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3. Preface

In this thesis, I summarize and discuss four research articles. The text is organized
as follows: Section 4 provides a brief introduction to the main problems we have
studied and an overview of the four articles. In Section 5 and 6, a short description
of some key topics in survival analysis and causal inference is provided before the
research articles are described in detail in Section 7. Section 8 contains some of the
main contributions of each article, comments to put the findings in a broader context,
and possible directions for future work. In Section 9, one can find worked examples
that show how to use the software I have developed. The four papers are shown
consecutively in Section 10.
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4. Introduction and overview

Statisticians often face the problem of making inference on parameters that describe
a population of interest. However, the parameters that are studied do not always
have a straightforward and transparent interpretation, even if the statistical model
fits the data well. This is unfortunate because statistical analyses are often used
to aid decision making. Notions of causal effects usually guide decisions. When
defining parameters that describe causal relationships, it is useful to specify them
as functions of hypothetical manipulations of some exposure. However, such causal
parameters are often hard to identify. Randomized controlled trials (RCTs) have
been the gold standard for testing causal relationships. In real life, RCTs are often
unavailable, and one has to analyze observational data, where spurious associations
may be present. The field of causal inference has offered a framework for causal
reasoning when observational data is at hand. Causal inference techniques are often
used to analyze observational studies. The causal inference methods are, however,
by no means restricted to the analysis of observational data; the tools from causal
inference should be more widely applied throughout statistics, especially when issues
of interpretability are important, also in RCTs.

Problems with interpreting the hazard function. Hazards and hazard ratios
are commonly reported measures of association in survival analysis [1, 2]. The use
of hazard ratios, usually estimated by Cox’s proportional hazard (PH) model, has
been appealing. Statistical analyzes are often summarized by numerical estimates
of hazard ratios along with confidence intervals, and hazard ratios have traditionally
been thought to have easily understood interpretations [3,4]. It has been pointed out,
however, that hazards can be difficult to interpret, even in the absence of unmeasured
confounding and model misspecification [5, 6, 7]. A problem arises, since the hazard
function at time t by definition is conditioned on survival up to t. This conditioning
may induce selection bias, as it unblocks non-causal pathways from the exposure
to future survival through any unobserved heterogeneity. The interpretation will
therefore be complicated in many situations [5, 6, 8]. Hazard ratios are often the
only statistical summary that is reported in epidemiological studies [5], so the fact
that they can be difficult to interpret may have unfortunate consequences. Statistical
hypotheses in survival analysis are often stated on the hazard scale, e.g. the rank
tests. In some cases, it is difficult to understand such null hypotheses thoroughly.

Marginal structural models. Marginal structural models (MSMs) provide a tool
for performing causal analysis of longitudinal data [9]. These models are particu-
larly useful for problems with time-dependent confounding, i.e. when a process L is
present that is affected by the exposure a patient has already received, while also
influencing future exposure and the outcome of interest. The MSMs can be fitted by
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weighting observational data according to the inverse probability of treatment weights
(IPTWs). When the IPTWs are known, one can use weighting to obtain estimates
with causal interpretations [9]. The MSMs were initially developed as discrete time
models [9]. More recently continuous-time MSMs were introduced, building on theory
from stochastic analysis such as Girsanov’s theorem, as a continuous-time analog of
the discrete models [10]. Similarly to the discrete models, causal estimates can be
obtained by weighting observational data according to a weight process [10]. The
continuous-time MSMs fit well with survival analysis, as they are defined in continu-
ous time.

Objective. In this thesis, I point out that hazards are sometimes difficult to interpret
and discuss alternative methods for analyzing survival data. A general method for
estimation and inference for other survival analysis parameters is presented, with a
possibility for covariate adjustment. Furthermore, I describe how the continuous-
time MSMs has been further developed both concerning methodology and software.
An example that demonstrates the continuous-time MSMs’ practical feasibility is
presented, through an application on a substantive prostate cancer treatment problem
using registry data.

Paper 1. We develop a general method that uses hazard models as a stepping
stone for modeling a class of other parameters in survival analysis. Examples of such
parameters include the survival function, cumulative incidence functions, and the
restricted mean survival function. We utilize the fact that these parameters belong
to a class of functions that solve systems of ordinary differential equations (ODEs)
driven by the integrated, or cumulative, hazard. We suggest a plugin estimator that
solves naturally associated stochastic differential equation (SDE) systems driven by
cumulative hazard estimates. We show that this SDE estimator is consistent, and
write down an estimator for the pointwise covariance. Some asymptotic results have
previously been found by focusing on one parameter at a time using the functional
delta-method. We demonstrate the results for our class of parameters using stability
theory for differential equations [11]. Our focus in on cumulative hazard estimators
that are counting process integrals, as is the case for the additive hazard estimator.
It is then possible to adjust for covariates using additive hazard regression.

Paper 2. We point out that there can be issues with the interpretation of the rank
tests while arguing that hypothesis testing should be performed on parameters that
have clear interpretations. Using results from Paper 1, we derive a general nonpara-
metric test statistic for hypothesis testing pointwise in time. We use simulations to
compare the power functions of our test statistics with conventional nonparametric
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methods tailor-made for each parameter, and show that the performance is compa-
rable. We also show using simulations that the rank tests are often unsuitable for
testing our hypotheses. Hence, one should not use rank tests for testing e.g. five-year
survival. Finally, we use our method to compare two adjuvant chemotherapy regimes
among patients with stage III colon cancer. We thereby demonstrate how to use the
methodology in practice.

Paper 3. We further develop the continuous-time MSMs. An estimator for the
continuous-time weights is proposed, based on additive hazard regression. We show
that causal cumulative hazards can be estimated consistently by weighting additive
hazard regressions with our weight estimator. Furthermore, we show that the class
of ODE parameters studied in Paper 1 can be estimated consistently, by defining an
SDE estimator driven by the weighted cumulative hazard estimates. The ODE pa-
rameters can thus be given causal interpretations if a sufficient set of (time-dependent)
confounders are measured, and an additive hazard model correctly specifies their im-
pact on the exposure hazard. We provide a simulated example showing how the
methodology works in practice.

Paper 4. We investigate the problem of comparing the treatment regimens Radical
Prostatectomy (RP) and Radiation (Rad), from the time of treatment assignment to
death/treatment failure. We utilize the results in Paper 1 and Paper 3 on Norwe-
gian prostate cancer registry data and use weighting to estimate causal cumulative
incidences. While the conclusion of a naive analysis could be that the Rad treated
individuals have a significantly better prognosis than the RP treated individuals, we
find that the treatment regimens perform similarly when accounting for the compet-
ing risk of death. This is a clinically relevant finding, as it suggests that a large group
of diagnosed patients should worry less about prognosis, and more about side effects
when choosing treatment type.

Software. I have developed R software for all of the above papers, freely available
for anyone to use at the GitHub repository github.com/palryalen. The package
transform.hazards has been developed together with Paper 1 and Paper 2. The
main function takes cumulative hazard estimates, initial values, as well as the inte-
grand function F with Jacobian matrices ∇F1,∇F2, · · · (see Section 7.1 for details) as
input, and gives parameter and covariance estimates as output. The methods for esti-
mating the continuous-time weights, used in Paper 3 and Paper 4, are implemented
in the ahw package. The weight estimator assumes that the time to exposure follows
an additive hazard model, estimated using the aalen function from the timereg

package. Worked examples of both packages can be found in Section 9, and in the
transform.hazards package vignette. Detailed examples are also available in the



CAUSAL REASONING WITH SURVIVAL DATA 9

four papers, particularly in the Supplementary material of Paper 2, as well as in the
main text of Paper 3, and Paper 4.
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5. Survival analysis

Survival analysis is the subfield of statistics that deals with modeling the time to
events of interest, often death. Statistical methods in survival analysis are created to
handle censoring, which arises when some of the subjects are unobserved in parts of
the study period. Using survival analysis techniques, one can thus include subjects
that later moves out of the study population, which is a real problem in many follow-
up studies. Survival analysis has thus become an essential tool for most health and
social scientists; the seminal papers by Kaplan and Meier [12] and Cox [1] remain two
of the most cited statistics papers in all of science.

5.1. Concerns with the interpretation of hazards. The hazard function is a
fundamental quantity in survival analysis. It may be understood as the rate of deaths
as a function of time conditional on survival up to that time, and a standard textbook
definition [2] is

lim
Δ−→0+

P (t ≤ T < t+Δ|t ≤ T )

Δ
,

where T is the event time of interest.
The most frequently used method for modeling the hazard is Cox’s semi-parametric

proportional hazards model [1]. The PH assumption is that covariates act multiplica-
tively on the hazard, or equivalently that the ratio between covariate-adjusted hazards
is constant as a function of time. Some researchers have pointed out that this assump-
tion often is unrealistic, in particular when adjusting for many covariates [13]. Still,
the PH assumption is convenient as the statistical analysis can then be succinctly
summarized by numerical estimates of hazard ratios with confidence intervals.

Hazards have traditionally been thought to have appealing interpretations [3,4]. In
particular, the hazard ratio is often loosely interpreted as a relative risk [3]. However,
these interpretations tend to neglect the fact that the hazard at each time point t
is defined conditional on survival (i.e. t ≤ T ), and is therefore based on a specific
subpopulation. It is not clear to what extent the hazard describes the population as
a whole.

A problem arises if an unobserved heterogeneity, often called frailty, affects the
survival times in the population under study; the frail subjects tend to die early,
while the less frail subjects tend to live longer. The subpopulation still alive will thus
consist of a diminishing proportion of frail individuals as time progresses, and will
therefore not be representative of the population as a whole. By drawing a causal
graph, one can see that the frailty opens non-causal pathways from the exposure to
the outcome. Such a situation is depicted below, where U is a frailty variable:
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E ��

��

Nt

��

U��

��
Nt+Δ

Conditioning on survival Nt at time t opens the non-causal pathway E → Nt ← U ←
Nt+Δ between the exposure E and future survival Nt+Δ at time t+Δ, i.e. a collider in
conditioned upon in the graph. Hazards will then be subject to this “collider bias,”
and they can therefore in general not be understood as causal effect measures in the
presence of a frailty U . Since frailty is present in many follow-up studies, also when
the treatment is randomized, a collider bias may often be an issue. Several researchers
have discussed this problem in the causal inference literature [5, 6, 8].

The problem induced by conditioning on survival is distinct from concerns regarding
confounding, measured or otherwise. Instead, it stems from an intrinsic feature of the
hazard function itself. Using the causal graphs, one can formally and clearly describe
why frailty complicates the interpretation of hazards, and get clues on how to avoid
the collider bias.

5.2. Targeting other survival parameters. A possible workaround for the collider
bias mentioned in Section 5.1 is to study other survival analysis parameters. Many of
the widely used measures of association in survival and event history analysis, such
as the survival function, the cumulative incidence function, and the restricted mean
survival function, do not condition on survival and are therefore easier to interpret
than hazards. These parameters may also be more clinically relevant than hazards
in some situations (see e.g. Paper 2; the colon cancer example in Section 6 and the
discussion in Section 8).

However, hazard functions are often used to obtain other parameters. The sur-
vival function, for instance, is the exponential of minus the cumulative hazard. One
can fit a Cox model for the hazard, possibly conditional on covariates, and use the
estimated cumulative hazard for calculating survival curves. However, this type of
survival curve modeling is restrictive, as the covariate-adjusted survival curves are
not allowed to cross, which is unrealistic in many situations. Some have advocated
models for the restricted mean survival time [14], and the attributable fraction func-
tion [15]. In particular, modeling procedures based on Cox regression is proposed.
Such modeling is convenient for researchers whose exposure to regression in survival
analysis is limited to the Cox model. Still, when targeting parameters different from
the hazard (ratio), the restrictions imposed by the PH assumption seem undesirable.

We will use hazard modeling as a stepping stone for obtaining other survival pa-
rameters. A suitable candidate for this is Aalen’s nonparametric additive hazard
model [16]. As the name suggests, the hazard may vary in response to (time-varying)
covariates Z without any restriction other than that the covariates act additively, i.e.
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that the hazard is on the form

α0
t +

p∑
j=1

Zj
t−α

j
t = Zᵀ

t−αt,(1)

for Z = (1, Z1, · · · , Zp)ᵀ, and hazard coefficients α = (α0, α1, · · · , αp)ᵀ. The additiv-
ity assumption is less restrictive than the PH assumption, and the additive model is
more able to capture detailed information in the data. Using martingale techniques,
Aalen developed a consistent least squares estimator for the cumulative coefficients∫ t

0
αj
sds, j = 0, · · · , p [17], enabling estimation of cumulative hazards.

One obvious drawback with the additive hazard model is that the cumulative hazard
estimates can have negative increments, indicating “negative risk” in a time interval.
If the model fits the data well, this is not likely to be a problem; negative increments
may just be an indication of model misspecification, at least when the sample size is
large. Some researchers have deemed the cumulative coefficients hard to interpret [3].
I agree that these coefficients can be hard to understand profoundly, but this is may
not be an issue if additive hazard regression is used as an intermediary step for
obtaining other parameters.

Conditioning on survival does not seem to be problematic if the exposure and
frailty acts additively on the hazard; if the exposure and frailty are marginally in-
dependent, they will remain independent when conditioning on survival [6]. Still,
the additive model coefficient that corresponds to the exposure can often not be in-
terpreted causally; see e.g. [18]. Nevertheless, this coefficient is only one of many
quantities that can be studied, and other parameters may provide more clinically
relevant information for a given situation.

Some authors have considered modeling on other scales directly, without using the
hazard. In such cases, one needs additional techniques for including censored subjects.
One example is the weighted approach discussed by Sun and Zhang, who focused on
the mean residual life function [19]. They used inverse probability weighting for model
estimation.
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6. Causal inference

A traditional view in statistics is that statistical methods can deal with associations
and not causal relationships. However, this attitude contradicts the actual practice
of statistics in many settings, and the way statistics is perceived from the outside. In
various fields, such as the social and health sciences, statistical analyses are performed
not only to predict but also to obtain mechanistic understandings, i.e. to describe
causal relationships. Moreover, statistical analyses are increasingly used to guide
decision making. Decisions based on spurious associations could lead to choosing
treatments without the desired effect, or imposing regulations that make no difference.

The causal claim “the treatment has an effect” can be assessed by performing
randomized experiments such as RCTs, where treatment assignment is given at ran-
dom in the population under study. However, RCTs are often expensive, unethical,
or impractical to conduct. Meanwhile, there is a considerable amount of existing
non-randomized, or observational, data available. Health registries, for instance, are
becoming increasingly more extensive. There is therefore a clear interest in developing
methods for making causal inferences when observational data is at hand.

Epidemiologists and clinicians have accumulated knowledge about different forms of
confounding and selection bias that can arise in observational studies, and developed
methods for identifying and estimating treatment effects. This knowledge has been
progressively clarified and formalized by various key contributors (see e.g. Pearl [20],
Robins et al. [9], or Rubin [21]), and modeling assumptions and issues of identifiability
can now be stated and determined with mathematical rigor. A notable reference that
provides a rigorous framework for causal modeling is that of Pearl [20]. There, subject
matter knowledge on the observational study of interest is encoded in directed acyclic
graphs (DAGs).

6.1. DAGs. The graphs of Pearl consist of a collection of random variables with di-
rectional edges, that together form Bayesian networks. The edges indicate dependen-
cies between the variables; each variable Xi in the graph is conditionally independent
of its non-descendants (the variables that cannot be found by following directed edges
from Xi) given its parents pa(Xi) (the variables that have an edge pointing into Xi).
The joint density of the variables then allows for a recursive factorization on the form

P (x1, · · · , xk) =
k∏

j=1

P (xj|pa(xj)),(2)

a product of the distribution of each node conditional on its parents, sometimes called
the local characteristics. If a model follows a Bayesian network, it is thus possible to
characterize the full model by the local characteristics.

6.1.1. Causal validity and identifying causal effects. A Bayesian network is causally
valid with respect to a hypothetical intervention if the density of each node on which
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we do not intervene, conditional in its parents, retain its functional form in the hypo-
thetical intervened scenario [20, Definition 1.3.1]. In other words, if the intervention
gave rise to a joint distribution P̃ , then

P̃ (xj|pa(xj)) = P (xj|pa(xj))(3)

for the non-intervened xj. Under causal validity one can use the do-calculus [20] to
determine if causal effects are identifiable, so that a causal effect estimate can be
obtained from observational data [22,23].

Causal diagrams have allowed for visualization of causal dependencies, deriving
tests for these dependencies, identifying causal effects, and obtaining estimating for-
mulas for the effects [20]. More recently, causal diagrams have been used for causal
assessment of parameters directly, in the case of the hazard function [6].

6.2. Causal longitudinal models and time-dependent confounding. There is
often a need to account for the longitudinal aspect. Individuals may be censored
due to loss to follow-up, and there is frequently an involved relationship between the
exposure, the outcome, and the covariates: a doctor prescribes medication depending
on a patients health status. The prescribed medication will typically influence later
covariate levels, medical prescriptions, and treatment of the patient. Time-dependent
confounding is said to be present if there are time-varying covariates that are simul-
taneously confounding, while also mediating the effect of the exposure regime on the
outcome [9]. Such confounding is often present in longitudinal observational data.
Standard regression techniques cannot provide causally interpretable effect estimates
under time-dependent confounding, even if all confounders are measured [9]. Thus,
other methods for assessing causal effects are needed.

6.3. Marginal structural models in discrete time. The marginal structural
models were introduced by Robins et al. [9], originally motivated by the problem
of time-dependent confounding. There are other methods for handling such con-
founding, such as the parametric G-formula [24] or structural nested models [25], but
the work in this thesis focuses on the MSMs.

The MSMs can be used to account for time-dependent confounding, but their
usage is not limited to such scenarios; they can also be used for analyzing longitudinal
studies where time-dependent confounding is negligible (in fact, this approach is taken
in Paper 4), or in the simple case of adjusting for confounding given a point exposure.

The MSM concept involves modeling distributional quantities, often the mean, as a
function of a counterfactual outcome variable. Consider an observational longitudinal
study with variables Lk, Ak, Uk - observed confounders, exposure, and unobserved
variables - ordered discretely by the times {tk}Kk=0 with 0 = t0 < t1 < · · · < tK ,
and an outcome Y of interest. We let ·̄ denote the history of a variable, so that
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Āk = (A0, · · · , Ak). An MSM for the cumulative treatment effect could be

E[Y ā] = β0 + β1

K∑
k=0

ak,(4)

where Y ā is the counterfactual outcome under exposure history ā, i.e. the outcome
variable if, possibly contrary to the fact, treatment regime ā = (a1, · · · , aK) were
imposed. As the outcome variable is counterfactual, it is defined for all exposure
histories simultaneously, and usually not observed on the individual level in real life.
From the observational data, one can fit the similar looking associational model

E[Y |Ā = ā] = γ0 + γ1

K∑
k=0

ak,(5)

using standard statistical techniques. As noted in Section 6.2, the coefficients of
model (5) cannot be interpreted causally if (time-varying) confounding is present.

Robins et al. showed how to obtain causal estimates if all confounders are measured
[9]. The strategy involves applying the now famous IPTWs. Use of these weights can
heuristically be thought of as creating a pseudo-population in which the Lk’s no longer
affect future values of the treatment. The stabilized IPTW for individual i at time t
takes the form

wi
t =

∏
k:tk≤t

P (Ak = aik|Āk−1 = āik−1)

P (Ak = aik|Āk−1 = āik−1, L̄k−1 = l̄ik−1)
.(6)

It is common to model the numerator and denominator of (6) using (pooled) logistic
regression, and to estimate the weight by inserting the predicted probabilities [9,
26]. Fitting the associational model (5) to the weighted (pseudo-)population gives
regression coefficients that consistently estimate the MSM coefficients (β0, β1) in (4);
i.e. the estimated coefficients can be given causal interpretations [9].

6.3.1. Assumptions. For this procedure to work, some key assumptions must be satis-
fied. We have already mentioned the assumption of no unmeasured confounding given
the Lk’s. Furthermore, we generally need that both the outcome model (5) and the
models used for obtaining the probabilities in (6) are correctly specified. Lastly, we
rely on the positivity assumption, which is that 0 < P (Ak = ak|Āk−1 = āk−1, L̄k−1 =
l̄k−1) for all ak, āk−1, l̄k−1, and for all k.

6.3.2. Marginal structural models and survival analysis. Pearls calculus of interven-
tions for Bayesian networks has been successful for causal reasoning of random vari-
ables. The longitudinal aspect that deals with continuous-time processes have re-
ceived somewhat less attention. The marginal structural models as we have briefly
outlined here were originally developed in discrete time. However, if events occur in
continuous time, as is the case in survival and event history analysis, a discrete-time
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approach may not be entirely satisfactory. Sometimes the discrete models give an
inadequate approximation of the underlying dynamics. In particular, when handling
event histories and continuous-time mechanisms, there could be feedback between
processes that is not adequately described by a DAG. From a continuous-time pro-
cess point of view, the Bayesian networks often give a too coarse-grained description
of the underlying system [27]. If the treatment initiation process is continuous in time,
but a discrete-time weighting procedure like (6) is utilized, the resulting weights and
weighted estimators will be biased (we show this using simulations in Paper 3; see
Thesis Figure 6). Since survival analysis is defined in continuous time, it is also con-
ceptually natural to investigate continuous-time weighting strategies - “discretizing”
time by binning observations into discrete intervals for weight calculation seems to
be contrived. For an MSM approach to survival analysis, a continuous rather than a
discrete time weighting procedure would be appealing.

6.4. Marginal structural models in continuous time. In [10], Røysland intro-
duced continuous-time MSMs using martingale theory and continuous-time counting
processes. The idea is to formulate the desirable randomized trials as “randomized”
probability measures. Under absolute continuity, we can relate the randomized mea-
sure to the observational measure, i.e. the model we have observations from, through
Radon-Nikodym derivatives and Girsanov’s theorem. We can then obtain likelihood
ratios between the “observational” and “randomized” measures using modeling pro-
cedures that are surprisingly straight forward.

6.4.1. Density factorization. We consider a collection of baseline variables and count-
ing processes whose joint distribution is given by the observational measure P . The
graph induced by removing the counting processes, so that only baseline variables
and edges between them remain, forms a Bayesian Network. From Section 6.1 we
thus know that the joint density at baseline has a recursive factorization, as a prod-
uct of the local characteristics of the baseline variables, i.e. given by (2). Moreover,
from [28, A.1 a)] we know that the joint density restricted to all the events that could
occur before t will uniquely be determined by density at baseline, and the intensities
and jump times of the counting processes up to time t. This factorization allows us
to find an expression of the weights.

6.4.2. Hypothetical interventions in continuous time. Some of the baseline variables
and counting processes are subject to a hypothetical intervention. Such an interven-
tion would give rise to a perturbed distribution P̃ , e.g. a distribution corresponding to
a randomized trial, that we would like to emulate. The assumption that enables us to
model P̃ is, heuristically, that the short-term mechanisms we do not intervene upon
are left invariant from P to P̃ , while the ones we intervene upon changes according
to the intervention.
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6.4.3. Causal validity. Similar to the definition of Pearl our model is causally valid if
the local characteristics of the nodes we do not intervene upon are the same under P
and P̃ . From Section 6.1.1 we recall that the local characteristic of a baseline variable
is the distribution of that variable conditional on its parents. The local characteristic
of a counting process N is its intensity function λ, which may heuristically be defined
by

λtdt = P (N(t+ dt)−N(t) = 1|”past”),
where “past” refers to the events that are observed up to time t [2].

Thus, we say that a baseline intervention is causally valid if, for each baseline
variable xj that is not intervened upon, the conditional distribution of xj given its

parents pa(xj) coincide under P and P̃ , as in (3). Moreover, we require that this
baseline intervention does not affect the counting processes, in the sense that the
functional form of each counting process intensity is invariant with respect to the
intervention, i.e. that the local characteristic of each counting process coincide under
P and P̃ .

If an intervention instead is aimed at a counting process, it will by causally valid
if the local characteristics of the remaining variables and processes coincide under P
and P̃ . This means that

• The functional forms of the intensities of the counting processes we do not
intervene upon are invariant, i.e. are the same under P and P̃ .

• The conditional distribution of each baseline variable, given its parent nodes,
is the same under P and P̃ .

