg
n . With

higher noise levels, the functional value J +R increases due to the larger difference between
reconstructed and observed velocity. Nevertheless, the error measures Eane and EWSS remain small,
indicating that the assimilation is robust against this type of noise, even for high noise to signal
ratios. One reason for this robustness is that the main determinant for the flow is the flow division
between the two outlets, which remains nearly unchanged when adding uniform pointwise Gaussian
noise. Furthermore, the data assimilation acts like a denoising procedure thanks to the mathematical
model. This de-noising effect has also been observed by [26].

Regularisation (figures 6 and 7). The regularisation terms (7) enforce “smoothness” on the
control functions. As such, the regularisation coefficients α and γ could have a strong influence
on the assimilation results. This was investigated by varying α and γ between 1 and 10−5,
simultaneously in order to keep a balance between the two terms. The results are shown in figures 6
for T inst

n and 7 for T avg
n . The reconstruction works well for α = γ = 10−4 and 10−5 (latter is shown

in “Base setup with no noise” in figures 4 and 5). The quality starts to reduce for α = γ = 10−2,
in particular the relative errors Eane and EWSS are approximately twice as high as compared to
α = γ = 10−4. For α = γ = 1 the error metrics increase further and both time-plots show a visibly
lower assimilated velocity and WSS compared to the reference values.

Data sparsity (figures 8 and 9). Another important question is how many physical observations
N are required to accurately reconstruct the blood flow. To address this question, the data
assimilation was repeated with varying number of observations. The base setup (left column in
figures 4 and 5) used N = 16 and the results for N = 4, 8 and 32 are shown in figures 8 and 9 for
T inst
n and T avg

n , respectively.
With N = 4, the quality of the reconstruction suffers visibly with relative velocity errors of 26%

for the instantaneous and 16% for the averaged observation operators. With N = 8, the results of
the averaged observation operator improves significantly and the relative velocity error is with 11%
nearly as good as the base case. In contrast, the results with the instantaneous do not show this
improvement. Finally, the differences between N = 16 to N = 32 observations are minimal for
both observation operators. Overall, N = 16 observations seems a good choice for this setup, and
the averaged observation operator seems more robust against lower number of observations.

Choice of controlled outflow boundary (figure 10). In the problem definition (2b), an arbitrary
choice was made to control the outflow on Γout1 , and to enforce a no-stress condition on Γout2 . It is
therefore natural to verify that the reconstruction succeeds also if Γout2 is controlled and a non-stress
condition is applied on Γout1 . The results for this setup are shown in figure 10. The reconstruction
is similarly good as in the base setup, indicating that the assimilation is not impacted significantly
by the choice of the controlled boundaries. Nevertheless, this choice might be more significant for
other setups, in particular if one of the outflows is in close proximity to the aneurysm.

4.2. Flow reconstruction in an aneurysm from 4D MRA measurements

The variational data assimilation approach was tested on real measurements of a dog’s blood vessel
with an artificially introduced aneurysm. The physical measurements were obtained using 4D PC-
MRI and resulted voxel-based velocity snapshots covering the complete computational domain
with a (0.6mm)3 resolution. The pulsatile flow was imaged at 16 equidistant time-levels during
the cardiac cycle between t = 0 s and 0.629 s. A complete description of the imaging technique
and corresponding 4D PC-MRI data used here can be found in [15]. We used both instantaneous
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Figure 4. Results using the instantaneous observation operators with pointwise additive Gaussian white
noise. The signal-to-noise-ratio was computed as ‖T inst

n utrue‖2/‖T inst
n utrue − d‖2, where d is the noisy data.

The snapshots on the top two rows are taken at t = 0.296s.
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Figure 5. Results using the time-averaging observation operators with pointwise additive Gaussian white
noise. The signal-to-noise ratio was computed as ‖T avg

n utrue‖2/‖T avg
n utrue − d‖2, where d is the noisy data.

The snapshots on the top two rows are taken at t = 0.296s.
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Figure 6. Results using the instantaneous observation operators with varying α and γ regularisation
coefficients. The base setup (figure 4, left column) uses α = γ = 10−5. The snapshots on the top two rows

are taken at t = 0.296s.
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Figure 7. Results using the time-averaging observation operators with varying α regularisation
parameters. The base setup (figure 5, left column) uses α = γ = 10−5. The snapshots on the top two rows

are taken at t = 0.296s.
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Figure 8. Results using the instantaneous observation operators with varying number of observations. The
base setup (figure 4, left column) uses N = 16 observations. The snapshots on the top two rows are taken at

t = 0.296s.
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Figure 9. Results using the time-averaging observation operators with varying number of observations.
The base setup (figure 5, left column) uses N = 16 observations. The snapshots on the top two rows are

taken at t = 0.296s.
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Figure 10. Assimilation results where the controlled outlets are swapped from the base cases (figures 4 and
5, left columns). The snapshots on the top two rows are taken at t = 0.296s.
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Figure 11. The segmented geometry with overlayed mesh for example 4.2.

Parameter Symbol Value Unit
Viscosity ν 7.5 m2/s
Model timestep ∆t 0.004625 s
End time T 0.629 s
Time discretisation θ 1.0
Spatial discretisation P1-P1
Number of mesh cells in Ω 261, 124
Nitsche coefficient σ 100.0
Number of observations N 16
Regularisation parameter α = γ 10−5

Table III. The numerical settings for the reconstruction of blood flow from 4D MRA measurements. The
first parameters specify the model setup, while the final two parameters configure the data assimilation.

snapshots and time-averaged measurements over each voxel and/or time-interval. Hence, both types
of observation operators T inst

n and T avg
n are relevant for this experiment.

The computational domain Ω was segmented from the time-averaged MRA measurements using
VMTK (www.vmtk.org) and is shown in figure 11. The physical observations dn were obtained
by linearly interpolating each 4D PC-MRI snapshot onto the mesh nodes. As a consequence,
the physical observations were available in the entire computational domain, that is Ωobs = Ω.
The remaining numerical settings are listed in table III. The discretised optimisation problem
had 208, 536 dimensions, describing the initial condition and the boundary conditions at each
time-step. The non-linear problem arising from the discretised Navier-Stokes equation at each
time-step had 184, 464 degree of freedoms, which was solved with a Newton-LU solver. The
optimisation assimilation problem was solved on the Abel supercomputing facility on 24 CPUs
and was terminated after 30 optimisation iterations, when the relative change in one optimisation
iteration dropped below 0.09%. The optimisation reduced the initial objective value of 538 · 106 to
192 · 106 of which 25.8 · 103 can be contributed to the regularisation terms.

For comparison, we additionally performed a “traditional”, high-resolution and low-viscosity
flow simulation without the data assimilation procedure, but instead with interpolated initial and
boundary conditions from the observations. To avoid spurious effects near the boundary, the
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segmented geometry needed to be extended by artificial straight arteries on the in- and outlets.
The high-resolution setup had 20 million DOFs with a Taylor-Hood pressure-corrector scheme and
a timestep of 5.9 · 10−4 s. Womersley boundary conditions were used on the inflow and outflows.
The inflow flux QΓin was interpolated from averaged observations as (QΓin −QΓout1

−QΓout2
)/3, the

outflow flux on Γout1 was averaged as QΓout1
/(QΓout1

+QΓout2
), and a traction free condition was

applied on Γout2 .
Figure 12 visualises the flow speeds obtained from the assimilated, and the high-resolution

simulations for both observation operators. We observe that the differences between the
instantaneous and averaged observation operators are marginal, and that all simulations recover the
main flow characteristics. The remaining discrepancies between the observations and simulated flow
speeds are partially caused by the noise in the observations, which is not present in the simulated
flows. In addition, there are also more localised discrepancies, especially on the right aneurysm
wall and the outflow vessel to the right, which are unlikely caused by noise. We suspect that these
differences are the result of errors in the wall definition during the geometry segmentation, and
simplified model assumptions (e.g. non-Newtonian rheology, choice of viscosity).

When comparing the high-resolution solution with the assimilated solution, we observe that the
high-resolution solution has an extensive high-speed flow along the right aneurysm wall, which is
neither present in the assimilated solution nor the observations. The high-resolution solution has
also transient to turbulent behaviour in the aneurysm, while the assimilated solution is laminar. The
observations are too coarse to determine if an turbulent or laminar solution is expected in this case.
Overall, it is difficult to declare a winner between the high-resolution and assimilated solution.

5. CONCLUSION, DISCUSSION AND FUTURE WORK

This paper presented the application of variational data assimilation to reconstruct transient blood
flow from velocity observations such as from MRI images. We formulated the assimilation problem
as an optimisation problem to recover the initial and boundary conditions of the Navier-Stokes
equations from a set of observations, and introduced appropriate regularisation terms. Numerically,
we employed a mesh-independent BFGS optimisation algorithm and derived the adjoint Navier-
Stokes equations to efficiently compute the required functional derivatives. Numerical experiments
of a synthetic 3D (time and 2D space) case indicate that the technique is robust with respect
to pointwise Gaussian measurement noise and to the regularization parameters. The results
showed also that, as expected, the reconstruction becomes worse if the number of measurements
is decreased. Another experiment applied variational data assimilation on the geometry and
measurements that origin from a 4D PC-MRI dataset obtained from a canine aneurysm model.
This experiment demonstrated that the methodology is also feasible for 4D (time and 3D space)
problems.