6.4.4. Identifying causal parameters. The likelihood ratio between P and P̃ has a
simple form; if the intervention is targeted at subject i’s counting processN i, changing
the intensity λi to λ̃i, the contribution to subject i’s likelihood ratio at time t, Ri

t, is

Ri
t = 1 +

∫ t

0

Ri
s−dK

i
s(7)

Ki
t =

∫ t

0

(θis− − 1)dN i
s +

∫ t

0

λi
sds−

∫ t

0

λ̃i
sds,

where θi = λ̃i/λi [10]. If the intervention is targeted at a baseline variable Xi, the
contribution to the likelihood ratio is the standard propensity weight Ri

0;

Ri
0 =

dP̃ (xi|pa(xi))

dP (xi|pa(xi))
.(8)

By simultaneously intervening on several components, one obtains individual like-
lihood ratios that are products of propensity weights and terms like (7). For these
expressions to be proper likelihood ratios, they should at least be uniformly integrable
martingales.
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The likelihood ratio (7) is used for estimating the continuous MSMs analogously
to the way IPTW (6) is used for estimating Robins’ discrete MSMs. Hence, we
sometimes refer to (7) as the continuous or continuous-time weights, and IPTW as
the discrete or discrete-time weights.

6.4.5. Assumptions. Three key assumptions are required for the continuous-time MSM
approach to work. The first two are related to hypothetical intervention, which are,

• The intervention is causally valid.
• The intervened measure P̃ is absolutely continuous to the observational mea-
sure P , i.e. if Q is an event such that P (Q) = 0, then P̃ (Q) = 0 also.

We also need the following assumption:

• The likelihood ratio is identifiable.

Graphical identifiability criteria for the true likelihood ratio, analogous to the back-
door criterion [20], is discussed in detail in a forthcoming paper [29].

For the outcome estimand to have the desired interpretation, the marginal struc-
tural model must also be correctly specified. If these criteria are met, one can perform
causal survival analysis by re-weighting standard estimators.
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7. Description of the papers

7.1. Paper 1. We build on a well-known relationship between the cumulative hazard
function and the survival function to derive a general estimating equation for a range
of parameters in survival and event history analysis. Examples of such parameters
include the survival function, cumulative incidence functions, the restricted mean sur-
vival function, (cumulative) prevalence functions, as well as several other parameters
that we present in the article and the Supplementary material. Other examples can
be found in Paper 2.

7.1.1. ODE parameters. The approach is motivated by the fact that these parameters
solve systems of ordinary differential equations. Our article focuses on the formulation

Xt = X0 +

∫ t

0

F (Xs)dAs,(9)

where X is a vector containing the parameter(s) of interest, X0 is a vector of initial
values, and F = (F1, F2, · · · ) is a matrix-valued function. In our examples, the
integrator A is a vector of cumulative hazard coefficients. We also wanted to include
parameters that are Lebesgue integrals, so we included the case when dAi

t = dt for
some i.

7.1.2. Plugin estimation. We can estimate the parameter X by utilizing the ODE
structure: by merely replacing A by an estimate Â, and X0 by a consistent estimator
X̂0, we obtain a stochastic differential equation (SDE) plugin estimator

X̂t = X̂0 +

∫ t

0

F (X̂s−)dÂs.(10)

7.1.3. The P-UT property. We will study integrators that are predictably uniformly
tight (P-UT). A general definition of P-UT can be found in [11], but we do not need
the full generality of this definition. Instead we provide a sufficient condition that is

suitable for our purposes in Lemma 1: if {Z(n)
t }n is a sequence of semimartingales

on [0, T ], {ρ(n)}n are predictable processes such that M
(n)
t := Z

(n)
t −

∫ t

0
ρ
(n)
s ds define

square integrable local martingales, and

lim
J→∞

sup
n

P
(
sup
s≤T

|ρ(n)s |1 ≥ J
)
= 0

lim
J→∞

sup
n

P
(
Tr〈M (n)〉T ≥ J

)
= 0,

then {Z(n)
t }n is P-UT. Here, Tr is the trace function, and | · |p is the p norm.
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7.1.4. Estimating the cumulative hazard. We focus on estimators Â that are counting
process integrals. Furthermore, we require these estimators to be consistent and
P-UT.

The additive hazard estimator is such an estimator; in Proposition 1 we show that
it is P-UT under a momentum condition on the covariates. When A is a cumula-
tive hazard, we thus propose inserting cumulative hazard estimates coming from the
additive model. These estimates are piecewise constant, and we denote the ordered
jump times by {τk}k.

If dAi
t = dt for some i, we may refine the “grid” of event times by adding more τk’s

to improve precision. The proposed estimator of Ai
t is in that case Âi

t = maxk{τk :

τk ≤ t}. A short argument shows that Âi is consistent and P-UT.

7.1.5. Asymptotic results. In Theorem 1, we show that the SDE plugin estimator
(10) is consistent, assuming the estimator Â is consistent and P-UT. The results
build upon stability theory for SDEs and also require Lipschitz and linear growth
bound conditions to be satisfied. An essential reference for this result is [11].

We identify Z, the limiting process (with respect to the Skorohod metric) of the

root n residuals Zn =
√
n(X̂ −X). It solves the SDE

Zt = Z0 +
k∑

j=1

∫ t

0

∇Fj(Xs−)Zs−dA
j
s +

∫ t

0

F (Xs−)dWs,

where W is a mean zero Gaussian martingale with independent increments. We also
find an expression for V , the pointwise covariance of Z:

Vt = V0 +
k∑

j=1

∫ t

0

(
Vs∇Fj(Xs)

ᵀ + Fj(Xs)Vs

)
dAj

s +

∫ t

0

F (Xs)d[W ]sF (Xs)
ᵀ.(11)

This gives a way to also estimate the covariance; by plugging in the cumulative hazard
and parameter estimates we obtain the estimator

V̂t = V̂0 +
k∑

j=1

∫ t

0

(
V̂s−∇Fj(X̂s−)

ᵀ +∇Fj(X̂s−)V̂s−
)
dÂj

s

+ n

∫ t

0

F (X̂s−)d[B]sF (X̂s−)
ᵀ,

(12)

where [B]t is a matrix defined by(
[B]t

)
i,j

=

⎧⎨⎩0, if dAi
t = dt or dAj

t = dt,∑
s≤t

ΔÂi
sΔÂj

s, otherwise.

We can estimate the pointwise covariance of the plugin estimator X̂ by dividing (12)
by n.
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We show that the plugin covariance estimator V̂ is consistent in Theorem 2. The
result rests on the assumption that the root n residuals of the cumulative hazard
estimator, W n =

√
n(Â − A), is P-UT and converges weakly with respect to the

Skorohod metric to a mean zero Gaussian martingale with independent increments
[30]. We also need that the quadratic variation of W n is P-UT. By Proposition 1,

both these properties hold when Â are additive hazard estimates under two conditions
on the covariates: if the hazard for subject i is given by Qi,ᵀ

− α, Q is the matrix where
row i is Qi,ᵀ, and Y is the diagonal matrix with i’th diagonal element equal to Y i

(the at-risk indicator for subject i), then these properties are satisfied for the additive
hazard estimator of A =

∫ ·
0
αsds if

(1) E[supt≤T |Qi
t|33] < ∞ for each i,

(2)

lim
J→∞

inf
n
P

(
sup
t≤T

Tr

((Qᵀ
t−YtQt−
n

)−1)
≥ J

)
= 0.

7.1.6. Implementation. The parameter estimator (10) can be represented as a differ-
ence equation, so that the value at time t for τk ≤ t < τk+1 depends on the increment
ΔÂτk and X̂τk−1

;

X̂t = X̂τk−1
+ F (X̂τk−1

)ΔÂτk .(13)

Similarly, the plugin variance estimator (12) can be written as a difference equation
that reads

V̂t = V̂τk−1
+

k∑
j=1

(
V̂τk−1

∇Fj(X̂τk−1
)ᵀ +∇Fj(X̂τk−1

)V̂τk−1

)
ΔÂj

τk

+ nF (X̂τk−1
)Δ[B]τkF (X̂τk−1

)ᵀ.

(14)

Thus, the parameter and covariance estimators at each event time τk depends on their
values at the previous event time τk−1, and the increments ΔÂτk . These equations can

therefore be solved recursively on a computer: if we have X̂0, Â, F , and the ∇Fj’s,
we can perform the estimation using e.g. a for loop.

7.1.7. Performance. We check the performance of the estimators using simulations,
by plotting the convergence order and coverage for several parameters. Convergence
order is assessed using the L2 criterion

L(n) =
1

K

K∑
j=1

∫ T

0

|Xs − X̂n,j
s |2ds,

where X̂n,j is the realization of the plugin estimator for the j’th simulation with
sample size n. Convergence order for the plugin estimators is indicated in Thesis
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Figure 1. We show coverage for different sample sizes in Thesis Figure 2. The
rejection rate appears to be well calibrated to the 95% confidence level.
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Thesis Figure 1. Convergence of selected plugin estimators; param-
eter to the left and variances to the right. The dashed lines indicate
convergence order 1 in the left panel and 2.3 in the right panel. LED
and LER are abbreviations for life expectancy difference and life ex-
pectancy ratio, respectively; see the Supplementary material of Paper
1 for details.
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Thesis Figure 2. Estimated mean coverage for selected parameters
simulated with constant (upper panel) and linearly crossing (lower
panel) hazards. The crossing hazards were chosen such that they
crossed in the middle of the x-axes. The dotted line indicates the
confidence level, and n indicates the sample size. LED and LER are
abbreviations for life expectancy difference and life expectancy ratio,
respectively; see the Supplementary material of Paper 1 for details.
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7.2. Paper 2. There has recently been raised some concerns regarding the use of
hazards and hazard ratios in survival analysis, as discussed in Section 5.1. Since
hazards can be difficult to interpret, it is natural to re-evaluate the use of hypothesis
tests in survival and event history analysis that compare hazards. The null hypothesis
HR

0 for the rank test that compares two groups take the form

HR
0 : α1

t = α2
t , for t ∈ [0, T ],

where αi is a hazard in group i and [0, T ] is the study period. This null hypothesis is
easy to interpret in specific situations, such as when survival functions are of primary
interest. In other cases, it may be difficult to have a deep understanding of such null
hypotheses, e.g. if competing risks are present.

We argue that null hypotheses should be stated on parameters that have clear
interpretations, and use the results from Paper 1 to obtain tests for a range of
survival analysis parameters pointwise in time.

7.2.1. Rank test malpractice. We point out that the rank tests are sometimes incor-
rectly used, e.g. for testing null hypotheses that are different from the actual rank
hypothesis HR

0 . One such example is when equality between two survival curves at
a specific time point of interest, e.g. survival after five years of follow-up. Using the
rank tests on such hypotheses will often lead to misleading p-values. Moreover, the
rank tests are sometimes used when the research question is not adequately specified,
e.g. when the researchers only vaguely indicate that they are interested in testing a
difference between two groups.

7.2.2. Alternative null hypotheses in survival analysis. We focus on groupwise com-
parison of survival and event history analysis parameters at a pre-specified time point
t0, i.e. we study the null hypothesis

H0 : X
1
t0
= X2

t0
,

where X i is the true parameter in group i. If X solves an ODE like (9), we can use
the plugin estimators developed in Paper 1 to obtain the test statistic

(X̂1
t0
− X̂2

t0
)V̂ −1t0

(X̂1
t0
− X̂2

t0
)ᵀ,(15)

where V̂t0 is the plugin variance estimator of X̂1
t0
− X̂2

t0
. Asymptotically, this follows

a χ2 distribution, which can be seen from an application of the continuous mapping
theorem. We write this test statistic out for several parameters in the paper.

7.2.3. Performance. We estimate power functions for several parameters, and com-
pare with the power functions of other nonparametric tests tailor-made for each pa-
rameter, as found in the literature. This is done for three hazard scenarios; constant,
linearly crossing, and equal initially before deviating. We estimate power by opti-
mizing the hazards such that X1

t0
− X2

t0
= κ for several values of κ, and do this for

each considered parameter and hazard scenario. The estimated power functions are
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plotted in Thesis Figure 3, and the figure shows that our tests and the standard non-
parametric tests have similar power. More extensive simulations can be found in the
Supplementary material.

7.2.4. Comparisons with the rank tests. We compare the power of our tests with the
rank tests in Thesis Table 1 when our null hypothesis is false, with X1

t0
− X2

t0
=

−0.05 in each case. The power of the rank tests is sensitive to the shape of the
underlying hazards, while the power of our tests varies less across the scenarios. This
is not surprising, as the rank test hypothesis is different from our hypothesis; our
null hypothesis is slightly violated in each case, but the rank null hypothesis may
be arbitrary violated. We see less discrepancy between our tests and the rank tests
when the hazards are proportional (or constant). The table indicates that our tests
and the rank tests are fundamentally different, particularly when the hazards are not
proportional.

In Thesis Figure 4 we compare the rejection rate of our tests with the rank tests
when the hazards in the two groups are linearly crossing. The hazards are optimized
such that our null hypothesis is true for each parameter under the restriction that the
hazards are crossing. The crossing hazards are visualized in the uppermost row of
panels. We estimate and plot the rejection rate as a function of the ratio of the slopes
in the lower three rows of panels, so that the hazards are very different to the left of
each panel and become identical to the right in each panel. Our tests provide rejection
rates close to the 5% significance level for all combinations of crossing hazards and
sample sizes, as desired. The rank test often falsely rejects the null hypothesis when
the slopes are different but approaches the rejection rate of our test when the slopes
approach each other, i.e. when the curves approach proportionality. Again, the rank
tests perform poorly, as they are based on a null hypothesis that is different from the
one we consider.

7.2.5. Colon cancer example. We demonstrate how to use our testing procedure on
real data. The analysis can be found as a worked example in the Supplementary
material.

We compare two adjuvant chemotherapy regimes (Lev and Lev+5FU) for patients
with stage III colon cancer, using the R data set colon that is freely available for
anyone. The data set included recordings of cancer recurrence and death for each
subject. We plot survival curves and cumulative incidence curves of cancer recurrence
in Figure 5.

The comparison is made at one and five years of follow-up using the test statistic
(15) on several parameters. The results are shown in Thesis Table 2. At one year of
follow-up, we are not able to find significant differences in survival or restricted mean
survival between the two treatments. However, the cumulative incidence of recurrence
and the number of subjects alive with recurrent disease are lower in the Lev+5FU
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Thesis Figure 3. Estimated power functions for constant (black),
crossing (green), and deviating (blue) hazards, based on 500 subjects
with 10% random censoring. The dashed lines show test statistics de-
rived from existing methods in the literature that are tailor-made for
the particular scenario. The gray lines show the confidence level.
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group. Moreover, the mean time spent alive and without recurrence is longer in the
Lev+5FU group at one year of follow-up.

Survival and restricted mean survival are significantly better in the Lev+5FU group
at five years of follow-up. Furthermore, the cumulative incidence of cancer recurrence,
the prevalence of recurrence, and the restricted mean recurrence for survival are better
in the Lev+5FU group. Restricted mean recurrence-free survival is also significantly
longer after five years.
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Thesis Table 1. Power comparisons of our tests and the log-rank test
(our/log-rank), when testing equality between two groups of 1500 in-
dividuals each. In the cumulative incidence row, we also added power
based on the Gray test [31] (our/log-rank/Gray). The cause-specific
hazards for the competing event are held constant across the scenarios,
while the cause-specific hazards for the event of interest are respec-
tively constant, linearly crossing, and equal before deviating under the
restriction that X1

t0
−X2

t0
= −0.05.

Parameter \ Hazard Constant Crossing Deviating
Survival 0.81/0.88 0.79/0.96 0.83/0.70

Restricted mean survival 0.77/0.87 0.78/0.21 0.8/1
Cumulative incidence 0.85/0.94/0.88 0.86/0.80/0.70 0.86/0.83/0.76
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Thesis Figure 4. In the upper row, we display hazard functions in
scenarios where the hazard in group 1 is fixed (black line), and the
hazards in group 2 vary (grey lines). The hazards are optimized such
that our null hypothesis is true, i.e. X1

t0
= X2

t0
at t0 = 1.5 for each

combination of black/gray hazards. In the lower rows we show the
estimated rejection rate as a function of the ratio of the hazard slopes
(slope of gray/slope of black). This is done for sample sizes sample
sizes 500 (row 2), 1000 (row 3), and 5000 (row 4). The green curve
shows the rejection rate of the log-rank test, and the black curve shows
the rejection rate of our tests. If the sample size is large, the rank
tests can falsely reject our null hypothesis even when the hazards are
crossing. The cumulative incidence panels: we only show the cause-
specific hazards for the event of interest (which we compare using the
log-rank test). The cause-specific hazard for the competing event is
equal to 0.4 in both groups.
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Thesis Table 2. Comparison of the colon cancer treatments Lev and
Lev+5FU at one and five years of follow-up. 95% confidence intervals
are shown in parenthesis, and the p-value of the test statistic (15) is
provided in the rightmost column. The restricted mean recurrence-
free survival (RMRFS) is

∫ ·
0
SD∧R
s ds, i.e. derived from the “survival”

function SD∧R for the composite endpoint of cancer recurrence and
death.

At one year of follow-up
Lev Lev+5FU p-value

Survival 0.91 (0.87,0.94) 0.92 (0.89,0.95) 0.62
Restricted mean survival 0.96 (0.95,0.98) 0.97 (0.95,0.98) 0.86
Cumulative incidence 0.27 (0.22,0.32) 0.15 (0.11,0.19) 0.00

Prevalence 0.19 (0.14,0.23) 0.09 (0.05,0.12) 0.00
RMRFS 0.85 (0.82,0.88) 0.90 (0.87,0.92) 0.01

At five years of follow-up
Lev Lev+5FU p-value

Survival 0.54 (0.48,0.59) 0.63 (0.58,0.69) 0.01
Restricted mean survival 3.62 (3.44,3.81) 3.97 (3.79,4.15) 0.01
Cumulative incidence 0.47 (0.42,0.51) 0.34 (0.29,0.39) 0.00

Prevalence 0.07 (0.05,0.10) 0.03 (0.02,0.05) 0.02
RMRFS 2.29 (2.07,2.51) 2.95 (2.73,3.18) 0.00
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Thesis Figure 5. Survival curves (left) and the cumulative incidence
of recurrence (right) along with 95% pointwise confidence intervals
(shaded) from the colon cancer trial.
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7.3. Paper 3. We introduce an estimator for the continuous-time weights (7) based
on the additive hazard estimator, and show that it is consistent. Furthermore, we
show that the additive hazard estimator weighted with the estimated weights is con-
sistent, i.e. we take into account that the weights are estimated. We also provide an
argument showing that our weighted additive hazard estimator is P-UT. The results
from Paper 1 can then be used to target the ODE parameters that we would have
seen if we could carry out the hypothetical intervention of interest. We include an
example section describing how the ahw software works and provide a continuous-time
MSM analysis of a simulated data set.

7.3.1. A continuous-time weight estimator. We utilize the SDE formulation (7). As-
suming the time to treatment hazards are additive, we have under the multiplicative
intensity model [2], that

λi
t = Y i

t Z
iᵀ
t−ht and λ̃i

t = Y i
t Z̃

iᵀ
t−h̃t,

where Y i
t = 1 if subject i is at risk for treatment at time t, and 0 otherwise, Zi and

Z̃i are vectors of covariates for subject i and h and h̃ are vectors of additive hazard
coefficients as in (1). By inserting these intensities we get that the system (7) reads

Ri
t = 1 +

∫ t

0

Ri
s−dK

i
s

Ki
t =

∫ t

0

(
θis− − 1

)
dN i

s +

∫ t

0

Y i
sZ

iᵀ
s−dHs −

∫ t

0

Y i
s Z̃

iᵀ
s−dH̃s,

where Ht =
∫ t

0
hsds and H̃t =

∫ t

0
h̃sds. Our estimation strategy is inspired by Paper

1; we let Ĥ and ˆ̃H be additive hazard estimates of H and H̃, and insert them into
the above equation to obtain the SDE estimator

R̂i
t = 1 +

∫ t

0

R̂i
s−dK̂

i
s(16)

K̂i
t =

∫ t

0

(θ̂is− − 1)dN i
s +

∫ t

0

Y i
sZ

iᵀ
s−dĤs −

∫ t

0

Y i
s Z̃

iᵀ
s−d

ˆ̃Hs,

where θ̂i is an estimator of θi, given by

θ̂it =

⎧⎪⎨⎪⎩
θi0, 0 ≤ t < 1

κ∫ t

t− 1
κ
Y i
s Z̃

iᵀ
s−d

ˆ̃Hs

∫ t

t− 1
κ
Y i
sZ

iᵀ
s−dĤs

, 1
κ
≤ t ≤ T ,

(17)

for the bandwidth parameter κ.
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7.3.2. Weighted additive hazard regression. We consider an additive hazard model for
the outcome, where subject i has a vector of covariates Qi, and hazard Qiᵀ

−β. Let
N (n) = (N1,D, · · · , Nn,D)ᵀ be the vector of counting processes whereN i,D counts when
the outcome occurs for subject i, and Q(n) the matrix where row i is Qiᵀ. Finally, let

Y
(n),D
s denote the n×n-dimensional diagonal matrix where the i’th diagonal element

is Y i,D
s · R̂i

s−; subject i’s at risk-indicator for the outcome at time s multiplied by his
weight estimate just before s. The weighted additive hazard regression is given by

(18) B̂t =

∫ t

0

(Q
(n)ᵀ
s− Y (n),D

s Q
(n)
s− )

−1Q
(n)ᵀ
s− Y (n),D

s dN (n)
s ,

which is an estimator of Bt =
∫ t

0
βsds.

7.3.3. Consistency. In Theorem 2, we show that our weight estimator (16) is consis-
tent under standard assumptions for consistency of the additive hazard estimator [30].
We also assume the θi’s are uniformly bounded, and right-continuous at t = 0, and
that the bandwidth κ = κn grows as a function of n such that limn−→∞ κn = ∞ and
supn κn/

√
n < ∞ are satisfied.

We show that (18) is consistent and P-UT in Theorem 1. The proof relies on
the assumption that the true weights are uniformly bounded, and that the weight
estimator converges in probability to the true weights at each time t. The latter is
ensured by Theorem 2 for our estimator (16).

By combining Theorem 1 and 2, we conclude that (18) is consistent when our
estimator (16) is used for obtaining the weights. In this way, we propose a two-
step estimation procedure for obtaining causal cumulative hazards; we model the
continuous-time weights using additive hazard regression and use the estimates to
re-weight the additive hazard estimator for the outcome.

7.3.4. Targeting MSM parameters. Since the estimator (18) is consistent and P-UT,
we may utilize plugin estimation to estimate causal parameters that solve ODEs on
the form (9). These plugin estimators are consistent by Theorem 1 in Paper 1.

7.3.5. Example. We describe how our methods can be utilized for marginal structural
modeling in practice through an example in Section 4 of the paper. We consider a
data generating mechanism with time-dependent confounding, and we estimate the
outcome hazard using the continuous-time weight estimator (18). We go into some
detail on how the weight calculation software in the ahw package works, and how
to perform weighted additive hazard regression in R. In Section 4.4 we specify a
marginal structural relative survival model as a solution to an ODE, and plot the
weighted cumulative hazard estimates and estimated MSM coefficients.
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7.3.6. Performance. Usually, MSMs are estimated by use of the discrete weights (6).
If treatment occurs in continuous time, the discrete weights may be a biased ap-
proximation of the true likelihood ratio (7). We compare our weight estimator (16)
with the discrete weights obtained from a pooled logistic regression. We find that a
discrete-time approach gives bias when the true exposure process is time-continuous,
but that the bias diminishes as we refine the time discretization. The bias is plotted
in the upper panel of Thesis Figure 6, and is based on the data example considered
in Section 7.3.5. The curves are obtained by repeated simulations of the data, weight
calculation for each simulation, before finally averaging over the simulations.

We investigate the convergence of our weight estimator (16) for four different band-
width strategies κ, using simulations. The bandwidths are identical for the smallest
sample n0, i.e. κ1

n0
= κ2

n0
= κ3

n0
= κ4

n0
. Otherwise they satisfy κ1

n ∝ n1/2, κ2
n ∝

n1/3, κ3
n ∝ n1/5, and κ4

n ∝ n1/10. The bandwith choice is a bias-variance tradeoff, as
can be seen in the two lower panels of Thesis Figure 6.
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Thesis Figure 6. Upper panel: the true weights have expected value
1. Included are our additive hazard weights, as well as IPTW with
4, 8, and 16 time intervals. Our weight estimator (16) is less biased
than IPTW in this scenario. Lower panels: bias and variance of our
weight estimator as a function of the sample size n, for four bandwidth
refinement strategies.
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7.4. Paper 4. There is a debate about the relative effectiveness of the prostate cancer
treatments regimens radical prostatectomy (RP) and radiation therapy (Rad) among
nonmetastatic cancer patients [32, 33]. An RCT on patients with localized prostate
cancer suggested that radiation therapy and radical prostatectomy give similar rates
of disease progression after ten years of follow-up [34]. However, this study has been
criticized for being too underpowered to detect clinically significant differences. On
the other hand, observational studies have suggested that RP is favorable [32].

We employed a continuous-time MSM on Norwegian registry data to investigate
the issue. The goal was to model a randomized scenario under which a comparison
of the two treatment regimens would be fair.

7.4.1. Description of the data. The cohort consisted of Norwegian males (n = 1296)
diagnosed with nonmetastatic prostate cancer in 2004/2005, all of whom received
treatment. Diagnostic factors such as age, PSA, Gleason score, and T category were
measured at baseline, i.e. the time of diagnosis, while the chosen treatment regimens
and the dates of treatment/treatment failure/death and cause of death were registered
until end of follow-up (June 2015). We extracted comorbidity variables from the
Norwegian Prescription Registry, based on medication that was bought around the
time of diagnosis. We also used data on the education level at the time of diagnosis,
provided by Statistics Norway, to account for socioeconomic differences.

7.4.2. Defining the Failure endpoint. Ideally, we would like to compare the rates of
death due to prostate cancer. However, this endpoint would not provide enough power
to detect differences. To obtain higher power, we defined a surrogate failure endpoint,
denoted “Failure,” for events that indicated the given treatment was unsuccessful in
some way. The Failure group therefore included individuals who received radiation
treatment a long time after initial treatment, as such treatment is no longer thought
to be adjuvant. We thus viewed the following two events as Failure:

• For RP patients: initiation of radiation therapy later than six months after
surgery.

• For Rad patients: new radiation therapy later than eight weeks after initial
treatment.

Furthermore, Rad patients received adjuvant hormone treatment three years after ini-
tial treatment. A longer period of hormone therapy indicates further signs of disease
and was considered a Failure. Also, some patients stopped hormone treatment before
three years, possibly due to side effects. If hormone treatment was re-initiated after
a gap of six months, we considered the initial curative treatment to be unsuccessful,
and therefore a Failure. Finally, a subject had Failure at his time of death if the cause
of death was attributed to prostate cancer.

The cohort consisted of older men who were likely to die of reasons unrelated to
prostate cancer during the eleven years of follow-up. We therefore accounted for the
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competing risk of death from other causes, by studying the cumulative incidence of
Failure. We referred to the competing endpoint as “Other death.”

7.4.3. Spurious effects and confounding. The primary goal of the analysis was to
make a fair comparison of the rates of Failure starting from the time of treatment
assignment. When making this comparison, we faced two forms of systematic bias:
first, patients received treatment based on their prognostic factors. These factors
also influenced their long term prognosis - i.e. the prognostic factors at baseline were
confounders. Second, the rate of treatment initiation depended on prognostic factors,
the chosen treatment regimen, as well as socioeconomic factors. We attempted to
mimic a scenario in which these two aspects - the treatment assignment and the rate
of treatment initiation - were randomized in the population. We accounted for these
aspects by use of weighting; propensity weights for balancing covariate distributions
at baseline, and continuous-time weights to balance the systematic differences in time
to treatment.

7.4.4. Estimands of interest, and interpretation. We proposed a marginal structural
model for the cumulative incidence of Failure as a function of the two treatment
regimens. This was done by considering an intervention gl that put treatment mode
to l while imposing the marginal treatment initiation rate in the population. The
distribution of events under this intervention was denoted by P̃ gl . We denoted the
time from diagnosis to Failure by Tf , and the time to Other death by Tod, and
expressed a marginal structural model Gl as a function of the treatment regime l:

Gl
t = P̃ gRad(t ≥ Tf , Tf < Tod)I(l = Rad) + P̃ gRP(t ≥ Tf , Tf < Tod)I(l = RP)

= C̃Rad
t I(l = Rad) + C̃RP

t I(l = RP).(19)

The estimands of interest were the cumulative incidences of Failure we would have
seen if treatment at baseline were randomized, and if we had ensured that the time
to treatment initiation were a random draw from the marginal treatment time distri-
bution of the cohort. These are the functions C̃RP and C̃RP.

7.4.5. Estimating the weights. We calculated baseline weights using logistic regres-
sion, by fitting one marginal model, and one covariate-dependent model for the prob-
ability of receiving RP treatment. The covariate-dependent model for individual i
was

logit(pi) = p0 + pPSA(8,15]
I(PSAi ∈ (8, 15]) + pPSA(15,22]

I(PSAi ∈ (15, 22])

+ page>65I(agei > 65) + pCADI(CADi = 1) + pHYPI(HYPi = 1)

+ pearlier cancerI(earlier canceri = 1) + pgleason>6I(gleasoni > 6)

+ pT catI(T cati = 1) + p< high schoolI(edui < high school)

+ p>4 years collegeI(edui > 4 years college) + prisk groupI(risk groupi > 1),
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where CAD is Coronary artery disease, HYP is Hypertension, and risk group is a
three-valued risk variable that is a combination of PSA, Gleason score, and T category.
It takes the values 1 (low risk), 2 (intermediate risk) and 3 (high risk).

The estimated marginal probability of receiving RP treatment at baseline was de-
noted by q̂i. The propensity weight (8) for subject i was then estimated by inserting
the predicted probabilities, which gave

R̂i
0 =

q̂i
p̂i
I(treati = RP) +

1− q̂i
1− p̂i

I(treati = Rad),

where treati was the treatment subject i received.
The continuous-time treatment weights were estimated using the estimator (16)

suggested in Paper 3. We thereby assumed that the observed time to treatment
initiation in each treatment arm followed the additive hazard model

αi
t = α0

t + αage>65
t I(agei > 65) + αPSA>5

t I(PSAi > 5) + αgleason>6
t I(gleasoni > 6)

+ α< high school
t I(edui < high school) + α>4 years college

t I(edui > 4 years college)

+ αrisk group
t I(risk groupi > 1).

This model was fitted separately for each treatment arm, i.e. for the patients who
received Rad and the patients who received RP. We fitted a marginal model for the
time to treatment in the pooled sample, i.e. a model for the time to treatment in
the sample as a whole, regardless of covariates or treatment regimen. This model
can be summarized by a marginal hazard α̃. By inserting the fitted regressions as
aalen objects into the function makeContWeights in the ahw package, we obtained

continuous-time weight estimates R̂i for each subject i. The final weights were es-
timated by Ŵ i = R̂i

0 · R̂i. We observed a minor instability, and we truncated the
weights so that no weights were larger than seven in the final analysis. A weight
trajectory plot is shown in Thesis Figure 7.

7.4.6. Weighted analysis. We calculated the weighted cause-specific cumulative haz-
ards for Failure and Other death in each treatment arm. The estimands of interest
were the cumulative incidences from (19), which are solutions of

(
C̃ l

t

S̃l
t

)
=

(
0
1

)
+

∫ t

0

(
S̃l
s 0

−S̃l
s −S̃l

s

)
d

(
Ãl,Failure

s

Ãl,Other death
s

)
,

for group l ∈ {Rad,RP}. Ãl,Failure and Ãl,Other death are the hypothetical cumulative
hazards (i.e. cumulative hazards under P̃ gl) for the transition from state l to the
Failure and Other death endpoints, while S̃l is the hypothetical survival function
(i.e. the survival function under P̃ gl). We estimated the hypothetical cumulative
hazards by weighting the Nelson-Aalen estimator for each of the endpoints, i.e. a
special case of the weighted additive hazard estimator (18). We furthermore estimated
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the hypothetical cumulative incidences by utilizing plugin estimation as outlined in
Paper 3. The estimating equation then took the form(

ˆ̃C l
t
ˆ̃Sl
t

)
=

(
0
1

)
+

∫ t

0

(
ˆ̃Sl
s− 0

− ˆ̃Sl
s− − ˆ̃Sl

s−

)
d

(
ˆ̃Al,Failure
s

ˆ̃Al,Other death
s

)
.

Due to the definition of the endpoints, the cumulative incidences could be very
different shortly after diagnosis as many Failure events occurred early in the study
period, e.g. after eight weeks and six months (see Section 7.4.2). On a longer time
horizon, however, the cumulative incidences would depend less on details of the end-
point definition. When testing for differences in the treatment arms, we therefore
put more emphasis on the events that happened a long time after diagnosis. This
was done by choosing the function Kt = t0.3, such that differences for larger t were
emphasized in the Gray test statistic [31]

ˆ̃ZT =

∫ T

0

Kt ·
( d ˆ̃CRAD

t

1− ˆ̃CRAD
t−

− d ˆ̃CRP
t

1− ˆ̃CRP
t−

)
,

over the study period [0, T ]. We obtained p-values by bootstrapping the variance.

7.4.7. Results. We inspected the weighted and unweighted cumulative incidences, as
well as the cumulative incidence difference along with 95% pointwise confidence inter-
vals (shown in Thesis Figure 8). A visual inspection suggested that the groups were
hard to distinguish. We performed a weighted Gray test to compare the cumulative
incidences formally. Both the plot and the Gray test (p-value of 0.3310) indicated
that the cumulative incidences were not different in the time period of interest. The
weighted Gray test p-value was in contrast to the result we obtained from an analysis
of the unweighted cumulative incidences. This naive analysis gave a Gray test p-value
of 0.0083, which (misleadingly) indicated that the rates of Failure were different, and
the Rad treated subjects had a significantly worse cumulative incidence.

7.4.8. Clinical interpretation. Our analysis suggests that the observed differences in
rates of Failure are primarily due to spurious effects, i.e. systematic differences be-
tween the treatment groups at baseline and in the treatment initiation times. When
accounting for these differences, we were unable to separate the marginal cumulative
incidences. We take this to be the ideal marginal comparison.
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{Ŵ i}i. The average is shown in red. The time scale indicates days
since diagnosis.



42 CAUSAL REASONING WITH SURVIVAL DATA

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0 RP

Rad

2 4 6 8 10

−
0

.0
5

0
.0

0
0

.0
5

0
.1

0

Years since diagnosis

Thesis Figure 8. Upper panel: cumulative incidences of Failure un-
der the two treatment regimens. The weighted analysis is shown in thick
solid lines, while the unweighted naive analysis is shown in dotted lines.
Lower panel: estimates of GRad

t −GRP
t from (19) with bootstrapped 95%

confidence intervals based on a bootstrap sample of 3000.



CAUSAL REASONING WITH SURVIVAL DATA 43

8. Contributions, comments, and extensions

8.1. Paper 1.

8.1.1. Contributions. We describe a general method for modeling and inference on
a range of parameters in survival analysis. To do this, we use hazard models as an
intermediary step. Hazard models are well developed, but hazards can sometimes
be difficult to interpret (see the discussion in Section 5.1). The methodology in this
paper gives easy access to several other parameters in survival analysis and will be
particularly useful in situations where hazards are difficult to interpret.

The methodology enables estimation of these parameters and their pointwise co-
variances using the general plugin procedure given by (10) and (12). These plugin
estimators are implemented in a generic fashion in the R package transform.hazards;
only the inputs Â, X̂0, V̂0, F, and the ∇Fj’s are needed as input. Several worked ex-
amples that show how to use the code is found in Section 9, in the Supplementary
material of Paper 2, and the package vignette.

8.1.2. Comments. The plugin estimation equations (10) and (12) can sometimes be
solved explicitly, such that closed-form solutions can be expressed (this can e.g. be
seen from the difference equations (13) and (14)). The true power of our estimation
method is still in the inexplicit formulations since all parameters that solve (9) and
their covariances can be estimated with the same procedure. Explicit solutions of
(10) and (12), when they exist, can be calculated on a case by case basis only.

8.1.3. Future work. The ODE structure can be used further to interpret covariate-
adjusted parameters; if the parameter X solves an ODE system driven by A, the
covariate-adjusted parameter XL that solves the same ODE system driven by the
vector of cumulative hazards adjusted for L, which under the additive model reads

A = A0 + LAL.

Suppose the k’th element of XL, XL,k, is of interest, where L is a baseline covariate.
Derived quantities such as ΨL = XL+1,k/XL,k and ΥL = XL+1,k − XL,k can be
estimated jointly with XL by augmenting the ODE system:

⎛⎜⎜⎝
XL+1

t

XL
t

ΨL
t

ΥL
t

⎞⎟⎟⎠ =

⎛⎜⎜⎝
X0

X0

1
0

⎞⎟⎟⎠+

∫ t

0

⎛⎜⎜⎜⎝
F (XL+1

s ) (L+ 1)F (XL+1
s )

F (XL
s ) LF (XL

s )
Fk(XL+1

s )−F k(XL
s )ΨL

s

XL,k
s

(L+1)Fk(XL+1
s )−LFk(XL

s )ΨL
s

XL,k
s

F k(XL+1
s )− F k(XL

s ) (L+ 1)F k(XL+1
s )− LF k(XL

s )

⎞⎟⎟⎟⎠ d

(
A0

s

AL
s

)
,

where F k is the k’th row of F . Ψl and Υl then give interpretations on the multiplica-
tive and additive scale, of the impact one unit increase of L has on the parameter
when it is adjusted to level L = l. Plugin estimators for Ψl and Υl can be implemented
as part of the transform.hazards package.
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One limitation of Theorem 1 and Theorem 2 is the assumption that F is Lipschitz
on the image of X. This limits the study of parameters that solve (9), but when F
is not Lipschitz. Examples of such parameters include ratios of cumulative hazards,
the attributable fraction function [35], and the number needed to treat [36]. We are
currently working on ideas for extending the plugin procedure in this paper, so that it
can be used in several instances where (9) holds, but where the Lipschitz assumption
is violated.
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8.2. Paper 2.

8.2.1. Contributions. Standard hypothesis testing in survival analysis, such as the
rank tests, are based on comparing hazards. Since hazards can be difficult to inter-
pret (see the discussion in Section 5.1), this could lead to unfortunate consequences.
Moreover, there is sometimes a mismatch between the null hypothesis and the actual
research question. In particular, the rank tests are in practice sometimes used to test
hypotheses that are different from the rank hypothesis.

We develop a general procedure for testing survival analysis parameters pointwise
in time, and demonstrate that our method performs satisfactory using simulations.
We also show using simulations that the rank tests have poor performance when
testing our null hypothesis. An application on colon cancer data is considered in
Section 6. The analysis is provided as a worked example in the Supplementary ma-
terial, where we define the required ODE system, perform the analysis using the
transform.hazards package, and calculate the test statistic (15). This may be use-
ful for researchers that want to use the software.

Our testing procedure is derived from the general results inPaper 1 and is therefore
valid in many situations. The central requirement is that the ODE (9) is satisfied.

8.2.2. Comments. Rather than just performing the test at a pre-specified time point
t0, it is possible to plot the whole estimated trajectory with 95% pointwise confidence

intervals. For one-dimensional parameters, one can plot X̂1
t − X̂2

t ±1.96

√
V̂ X1−X2

t for

all t in the study period, where V̂ X1−X2
is the plugin variance of X̂1

t −X̂2
t . Such a plot

would give a more detailed picture of X1
t −X2

t when t 
= t0. Our pointwise hypothesis
is then accepted at t0 if zero is contained in the estimated confidence interval, and
rejected otherwise. However, we must guard ourselves against cherry-picking, by
choosing t0 before such curves are plotted, and not afterward.

Another reservation should be made when it comes to cherry picking; one should
not test several parameters using (15) and only report selected p-values. This can be
avoided by reporting p-values from all the performed tests, or by employing our test
statistic (15) to test differences between all parameters that are studied jointly.

We could also write down a test statistic that compares parameters at two or more
time points, i.e. testing the hypothesis that X1

t = X2
t for t ∈ {t0, t1}, as we can write

down plugin estimators for the covariance between X̂1
t0
− X̂2

t0
and X̂1

t1
− X̂2

t1
. This test

statistic would e.g. enable joint comparison of one and five year survival between two
groups. We still think that the current test statistic (15) is general enough for many
applications.

8.2.3. Future work. It is of general interest to estimate confidence bands for the plugin
parameter estimators from Paper 1. Confidence bands would e.g. allow for testing
over the full follow-up period, and not only for pre-specified time points. However,
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development of such bands would require other techniques from the ones developed
in Paper 1.

Extending on the comments in Section 8.1.3, we can also perform hypothesis testing
on the quantities Ψl

t0
and Υl

t0
at t0, to check whether a one unit increase at level l

is significant at t0. Additionally, one can plot the plugin estimates of e.g. Υl along
with 95% pointwise confidence intervals, to see how the impact of one unit increase
of L under level L = l varies over time. Similar tests and plots could be created with
confidence bands if we had them.
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8.3. Paper 3.

8.3.1. Contributions. We develop the continuous-time MSMs [10] in terms of

• Providing the consistent continuous-time weight estimator (16).
• Proving consistency results for weighted additive hazard regression that takes
into account that the weights are estimated.

• Showing that the plugin estimation strategy from Paper 1 can be used for
estimating causal parameters that solve ODEs like (9).

• Describing software that calculates (16), and showing how a causal survival
analysis can be performed in practice, explained through an example.

8.3.2. Comments. The stabilized inverse probability weights (6) that are used for
estimating the discrete time MSMs (Section 6.3) can be viewed as approximations
of the continuous-time weights (7) that are used for estimating the continuous-time
MSMs (Section 6.4); as the time discretization is refined, the former will approach
the latter. A heuristic argument is made below.

The discrete weight approximates the continuous-time likelihood ratio
We consider the time discretization {tk}k from Section 6.3, and inspect the limit

as the discretization times are refined. By performing algebraic manipulation of
the logarithm of (6) divided by (7) we get

log
(wi

t

Ri
t

)
=

∑
k:tk≤t

log
(qik
pik

)
I(i, k)−

∑
s≤t

log
( λ̃i

s

λi
s

)
ΔN i

s

(20)

+
∑
k:tk≤t

(
log

(
1− qik

)
− log

(
1− pik

))
(1− I(i, k))−

∫ t

0

(λi
s − λ̃i

s)ds,(21)

where qik = P (Ak = 1|Āk−1 = āik−1), p
i
k = P (Ak = 1|Āk−1 = āik−1, L̄k−1 = l̄ik−1),

and I(i, k) is 1 if i is treated in [tk−1, tk) and 0 otherwise.
We now introduce the equidistant “grid” {tnk}k,n so that Δn = tnk − tnk−1 and

limn−→∞Δn = 0. The probabilities qi,n, pi,n will now depend on n, and the ratio
qi,n/pi,n approaches λ̃i/λi, so that the right hand side of (20) vanishes in the limit.
Furthermore, to leading order we have log(1− x) = −x when x ≈ 0, and viewing
the sum in (21) as a Riemann sum, we get that (21) also vanishes in the limit.
This is because the sum approaches an integral and qi,n/Δn, pi,n/Δn respectively

approach λ̃i and λi.
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The above argument suggests that one can use IPTW estimators based on (pooled)
logistic regression, as in [9, eq. (17)], for estimating the continuous-time weights (7).
Such IPTW estimators will be consistent if the number of discretization intervals
grows as the sample size increases. The discretization interval width for the IPTWs
may be viewed as a bandwidth parameter, similar to our bandwidth parameter κ
from (16). From Thesis Figure 6 it can be seen that our weight estimator performs
better when the underlying processes are time-continuous, at least concerning bias.

We have considered interventions where the hypothetical treatment intensity is
given by λ̃t = E[λt|FV0

t− ], i.e. when the processes and variables that are confounders
are marginalized out. We have referred to them as “randomizing” interventions be-
cause the intensity λ̃ is not a function of the (time-dependent) confounders. However,
different interventions could be of interest. One could e.g. be interested in hypothet-
ical scenarios with a doubled treatment initiation rate. The results of this paper can
be used to investigate several such scenarios without major changes.

We used a simple smoothing approach for estimating θi for our continuous-time
weight estimator (16). The estimator for θi, (17), is a ratio between discrete deriva-
tives, or kernel smoothed cumulative hazard estimates. This kernel smoothing could
be performed in several ways, as long as the smoother is based on past information.
Several well-known kernel smoothers could be used for this task, e.g. Gaussian, near-
est neighbors, Epanechnikov, or local regression, all of which require specifications of
at least one bandwidth parameter. When developing our estimator, we performed a
range of simulations for the different smoothers and varying values of the bandwidth.
None of the kernel smoothers were found to be noticeably better than the others for
the tests we conducted, so we ended up using the simplest option.

8.3.3. Future work. A major result of Paper 1 was that we were able to write down
a general covariance estimator (12). It would be beneficial to also have an SDE
estimator for the covariance when the cumulative hazard estimates are weighted. This
would allow for estimation of confidence intervals and hypothesis testing pointwise in
time for causal parameters that solve (9). It would moreover be of interest to find
confidence bands when the cumulative hazard estimates are weighted. This would
enable other kinds of hypothesis testing; see Section 8.2.3.

Our estimator (17) can run into problems in some situations, as the cumulative haz-
ard estimates from the additive model can have negative increments. This could lead
to numerical instability, especially in the case of multiple treatments, since numerous
evaluations of the estimated θi’s are needed in the estimator (16). We may want to
consider other estimators for θi to improve the stability of our weight estimator.
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8.4. Paper 4.

8.4.1. Contributions. We contribute to the debate [32,34] on the relative effectiveness
of radical prostatectomy and radiation therapy among subjects with localized prostate
cancer. Using an MSM, we find that the two treatment types have comparable failure
rates up to eleven years after diagnosis.

We furthermore show how continuous-time MSMs can be utilized in practice. In the
Supplementary material, we give details about model fitting for weight calculation,
weight truncation, and choosing the bandwidth parameter. This information may be
useful for other researchers that want to use the methodology.

8.4.2. Comments. The results from our analysis shown in Sections 7.4.7 and 7.4.8
suggest that there is a large group of diagnosed subjects that should worry more
about side effects, and less about prognosis when choosing treatment, as the failure
rates for the two treatment types seem to be comparable. However, our targeted
intervention is not entirely suitable for answering this query. This is because there is
an actual difference in the treatment initiation times that depends on the treatment
regimen. This can be seen in Thesis Figure 9; the average time to treatment is
around 100 days in the RP group, and 150 days in the Rad group. The decision-
theoretic problem “An average male was just diagnosed with prostate cancer, which
treatment should he choose?” would more appropriately be answered by modifying
the continuous-time intervention slightly; by enforcing the time to treatment initiation
to be a random draw conditional on the assigned treatment group.

Formally, the Gray test is a rank test that compares subdistribution hazards ob-
tained by modifying the at-risk set; subjects that experience the event of interest
are in the at-risk set until they experience the event, while subjects that in reality
experience the competing events remain in the modified at risk set indefinitely [31].
The Gray test therefore compares the hazards of a hypothetical population where
the subjects are prevented from having events other than the one of interest. Using
the Gray test may seem to be in conflict with one of the major points in Paper 2,
which is that hypothesis testing should be performed on parameters that have clear
interpretations. However, the Gray null hypothesis can be understood in another
way, as there is a known relationship between the subdistribution hazards and the
cumulative incidences; if C is the cumulative incidence, and γ is the subdistribution
hazard we have γtdt = dCt/(1 − Ct). Therefore, the Gray null hypothesis is under
mild conditions equivalent to equality of the cumulative incidences throughout the
follow-up period. The Gray null hypothesis is therefore not harder to interpret than
equality of the cumulative incidences throughout the follow-up period. Still, assessing
equality at all times may be different from the hypothesis of primary interest.

The cumulative incidences will as mentioned in Section 7.4.6 be affected by details
of the Failure endpoint definition for small times. These details could influence the
Gray test outcome, because the test compares subdistribution hazards at all times,



50 CAUSAL REASONING WITH SURVIVAL DATA

including times shortly after diagnosis. A pointwise test after e.g. five years of follow-
up would be less influenced by these details. Inspecting Thesis Figure 8 we see that
such a pointwise test would also fail to detect significant differences since zero is
contained in the confidence interval at all times after around two years of follow-up.