We have to bear in mind that the resolution of the 4D PC-MRI is currently limited to 0.3-0.6mm,
around 30 time steps per heart cycle and that the PC MRI flow represent phase-average of several
hundred cardiac cycles , c.f. e.g. [16]. Potential transitional effects may therefore be masked by the
averaging procedure involved in the MRI acquisition. It is however interesting to note that the data
assimilation procedure is relatively robust with respect to noise as the main determinant for the flow
is the flow division between the different outlets. Overall, the variational data assimilation technique
seems to be a promising approach for incorporating measurements into transient blood flow models.

The methodologies in this paper are simplified and can benefit from further improvements. For
example, the flow model assumed Newtonian fluid within rigid walls. This is a gross simplification,
though it has been found adequate to capture the main flow structures in several studies [40, 15]
and is used in most large studies involving many patients [1, 2, 3]. A possible extension is
therefore to take into account the deformation of the vessel wall [30, ?] to determined patient-
specific compliance parameters and to determine non-Newtonian effects [41] in terms of nonlinear
rheology models. Furthermore, the geometry of the blood-vessel can be treated as an unknown
variable and recovered from the observations, for example with the approach taken in [29] or via
shape optimisation techniques [38]. Other improvements concern the variational setup itself. The
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Figure 12. Flow speed visualised through a slice of the 3D dog vessel, see section 4.2. Shown are the
observations at t = 0.296 s.
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observations operators are idealised, and should be adapted to the specific measurement device
used to obtain the observations. In addition, the initial condition should be replaced by periodic
boundary conditions, but this option was disregarded in the current project because of currently
lacking support in our software tools. The assumption of traction free boundary on Γout2 could be
removed by optimising the boundary conditions at all open boundaries. The latter requires however
an additional consistency constraint to ensure mass balance on the boundary.

Several recent numerical studies have reported transitional flow in cerebral aneurysms [18, 19, 16]
and in this paper we have shown that there is a difference between the assimilated solution and a
corresponding high-resolution simulation that demonstrated transient to turbulent behaviour. There
are two main reasons that transitional or turbulent flow is not captured by our assimilation procedure:
1) the resolution in space and time is too coarse, and 2) transient and/or turbulent flow would
likely require the simulation of many cardiac cycles, possibly combined with periodic boundary
conditions. To what extent the methodology described here extends to such formulations and more
efficient schemes like projection/pressure correction schemes is currently an open question.

Finally, the numerical schemes can be improved. We used a simple, low-order time stepping
scheme, but in practice it might be preferable to employ higher order Runge-Kutta schemes or
similar methods. The variational data assimilation approach can be extended to such methods,
but the associated adjoint equations must be derived accordingly, see e.g. [50, 51, 52]. Adaptive
time stepping schemes may also be employed, but require special attention when developing the
adjoint equations [62, 63]. The computational expense of a variational data assimilation with a
more advanced numerical scheme is expected to scale with the cost of the discretisation scheme. The
extension to higher-order finite elements is straightforward but is more computationally expensive
and was therefore left out of this study.

The methodology proposed in this paper appears to be quite robust in the sense of numerical
stability for both the transient 2D and 3D problems discussed. We remark that this was not the
case in several earlier attempts where we used projection schemes for a faster solution of the flow
problems, alternative regularizations and with other formulations than the reduced optimisation
problem. Similar problems were not experienced in the stationary case.

The computational cost of the variational data assimilation for the given examples was typically
between 50–100 times that of a single flow simulation. To keep the computational time feasible,
the mesh and time resolutions had to be reduced compared to a single flow simulation study. In
order to obtain spatial and temporal resolved discretisations, it is therefore necessary to increase
the overall efficiency of the method. We chose to solve the assimilation problem in its reduced
formulation, which has the advantage that existing Navier-Stokes solution methods can be directly
reused in the assimilation, and that the associated adjoint solver could automatically be derived with
the ‘dolfin-adjoint’ software. An alternative approach would have been to derive and solve the first-
order optimality system [56, 64]. This leads to a large, non-linear system that couples all spatial and
temporal degrees of freedom of the discretised Navier-Stokes and adjoint Navier-Stokes equations.
Solving this system requires the development of specialised solvers, but can in some cases lead
to superior performance compared to reduced approach (see for example [65]) and is therefore an
interesting avenue for future improvements.
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