8.4.3. Future work. We want to use the continuous-time MSM methods on similar
clinical problems. We would also like to make the software more streamlined so that
our methods get more accessible to other researchers.
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Thesis Figure 9. Boxplot of the treatment times for the two prostate
cancer treatment groups. The average time to treatment for the whole
cohort was 137 days.
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9. Software

A short introduction to the main functions of the R packages transform.hazards
and ahw developed during this thesis is provided. They are both freely available for
anyone to use in the repository github.com/palryalen.

9.1. transform.hazards. Recall from Paper 1 that we are interested in assessing
parameters that solve differential equations driven by cumulative hazards A, i.e.

Xt = X0 +

∫ t

0

F (Xs)dAs,

where F is Lipschitz, two times continuously differentiable, and satisfies a linear
growth bound. We write F = (F1, F2, · · · ), so that Fj is the j’th column of F . The
main function pluginEstimate in this package estimate such parameters nonpara-
metrically using cumulative hazard estimates from Aalen’s additive hazard model.
pluginEstimate has the following input:

• n: the number of subjects.
• hazMatrix: the ordered increments of Â; see Section 7.1.4.
• F: the integrand function F .
• JacobianList: the Jacobian matrices of the columns of F , i.e. ∇F1,∇F2, · · ·
as a list.

• X0: the initial values of X.
• V0: the initial values of V .
• isLebesgue: indices of X that correspond to regular dt integrals (optional).

We demonstrate how this package can be used through examples below.
The package can be downloaded and installed manually from the GitHub repository,

but a simpler option is to use the devtools package. If devtools is installed, one
can run the following command for installing the software:

devtools::install_github("palryalen/transform.hazards",

build_vignettes=TRUE)

library(transform.hazards)

In encourage the reader to inspect the package vignette. The vignette contains
many worked examples that show how the analysis can be performed on up-to-date
versions of the software. It is made accessible by the build vignettes argument.
Build and display the vignette with the command
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browseVignettes("transform.hazards")

9.1.1. Survival. The survival function S solves a differential equation with initial
value 1,

St = 1−
∫ t

0

SsdAs,

where A is the cumulative hazard for death.
We estimate the survival function from a sample of n = 300 subjects, stored in

the data.frame data1. An additive hazard model is fitted to the data by calling
the aalen function. To use this function we load the timereg package. We can then
extract the cumulative hazard increments:

library(timereg)

aaMod1 <- aalen(Surv(startTimes,stopTimes,censIndicator)~1,

data = data1)

dA_est1 <- diff(c(0,aaMod1$cum[,2]))

hazMatrix <- matrix(dA_est1,nrow=1)

In this case, F takes the simple form F (x) = −x, and its Jacobian is therefore
∇F (x) = −1. F and ∇F must be provided as matrix-valued functions along with
the initial values X0 and V0. Note that ∇F must be provided in a list:

F_survival <- function(X)matrix(-X,nrow=1,ncol=1)

F_survival_JacobianList <- list(function(X)matrix(-1,nrow=1,ncol=1))

X0 <- matrix(1,nrow=1,ncol=1)

V0 <- matrix(0,nrow=1,ncol=1)

We obtain plugin estimates of S using the function call

param <- pluginEstimate(300, hazMatrix, F_survival,

F_survival_JacobianList, X0, V0)
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The variable param is a list containing X (a matrix containing the plugin estimates
of the parameter) and covariance (an array containing the plugin estimates of the

covariance of X̂). We can now plot the results with estimated 95 % confidence
intervals:

t1 <- aaMod1$cum[,1]

plot(t1,param$X,type="s",xlim=c(0,4),xlab="t",ylab="",

main="Survival")

lines(t1,param$X+1.96*sqrt(param$covariance[1,1,]),type="s",lty=2)

lines(t1,param$X-1.96*sqrt(param$covariance[1,1,]),type="s",lty=2)
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Thesis Figure 10. Survival plugin estimate from Section 9.1.1, along
with 95% pointwise confidence intervals.
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9.1.2. Restricted mean survival. We estimate the restricted mean survival function R
based on the same data set. It solves the system(

St

Rt

)
=

(
1
0

)
+

∫ t

0

(
−Ss 0
0 Ss

)
d

(
As

s

)
,

where S is the survival function. Here, the colums of F , F1 and F2, are given by

F1(x1, x2) =

(
−x1

0

)
, F2(x1, x2) =

(
0
x1

)
.

The Jacobian matrices are therefore respectively

∇F1(x1, x2) =

(
−1 0
0 0

)
,∇F2(x1, x2) =

(
0 0
1 0

)
.

We define these two functions along with initial values below.

F_restrict <- function(X)matrix(c(-X[1],0,0,X[1]),nrow=2)

F_restrict_JList <- list(function(X)matrix(c(-1,0,0,0),nrow=2),

function(X)matrix(c(0,1,0,0),nrow=2))

X0_restrict <- matrix(c(1,0),nrow=2)

V0_restrict <- matrix(0,nrow=2,ncol=2)

The restricted mean survival is a “regular” (i.e. Lebesgue) integral, and we must
provide time increments (recall the discussion in Section 7.1.4). We choose the time
interval [0, 4] in 104 increments:

fineTimes <- seq(0,4,length.out = 1e4+1)

t2 <- sort(unique(c(fineTimes,t1)))

hazMatrix <- matrix(0,nrow=2,ncol=length(t2))

hazMatrix[1,match(t1,t2)] <- dA_est1

hazMatrix[2,] <- diff(c(0,t2))

We obtain plugin estimates using the call

param <- pluginEstimate(300, hazMatrix, F_restrict,

F_restrict_JList,X0_restrict,

V0_restrict,isLebesgue = 2)
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Note that param also contains the plugin estimates of the survival S considered in
Section 9.1.1. We plot the results, shown in Thesis Figure 11.

restrictCov <- param$covariance[2,2,]

plot(t2,param$X[2,],type="s",xlim=c(0,4),ylim=c(0,2),xlab="t",

ylab="",main="Restricted mean survival")

lines(t2,param$X[2,]+1.96*sqrt(restrictCov),type="s",lty=2)

lines(t2,param$X[2,]-1.96*sqrt(restrictCov),type="s",lty=2)
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Thesis Figure 11. Restricted mean survival plugin estimate from
Section 9.1.2, along with 95% pointwise confidence intervals.
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9.2. ahw. The main function in this package is makeContWeights, which estimates
the weights (16) that are used in the weighted additive hazard regression (18). The
function has the following input variables:

• faFit: the aalen fit for the observational hazard.
• cfaFit: the aalen fit for the hypothetical hazard.
• dataFr: data.frame or data.table on long format.
• atRiskState: at risk state(s) for treatment.
• eventState: treatment state.
• stopTimeName: name of the column with the transition times.
• startStatusName: name of the column with the starting states.
• endStatusName: name of the column with the end states.
• idName: name of column that identifies individuals.
• b: bandwidth parameter, equal to 1/κ in (16).
• weightRange: weight truncation interval (optional).
• willPlotWeights: weight trajectory plot indicator (optional).

If the devtools package is installed, one can run

devtools::install_github("palryalen/ahw")

library(ahw)

I also plan to make a GitHub vignette for this package to make the software more
accessible to other researchers. When the vignette is complete, it can be loaded
by adding the argument build vignettes == T in the install github call, and
inspected using the command

browseVignettes("ahw")

9.2.1. Randomizing treatment. Consider subjects who are diagnosed with some dis-
ease, and receive treatment based on a binary baseline variable L. After being treated,
the subjects are at risk of dying. We refer to this as the observational scenario.

Suppose we are interested in a hypothetical situation where, contrary to what
we observe, the time to treatment is a random draw from the marginal treatment
initiation times in the population. If αA is the time to treatment hazard for the
observational scenario, and α̃A is the time to treatment hazard in the hypothetical
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situation, the considered hazards take the form

αA
t = α0

t + LαL
t

α̃A
t = α̃0

t ,

where α̃0
t = EL[α

A
t ]. We simulate a data set from the observational scenario, and

store it in the data.frame fr1. We display data for the first three subjects in the
data set below

## id from to L from.state to.state

## 1 1 0.0000000 0.0127410 1 diag treat

## 2 1 0.0127410 0.7039590 1 treat death

## 3 2 0.0000000 1.8553269 0 diag treat

## 4 2 1.8553269 2.0091635 0 treat death

## 5 3 0.0000000 0.4069482 1 diag treat

## 6 3 0.4069482 0.6604173 1 treat death

Subject 1 receives treatment at time 0.0127 and dies at time 0.704. Subject 2
receives treatment at time 1.855, and dies at time 2.009 and so on. We fit the
observational and hypothetical treatment models below:

faFit <- aalen(Surv(from,to,to.state == "treat") ~ 1 + L,

data=fr1[fr1$from.state=="diag",])

cfaFit <- aalen(Surv(from,to,to.state == "treat") ~ 1,

data=fr1[fr1$from.state=="diag",])

We declare the input variables needed for using makeContWeights. The bandwidth
parameter b is set to 0.3.

dataFr <- fr1

atRiskState <- "diag"

eventState <- "treat"

stopTimeName <- "to"

startStatusName <- "from.state"

endStatusName <- "to.state"

idName <- "id"

b <- 0.3



CAUSAL REASONING WITH SURVIVAL DATA 61

Finally, we use the main function for weight estimation. We choose not to truncate
weights, but want to plot the weight trajectories. The output is stored in frame.

frame <- makeContWeights(faFit, cfaFit, dataFr, atRiskState,

eventState,stopTimeName,startStatusName,

endStatusName,idName, b,

willPlotWeights = T)
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Thesis Figure 12. Plot resulting from using the option
willPlotWeights = T. The weight trajectories are well behaved
in this simple example, with mean close to 1.
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frame is an expanded data.table, where each subject has multiple rows as long
as he is at risk of receiving treatment. We display the first 16 rows below:

## id from to L from.state to.state weights

## 1 1 0.000000000 0.001265808 1 diag 0 1.000000

## 2 1 0.001265808 0.004741339 1 diag 0 0.999000

## 3 1 0.004741339 0.005543079 1 diag 0 0.999999

## 4 1 0.005543079 0.005807163 1 diag 0 0.998999

## 5 1 0.005807163 0.007286518 1 diag 0 0.998000

## 6 1 0.007286518 0.008172427 1 diag 0 0.997002

## 7 1 0.008172427 0.009478025 1 diag 0 0.997999

## 8 1 0.009478025 0.011068796 1 diag 0 0.997001

## 9 1 0.011068796 0.011178575 1 diag 0 0.997000

## 10 1 0.011178575 0.011324917 1 diag 0 0.997997

## 11 1 0.011324917 0.012741341 1 diag treat 0.997997

## 12 1 0.012741341 0.703958983 1 treat death 1.003302

## 13 2 0.000000000 0.001265808 0 diag 0 1.000000

## 14 2 0.001265808 0.004741339 0 diag 0 1.001000

## 15 2 0.004741339 0.005543079 0 diag 0 0.999999

## 16 2 0.005543079 0.005807163 0 diag 0 1.000999

We see that subject 1 is now recorded at several time points prior to him receiving
treatment. These are the treatment times in the population that are smaller than
subject 1’s treatment time of 0.012741. In the weights column, there is a time-
updated value of the weights just before the times in the to column, i.e. the treatment
times in the population that are smaller than 0.012741. In particular, subject 1’s
weight is equal to 1 at 0.001266, the first treatment time in the population. Once
the subjects are treated, they are no longer at risk of being treated, and the weight
process is constant - see expression (7). There is therefore no need for a time-updated
weight estimate after a subject has been treated.

We are now able to perform a weighted outcome regression to assess the hypothet-
ical scenario. We estimate the marginal cumulative hazard for death we would see if,
contrary to fact, the time to treatment were a random draw from α̃A, the marginal
treatment initiation distribution in the sample as a whole. This is a weighted Nelson-
Aalen estimator. We call a marginal aalen regression on the data set frame, and use
the option weights = frame$weights to perform a weighted regression.



64 CAUSAL REASONING WITH SURVIVAL DATA

outMod <- aalen(Surv(from,to,to.state == "death")~1,data=frame,

weights = frame$weights)

Having the weighted regression at hand, we can e.g. estimate the survival func-
tion under this hypothetical scenario using the transform.hazards package on the
weighted cumulative hazard estimates from outMod. We do this, and plot the results
in Thesis Figure 13. Note that the plugin variance should not be used, as we have not
been able to account for the variance that is induced by weighting; see the discussion
in Section 8.3.3.
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Thesis Figure 13. Plot of the hypothetical survival function in ex-
ample 9.2.1
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Abstract. The conventional nonparametric tests in survival analysis, such as the log-

rank test, assess the null hypothesis that the hazards are equal at all times. However,

hazards are hard to interpret causally, and other null hypotheses are more relevant in

many scenarios with survival outcomes. To allow for a wider range of null hypotheses, we

present a generic approach to define test statistics. This approach utilizes the fact that

a wide range of common parameters in survival analysis can be expressed as solutions of

differential equations. Thereby we can test hypotheses based on survival parameters that

solve differential equations driven by cumulative hazards, and it is easy to implement

the tests on a computer. We present simulations, suggesting that our tests perform

well for several hypotheses in a range of scenarios. Finally, we use our tests to evaluate

the effect of adjuvant chemotherapies in patients with colon cancer, using data from a

randomised controlled trial.
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2 ON NULL HYPOTHESES IN SURVIVAL ANALYSIS.

1. Introduction

The notion of hazards has been crucial for the development of modern survival analysis.

Hazards are perhaps the most natural parameters to use when fitting statistical models

to time-to-event data subject to censoring, and hazard functions were essential for the

development of popular methods like Cox regression and rank tests, which are routinely

used in practice.

In the field of causal inference, however, there is concern that many statisticians just do

advanced ’curve fitting’ without being careful about the interpretation of the parameters

that are reported [1, 2, 3]. This criticism can be directed to several areas in statistics. In

this spirit, we think that statisticians in general should pay particular attention to effect

measures with clear-cut causal interpretations.

In survival analysis, it has been acknowledged that interpreting hazards as effect mea-

sures is delicate, see e.g. [4] and [5]. This contrasts the more traditional opinion, in

which the proportional hazards model is motivated by the ’simple and easily understood

interpretation’ of hazard ratios [6, 4.3.a]. A key issue arises because the hazard, by def-

inition, is conditioned on previous survival. If we consider causal diagrams [3, 2], it is

clear that we condition on a ’collider’ that opens a non-causal pathway from the exposure

through any unobserved heterogeneity into the event of interest, see [4, 7, 8]. Since unob-

served heterogeneity is present in most practical scenarios, even in randomized trials, the

conditioning means that the hazards are fundamentally hard to interpret causally [4, 5].

Although we must be careful about assigning causal interpretations to hazards, we do

not claim that hazards are worthless. On the contrary, hazards are key elements in the

modelling of other parameters that are easier to interpret, serving as building blocks.
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This point of view is also found in [2, 17.1]: “..., the survival analyses in this book

privilege survival/risk over hazard. However, that does not mean that we should ignore

hazards. The estimation of hazards is often a useful intermediate step for the estimation

of survivals and risks.” Indeed, we have recently suggested a generic method to estimate

a range of effect measures in survival analysis, utilizing differential equations driven by

cumulative hazards [9].

Nevertheless, the conventional hypothesis tests in survival analysis are still based on

hazards. In particular the rank tests [10], including the log-rank test, are based on the

null hypothesis

H0: α
1
t = α2

t for all t ∈ [0, T ],(1)

where αi
t is the hazard in group i. Formulating such hypotheses in a practical setting will

often imply that we assign causal interpretations to these hazard functions. In the sim-

plest survival setting this is not a problem, as there is a one-to-one relationship between

hazards and the survival curves, and a null hypothesis comparing two or more survival

curves is straightforward. In more advanced settings, e.g. scenarios with competing risks,

hypotheses like (1) are less transparent, leading to issues with interpretation [11]. For

example, in competing risks settings where competing events are treated as censoring

events, the null hypothesis in (1) is based on cause-specific hazards, which are often not

the target of inference [11].

We aimed to develop new hypothesis tests for time-to-event outcomes with two key

characteristics: First, the tests should be rooted in explicit null hypotheses that are easy
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to interpret. Second, the testing strategy should be generic, such that the scientist can

apply the test to their estimand of interest.

Survival parameters as solutions of differential equations

We will consider survival parameters that are functions solving differential equations

on the form

Xt = X0 +

∫ t

0

F (Xs)dAs,(2)

where A is a q dimensional vector of cumulative hazards, and F = (F1, · · · , Fq) : R
p −→

Rp×q is Lipschitz continuous with bounded and continuous first and second derivatives,

and satisfies a linear growth bound. The class of parameters also includes several quanti-

ties that are Lebesgue integrals, such that dAi
t = dt for some i. Here, X is a vector that

includes our estimand of interest, but X may also contain additional nuisance parameters

that are needed to formulate the estimand of interest.

Many parameters in survival analysis solve equations on the form (2). In particular,

the survival function can be expressed on the form (2) as St = 1−
∫ t

0
SsdAs, where A is the

cumulative hazard for death. Other examples include the cumulative incidence function,

the restricted mean survival function, and the prevalence function. We will present these

parameters in detail in Section 3. Nonparametric plugin estimators have been thoroughly

studied in [9]. The strategy assumes that A can be consistently estimated by

Ât =

∫ t

0

Gs−dNs,(3)
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where G is a q × l dimensional predictable process, and N is an l dimensional counting

process. Furthermore, we assume that Â, the residuals W n =
√
n(Â − A), and its

quadratic variation [W n], are so-called predictably uniformly tight. When the estimator

is a counting process integral, a relatively simple condition ensures predictable uniformly

tightness [9, Lemma 1]. Moreover, we suppose that
√
n(Â−A) converges weakly (wrt the

Skorohod metric) to a mean zero Gaussian martingale with independent increments, see

[9, Lemma 1, Theorem 1 & 2] for details. Examples of estimators on the form (3) that

satisfy these criteria are the Nelson-Aalen estimator, or more generally Aalen’s additive

hazard estimator; if Aalen’s additive hazards model is a correct model for the hazard

A, then Aalen’s additive hazard model satisfy these criteria, in particular predictable

uniformly tightness.

Our suggested plugin estimator of X is obtained by replacing A with Â, giving esti-

mators that solve the system

X̂t = X̂0 +

∫ t

0

F (X̂s−)dÂs,(4)

where X̂0 is a consistent estimator of X0. When the estimand is the survival function,

this plugin estimator reduces to the Kaplan-Meier estimator. Ryalen et al [9] identified

the asymptotic distribution of
√
n(X̂t −Xt) to be a mean zero Gaussian martingale with

covariance V solving a linear differential equation [9, eq. (17) ]. The covariance V can

also be consistently estimated by inserting the estimates Â, giving rise to the system

V̂t =V̂0 +

q∑
j=1

∫ t

0

V̂s−∇Fj(X̂s−)
ᵀ +∇Fj(X̂s−)V̂s−dÂ

j
s

+ n

∫ t

0

F (X̂s−)d[B]sF (X̂s−)
ᵀ,

(5)
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where {∇Fj}qj=1 are the Jacobian matrices of the columns of F = (F1, · · · , Fq) from (2),

and [B]t is a q × q matrix defined by

(
[B]t

)
i,j

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if dAi

t = dt or dAj
t = dt∑

s≤t
ΔÂi

sΔÂj
s, otherwise.

The variance estimator (5), as well as the parameter estimator (4), can be expressed

as difference equations, and therefore they are easy to calculate generically in computer

programs. To be explicit, let τ1, τ2, . . . denote the ordered jump times of Â. Then,

X̂t = X̂τk−1
+ F (X̂τk−1

)ΔÂτk , as long as τk ≤ t < τk+1. Similarly, the plugin variance

equation may be written as a difference equation,

V̂t =V̂τk−1
+

q∑
j=1

V̂τk−1
∇Fj(X̂τk−1

)ᵀ +∇Fj(X̂τk−1
)V̂τk−1

ΔÂj
τk

+ nF (X̂τk−1
)Δ[B]τkF (X̂τk−1

)ᵀ.

2. Hypothesis testing

The null hypothesis is not explicitly expressed in many research reports. On the con-

trary, the null hypothesis is often stated informally, e.g. vaguely indicating that a dif-

ference between two groups is assessed. Even if the null hypothesis is perfectly clear to

a statistician, this is a problem: the applied scientist, who frames the research question

based on subject-matter knowledge, may not have the formal understanding of the null

hypothesis.

In particular, we are not convinced that scientists faced with time-to-event outcomes

profoundly understand how null hypotheses based on hazard functions. Hence, using null
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hypotheses based on hazard functions, such as (1), may be elusive: in many scenarios,

the scientist’s primary interest is not to assess whether the hazard functions are equal

at all follow-up times. Indeed, the research question is often more focused, and the

scientist’s main concern can be contrasts of other survival parameters at a prespecified t

or in a prespecified time interval [12]. For example, we may aim to assess whether cancer

survival differs between two treatment regimens five years after diagnosis. Or we may

aim to assess whether a drug increases the average time to relapse in subjects with a

recurring disease. We will highlight that the rank tests are often not suitable for such

hypotheses.

Hence, instead of assessing hazards, let us study tests of (survival) parameters X1 and

X2 in groups 1 and 2 at a prespecified time t0. The null hypothesis is

HX
0 : X

1,i
t0 = X2,i

t0 for i = 1, · · · , p,(6)

where p is the dimension of X. We emphasize that the null hypothesis in (6) is different

from the null hypothesis in (1), as (6) is defined for any parameter Xt0 at a t0. We

will consider parameters X1 and X2 that solve (2); this is a broad class of important

parameters, including (but not limited to) the survival function, the cumulative incidence

function, the time dependent sensitivity and specificity functions, and the restricted mean

survival function [9].

2.1. Test statistics. We consider two groups 1 and 2 with population sizes n1, n2 and

let n = n1 + n2. We can estimate parameters X1, X2 and covariance matrices V 1, V 2

using the plugin method described in Section 1. The contrast
√
n(X̂1

t0
− X̂2

t0
) has an

asymptotic mean zero normal distribution under the null hypothesis. If the groups are
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independent, we may then use the statistic

(X̂1
t0
− X̂2

t0
)V̂ −1t0

(X̂1
t0
− X̂2

t0
)ᵀ,(7)

to test for differences at t0, where V̂t0 = V̂ 1
t0
/n1+ V̂ 2

t0
/n2, and where V̂ 1

t0
and V̂ 2 are calcu-

lated using the covariance matrix estimator (5). Then, the quantity (7) is asymptotically

χ2 distributed with p degrees of freedom under the null hypothesis, which is a corollary of

the results in [9], as we know from [9, Theorem 2] that
√
ni(X̂

i−X i) converges weakly to

mean zero Gaussian martingale whose covariance matrix V i can be consistently estimated

using (5). Therefore, under the null hypothesis (6), the root n difference of the estimates,

√
n(X̂1

t0
− X̂2

t0
), will converge to a multivariate mean zero normal distribution with co-

variance matrix that can be estimated by n
(
V̂ 1
t0
/n1 + V̂ 2

t0
/n2

)
. Due to the continuous

mapping theorem, the statistic (7) has an asymptotic χ2 distribution.

Sometimes we may be interested in testing e.g. the r first components of X1 and X2,

under the null hypothesis X1,i
t0 = X2,i

t0 for i = 1, · · · , r < p. It is straightforward to adjust

the hypothesis (6) and the test statistic, yielding the same asymptotic distribution with

r degrees of freedom.

3. Examples of test statistics

We derive test statistics for some common effect measures in survival and event history

analysis. By expressing the test statistics explicitly, our tests may be compared with the

tests based on conventional approaches.

3.1. Survival at t0. In clinical trials, the primary outcome may be survival at a pre-

specified t, e.g. cancer survival 5 years after diagnosis. Testing if survival at t is equal in



ON NULL HYPOTHESES IN SURVIVAL ANALYSIS. 9

two independent groups can be done in several ways [12], e.g. by estimating the variance

of Kaplan-Meier curves using Greenwood’s formula. However, we will highlight that our

generic tests also immediately deal with this scenario: it is straightforward to use the null

hypothesis in (6), where S1
t and S2

t are the survival functions in group 1 and 2 at time t.

Using the results in Section 2.1, we find that the plugin estimators of S1 and S2 are the

standard Kaplan-Meier estimators. The plugin variance in group i solves

V̂ i
t = V̂ i

0 − 2

∫ t

0

V̂ i
s−dÂ

i
s + ni

∫ t

0

( Ŝi
s−
Y i
s

)2

dN i
s,(8)

for i ∈ {1, 2}, where Y i
s is the number at risk in group i just before time s. Assuming

that the groups are independent, the final variance estimator can be expressed as V̂t =

V̂ 1
t /n1+ V̂ 2

t /n2, and the statistic (7) becomes (Ŝ1
t0
− Ŝ2

t0
)2/V̂t0 , which is approximately χ2

distributed with 1 degree of freedom.

3.2. Restricted mean survival until t0. As an alternative to the hazard ratio, the

restricted mean survival has been advocated: it can be calculated without parametric

assumptions and it has a clear causal interpretation [13, 14, 15]. The plugin estimator of

the restricted mean survival difference between groups 1 and 2 is R̂1
t−R̂2

t =
∑

τk≤t
(
Ŝ1
τk−1

−

Ŝ2
τk−1

)
Δτk, where Δτk = τk − τk−1. The plugin estimator for the variance is

V̂ Ri

t = V̂ Ri

0 + 2
∑
τk≤t

V̂ Ri,Si

τk−1
Δτk

V̂ Ri,Si

t = V̂ Ri,Si

0 −
∫ t

0

V̂ Ri,Si

s− dÂi
s +

∑
τk≤t

V̂ Si

τk−1
Δτk,

where V̂ Si
is the plugin variance for

√
niŜ

i, given in (8). The statistic (7) can be used to

perform a test, with V̂t0 = V̂ R1

t0
/n1 + V̂ R2

t0
/n2.
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3.3. Cumulative incidence at t0. Many time-to-event outcomes are subject to com-

peting risks. The Gray test is a competing risk analogue to the log-rank test: the null

hypothesis is defined by subdistribution hazards λt, such that λt =
d
dt
log[1 − Ct] where

Ct is the cumulative incidence of the event of interest, are equal at all t [16]. Analogous

to the log-rank test, the Gray test has low power if the subdistribution hazard curves

are crossing [17]. However, we are often interested in evaluating the cumulative incidence

at a time t0, without making assumptions about the subdistribution hazards, which are

even harder to interpret causally than standard hazard functions. By expression the

cumulative incidence on the form (2), we use our transformation procedure to obtain a

test statistic for the cumulative incidence at t0. The plugin estimator for the cumulative

incidence difference is

Ĉ1
t − Ĉ2

t =

∫ t

0

Ŝ1
s−dÂ

1,j
s −

∫ t

0

Ŝ2
s−dÂ

2,j
s ,

where Ai,j is the cumulative cause-specific hazard for the event j of interest, and Ŝi is

the Kaplan-Meier estimate within group i. The groupwise plugin variances solve

V̂ i
t = V̂ i

0 + 2

∫ t

0

V̂ i
s−dÂ

i,j
s + ni

∫ t

0

( Ŝi
s−
Y i
s

)2

dN i,j
s ,

where N i,j counts the event of interest.

3.4. Frequency of recurrent events. Many time-to-event outcomes are recurrent events.

For example, time to hospitalization is a common outcome in medical studies, such as

trials on cardiovascular disease. Often recurrent events are analysed with conventional

methods, in particular the Cox model, restricting the analysis to only include the first

event in each subject. A better solution may be to study the mean frequency function,
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i.e. the marginal expected number of events until time t, acknowledging that the subject

can not experience events after death [18]. We let Ai,E and Ai,D be the cumulative haz-

ards for the recurrent event and death in group i, respectively, and let Ki and Si be the

mean frequency function and survival, respectively. Then, the plugin estimator of the

difference is

K̂1
t − K̂2

t =

∫ t

0

Ŝ1
s−dÂ

1,E
s −

∫ t

0

Ŝ2
s−dÂ

2,E
s .

The plugin variances solve

V̂ Ki

t = V̂ Ki

0 +

∫ t

0

V̂ Ki,Si

s− d(Âi,E
s − Âi,D

s ) + ni

∫ t

0

( Ŝi
s−
Y i
s

)2

dN i,E
s ,

V̂ Ki,Si

t = V̂ Ki,Si

0 −
∫ t

0

V̂ Ki,Si

s− dÂi,D
s +

∫ t

0

V̂ Si

s−dÂ
i,E
s ,

where N i,E counts the recurrent event, and where V̂ Si
is the survival plugin variance in

group i, as displayed in (8).

3.5. Prevalence in an illness-death model. The prevalence denotes the number of

individuals with a condition at a specific time, which is e.g. useful for evaluating the

burden of a disease. We consider a simple Markovian illness-death model with three

states: healthy:0, ill:1, dead:2. The population is assumed to be healthy initially, but

individuals may get ill or die as time goes on. We aim to study the prevalence P i,1
t of the

illness in group i as a function of time. Here, we assume that the illness is irreversible, but

we could extend this to a scenario in which recovery from the illness is possible, similar

to Bluhmki [19]. Let Ai,kj be the cumulative hazard for transitioning from state k to j



12 ON NULL HYPOTHESES IN SURVIVAL ANALYSIS.

in group i. Then, P i,1 solves the system

⎛⎜⎝P i,0
t

P i,1
t

⎞⎟⎠ =

⎛⎜⎝1

0

⎞⎟⎠+

∫ t

0

⎛⎜⎝−P i,0
s −P i,0

s 0

P i,0
s 0 −P i,1

s

⎞⎟⎠ d

⎛⎜⎜⎜⎜⎝
Ai,01

s

Ai,02
s

Ai,12
s

⎞⎟⎟⎟⎟⎠ .

The plugin estimator for the difference P 1,1 − P 2,1 is

P̂ 1,1
t − P̂ 2,1

t =

∫ t

0

P̂ 1,0
s− dÂ

1,01
s −

∫ t

0

P̂ 2,0
s− dÂ

2,01
s −

∫ t

0

P̂ 1,1
s− dÂ

1,01
s +

∫ t

0

P̂ 2,1
s− dÂ

2,01
s .

The variance estimator for group i reads

V̂ P i,1

t = V̂ P i,1

0 + 2

∫ t

0

V̂ P i,0,P i,1

s− dÂi,01
s − 2

∫ t

0

V̂ P i,1

s− dÂi,12
s

+ ni

(∫ t

0

( P̂ i,0
s−

Y i,0
s

)2

dN i,01
s +

∫ t

0

( P̂ i,1
s−

Y i,1
s

)2

dN i,12
s

)
V̂ P i,0,P i,1

t = V̂ P i,0,P i,1

0 +

∫ t

0

(
V̂ P i,0

s− − V̂ P i,0,P i,1

s−
)
dÂi,01

s −
∫ t

0

V̂ P i,0,P i,1

s− dÂi,02
s

−
∫ t

0

V̂ P i,0,P i,1

s− dÂi,12
s − ni

∫ t

0

( P̂ i,0
s−

Y i,0
s

)2

dN i,01
s

V̂ P i,0

t = V̂ P i,0

0 − 2

∫ t

0

V̂ P i,0

s− dÂi,01
s − 2

∫ t

0

V̂ P i,0

s− dÂi,02
s

+ ni

∫ t

0

( P̂ i,0
s−

Y i,0
s

)2

d
(
N i,01

s +N i,02
s

)
.

Here, Y i,0, Y i,1 are the number of individuals at risk in states 0 and 1, while N i,kj counts

the transitions from state k to j in group i. By calculating V̂ P i,1

t for i ∈ {1, 2}, we

can find the statistic (7). Here, the prevalence is measured as the proportion of affected

individuals relative to the population at t = 0. We could use a similar approach to

consider the proportion of affected individuals relative to the surviving population at t,
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or we could record the cumulative prevalence until t to evaluate the cumulative disease

burden.

4. Performance

In this section, we present power functions under several scenarios for the test statistics

that were presented in Section 3. The scenarios were simulated by defining different

relations between the hazard functions in the two exposure groups: (i) constant hazards

in both groups, (ii) hazards that were linearly crossing, and (iii) hazards that were equal

initially before diverging after a time t.

For each hazard relation (i)-(iii), we defined several κ’s such that the true parameter

difference was equal to κ at the prespecified time point t0, i.e. X1
t0
−X2

t0
= κ. For each

combination of target parameter, difference κ, and hazard scenario, we replicated the

simulations m times to obtain m realizations of (7), and we artificially censored 10%

of the subjects in each simulation. In the Supplementary material, we show additional

simulations with different sample sizes (50, 100 and 500) and fractions of censoring (10%-

40%). We have provided an overview of the simulations in figure 2, in which parameters

of interest (solid lines) and hazard functions (dashed lines) are displayed in scenarios with

fixed κ = −0.05 at t0 = 1.5, i.e. X1
1.5 −X2

1.5 = −0.05.

In each scenario, we rejected HX
0 at the 5% confidence level. Thus, we obtained m

Bernoulli trials in which the success probability is the power function evaluated at κ.

The estimated power functions, i.e. the estimates of the Bernoulli probabilities, are dis-

played in figure 3 (solid lines). The power functions are not affected by the structure of

the underlying hazards, as desired: our tests are only defined at t0, and the particular

parameterization of the hazard has minor impact on the power function.
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The dashed lines in figure 3 show power functions of alternative nonparametric test

statistics that are already found in the literature, tailor-made for the scenario of interest.

In particular, for the survival at t, we obtained a test statistic using Greenwood’s variance

formula (and a cloglog transformation in the Supplementary Material) [12]. For the

restricted mean survival at t, we used the statistic suggested in [15]. For the cumulative

incidence at t, we used the statistic suggested in [20]. For the mean frequency function we

used the estimators derived in [18], and in the prevalence example we used the variance

formula in [21, p. 295], as implemented in the etm package in R. Our generic strategy

gave similar power compared to the conventional methods for each particular scenario.

4.1. Comparisons with the log-rank test. We have argued that our tests are funda-

mentally different from the rank tests, as the null hypotheses are different. Nevertheless,

since rank tests are widely used in practice, also when the primary interest seems to be

other hypothesis than in (1), we aimed to compare the power of our test statistics with

the log-rank test under different scenarios. In table 3, we compared the power of our

test statistic and the rank test, using the scenarios in figure 2. In the first column, the

proportional hazards assumption is satisfied (constant), and therefore the power of the

log-rank test is expected to be optimal (assuming no competing risks). Our tests of the

survival function and the restricted mean survival function show only slightly reduced

power compared to the log rank test. For the cumulative incidence function at a time

t0, our test is less powerful than the Gray test and the log-rank test of the cause specific

hazards. However, the cause specific hazard test have type one error rate is not nominal,

which we will return to in the end of this section.



ON NULL HYPOTHESES IN SURVIVAL ANALYSIS. 15

The second column displays power of tests under scenarios with crossing hazards. For

the survival function, it may seem surprising that the log-rank test got higher power than

our test, despite the crossing hazards. However, in this particular scenario the hazards

are crossing close to the end of the study (dashed lines in Figure 2), and therefore the

crossing has little impact on the power of the log-rank test. In contrast, the power of

the log-rank test is considerably reduced in the scenarios where we study the restricted

mean survival function and the cumulative incidence functions, in which the hazards are

crossing at earlier points in time.

The third column shows the power under hazards that are deviating. For the survival

function, our test provides higher power. Intuitively, the log-rank test has less power in

this scenario because the hazards are equal or close to equal during a substantial fraction

of the follow-up time. For the restricted mean survival, however, the log-rank has more

power. This is not surprising [15], and it is due to the particular simulation scenario:

Late events have relatively little impact on the restricted mean survival time, and in

this scenario a major difference between the hazards was required to obtain κ. Since the

log-rank test is sensitive to major differences in the hazards, it has more power in this

scenario. For the cumulative incidence, in contrast, the power of the log-rank test is lower

than the power of our test.

The results in table 3 illustrate that power depends strongly on the hazard scenario

for the log-rank test, but this dependence is not found for our tests.

To highlight the basic difference between the log-rank test and our tests, we have

studied scenarios where HX
0 in (6) is true (figure 4). That is, at t0 = 1.5 the difference

X1
t0
− X2

t0
= 0, but for earlier times the equality does not hold. In these scenarios, the

log-rank test got high rates of type 1 errors. Heuristically, this is expected because the
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hazards are different at most (if not all) times t ∈ [0, t0]. Nevertheless, figure 4 confirms

that the log-rank test does not have the correct type 1 error rate under null hypotheses

as in (6), and should not be used for such tests, even if the power sometimes is adequate

(as in table 3).

5. Example: Adjuvant chemotherapy in patients with colon cancer

To illustrate how our tests can be applied in practice, we assessed the effectiveness of

two adjuvant chemotherapy regimes in patients with stage III colon cancer, using data

that are available to anyone [22, 23]. The analysis is performed as a worked example in the

supplementary data using the R package transform.hazards. After undergoing surgery,

929 patients were randomly assigned to observation only, levamisole (Lev) or levamisole

plus fluorouracil (Lev+5FU) [22]. We restricted our analysis to the 614 subjects who got

Lev or Lev+5FU. All-cause mortality and the cumulative incidence of cancer recurrence

was lower in subjects receiving (Lev+5FU), as displayed in Figure 1.

We formally assessed the comparative effectivness of Lev and Lev+5FU after 1 and 5

years of follow-up, using the parameters from section 3. After 1 year, both the overall

survival and the restricted mean survival were similar in the two treatment arms (Table

1). However, the cumulative incidence of recurrence was reduced in the Lev+5FU group,

and the number of subjects alive with recurrent disease were lower in the Lev+5FU group.

Also, the mean time spent alive and without recurrence was longer in the Lev+5FU group

(Table 1, Restricted mean recurrence free survival). These results suggest that Lev+5FU

has a beneficial effect on disease recurrence after 1 year of follow-up compared to Lev.

After 5 years of follow-up, overall survival and restricted mean survival was improved in

the Lev+5FU group (Table 2). Furthermore, the cumulative incidence of recurrence was
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reduced, and the prevalence of patients with recurrence was lower in the Lev+5FU group.

These results suggest that Lev+5FU improves overall mortality and reduces recurrence

after 1 year compared to Lev.

In conclusion, our analysis indicates that treatment with Lev+5FU improves several

clinically relevant outcomes in patients with stage III colon cancer. We also emphasise

that a conventional analysis using a proportional hazards model would not be ideal here,

as the plots in Figure 1 indicate violations of the proportional hazards assumptions.

6. Covariate adjustments

Our approach allows us to conduct tests conditional on baseline covariates, using the

additive hazard model; by letting the cumulative hazard integrand in (2) be conditional

on specific covariates, we can test for conditional differences between groups, assuming

that the underlying hazards are additive.

In more detail, we can test for differences between group 1 and 2 under the covariate

level Z = z0 by evaluating the cumulative hazards in each group at that level, yielding

A1,z0 and A2,z0 . Estimates Â1,z0 and Â2,z0 can be found using standard software. This

allows us to estimate parameters with covariances using (4) and (5), and test the null

hypothesis of no group difference within covariate level z0 using the test statistic (7),

again assuming that the groups are independent.

7. Discussion

By expressing survival parameters as solutions of differential equations, we provide

generic hypothesis tests for survival analysis. In contrast to the conventional approaches

that are based on hazard functions [24, Section 3.3], our null hypotheses are defined with



18 ON NULL HYPOTHESES IN SURVIVAL ANALYSIS.

respect to explicit parameters, defined at a time t0. Our strategy also allows for covariate

adjustment under additive hazard models.

We have presented some examples of parameters, and our simulations suggest that the

test statistics are well-behaved in a range of scenarios. Indeed, for common parameters

such as the survival function, the restricted mean survival function and the cumulative in-

cidence function, our tests obtain similar power to conventional tests that are tailor made

for a particular parameter. Importantly, our examples do not comprise a comprehensive

set of relevant survival parameters, and several other effect measures for event histories

may be described on the differential equation form (2), allowing for immediate imple-

mentation of hypothesis tests, for example using the R package transforming.hazards

[9, 8]. The fact that our derivations are generic and easy to implement for customized

parameters, is a major advantage.

Our tests differ from the rank tests, as the rank tests are based on assessing the

equality of the hazards during the entire follow-up. However, our strategy is intended to

be different: We aimed to provide tests that apply to scenarios where the null hypothesis

of the rank tests is not the primary interests.

Restricting the primary parameter to a single time t0 is sometimes considered to be

a caveat. In particular, we ignore the time-dependent profile of the parameters before

and after t0. For some parameters, such as the survival function or the cumulative

incidence function, this may be a valid objection in principle. However, even if our

primary parameter is assessed at t0, this parameter may account for the whole history

of events until t0. One example is the restricted mean survival, which considers the

history of events until t0. Indeed, the restricted mean survival has been suggested as an

alternative effect measure to the hazard ratio, because it is easier to interpret causally,
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and it does not rely on the proportional hazards assumption [14]. An empirical analysis

of RCTs showed that tests of the restricted mean survival function yield results that are

concordant with log-rank tests, under the conventional null hypothesis in (1) [14], and

similar results were found in an extensive simulation study [15].

Furthermore, the time-dependent profile before t0 is not our primary interest in many

scenarios. In medicine, for example, we may be interested in comparing different treat-

ment regimes, such as radiation and surgery for a particular cancer. Then, time to

treatment failure is expected to differ in the shorter term due to the fundamental dif-

ference between the treatment regimes, but the study objective is to assess longer-term

treatment differences [25]. Similarly, in studies of cancer screening, it is expected that

more cancers are detected early in the screening arm, but the scientist’s primary aim is

often to assess long-term differences between screened and non-screened. In such scenar-

ios, testing at a prespecified t0 are more desirable than the null-hypothesis of the rank

tests.

Nevertheless, we must assure that cherry picking of t0 is avoided. In practice, there

will often be a natural value of t0. For example, t0 (or multiple t1, t2, · · · , tk) can be

prespecified in the protocol of clinical trials. In cancer studies, a common outcome is e.g.

five year survival. Alternatively, t0 can be selected based on when a certain proportion is

lost to censoring. Furthermore, using confidence bands, rather than pointwise confidence

intervals and p-values, is an appealing alternative when considering multiple points in

time. There exist methods to estimate confidence bands based on wild bootstrap for

competing risks settings [26], which were recently extended to reversible multistate models

allowing for illness-death scenarios with recovery [19]. We aim to develop confidence bands

for our estimators in future research.
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Finally, we are often interested in assessing causal parameters using observational data,

under explicit assumptions that ensure no confounding and no selection bias. Such pa-

rameters may be estimated after weighting the original data [8, 27]. Indeed, weighted

point estimators are consistent when our approach is used [8], but we would also like to

identify the asymptotic root n residual distribution, allowing us to estimate covariance

matrices that are appropriate for the weighted parameters. We consider this to be an

important direction for future work. Currently, such covariance matrices can only be

obtained from bootstrap samples.

8. Software

We have implemented a generic procedure for estimating parameters and covariance

matrices in an R package, available for anyone to use on github.com/palryalen/transform.hazards.

It allows for hypothesis testing at prespecified time points using (6). Worked examples

can be found the package vignette, or in the supplementary material here.
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Table 1. Estimates, 95% confidence intervals and p-values after 1 year

Lev Lev+5FU p-value
Survival 0.91 (0.87,0.94) 0.92 (0.89,0.95) 0.62

Restricted mean survival 0.96 (0.95,0.98) 0.97 (0.95,0.98) 0.86
Cumulative incidence 0.27 (0.22,0.32) 0.15 (0.11,0.19) 0

Prevalence 0.19 (0.14,0.23) 0.09 (0.05,0.12) 0
Restricted mean recurrence free survival 0.85 (0.82,0.88) 0.90 (0.87,0.92) 0.01

Table 2. Estimates, 95% confidence intervals and p-values after 5 years

Lev Lev+5FU p-value
Survival 0.54 (0.48,0.59) 0.63 (0.58,0.69) 0.01

Restricted mean survival 3.62 (3.44,3.81) 3.97 (3.79,4.15) 0.01
Cumulative incidence 0.47 (0.42,0.51) 0.34 (0.29,0.39) 0

Prevalence 0.07 (0.05,0.10) 0.03 (0.02,0.05) 0.02
Restricted mean recurrence free survival 2.29 (2.07,2.51) 2.95 (2.73,3.18) 0

Table 3. Power comparisons of our tests and rank tests (our/rank) for the
scenarios displayed in figure 2, comparing two groups of 1500 individuals
(based on 400 replications). In the lower row, we also display the power of
Gray’s test for competing risks (our/rank/Gray). The power of the rank
tests is sensitive to the shape of the underlying hazards, while the power
of our tests vary little across the scenarios. In particular, the power of the
rank tests is very sensitive to the rate of change of the hazards when they
are crossing or deviating; see also the third column of figure 2.

Parameter \ Hazard Constant Crossing Deviating
Survival 0.81/0.88 0.79/0.96 0.83/0.70

Restricted mean survival 0.77/0.87 0.78/0.21 0.8/1
Cumulative incidence 0.85/0.94/0.88 0.86/0.80/0.70 0.86/0.83/0.76
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Figure 1. Survival curves (left) and the cumulative incidence of recur-
rence (right) along with 95% pointwise confidence intervals (shaded) from
the colon cancer trial are displayed.
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Figure 2. Simulation scenarios in which the true parameter difference was
fixed to κ = −0.05 at t0 = 1.5, i.e. X1

1.5 − X2
1.5 = −0.05. The upper row

shows survival, the middle row shows restricted mean survival, and lower
row shows cumulative incidences. The hazards are displayed as dotted lines;
constant in the left column, linearly crossing in the middle column, and
deviating in the right column. The X1 parameters/hazards are black, and
the X2 parameters/hazards are green. See Table 3 for a power comparison
of our tests and the rank tests for the scenarios that are displayed. The
cumulative incidence panels: The cause specific hazards for the competing
event are held constant equal to 0.4 at all times. We optimize the cause
specific hazards for the event of interest so that X1

1.5 −X2
1.5 = −0.05 under

the restrictions that they are constant (left), linearly crossing (middle), and
equal before deviating (right).
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Figure 3. Estimated power functions for constant (black), crossing
(green), and deviating (blue) hazards, based on 250 subjects with a repli-
cation number of 400. The dashed lines show test statistics derived from
existing methods in the literature, that are tailor-made for the particular
scenario. The confidence level is shown by the gray lines.
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Figure 4. In the upper row, we display hazards functions in scenarios
in which the hazard in group 1 is fixed (black line), and the hazards in
group 2 varies (grey lines). The hazards are optimized such that the null
hypothesis is true, i.e. X1

t0
= X2

t0
for each combination of black/gray

hazards at t0 = 1.5. In the lower rows we show the estimated rejection
rate as a function of the ratio of the hazard slopes (slope of gray/slope of
black). This is done for sample sizes sample sizes 500 (row 2), 1000 (row
3), and 5000 (row 4) with a replication number of 500. The green curve
shows the rejection rate of the log-rank test, while the black curve shows the
rejection rate of our tests, which appear to be well calibrated along the 5%
significance level. If the sample size is large, the rank tests can falsely reject
the null hypothesis even when the hazards are crossing. The cumulative
incidence panels: We only show the cause-specific hazards for the event of
interest (which we compare using the rank test). The cause-specific hazard
for the competing event is equal to 0.4 in both groups.
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1. Colon data example

Here we provide a step-by-step explanation of the colon cancer data
analysis in Section 5 of the main text. First, we create a system of
integral equations, then we estimate the integrator, and finally we call
pluginEstimate from the transform.hazards package for the plugin-
estimation. We can then calculate the test statistics that compares the
Lev and Lev+5FU groups after 1 and 5 years of follow-up.

1.1. Setting up the system. Before we do the analysis, we set up
the ODE system. To to this, we let S be the survival function, and
R be the restricted mean survival function. Furthermore we let CR be
the cumulative incidence of cancer recurrence, SD∧R be the recurrence
free survival, and RD∧R be the restricted mean recurrence free survival,
and PR be the prevalence of patients with recurrence. We let AD, AR,
and AD|R respectively be the marginal cumulative hazards for death,
cancer recurrence, and death given cancer recurrence. We can thus
consider

⎛⎜⎜⎜⎜⎜⎝
S
R
CR

SD∧R

PR

RD∧R

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
1
0
0
1
0
0

⎞⎟⎟⎟⎟⎟⎠+

∫ t

0

⎛⎜⎜⎜⎜⎜⎝
−S 0 0 0
0 S 0 0
0 0 SD∧R 0

−SD∧R 0 −SD∧R 0
0 0 SD∧R −PR

0 SD∧R 0 0

⎞⎟⎟⎟⎟⎟⎠ d

⎛⎜⎜⎝
AD

s
AR

AD|R

⎞⎟⎟⎠ .

(1)

The integrand function is therefore

F (x1, x2, x3, x4, x5, x6) =

⎛⎜⎜⎜⎜⎜⎝
−x1 0 0 0
0 x1 0 0
0 0 x4 0

−x4 0 −x4 0
0 0 x4 −x5

0 x4 0 0

⎞⎟⎟⎟⎟⎟⎠ .

The fist column of the integrand function is F1(x1, · · · , x6) = (−x1, 0, 0,−x4, 0, 0)
�.

By taking derivatives we find that the Jacobian matrix is

∇F1 =

⎛⎜⎜⎜⎜⎜⎝
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ = −e1,1 − e4,1.

Similar calculations yield
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∇F2 = e2,1 + e6,4, ∇F3 = e3,4 − e4,4 + e5,4, ∇F4 = −e5,5.
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1.2. Performing the analysis. We install the transform.hazards

package from GitHub using devtools. We also load the data set, and
the library timereg for additive hazard modeling.

devtools::install_github("palryalen/transform.hazards")

library(transform.hazards)

library(timereg)

data(colon)

We define the input for the main function pluginEstimate; the inte-
grand function, initial values, and the Jacobian matrices∇F1, · · · ,∇F1

(see Section 1.1) in a list:

F_fun <- function(X)matrix(c(-X[1],0,0,-X[4],0,0,

0,X[1],0,0,0,X[4],

0,0,X[4],-X[4],X[4],0,

0,0,0,0,-X[5],0),nrow=6)

J_F1 <- function(X)matrix(c(-1,0,0,-1,0,0,

rep(0,30)),nrow=6)

J_F2 <- function(X)matrix(c(0,1,rep(0,21),

1,rep(0,12)),nrow=6)

J_F3 <- function(X)matrix(c(rep(0,20),1,

-1,1,rep(0,13)),nrow=6)

J_F4 <- function(X)matrix(c(rep(0,28),-1,

rep(0,7)),nrow=6)

gradientList <- list(J_F1,J_F2,J_F3,J_F4)

X0 <- matrix(c(1,0,0,1,0,0),nrow=6)

V0 <- matrix(0,nrow=6,ncol=6)

We find the event times and the increments of the integrator for each
group using the function getHazMatrix that can be found attached.
The function returns a list containing the increments and the event
times.

fr1 <- colon[colon$rx == "Lev",]

fr1$time <- fr1$time /365

fr2 <- colon[colon$rx == "Lev+5FU",]

fr2$time <- fr2$time /365

n_Lev <- nrow(fr1)/2

n_Lev_5FU <- nrow(fr2)/2
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fineTimes <- seq(0,max(c(fr1$time,fr2$time)),

length.out = 5e3)

Lev_list <- getHazMatrix(fr1)

Lev_5FU_list <- getHazMatrix(fr2)

tmsLev <- Lev_list[[2]]

hazLev <- Lev_list[[1]]

tmsLev_5FU <- Lev_5FU_list[[2]]

hazLev_5FU <- Lev_5FU_list[[1]]

We perform the analysis for the Lev group and the Lev+5FU group
separately, calling the function pluginEstimate twice. Inspecting the
system (1) we see that the second element in the integrator is a regular
dt integral, so we use the input isLebesge= 2 to improve efficiency:

param_Lev <- pluginEstimate(n_Lev,hazLev,F_fun,

gradientList,X0,V0,isLebesgue = 2)

param_Lev_5FU <- pluginEstimate(n_Lev_5FU,hazLev_5FU,

F_fun,gradientList,X0,V0,isLebesgue = 2)

The calculations are done, and we can evaluate the test statistics
after 1 and 5 years of follow-up:

t1_Lev <- max(which(tmsLev < 1))

t5_Lev <- max(which(tmsLev < 5))

t1_Lev_5FU <- max(which(tmsLev_5FU < 1))

t5_Lev_5FU <- max(which(tmsLev_5FU < 5))

X_Lev_t1 <- param_Lev$X[,t1_Lev]

X_Lev_5FU_t1 <- param_Lev_5FU$X[,t1_Lev_5FU]

V_t1 <- diag(param_Lev$covariance[,,t1_Lev] +

param_Lev_5FU$covariance[,,t1_Lev_5FU])

X_Lev_t5 <- param_Lev$X[,t5_Lev]

X_Lev_5FU_t5 <- param_Lev_5FU$X[,t5_Lev_5FU]

V_t5 <- diag(param_Lev$covariance[,,t5_Lev] +

param_Lev_5FU$covariance[,,t5_Lev_5FU])

# Test statistics

st1 <- (X_Lev_t1 - X_Lev_5FU_t1)^2/V_t1

st5 <- (X_Lev_t5 - X_Lev_5FU_t5)^2/V_t5
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The vectors st1 and st5 contains the test statistics that compare
S,R,CR, SD∧R, PR and RD∧R, respectively, in the two groups after 1
and 5 years of follow-up.
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2. Extended simulations

We expand the simulations in the main document for sample sizes
n = 50, 100, and 500, as well as for 10% and 40% independent censor-
ing. For each combination of sample size and censoring fraction, we
replicated the number of simulations 500 times.

In Table 1 we compared the power of our test statistics with the rank
tests, as in Section 4.1 in the main document. As expected, the power
tends to be low when the amount of censoring is high, but that the dif-
ference is smaller when the sample size is small. Our tests have similar
power for each combination of sample size and fraction of censoring.
The rank tests give different results from our tests when the sample
size is large, but the difference is small for small sample sizes.

In supplementary figure 1 - 5, we plot the estimated power func-
tions from scenarios where the true parameter difference was set to
X1

t0
− X2

t0
= κ for κ ∈ [−0.1, 0.1]. For the smallest sample size of 50,

we increased the interval width to κ ∈ [−0.17, 0.17] to display scenarios
with higher power. The performance of our test statistics appears to
be similar to that of the alternative test statistics found in the liter-
ature for all the sample sizes and amounts of censoring we tried. In
supplementary figure 1, we included two alternative test statistics; one
based on the Greenwood estimator for the variance, and the other is
based on a cloglog transformation of the Kaplan-Meier estimates [1,
eq. (1) & (3)].

In supplementary figures 6 and 7 we plot the false rejection rates for
our tests and the log-rank test in a range of crossing hazard scenarios
under 10% and 40% censoring, respectively. The hazards were opti-
mized such that our null hypothesis X1

t0
= X2

t0
is true at t0 = 1.5 for

each parameter. Our tests and the rank tests perform similarly for the
sample sizes 50 and 100 under both censoring values. For the largest
sample sizes of 500 subjects in each group, we find that the rank tests
have larger rejection rates even though the hazards are linearly cross-
ing. We also see an interesting difference between these panels under
10% and 40% censoring: higher censoring rates yield larger rejection
rates for two of the three parameters. This is due to a combination of
two things; the hazards are crossing, and log-rank test depends on the
number at risk Y 1

t and Y 2
t of both groups 1 and 2. For large amounts

of censoring, Y 1
t and Y 2

t declines faster than for small amounts of cen-
soring. The log-rank weight function Kt = Y 1

t · Y 2
t /(Y

1
t + Y 2

t ) will
therefore decline more quickly when censoring is increased, which will
result in lower power in many situations. However, if the hazards are
crossing, the fast decline may e.g. emphasize differences before the haz-
ards have crossed, which will yield a larger log-rank test statistic. We
see this for survival and cumulative incidence. Conversely, if the haz-
ards are crossing early in the follow-up period, increasing the censoring
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can make Kt emphasize the hazards both before and after they have
crossed. Increased censoring may thus give a smaller test statistic, as
we see for the restricted mean survival in the lowest panels of supple-
mentary figure 6 and 7.
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Table 1. Power comparisons of our tests and rank tests
(our/rank). For the cumulative incidence rows, we have
also added power based on Grays test (our/rank/Gray).
The tests are performed at t0 = 1.5, and our null hy-
pothesis is slightly violated so that X1

1.5 −X2
1.5 = −0.05

in each scenario.

10% censoring
n = 50 Constant Crossing Deviating
Survival 0.08/0.10 0.08/0.09 0.07/0.08

Restricted mean survival 0.08/0.10 0.07/0.09 0.06/0.08
Cumulative incidence 0.08/0.10/0.10 0.10/0.09/0.09 0.08/0.08/0.07

n = 100
Survival 0.12/0.13 0.12/0.10 12/0.14

Restricted mean survival 0.11/0.13 0.11/0.10 0.10/0.14
Cumulative incidence 0.12/0.13/0.14 0.12/0.10/0.09 0.12/0.14/0.12

n = 500
Survival 0.41/0.49 0.38/0.36 0.39/0.38

Restricted mean survival 0.34/0.49 0.35/0.36 0.35/0.38
Cumulative incidence 0.40/0.49/0.42 0.44/0.36/0.31 0.43/0.38/0.32

40% censoring
n = 50
Survival 0.10/0.07 0.10/0.06 0.07/0.07

Restricted mean survival 0.07/0.07 0.07/0.06 0.07/0.07
Cumulative incidence 0.07/0.07/0.07 0.08/0.06/0.06 0.09/0.07/0.05

n = 100
Survival 0.10/0.10 0.09/0.16 0.10/0.11

Restricted mean survival 0.11/0.11 0.09/0.07 0.09/0.17
Cumulative incidence 0.10/0.11/0.09 0.13/0.06/0.05 0.10/0.10/0.09

n = 500
Survival 0.33/0.39 0.33/0.55 0.37/0.25

Restricted mean survival 0.32/0.35 0.35/0.16 0.30/0.67
Cumulative incidence 0.30/0.39/0.33 0.32/0.15/0.13 0.32/0.18/0.17
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supplementary figure 1. Estimated survival power
functions for constant (black), crossing (green), and devi-
ating (blue) hazards. Different sample sizes (50, 100, and
500 from top to bottom) and amount of censoring (10%
censoring to the left and 40% to the right). The dashed
lines show the test statistics derived from the Greenwood
variance. The dotted line shows the performance of a test
statistic based on a cloglog transformation of the survival
function. The confidence level is shown by the gray lines.
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supplementary figure 2. Estimated cumulative in-
cidence power functions for constant (black), crossing
(green), and deviating (blue) hazards. Different sample
sizes (50, 100, and 500 from top to bottom) and amount
of censoring (10% censoring to the left and 40% to the
right).
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supplementary figure 3. Estimated restricted mean
survival function power functions for constant (black),
crossing (green), and deviating (blue) hazards. Different
sample sizes (50, 100, and 500 from top to bottom) and
amount of censoring (10% censoring to the left and 40%
to the right).
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supplementary figure 4. Estimated power functions
for the mean frequency function for constant (black),
crossing (green), and deviating (blue) hazards. Differ-
ent sample sizes (50, 100, and 500 from top to bottom)
and amount of censoring (10% censoring to the left and
40% to the right).
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supplementary figure 5. Estimated prevalence
power functions for constant (black), crossing (green),
and deviating (blue) hazards. Different sample sizes (50,
100, and 500 from top to bottom) and amount of censor-
ing (10% censoring to the left and 40% to the right).
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supplementary figure 6. False rejection rates of the
rank tests (green) and our tests (black) for three param-
eters when the hazards are crossing. We have included
sample sizes 50, 100, and 500 in rows 2-4, with 10% cen-
soring in each panel. Our tests appear to be well cali-
brated, while the log-rank test may give unsatisfactory
false rejection rates.
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supplementary figure 7. False rejection rates of the
rank tests (green) and our tests (black) for three param-
eters when the hazards are crossing. We have included
sample sizes 50, 100, and 500 in rows 2-4, with 40% cen-
soring in each panel. Our tests appear to be well cali-
brated, while the log-rank test may give unsatisfactory
false rejection rates.
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1 Introduction

MSMs can be used to obtain causal effect estimates in the presence of con-
founders, which e.g. may be time-dependent (Robins et al., 2000). The proce-
dure is particularly appealing because it allows for a sharp distinction between
confounder adjustment and model selection (Joffe et al., 2004): first, we adjust
for observed confounders by weighing the observed data to obtain balanced
pseudopopulations. Then, we calculate effect estimates from these pseudopop-
ulations based on our structural model.

Traditional MSM techniques for survival analysis have considered time to
be a discrete processes (Hernán et al., 2000b). In particular, inverse probability
of treatment weights (IPTWs) are used to create the pseudopopulations, and
then e.g. several subsequent logistic regressions are fitted for discrete time
intervals to mimic a proportional hazards model.

However, time is naturally perceived as a continuous process, and it also
seems natural to analyse time-to-event outcomes with continuous models. In-
spired by the discrete time MSMs, Røysland (2011) suggested a continuous-
time analogue to MSMs. Similar to the discrete MSMs, it has been shown that
the continuous MSMs can be used to obtain consistent effect estimates when
the theoretical treatment weights are known (Røysland, 2011). In particular,
additive hazard regressions can be weighted with the theoretical continuous-
time weights to yield consistent effect estimates. Nevertheless, the weights are
usually unknown in real life and must be estimated from the data. To the best
of our knowledge, the performance of MSM when the IPTW are estimated
remains to be elucidated.

In this article, we show that continuous-time MSMs also perform desir-
able when the treatment weights are estimated from the data: we provide a
sufficient condition to ensure that weighted additive hazard regressions are
consistent. Furthermore, we show how such weighted hazard estimates can be
consistently transformed to obtain other parameters that are easier to inter-
pret causally. To do this, we use stability theory of SDEs, which allows us
to target a range of parameters expressed as solutions of ordinary differential
equations. Many examples of such parameters can be found in Ryalen et al.
(2018b). This is immediately appealing for causal survival analysis: first, we
can use hazard models, that are convenient for regression modeling, to obtain
weights. Estimates on the hazard scale are hard to interpret causally per se
(Robins and Greenland, 1989; Hernán, 2010; Aalen et al., 2015; Stensrud et al.,
2017), but we present a generic method to consistently transform these effect
estimates to several other scales that are easier to interpret.

The continuous-time weights and the causal parameters can be estimated
using the R package ahw. We show that this ahw weight estimator, which is
based on additive hazard regression, is consistent in Theorem 2. We have im-
plemented code for transforming cumulative hazard estimates in the package
transform.hazards. These packages make continuous-time marginal struc-
tural modeling easier to implement for applied researchers.
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2 Weighted additive hazard regression

2.1 Motivation

We will present a strategy for dealing with confounding and dependent cen-
soring in continuous time. Confounding, which may be time-varying, will often
be a problem when analysing observational data, e.g. coming from health reg-
istries. The underlying goal is to assess the effect a treatment strategy has on
an outcome.

We can describe processes in continuous time using local (in)dependence
relations, and we can use local independence graphs to visualise these relations.
A precise description of local independence can be found in Røysland (2011).
The local independence graph we will focus on is

C L��

��

		
D

A



 �� �� .

Heuristically, the time-dependent confounders L and the exposure A can influ-
ence the censoring process C and the event of interest D. Moreover, the time-
dependent confounders can both influence and be influenced by the exposure
process. We include baseline variables, some of which may be confounders, in
Section 2.2.

The above graph can e.g. describe a follow-up study of HIV-infected sub-
jects, where the initiation and adjustment of HIV treatment depend on CD4
count measurements over time (Hernán et al., 2000a). The CD4 count is a
predictor of future survival, and it is also a diagnostic factor that informs
initiation of zidovudine treatment; a CD4 count below a certain threshold
indicates that treatment is needed. The CD4 count will, in turn, tend to in-
crease in response to treatment, and is monitored over time to inform the
future treatment strategy. Hence, it is a time-dependent confounder. In most
follow-up studies there is a possibility for subjects to be censored, and we al-
low the censoring to depend on the covariate and treatment history, as long
as subjects are alive.

In Ryalen et al. (2018a) we analysed a cohort of Norwegian males diagnosed
with prostate cancer, using the theory from this article to compare treatment
effectiveness of radiation and surgery, even though time-dependent confound-
ing were thought to be a minor issue. The continuous-time MSMs allowed us
to estimate causal cumulative incidences on the desired time-scale, starting
from the time of diagnosis. This example shows that (continuous-time) MSMs
can also be a preferable choice in the absence of time-dependent confounding.

2.2 Hypothetical scenarios and likelihood ratios

We consider observational event-history data where n i.i.d. subjects are fol-
lowed over the study period [0, T ]. Let N i,A and N i,D respectively be counting
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processes that jump when treatment A and outcome D of interest occur for
subject i. Furthermore, let Y i,A, Y i,D be the at-risk processes for A and D.
We let V0 be the collection of baseline variables that are not confounders, as
well as the treatment and outcome processes. L are the (time-dependent) con-
founders. For now, we assume independent censoring, but we will show how
our methods can be applied in some scenarios with dependent censoring in
Section 6.

Let F i,V0∪L
t denote the filtration that is generated by all the observable

events for individual i. Moreover, let P i denote the probability measure on
F i,V0∪L

T that governs the frequency of observations of these events, and λi,D
t

denote the intensity for N i,D with respect to P i and the filtration F i,V0∪L
t .

We aim to estimate the outcome in a hypothetical situation where a treat-
ment intervention is made according to a specified strategy. Suppose that the
frequency of observations we would have seen in this hypothetical scenario
is described by another probability measure P̃ i on F i,V0∪L

T . Furthermore, as-
sume that all the individuals are also i.i.d. in the hypothetical scenario and
that P̃ i � P i, i.e. that there exists a likelihood ratio

Ri
t :=

dP̃ i|Fi,V0∪L
t

dP i|Fi,V0∪L
t

for each time t. We will later describe how an explicit form of {Ri}i can be
obtained. It relies on the assumption that the underlying model is causal, a
concept we define in Section 3. For the moment we will not require this, but
only assume that λi,D

t defines the intensity with respect to F i,V0∪L
t for both

P i and P̃ i; that is, the functional form of λi,D
t is identical under both P i and

P̃ i.
Suppose that N i,D has an additive hazard with respect to P̃ i and the

filtration F i,V0

t that is generated by the components of V0. We stress that we
consider the intensity process marginalised over L, and it is thereby defined
with respect to F i,V0

t , and not F i,V0∪L
t . In other words, we assume that the

hazard for event D with respect to the filtration F i,V0

t is additive, and can be
written as

XXXiᵀ
t−bbbt, (1)

where bbbt is a bounded and continuous vector-valued function, and the compo-
nents of XXXi are covariate processes or baseline variables from V0.

2.3 Re-weighted additive hazard regression

Our main goal is to estimate the cumulative coefficient function in (1), i.e.

BBBt :=

∫ t

0

bbbsds (2)
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from the observational data distributed according to P = P 1 ⊗ · · · ⊗ Pn. If
we had known all the true likelihood ratios, we could try to estimate (2) by
re-weighting each individual in Aalen’s additive hazard regression (Andersen
et al., 1993, VII.4) according to its likelihood ratio. However, the true weights
are unlikely to be known, even if the model is causal. In real-life situations, we
can only hope to have consistent estimators for these weights. We therefore

consider F1,V0∪L
t ⊗ · · · ⊗ Fn,V0∪L

t -adapted estimates {R(i,n)
t }n that converge

to Ri
t under relatively weak assumptions, such that Aalen’s additive hazard

regression for the outcome re-weighted according to {R(i,n)
t } gives consistent

estimates of the causal cumulative hazard. The estimator we will consider is
defined as follows: let NNN (n) be the vector of counting processes and XXX(n) the
matrix containing the XXXi’s, that is,

NNN
(n)
t :=

⎛⎜⎝N1,D
t
...

Nn,D
t

⎞⎟⎠ and XXX(n)
s :=

⎛⎜⎝X1,1
s . . . X1,p

s
...

...
Xn,1

s . . . Xn,p
s

⎞⎟⎠ , (3)

and let YYY
(n),D
s denote the n × n-dimensional diagonal matrix where the i’th

diagonal element is Y i,D
s · R(i,n)

s− . The weighted additive hazard regression is
given by:

BBB
(n)
t :=

∫ t

0

(XXX
(n)ᵀ
s− YYY (n),D

s XXX
(n)
s− )−1XXX

(n)ᵀ
s− YYY (n),D

s dNNN (n)
s . (4)

2.3.1 Parameters that are transformations of cumulative hazards

It has recently been emphasised that the common interpretation of hazards in
survival analysis as the causal risk of death during (t, t+Δ] for an individual
that is alive at t, is often not appropriate; see e.g. Hernán (2010). An example
in Aalen et al. (2015) shows that this can also be a problem in RCTs; if N
is a counting process that jumps at the time of the event of interest, A is a
randomised treatment, and U is an unobserved frailty, the following causal
diagram describes such a situation:

A ��

��

Nt

��

U��




Nt+Δ

.

If we consider the probability of an event before Nt+Δ, conditioning on no
event at time t, we condition on a collider that opens a non-causal path from
A to the outcome. This could potentially have dramatic consequences since
much of survival analysis is based on the causal interpretation of hazards, e.g.
hazard ratios.

In Ryalen et al. (2018b), we have suggested a strategy to handle this situa-
tion: even if it is difficult to interpret hazard estimates causally per se, we can
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use hazard models to obtain other parameters that have more straightforward
interpretations. Population based measures such as the survival function, the
cumulative incidence functions, and the restrictive mean survival function, do
not condition on survival and will therefore not be subject to the selection
bias. Moreover, these measures, and many others (see Ryalen et al. (2018b);
Stensrud et al. (2018) for examples), solve differential equations driven by
cumulative hazards, i.e. they are functions ηηηt that can be written on the form

ηηηt = ηηη0 +

∫ t

0

F (ηηηs−)dBBBs, (5)

where BBB are cumulative hazard coefficients, and F is a Lipschitz continuous
matrix-valued function. In Ryalen et al. (2018b), we showed how to estimate ηηη
by replacing the integrator in (5) with an estimatorBBB(n) that can be written as
a counting process integral. Examples of such BBB(n) include the Nelson-Aalen,
or more generally Aalen’s additive hazard estimator. This gave rise to the
stochastic differential equation

ηηη
(n)
t = ηηη

(n)
0 +

∫ t

0

F (ηηη
(n)
s− )dBBB(n)

s , (6)

that is easy to solve on a computer; it is a piecewise constant, recursive equa-
tion that jumps whenever the integrator BBB(n) jumps. Hence, (6) can be solved
using a for loop over the jump times of BBB(n), i.e. the survival times of the
population.

A simple example of a parameter on the form (5) is the survival function,

which reads St = 1 −
∫ t

0
SsdBs, where B is the cumulative hazard for death.

In this case, the estimation strategy (6) yields the Kaplan-Meier estimator.
Nevertheless, some commonly studied parameters cannot be written on the
form (5), such as the median survival, and the hazard ratio.

In Ryalen et al. (2018b) we showed that ηηη(n) provides a consistent estimator
of ηηη if

– limn→∞ P (supt≤T |BBB(n)
t −BBBt| ≥ ε) = 0 for every ε > 0, i.e. the cumulative

hazard estimator is consistent, and
– the estimator BBB(n) is predictably uniformly tight, abbreviated P-UT.

The additive hazard estimator satisfies both these criteria, and additive hazard
regression can thus be used as an intermediate step for flexible estimation of
several parameters, such as the survival, the restricted mean survival, and the
cumulative incidence functions (Ryalen et al., 2018b). In Theorem 1, we show
that also the re-weighted additive hazard regression satisfies these properties,
which is a major result in this article. Thus, we can calculate causal cumulative
hazard coefficients, and transform them to estimate MSMs that solve ordinary
differential equations consistently. In Section 4.4 we illustrate how such esti-
mation can be done, by including an example of a marginal structural relative
survival model on simulated data.

A mathematically precise definition of P-UT is given in Jacod and Shiryaev
(2003, VI.6a). We will not need the full generality of this definition here.
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Rather, we will use Ryalen et al. (2018b, Lemma 1) to determine if processes

are P-UT. The Lemma states that whenever {JJJ (n)
t }n is a sequence of semi-

martingales on [0, T ] with Doob-Meyer decompositions

JJJ
(n)
t =

∫ t

0

ρρρ(n)s ds+MMM
(n)
t ,

where {MMM (n)}n are square integrable local martingales and {ρρρ(n)}n are pre-
dictable processes such that

lim
a→∞ sup

n
P

(
sup
s

|ρρρ(n)s |1 ≥ a

)
= 0 and (7)

lim
a→∞ sup

n
P

(
Tr〈MMM (n)〉T ≥ a

)
= 0, (8)

then {JJJ (n)
t }n is P-UT. Here, Tr is the trace function, and 〈·〉 is the predictable

variation.

2.4 Consistency and P-UT property

The consistency and P-UT property ofBBB(n) introduced in Section 2.3 is stated
as a Theorem below. A proof can be found in the Appendix.

Theorem 1 (Consistency of weighted additive hazard regression) Sup-
pose that

I) The conditional density of R
(i,n)
t given F i,V0∪L

t does not depend on i,
II)

EP [sup
t≤T

|λ1,D
t |2] < ∞ and EP [sup

t≤T
|XXX1

t |2] < ∞

III) Let

ΓΓΓ
(n)
t :=

(
1

n
XXX

(n)ᵀ
t− YYY

(n),D
t XXX

(n)
t−

)
=

(
1
n

∑n
k=1 R

(k,n)
t− Xk,i

t−Y k,D
t Xk,j

t−
)
i,j

,

and suppose that

lim
a→∞ inf

n
P

(
sup
t≤T

Tr
(
ΓΓΓ

(n)−1
t

)
> a

)
= 0,

IV) Suppose that {Ri}i and {R(i,n)}i,n are uniformly bounded and

lim
n−→∞P

(∣∣R(i,n)
t −Ri

t

∣∣ > δ
)
= 0 (9)

for every i, δ > 0 and t.
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Then {BBB(n)}n is P-UT and

lim
n−→∞P

(
sup
t≤T

∣∣BBB(n)
t −BBBt

∣∣ ≥ δ

)
= 0, (10)

for every δ > 0.

Heuristically, condition I) states that if we know individual i’s realisation
of the variables and processes in V0 ∪L up to time t, no other information on
individual i is used for estimating her weight at t. Condition II) ensures that
the number of outcome events will not blow up, or suddenly grow by an ex-
treme amount. Condition III) implies that there can be no collinearity among
the covariates, or more precisely that the inverse matrix of

(
E[X1,i

t X1,j
t ]

)
i,j

is uniformly bounded in t. Condition IV ) states that the weight estimator
converges to the theoretical weights Ri

t, in a not very strong sense. The uni-
form boundedness of {Ri}i is a positivity condition similar to the positivity
condition required for standard inverse probability weighting.

3 Causal validity and a consistent estimator for the individual
likelihood ratios

We can model the individual likelihood ratio in many settings where the under-
lying model is causal. To do this, we assume that each subject is represented
by the outcomes of r baseline variables Q1, . . . Qr, and d counting processes
N1, . . . , Nd. Moreover, we let Ft denote the filtration that is generated by all
their possible events before t.

Suppose that λ1, . . . , λd are the intensities of the counting processesN1, . . . , Nd

with respect to the filtration Ft and the observational probability P . Now, by
Jacod (1975), P |FT

is uniquely determined by all the intensities and the con-
ditional densities at baseline of the form dP

(
Qk|Qk−1, . . . , Q1

)
, because the

joint density at baseline factorises as a product of conditional densities.
Suppose that the observational scenario, where the frequency of events are

described by P , is subject to an intervention on the component represented by
N j . Our model is said to be causal if such an intervention would not change
the ’local characteristics’ of the remaining nodes. More precisely this means
that

– The functional form of the intensities on which we do not intervene coin-
cide under P and the intervened scenario P̃ , i.e. λk would also define the
intensity for Nk with respect to P̃ when k 
= j, and

– The conditional density of each Qk, given Qk−1, . . . , Q1 would be the same
with respect to both P and P̃ , i.e.

dP
(
Qk|Qk−1, . . . , Q1

)
= dP̃

(
Qk|Qk−1, . . . , Q1

)
for k = 1, · · · r.
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If the intervention instead were targeted at a baseline variable, say Qj , and
this intervention would replace dP

(
Qk|Qk−1, . . . , Q1

)
by dP̃

(
Qk|Qk−1, . . . , Q1

)
,

for k = 1, · · · r, the model is said to be causal if

– The intensity process for Nk with respect to P and P̃ coincide for all
k = 1, · · · p, and

– The remaining conditional densities at baseline coincide, i.e.

dP
(
Qk|Qk−1, . . . , Q1

)
= dP̃

(
Qk|Qk−1, . . . , Q1

)
,

for k 
= j.

Note that the latter is in agreement with Pearl’s definition of a causal model
(Pearl, 2000).

This notion of causal validity leads to an explicit formula for the likelihood
ratio. If the intervention is aimed at N j , changing the intensity from λj to λ̃j ,
then the likelihood ratio takes the form

Rt =
(∏
s≤t

θ
ΔNj

s
s

)
exp

( ∫ t

0

λj
s − λ̃j

sds
)
, (11)

where θt :=
λ̃j
t

λj
t

, see Røysland (2011) and Jacod (1975).

If the intervention is targeted at a baseline variable, the likelihood ratio
corresponds to the ordinary propensity score

R0 :=
dP̃

(
Qj |Qj−1, . . . , Q1

)
dP

(
Qj |Qj−1, . . . , Q1

) . (12)

Interventions on several nodes yield a likelihood ratio that is a product of
terms on the form (11) and (12). The terms in the product could correspond
to baseline interventions, time-dependent treatment interventions, or interven-
tions on the censoring intensity. It is natural to estimate the likelihood ratio,
or weight process by a product of baseline weights, treatment weights, and
censoring weights.

We want, of course, to identify the likelihood ratio that corresponds to P̃ , as
this is our strategy to assess the desired randomised trial. Following equations
(11) and (12), we see that the intervened intensities and baseline variables
must be modeled correctly, and specifically that a sufficient set of confounders
must be included when modeling the treatment intensity. Additionally, the
MSM for the outcome must be correctly specified. An important consequence
of the results in this paper is that a class of MSM parameters that solve ODEs
driven by cumulative hazards can be estimated consistently.

As long as the intervention acts on a counting process or a baseline vari-
able, the same formula would hold in much more general situations where the
remaining covariates are represented by quite general stochastic processes. The
assumption of ’coinciding intensities’ must then be replaced by the assumption
that the ’characteristic triples’, a generalisation of intensities to more general
processes, coincides for P and P̃ ; see Jacod and Shiryaev (2003, II.2).
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3.1 Estimation of continuous-time weights using additive hazard regression

Suppose we have a causal model as described in the beginning of Section 3,
allowing us to obtain a known form of the likelihood ratio Ri. To model the
hypothetical scenario, we need to rely on estimates of the likelihood ratio.
In the following, we will only focus on a causal model where we replace the
intensity of treatment by λ̃i,A, the intensity of N i,A with respect to P and the
subfiltration FV0

t . It is a consequence of the innovation theorem (Andersen

et al., 1993) that E[λi,A
t |FV0

t− ] = λ̃i,A
t . Moreover, an exercise in asymptotics of

stochastic processes shows that if we discretise time, the associated marginal
model structural weights from Robins et al. (2000) approximate (11) gradually
as the time-resolution increases.

We will not follow the route of Robins et al. (2000) to estimate Ri. In-
stead, we will use that (11) is the unique solution to the stochastic differential
equation

Ri
t = Ri

0 +

∫ t

0

Ri
s−dK

i
s

Ki
t =

∫ t

0

(θis − 1)dN i,A
s +

∫ t

0

λi,A
s ds−

∫ t

0

λ̃i,A
s ds,

with θi = λ̃i,A

λi,A . To proceed, we assume that λi,A and λ̃i,A satisfy the

additive hazard model, i.e. that there are vector valued functions hhht and h̃̃h̃ht,
and covariate processes ZZZt and Z̃̃Z̃Zt that are adapted to F i,V0∪L

t and F i,V0

t

respectively, and

λi,A
t = Y i,A

t ZZZiᵀ
t hhht and λ̃i,A

t = Y i,A
t Z̃̃Z̃Ziᵀ

t h̃̃h̃ht. (13)

The previous equation translates into the following:

Ri
t = Ri

0 +

∫ t

0

Ri
s−dK

i
s

Ki
t =

∫ t

0

(θis − 1)dNA,i
s +

∫ t

0

Y i,A
s ZZZiᵀ

s dHHHs −
∫ t

0

Y i,A
s Z̃̃Z̃Ziᵀ

s dH̃̃H̃Hs,

where HHHt =
∫ t

0
hhhsds and h̃̃h̃ht =

∫ t

0
h̃̃h̃hsds.

Our strategy is to replace Ri
0, HHH, H̃̃H̃H and θi by estimators. This gives the

following stochastic differential equation:

R
(i,n)
t = R

(i,n)
0 +

∫ t

0

R
(i,n)
s− dK(i,n)

s (14)

K
(i,n)
t =

∫ t

0

(θ
(i,n)
s− − 1)dN i,A

s +

∫ t

0

Y i,A
s ZZZiᵀ

s−dHHH
(n)
s −

∫ t

0

Y i,A
s Z̃̃Z̃Ziᵀ

s−dH̃̃H̃H
(n)
s ,

where the quantity R
(i,n)
0 is assumed to be a consistent estimator of Ri

0. We

will use the additive hazard regression estimatorsHHH(n) and H̃̃H̃H(n) for estimating



Title Suppressed Due to Excessive Length 11

HHH and H̃̃H̃H (Andersen et al., 1993). Moreover, suppose that θ
(i,n)
0 is a consis-

tent estimator of θi0, the intensity ratio evaluated at zero. Our candidate for

θ
(i,n)
t when t > 0 depends on the choice of an increasing sequence {κn}n with
lim

n−→∞κn = ∞ such that supn
κn√
n
< ∞. This estimator takes the form

θ
(i,n)
t =

⎧⎨⎩θ
(i,n)
0 , 0 ≤ t < 1/κn
∫ t
t−1/κn

Y i,A
s Z̃̃Z̃Ziᵀ

s−dH̃̃H̃H(n)
s

∫ t
t−1/κn

Y i,A
s ZZZiᵀ

s−dHHH
(n)
s

, 1/κn ≤ t ≤ T.
(15)

κn can thus be interpreted as a smoothing parameter. We let YYY (n),A be the di-
agonal matrix where the i’th diagonal element is Y i,A. The following Theorem
says that the above strategy works out.

Theorem 2 Suppose that

a. Each θi is uniformly bounded, and right-continuous at t = 0.
b. For each i,

lim
δ→0

P
(
inf
t≤T

|Z̃̃Z̃Ziᵀ
t h̃̃h̃ht| ≤ δ

)
= 0, (16)

c. E
[
sup
s≤T

|ZZZi
s|33

]
< ∞ and E

[
sup
s≤T

|Z̃̃Z̃Zi
s|33

]
< ∞ for every i

d.

lim
a→∞ sup

n
P

(
sup
s≤T

Tr
(( 1

n
ZZZ(n)ᵀ

s YYY (n),A
s ZZZ(n)

s

)−1
)
≥ a

)
= 0

and

lim
a→∞ sup

n
P

(
sup
s≤T

Tr
(( 1

n
Z̃̃Z̃Z(n)ᵀ

s YYY (n),A
s Z̃̃Z̃Z(n)

s

)−1
)
≥ a

)
= 0

Then we have that

lim
n→∞P

(
sup
t≤T

|R(i,n)
t −Ri

t| > δ

)
= 0 (17)

for every δ > 0 and i.

For Theorem 1 to apply we need that our additive hazard weight estimator
and the likelihood ratio are uniformly bounded. The latter will for instance
be the case if both λi,A − λ̃i,A and λ̃i,A/λi,A are uniformly bounded. We will,
however, only assume that the theoretical weights Ri are uniformly bounded.
In that case we can also make our weight estimator R(i,n) uniformly bounded,
by merely truncating trajectories that are too large.

4 Example

4.1 Software

We have developed R software for estimation of continuous-time MSMs that
solve ordinary differential equations, in which additive hazard models are used
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to model both the time to treatment and the time to the outcome of interest.
Our procedure involves two steps: first, we estimate continuous-time weights
using fitted values of the treatment model. These weights can be used to re-
weight the sample for estimating the outcome model. Second, we take the
cumulative hazard coefficients of the weighted (or causal) outcome model and
transform them to estimate ODE parameters that have a more appealing in-
terpretation than cumulative hazards. The two steps can be performed using
the R packages ahw and transform.hazards, both of which are available in
the repository github.com/palryalen. Below, we show an example on how
to use the packages on simulated data.

4.2 A simulation study

We simulate an observational study where individuals may experience a termi-
nating event D, so that the hazard for D depends additively on the treatment
A and a covariate process L. A and L are counting processes that jump from
0 to 1 for an individual at the instant treatment is initiated or the covariate
changes, respectively. The subjects receive treatment depending on L, such
that L is a time-dependent confounder. The subjects in the L = 1 group can
move into treatment, while the subjects in the L = 0 group may receive treat-
ment or move to the L = 1 group in any order. All subjects are at risk of
experiencing the terminating event. The following data generating hazards for
D,A, and L are utilised:

αD
t = α

D|0
t + α

D|A
t At− + α

D|L
t Lt− + α

D|A,L
t At−Lt− (18)

αA
t = α

A|0
t + α

A|L
t Lt− (19)

αL
t = α

L|0
t + α

L|A
t At−.

We want to assess the effect of A on D we would see if A were randomised,
i.e. if treatment initiation did not depend on L. To find the effect A has on D
we perform a weighted analysis.

We remark that this scenario could be made more complicated by e.g. al-
lowing the subjects to move in and out of treatment, or have recurrent treat-
ments. We could also have included a dependent censoring process, and re-
weighted to a hypothetical scenario in which censoring were randomised (see
Section 6).

4.3 Weight calculation using additive hazard models

We assume that the longitudinal data is organised such that each individual
has multiple time-ordered rows; one row for each time either A, L orD changes.

Our goal is to convert the data to a format suitable for weighted additive
hazard regression. Heuristically, the additive hazard estimates are cumulative
sums of least square estimations evaluated at the event times in the sample.
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The main function will therefore need to do two jobs; a) the data must be
expanded such that every individual, as long as he is still at risk of D, has a
row for each time D occurs in the population, and b) each of those rows must
have an estimate of his weight process evaluated just before that event time.

Our software relies on the aalen function from the timereg package. We
fit two additive hazard models for the transition from untreated to treated.
The first model assesses the transitions that we observe, i.e. where treatment
is influenced by a subjects realisation of L. Here, we use (19), i.e. the true
data generating hazard model for treatment initiation; an additive hazard
model with intercept and L as a covariate. The second model describes the
transitions under the hypothetical randomised trial in which each individual’s
treatment initiation time is a random draw of the treatment initiation times
in the population as a whole. The treatment regime in our hypothetical trial
is given by the marginal treatment initiation hazard of the study population,
which is the hazard obtained by integrating out L from (19). We estimate the
cumulative hazard using the Nelson-Aalen estimator for the time to treatment
initiation, by calling a marginal aalen regression.

In this way we obtain a factual and a hypothetical aalen object that are
used as inputs in our makeContWeights function. Other input variables include
the bandwidth parameter used in (15), weight truncation options, and an
option to plot the weight trajectories.

The output of the makeContWeights function is an expanded data frame
where each individual has a row for every event time in the population, with
an additional weight column containing time-updated weight estimates. To do
a weighted additive hazard regression for the outcome, we will use the aalen

function once again. Weighted regression is performed on the expanded data
frame by setting the weights argument equal to the weight column.

When the weighted cumulative hazard estimates are at hand, we can trans-
form our cumulative hazard estimates as suggested in Section 2.3.1, to obtain
effect measures that are easier to interpret. This step can be performed using
the transform.hazards package; see the GitHub vignette for several worked
examples.

4.4 A marginal structural model

We now suppose the intervention that imposes a marginal treatment initiation
rate is causally valid. This implies that the intensity for the event D has the
same form under the randomised scenario P̃ , i.e. that the hazard forD under P̃
for the filtration FA∪D∪L

t , generated by A,D, and L, takes the same functional
form as (18). We are, however, interested in the hazard with respect to P̃
and the subfiltration FA∪D

t , the filtration generated by A and D (note that
FA∪D∪L

t and FA∪D
t respectively correspond to FV0∪L

t and FV0
t from Section

2.2). By the innovation theorem the hazard with respect to P̃ and FA∪D
t takes

the form

β(t|A) = β0
t + βA

t At−.
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A straightforward regression analysis of the observational data cannot yield
causal estimates. Using the ideas from Section 2, we can estimate the cumu-
lative coefficients BA=0

t =
∫ t

0
β0
sds and BA=1

t − BA=0
t =

∫ t

0
βA
s ds consistently

by performing a weighted additive hazard regression.
Cumulative hazards, however, are not easy to interpret. We therefore assess

effects on the survival scale, using a marginal structural relative survival model.
In this example, our marginal structural relative survival RSA solves

RSA=a
t = 1 +

∫ t

0

(
−RSA=a

s RSA=a
s

)
d

(
BA=a

s

BA=0
s

)
. (20)

The quantity RSA=1 can be understood as the survival probability a subject
would have if he were exposed at time 0, relative to the survival probability
he would have if he were never exposed. Our suggested plugin-estimator is
obtained by inserting the estimated causal cumulative coefficients, i.e. the
weighted estimates B̂A=a and B̂A=0:

R̂S
A=a

t = 1 +

∫ t

0

(
−R̂S

A=a

s− R̂S
A=a

s−
)
d

(
B̂A=a

s

B̂A=0
s

)
.

4.5 Simulation details and results

We simulate subjects, none of which are treated at baseline. Initially, all the
patients start with L = 0, and the hazards for transitioning from one state to
another is constant. As described in Section 4.3, we fit additive hazard models
for the time to treatment initiation, one for the observed treatment scenario,
i.e. (19), and one for the hypothetical randomised scenario. These models
are inserted into makeContWeights to obtain weight estimates. Finally, we
estimate the additive hazard model by calling the aalen function where the
weights option is set equal to the weight column in the expanded data set.

We make comparisons to the discrete-time, stabilised IPTWs, calculated
using pooled logistic regressions. To do this, we discretise the study period
[0, 10] into K equidistant subintervals, and include the time intervals as cate-
gorical variables in the regressions. We fit two logistic regressions; one for the
weight numerator, regressing only on the intercept and the categorical time
variables, and a covariate-dependent model for the weight denominator, re-
gressing on the intercept, the categorical time variables, and the time-updated
covariate process. We then calculate IPTWs by extracting the predicted prob-
abilities of the two logistic regression model fits, and inserting them into the
cumulative product formula (Robins et al., 2000, eq. (17)).

In the upper three rows of Figure 1 we display estimates of the causal
cumulative hazard coefficient, i.e. estimates of BA=1 − BA=0, for a range of
sample sises. We include estimates weighted according to our estimator (14),
the IPTW estimator, and the theoretical weights, i.e. the true likelihood ratios
{Ri}i. Compared to the discrete weight estimators, our continuous-time weight
estimator (14) gives better approximations to the curves that are estimated
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with the theoretical weights. In the lowest row of Figure 1 we plot R̂S
A=1

,
i.e. transformed estimates of the cumulative hazard coefficients re-weighted
according to the different weight estimators. We used the transform.hazards
package to perform the plugin-estimation.

5 Performance

In Figure 2 we plot mean weight estimates based on aggregated simulations
of the set-up in Section 4. The plot suggests that the discrete weights gradu-
ally approximate the continuous likelihood ratio as the time discretisation is
refined. However, the continuous-time weights (14) are closer to the expected
value of 1 at all times t, indicating less bias.

Choosing the bandwidth parameter will influence the weight estimator and
weighted additive hazard estimator in a bias-variance tradeoff; a small κn will
yield estimates with large bias and small variance, while a large κn will give
rise to small bias but large variance. It is difficult to provide an exact recipe
for choosing the bandwidth parameter, since a good choice depends on several
factors, such as the sample size, the distribution of the treatment times, as well
as the form and complexity of the true treatment model: if the true treatment
hazard is constant, a small κn is often appropriate. If the treatment hazard
is highly time-varying, κn should be chosen to be large, depending on the
sample size. Heuristically, several treatment times in the interval [t− 1/κn, t]
for each t would be desirable, but this is not possible in every situation, e.g.
when the treatment time distribution is skewed. Such distributions can lead
to instable, and possibly large weights for some subjects, even if the chosen
bandwidth parameter is a good choice for most other subjects. One option
is to truncate weights that are larger than a specified threshold, at the cost
of introducing bias. We can assess sensitivity concerning the choice of the
bandwidth by performing an analysis for several bandwidth values, truncating
weights if necessary, and comparing the resulting weighted estimators. This
approach was taken in (Ryalen et al., 2018a, see e.g. Supplementary Figure
4), where no noticeable difference was found for four values of κn.

We inspect the bias and variance of our weight estimator for sample sizes
n under four bandwidth choices κz

n, z = 1, 2, 3, 4 at a specified time t0. By
aggregating estimates of k samples for each n we get precise estimates of the
bias and variance as a function of n for each choice. The bandwidth functions
are scaled such that they are identical at the smallest sample n0, with κ1

n0
=

κ2
n0

= κ3
n0

= κ4
n0

= 1/t0. Otherwise they satisfy κ1
n ∝ n1/2, κ2

n ∝ n1/3, κ3
n ∝

n1/5, and κ4
n ∝ n1/10.

We simulate a simple scenario where time to treatment initiation depends
on a binary baseline variable, such that λi,A

t = Y i,A
t (α0

t +αA
t x

i) for individual
i with at-risk indicator Y i,A and binary variable xi. We calculate weights that
re-weight to a scenario where the baseline variable has been marginalised out,
i.e. where the treatment initiation intensity is marginal. Utilising the fact that
the true likelihood ratio Ri has a constant mean equal to 1, we can find precise
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Fig. 1: The upper three rows: three realisations of the cumulative treatment
effect estimates for the same scenario, with n = 500, 1000, and 2000 from
top to bottom. A red line based on estimates re-weighted with the true Ri’s
is included for reference. The green line shows the unweighted estimates, the
gray lines are obtained using the IPTW estimates, while the black line is
obtained using our additive hazard weight estimates. The discrete weights
were estimated using pooled logistic regressions based on K = 4, 8, and 16
time intervals. Increasing the number of intervals moved the curves closer to
the red curve. The lowermost row: estimated causal effect of being treated at
t = 0 versus never being treated according to the relative survival MSM, based
on the n = 2000 sample.
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Fig. 2: Average weights based on a sample size of 3000. The theoretical weights
have expected value 1. Included are our additive hazard weights, as well as
IPTW with K = 4, 8, and 16 time intervals. We see that the discrete weights
are biased approximations of the theoretical likelihood ratio, while our additive
hazard weight estimator appears to be less biased.

estimates of the bias and variance of the additive hazard weight estimator (14)
at time t0.

We plot the bias and variance of the weight estimator as a function of n
under the strategies κ1

n, κ
2
n, κ

3
n and κ4

n in Figure 3. We see that the convergence
strategy κ1

n yields a faster relative decline in bias, but a higher variance as
the sample size increases. Meanwhile, the strategy κ4

n has a slower decline in
bias, but a smaller variance than the other strategies. Finally, the strategies
κ2
n and κ3

n lie mostly between κ1
n and κ4

n both concerning bias and variance,
as a function of the sample size. We also see empirical justification for the
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Fig. 3: Bias and variance as a function of n, for four bandwidth refinement
strategies.

requirement supn κn/n
1/2 < ∞, as the variance under the strategy κ1

n declines
very slowly as n is increased.

6 Censoring weights

Most standard martingale-based estimators in survival analysis are consistent
when we have independent censoring, see Andersen et al. (1993, III.2.1). We
have assumed independent censoring when conditioning on V0. A likely sit-
uation where this is violated is when we have independent censoring when
conditioned on L ∪ V0, but have dependent censoring if we only condition on
V0. If the model is causal with respect to an intervention that randomises
censoring sufficiently, we can model the scenario where this intervention had
been applied, and censoring is independent when conditioning on V0. This
means that many estimators that are common in survival analysis will be con-
sistent. Suppose that N i,c is a counting process that jumps when individual
i is censored. Moreover, let λi,c

t denote the intensity of N i,c with respect to

the filtration F i,V0∪L
t , and let λ̃i,c

t denote its intensity of with respect to the

filtration F i,V0

t .

Suppose that there is a meaningful intervention that would give a scenario
with frequencies that are governed by P̃ and its intensity for censoring with
respect to F i,V0∪L

t , is replaced by λ̃i,c
t . If the model is causal with respect to
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this intervention, the corresponding likelihood ratio process is given by

Ri,c
t =

∏
s≤t

( λ̃i,c
s

λi,c
s

)ΔNi,c
s

exp
(
−
∫ t

0

λ̃i,c
s − λi,c

s ds
)
. (21)

However, as we only need to apply weights to observations strictly before the
time of censoring, we only need to consider

Ri,c
t = exp

(
−
∫ t

0

λ̃i,c
s − λi,c

s ds
)
. (22)

This process is a solution to the equation

Ri,c
t = 1 +

∫ t

0

Ri,c
s (λi,c

s − λ̃i,c
s )ds. (23)

Furthermore, we assume additive hazard models, i.e. that

λc
t = Y i,c

t UUU iᵀ
t−gggt and λ̃i,c

t = Y i,c
t Ũ̃ŨU iᵀ

t−g̃̃g̃gt, (24)

for an F i,V0∪L
t -adapted covariate process UUU i, and an F i,V0

t -adapted covariate
process Ũ̃ŨU i, and vector valued functions ggg and g̃̃g̃g. Following Theorem 2, we
see that these weights are consistently estimated by R(i,n,c) defined by the
equation:

R
(i,n,c)
t = 1 +

∫ t

0

R
(i,n,c)
s− dK(i,n,c)

s

K
(i,n,c)
t =

∫ t

0

Y i,c
s UUU iᵀ

s−dGGG
(n)
s −

∫ t

0

Y i,c
s Ũ̃ŨU iᵀ

s−dG̃̃G̃G
(n)
s ,

where GGG(n) and G̃̃G̃G(n) are the usual additive hazards estimates of
∫ ·
0
gggsds and∫ ·

0
g̃̃g̃gsds.

7 Discussion

Marginal structural modeling is an appealing concept for causal survival anal-
ysis. Here we have developed theory for continuous-time MSMs that may moti-
vate the approach for practical research. Indeed, we show that the continuous-
time MSMs yield consistent effect estimates, even if the treatment weights
are estimated from the data. Our continuous-time weights seem to perform
better than the discrete time weights when we study processes that develop
in continuous time. Furthermore, our weights can be estimated using additive
hazard regressions, which are easy to fit in practice. Importantly, we also show
that causal effect estimates on the hazard scale, e.g. weighted cumulative haz-
ard estimates, can be transformed consistently to estimate other parameters
that are easier to interpret causally. We thereby offer a broad strategy to ob-
tain causal effect estimates for time-to-event outcomes. Previously, Huffer and
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McKeague (1991) and McKeague (1987) derived results on weighted additive
hazard regression, but they do not cover our needs, as our weights are esti-
mates of likelihood ratios with respect to filtrations that are larger than the
filtration for the additive hazard that we want to estimate.

Estimators of IPTWs may be unstable and inefficient, e.g. when there are
strong predictors of the treatment allocation. In practice, applied researchers
will often face a bias-variance tradeoff when considering confounder control
and efficient weight estimation. This bias-variance tradeoff has been discussed
in the literature, and weight truncation has been suggested to reduce the vari-
ance, at the cost of introducing bias; see e.g. Cole and Hernán (2008). Similar
to IPTWs, and for the same reasons, our continuous-time weight estimator
may be instable, and proper weight estimation requires a delicate balance
between confounder control and precision in most practical situations.

We have considered the treatment process A to be a time-to-event variable,
but our strategy can be generalised to handle recurrent, or piecewise constant
exposures. If A is allowed to have multiple jumps, the estimation procedure
becomes more complex, but the same estimators (4) and (14) can be used with
few modifications. We think, however, that many important applications can
be explored assuming that A is the time to an event.

A different approach that accounts for time-dependent confounding is the
structural nested model, which parameterises treatment effects directly in a
structural model (Robins, 2014). While this procedure avoids weighting, and
will often be more stable and efficient, it relies on other parametric assumptions
and can be harder to implement (Vansteelandt and Sjolander, 2016).

We conjecture that there is a similar consistency result as Theorem 1 when
the outcome model is a weighted Cox regression. However, using a Cox model
in the hypothetical scenario after marginalisation leads to restrictions on the
data generating mechanisms that are not properly understood, see e.g. Haver-
croft and Didelez (2012). This issue is related to the non-collapsibility of the
Cox model, and it is a problem regardless of the weights being used are con-
tinuous or discrete.
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Appendix: proofs

We need some lemmas to prove Theorem 1.
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Lemma 1 Suppose that {V i}i are processes on [0, T ] such that supi E
[
sups |V i

s |
]
<

∞, then

lim
a→∞ sup

n
P

(
sup
s

∣∣ 1
n

n∑
i=1

V i
s

∣∣ ≥ a

)
= 0. (25)

Proof By Markov’s inequality, we have for every a > 0 that

P

(
sup
s

∣∣ 1
n

n∑
i=1

V i
s

∣∣ ≥ a

)
≤ 1

na

n∑
i=1

EP

[
sup
s

∣∣V i
s

∣∣],
which proves the claim.

Lemma 2 (A perturbed law of large numbers) Suppose

I) p−1 + q−1 = 1, p < ∞,
II) {Vi}i ⊂ Lp(P ), {Si}i ⊂ Lq(P ) such that {(Vi, Si)}i is i.i.d., and Vi, Si

are measurable with respect to a σ-algebra Fi,
III) Triangular array {S(i,n)}n,i≤n such that

lim
n−→∞P

(
|S(1,n) − S1| ≥ ε

)
= 0 (26)

for every ε > 0, and there exists a S̃ ∈ Lq(P ) such that S̃ ≥ |S(1,n)| for
every n,

IV) The conditional density of S(i,n) given Fi does not depend on i.

This implies that

lim
n−→∞E

[∣∣∣∣ 1n
n∑

i=1

S(i,n)Vi − EP [S1V1]

∣∣∣∣] = 0. (27)

Proof From the triangle inequality and condition IV ) we have that

E

[∣∣∣∣ 1n
n∑

i=1

S(i,n)Vi −
1

n

n∑
i=1

SiVi

∣∣∣∣] ≤ 1

n

n∑
i=1

E
[∣∣(S(i,n) − Si

)
Vi

∣∣]
=E

[∣∣(S(1,n) − S1

)
V1

∣∣].
The dominated convergence theorem implies that the last term converges to 0.
Finally, the weak law of large numbers and the triangle inequality yields

lim
n−→∞E

[∣∣∣∣ 1n
n∑

i=1

S(i,n)Vi − EP [S1V1]

∣∣∣∣]

≤ lim
n−→∞E

[∣∣∣∣ 1n
n∑

i=1

S(i,n)Vi −
1

n

n∑
i=1

SiVi

∣∣∣∣]+ E

[∣∣∣∣ 1n
n∑

i=1

SiVi − E[S1V1]

∣∣∣∣] = 0.

Lemma 3 {Vi}i i.i.d. non-negative variables in L2(P ), then

lim
n→∞P

(
1

n
max
i≤n

Vi ≥ ε

)
= 0 (28)

for every ε > 0.
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Proof Note that

P

(
1

n
max
i≤n

Vi > ε

)
= 1− P

(
max
i≤n

Vi ≤ εn

)
= 1− P

(
V1 ≤ εn

)n

=1−
(
1− P

(
V1 > εn

))n

If n > ‖V1‖2ε−1, we therefore have by Chebyshev’s inequality that

P

(
1

n
max
i≤n

Vi > ε

)
≤ 1−

(
1− E[V 2

1 ]

n2ε2

)n

,

where the last term converges to 0 when n → ∞ since lim
n−→∞n log

(
1− E[V 2

1 ]
n2ε2

)
=

0 for every ε > 0.

Lemma 4 Define γi
s := Y i,D

s XXXi
sbbbs, where XXXi

s is the i’th row of XXX
(n)
s . If the

assumptions of Theorem 1 are satisfied, then

lim
n−→∞P

(
sup
t

∣∣∣∣ ∫ t

0

ΓΓΓ (n)−1 1

n

n∑
i=1

R
(i,n)
s− XXXiᵀ

s−(λ
i,D
s − γi

s)ds

∣∣∣∣ ≥ δ

)
= 0 (29)

for every δ > 0.

Proof Assumption III) from Theorem 1 and Lemma 1 implies that

lim
J→∞

inf
n

P

(
sup
t

∣∣Γ (n)−1
t

1

n

n∑
i=1

R
(i,n)
t− XXXiᵀ

t−(λ
i,D
t − γi

t)
∣∣ > J

)
= 0. (30)

Moreover, Lemma 2 implies that

1

n

n∑
i=1

R
(i,n)
t− XXXiᵀ

t−(λ
i,D
t − γi

t)

converges in probability to

EP

[
R1

t−XXX
1ᵀ
t−(λ

1,D
t − γ1

t )
]

However, from the innovation theorem we have that this equals

EP̃

[
XXX1ᵀ

t−(λ
1,D
t − γ1

t )
]
= EP̃

[
XXX1ᵀ

t−(EP̃ [λ
1,D
t |F1,V0

t− ]− γ1
t )
]
= 0,

since XXX1
t− and γ1

t are F1,V0

t− measurable. This and (30) enables us to apply
Andersen et al. (1993, Lemma II.5.3) to obtain (29).
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Lemma 5 Suppose that II) and III) from Theorem 1 are satisfied and let

MMM
(n)
t :=

(
N1,D

t −
∫ t

0
λ1,D
s ds, . . . , Nn,D

t −
∫ t

0
λn,D
s ds

)ᵀ
. Then

ΞΞΞ
(n)
t :=

1

n

∫ t

0

ΓΓΓ (n)−1
s XXX

(n)ᵀ
s− YYY (n),D

s dMMM (n)
s (31)

defines a square integrable local martingale with respect to the filtration F1,V0∪L
s ⊗

· · · ⊗ Fn,V0∪L
s and

lim
n→∞P

(
Tr(〈ΞΞΞ(n)〉T ) ≥ δ

)
= 0 (32)

for every δ > 0.

Proof Writing λλλ(n) for the diagonal matrix with i’th diagonal element equal to
λi,D, we have that

Tr(〈ΞΞΞ(n)〉T ) =
∫ T

0

1

n2
Tr

(
ΓΓΓ (n)−1

s XXX
(n)ᵀ
s− YYY (n),D

s λλλ(n)
s YYY (n),D

s XXX
(n)
s−ΓΓΓ (n)−1

s

)
ds.

(33)

Moreover,

1

n2
Tr

(
ΓΓΓ (n)−1

s XXX
(n)ᵀ
s− YYY (n),D

s λλλ(n)
s YYY (n),D

s XXX
(n)
s−ΓΓΓ (n)−1

s

)
(34)

≤ 1

n2
Tr

(
ΓΓΓ (n)−1

s XXX
(n)ᵀ
s− YYY (n),D

s XXX
(n)
s−ΓΓΓ (n)−1

s

)
max
i≤n

Y i,D
s R

(i,n)
s− λi,D

s (35)

≤Tr

(
ΓΓΓ (n)−1

s

)( 1
n
max
i≤n

λi,D
s

)
‖R(i,n)‖∞ (36)

≤Tr

(
ΓΓΓ (n)−1

s

)( 1
n

∑
i≤n

λi,D
s

)
‖R(i,n)‖∞ (37)

Now, III), (37) and Lemma 1 implies that

lim
a→∞ inf

n
P

(
sup
s

1

n2
Tr

(
ΓΓΓ (n)−1

s XXX
(n)ᵀ
s− YYY (n),D

s λλλ(n)
s YYY (n),D

s XXX
(n)
s−ΓΓΓ (n)−1

s

)
≥ a

)
= 0.

On the other hand, Lemma 3, (36) and III) gives us that

lim
n→∞P

(
1

n2
Tr

(
ΓΓΓ (n)−1

s XXX
(n)ᵀ
s− YYY (n),D

s λλλ(n)
s YYY (n),D

s XXX
(n)
s−ΓΓΓ (n)−1

s

)
≥ δ

)
= 0

for every s and δ > 0, so Andersen et al. (1993, Propositon II.5.3) implies
that (31) also holds.
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Proof (Theorem 1) We have the following decomposition:

BBB
(n)
t −BBBt =

∫ t

0

(XXX
(n)ᵀ
s− YYY (n),D

s XXX
(n)
s− )−1

(
XXX

(n)ᵀ
s− YYY (n),D

s λλλ(n)
s −XXX

(n)ᵀ
s− YYY (n),D

s XXX
(n)
s− bs

)
ds

+

∫ t

0

(XXX
(n)ᵀ
s− YYY (n),D

s XXX
(n)
s− )−1XXX

(n)ᵀ
s− YYY (n),D

s dMMM (n)
s

=

∫ t

0

ΓΓΓ (n)−1 1

n

n∑
i=1

R
(i,n)
s− XXXiᵀ

s−(λ
i,D
s − γi

s)ds+ΞΞΞ
(n)
t .

Leglarts inequality (Jacod and Shiryaev, 2003, Lemma I.3.30) together with
Lemma 5 implies that ΞΞΞ(n) converges uniformly in probability to 0. Moreover,

Lemma 4 implies that
∫ ·
0
ΓΓΓ (n)−1 1

n

∑n
i=1 R

(i,n)
s− XXXiᵀ

s−(λ
i,D
s − γi

s)ds converges in
same sense to 0, which proves the consistency.

To see that BBB(n) is P-UT, note that it coincides with the sum of BBBt, ΞΞΞ
(n)

and
∫ ·
0
ΓΓΓ

(n)−1
s

1
n

∑n
i=1 R

(i,n)
s− XXXiᵀ

s−(λ
i
s − γi

s)ds. According to Ryalen et al. (2017,
Lemma 1), the latter is P-UT since III) and Lemma 1 implies (7). Moreover,
BBBt =

∫ ·
0
bbbsds is clearly P-UT, since bbbt is uniformly bounded. ΞΞΞ(n) is also P-UT

since Lemma 5 implies that (8) is satisfied. Finally, as BBB(n) is a sum of three
processes that are P-UT, it is necessarily P-UT itself.

Proof of Theorem 2

Lemma 6 Suppose that c. and d. from Theorem 2 are satisfied, and that

I)

lim
a→∞ sup

n
P

(
sup
t

∣∣θ(i,n)t

∣∣ ≥ a

)
= 0,

II) θ
(i,n)
t− converges to θit in probability for each i and t.

Then we have that K(i,n) is predictably uniformly tight (P-UT) and

lim
n

P

(
sup
t

∣∣K(i,n)
t −Ki

t

∣∣ ≥ ε

)
= 0 (38)

for every i and ε > 0.

Proof Note that

K
(i,n)
t −Ki

t =

∫ t

0

(θ
(i,n)
s− −θis)dN

i,A
s +n−1/2

∫ t

0

Y i
sZZZ

iᵀ
s−dWWW

(n)
s −n−1/2

∫ t

0

Y i,A
s Z̃̃Z̃Ziᵀ

s−dW̃̃W̃W
(n)
s ,

(39)

where WWW
(n)
t := n1/2(HHH

(n)
t −HHHt) and W̃̃W̃W

(n)
t := n1/2(H̃̃H̃H

(n)
t − H̃̃H̃Ht) are square-

integrable martingales with respect to F1,V0∪L
t ⊗ · · · ⊗ Fn,V0∪L

t and F1,V0

t ⊗
· · · ⊗ Fn,V0

t respectively.
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Let τ be an optional stopping time and note that

E

[∣∣∣∣ ∫ τ

0

(θ
(i,n)
s− − θis)dN

i,A
s

∣∣∣∣] ≤ E

[ ∫ τ

0

∣∣θ(i,n)s− − θis
∣∣dN i,A

s

]
= E

[ ∫ τ

0

∣∣θ(i,n)s− − θis
∣∣λi,A

s ds

]
,

so by Lenglarts inequality, (Jacod and Shiryaev, 2003, I.3.30), we see that

lim
n−→∞P

(
sup
t≤T

∣∣∣∣ ∫ t

0

(θ
(i,n)
s− − θis)dN

i,A
s

∣∣∣∣ ≥ ε

)
= 0 (40)

for every ε > 0 if

lim
n−→∞P

(∫ T

0

∣∣θ(i,n)s− − θis
∣∣λi,A

s ds ≥ ε

)
= 0, (41)

for every ε > 0. The latter property holds due to I), II) and Andersen et al.
(1993, Proposition II.5.3).

Since {
∫ t

0
Y i,A
s ZZZiᵀ

s−dWWW
(n)
s }n converges in the skorokhod topology, we have

that {supt≤T |
∫ t

0
Y i,A
s ZZZiᵀ

s−dWWW
(n)
s |}n is tight (Jacod and Shiryaev, 2003, Theo-

rem VI.3.21). Therefore, we also get that

lim
n−→∞P

(
sup
t≤T

|n−1/2

∫ t

0

Y i,A
s ZZZiᵀ

s−dWWW
(n)
s | ≥ ε

)
= 0 (42)

for every ε > 0. For the same reason we also have

lim
n−→∞P

(
sup
t≤T

|n−1/2

∫ t

0

Y i,A
s Z̃̃Z̃Ziᵀ

s−dW̃̃W̃W
(n)
s | ≥ ε

)
= 0. (43)

By combining (42),(43) and (40), we obtain that

lim
n−→∞P

(
sup
t≤T

|K(i,n)
t −Ki

t | ≥ ε

)
= 0 (44)

for every ε > 0.

To see that K(i,n) is P-UT, note that the compensator of
∫ ·
0
(θ

(i,n)
s− −1)dN i,A

s

equals
∫ ·
0
(θ

(i,n)
s− − 1)λi,A

s ds and

〈
∫ ·

0

(θ
(i,n)
s− − 1)dN i,A

s −
∫ ·

0

(θ
(i,n)
s− − 1)λi,A

s ds〉T =

∫ T

0

(θ
(i,n)
s− − 1)2λi,A

s ds.

The assumptions I) in this Lemma and c) together with Ryalen et al. (2017,

Lemma 1) therefore imply that
∫ ·
0
(θ

(i,n)
s− − 1)dN i,A

s is P-UT.

To see that
∫ ·
0
Y i
s Z̃̃Z̃Z

iᵀ
s−dH̃̃H̃H

(n)
s is P-UT, note that∫ ·

0

Y i
s Z̃̃Z̃Z

iᵀ
s−dH̃̃H̃H

(n)
s = n−1/2

∫ ·

0

Y i
s Z̃̃Z̃Z

iᵀ
s−dW̃̃W̃W

(n)
s +

∫ ·

0

Y i
s Z̃̃Z̃Z

iᵀ
s−dH̃̃H̃Hs. (45)

An analogous decompositon yields that
∫ ·
0
Y i
sZZZ

iᵀ
s−dHHH

(n)
s is P-UT. This means

that K(i,n) is a sum of three processes that are P-UT, and must therefore be
P-UT itself.
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Lemma 7 Suppose that

I) {κn}n increasing sequence of positive numbers such that

lim
n−→∞κn = ∞ and sup

n

κn√
n
< ∞,

II) hhht is a bounded and continuous vector valued function,
III) ZZZi is caglad with E[supt≤T |ZZZi

t|33] < ∞,
IV)

lim
J→∞

sup
n

P

(
Tr

(( 1
n
ZZZ

(n)ᵀ
t− YYY

(n),A
t ZZZ

(n)
t− )−1

)
≥ J

)
= 0 (46)

V) Y i,AZZZiᵀ
·−hhh defines the intensity for N i,A with respect to P and F i,V0· .

Now,

lim
n−→∞P

(
sup

1/κn≤t≤T

∣∣∣κn

∫ t

t−1/κn

Y i,A
s ZZZiᵀ

s−dHHH
(n)
s − Y i,A

t ZZZiᵀ
t−hhht

∣∣∣ ≥ ε

)
= 0.

(47)

Proof Note that

κn

∫ t

t−1/κn

Y i,A
s ZZZiᵀ

s−dHHH
(n)
s − Y i,A

t ZZZiᵀ
t−hhht (48)

=
κn√
n

∫ t

0

Y i,A
s ZZZiᵀ

s−dWWW
(n)
s − κn√

n

∫ t−1/κn

0

Y i,A
s ZZZiᵀ

s−dWWW
(n)
s (49)

+ κn

∫ t

t−1/κn

Y i,A
s ZZZiᵀ

s−hhhsds− Y i,A
t ZZZiᵀ

t−hhht. (50)

The martingale central limit theorem implies that {WWW (n)} is a sequence
of martingales that converges in law to a continuous Gaussian processes with
independent increments, see Andersen et al. (1993). Moreover, Ryalen et al.
(2017, Proposition 1) says that {WWW (n)}n is P-UT.

Therefore Jacod and Shiryaev (2003, Theorem VI 6.22) implies that
∫ ·
0
Y i,A
s ZZZiᵀ

s−dWWW
(n)
s

converges in law to a continuous process, so it is C-tight. Moreover, from Jacod
and Shiryaev (2003, Proposition VI.3.26) we have that

lim
n−→∞P

(
sup

1/κn≤t≤T

∣∣∣ ∫ t

0

Y i,A
s ZZZiᵀ

s−dWWW
(n)
s −

∫ t−1/κn

0

Y i,A
s ZZZiᵀ

s−dWWW
(n)
s

∣∣∣ ≥ ε

)
= 0

(51)
for every ε > 0. The mean value theorem of elementary calculus implies that

lim
n−→∞ sup

1/κn≤t≤T

∣∣∣κn

∫ t

t−1/κn

Y i,A
s ZZZiᵀ

s−hhhsds− Y i,A
t ZZZiᵀ

t−hhht

∣∣∣ = 0 (52)

P a.s. Combining (51) and (52) yields the claim.
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Proof (Proof of Theorem 2)
Combining (16) and the decomposition in the proof of Lemma 7, we see

that

lim
n−→∞P

(
sup

1/κn≤t≤T

∣∣∣∣κn

∫ t

t−1/κn

Y i,A
s Z̃̃Z̃Ziᵀ

s−dH̃̃H̃H
(n)
s /λ̃i,A

t − 1

∣∣∣∣ ≥ ε

)
= 0. (53)

Combining (16) and a. we also have

lim
n−→∞P

(
sup

1/κn≤t≤T

∣∣∣∣κn

∫ t

t−1/κn

Y i,A
s ZZZiᵀ

s−dHHH
(n)
s /λi,A

t − 1

∣∣∣∣ ≥ ε

)
= 0. (54)

Whenever t ≥ 1/κn, we have that by the continuous mapping theorem that

lim
n−→∞P

(
sup

1/κn≤t≤T

∣∣θ(i,n)t − θit
∣∣ ≥ ε

)

= lim
n−→∞P

(
sup

1/κn≤t≤T

∣∣θit(κn

∫ t

t−1/κn
Y i,A
s Z̃̃Z̃Ziᵀ

s−dH̃̃H̃H
(n)
s /λ̃i,A

t

κn

∫ t

t−1/κn
Y i,A
s ZZZiᵀ

s−dHHH
(n)
s /λi,A

t

− 1

)∣∣ ≥ ε

)
=0.

Since θi is right-continuous at t = 0, we have that

lim
n−→∞P

(
sup

0≤t≤T

∣∣θ(i,n)t − θit
∣∣ ≥ ε

)
= 0. (55)

Finally, Jacod and Shiryaev (2003, Corollary VI 3.33) implies that {(R(i,n)
0 ,K(i,n))}n

converges to (Ri
0,K

i) in probability. Since K(i,n) is P-UT,

R
(i,n)
t = 1 +

∫ t

0

R
(i,n)
s− dK(i,n)

s

and

Ri
t = 1 +

∫ t

0

Ri
s−dK

i
s

Jacod and Shiryaev (2003, Theorem IX 6.9 ) implies that R(i,n) converges to
Ri in probability.
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