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Deformation imaging and rotational mechanics in neonates: a
guide to image acquisition, measurement, interpretation, and
reference values
Afif EL-Khuffash1,2, Ulf Schubert3, Philip T. Levy4,5, Eirik Nestaas6,7,8 and Willem P. de Boode9, on behalf of the European Special Interest
Group “Neonatologist Performed Echocardiography” (NPE)

Advances in neonatal cardiac imaging permit a more comprehensive assessment of myocardial performance in neonates that could
not be previously obtained with conventional imaging. Myocardial deformation analysis is an emerging quantitative
echocardiographic technique to characterize global and regional ventricular function in neonates. Cardiac strain is a measure of
tissue deformation and strain rate is the rate at which deformation occurs. These measurements are obtained in neonates using
tissue Doppler imaging (TDI) or two-dimensional speckle tracking echocardiography (STE). There is an expanding body of literature
describing longitudinal reference ranges and maturational patterns of strain values in term and preterm infants. A thorough
understanding of deformation principles, the technical aspects, and clinical applicability is a prerequisite for its routine clinical use
in neonates. This review explains the fundamental concepts of deformation imaging in the term and preterm population, describes
in a comparative manner the two major deformation imaging methods, provides a practical guide to the acquisition and
interpretation of data, and discusses their recognized and developing clinical applications in neonates.
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INTRODUCTION
Characterization of myocardial adaptation with echocardiography
during the critical periods of development in neonates is
important for recognition and management of circulatory
disturbances.1 Conventional measures of left ventricular (LV)
function, such as shortening (SF) and ejection fraction (EF), assess
the changes in cavity dimensions, but are insufficient to detect
overt dysfunction in a timely manner, because their measure-
ments are influenced by image quality and inadequate reprodu-
cibility and standardization in neonates.2 Similarly, conventional
techniques to estimate right ventricular (RV) performance rely

largely on quantitative estimates and qualitative predictions that
are limited because of the unique three-dimensional structure of
the chamber.3,4 Although conventional echocardiography with
tissue Doppler (TD) velocity is considered to be reliable for
ventricular wall motion analysis, the visual estimation of wall
motion is very subjective and cannot be utilized as an aid to
clinical assessment.5 Many challenges also exist for serially
monitoring the cardiovascular status of preterm infants and sick
term infants, largely due to the relative insensitivity of clinical
markers (such as blood pressure and capillary refill time) in
defining hemodynamic compromise.6,7 For the management of a
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broad range of heart diseases, a quantitative, reproducible
approach for the serial assessment of cardiac function is of
paramount importance in neonates.8

The concept of deformation imaging is a novel technique,
recently introduced to the field of neonatology, and can
be measured by either speckle tracking echocardiography
(STE) or tissue Doppler imaging (TDI).9–11 Myocardial strain (ε)
is a measure of tissue deformation and strain rate (SR) is the
rate at which deformation occurs. Both are feasible and
reproducible markers of global and regional performance
that provide fundamental information on myocardial properties
and mechanics that would otherwise be unavailable
with conventional imaging.3,9–12 Myocardial strain can be
measured in terms of three normal strains (longitudinal,
radial, and circumferential) and six shear strains.13 Currently,
only normal strain and shear strain in the circumferential-
longitudinal plane (rotational mechanics) have been
investigated for clinical use in neonates.9 A thorough under-
standing of the basic principles of deformation imaging,
recognition of their applicability in term and preterm
infants, strengths, and limitations is essential for advancing
those techniques to routine clinical care. This review
explains the fundamental concepts of deformation
imaging, describes in a comparative manner the two major
deformation imaging methods, provides a practical guide to
the acquisition and interpretation of data, and discusses
the clinical applications and available reference ranges in the
term and preterm population.

BASIC CONCEPTS OF MYOCARDIAL DEFORMATION
Deformation refers to the change in the shape of the myocardium
from its baseline shape at end-diastole to its deformed shape at
end-systole.9 This occurs in response to sarcomere shortening due
to contraction (Fig. 1). The deformation leads to a reduction in
cavity size and ejection of blood from the ventricle. Myocardial
strain (ε) is a dimensionless index that is defined as the relative
tissue deformation under an applied force, and is expressed as a
percentage (%; see Geyer et al.14). SR (s−1) is the first derivative of
strain, or the speed at which deformation occurs in systole.14

When applied to the neonatal myocardium, strain and SR are used
as measures of global and regional ventricular function (Figs. 2
and 9).
Myocardial strain can be measured in terms of “normal” strain

and “shear” strain.13 Normal strain is caused by forces that act
perpendicular to the surface of the myocardial wall, resulting in
stretching or contraction without skewing of the volume.15 There
are three types of normal strain; longitudinal, radial, and
circumferential. Conversely, forces causing shear strain act parallel
to the surface of the wall and lead to a shift of volume borders
relative to one another as delineated by a “shear” angle.15 There
are six forms of shear strain grouped into three categories;
circumferential-longitudinal, circumferential-radial, and
longitudinal-radial. Myocardial shear in the circumferential-
longitudinal plane results in twist or torsional deformation of
the LV during ejection. Only the three normal forms of strain and

Fig. 1 Principles of deformation. Longitudinal strain refers to the
change in length of a segment from its baseline length in end-
diastole to its deformed shape in systole. Strain refers to the degree
of change in shape relative to the baseline and is expressed in %.
Shortening reflects negative values and lengthening positive values.
In this image, shortening of the mid-segment of the LV free wall is
illustrated
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circumferential-longitudinal shear strain (rotational mechanics)
have been investigated for clinical use in neonates.9

METHODS OF DEFORMATION ASSESSMENT
LV and RV deformation patterns differ based on their own unique
myoarchitectural fiber orientation. The LV myocardium consists of
circumferential fibers in the midwall layer and longitudinal fibers
in the endocardial and epicardial layers.16 During myocardial
contraction, the LV wall shortens and thickens with LV deforma-
tion occurring in three directions: (i) longitudinal shortening that
is directed from base to apex in the apical four-chamber view,
(ii) circumferential shortening along the circular perimeter
observed in a parasternal short-axis view, and (iii) radial thickening
directed toward the center of the LV cavity measured in the
parasternal short axis (14; Fig. 3). Deformation is assigned a
negative sign for shortening (in longitudinal and circumferential
planes) and a positive sign for thickening in the radial plane.
In the circumferential-longitudinal plane, the net difference in

the systolic rotation of the myocardium between the apical and
basal short-axis plane is referred to as twist (measured in degrees)
and represents the wringing motion of the LV during systole. If
normalized to the distance between the respective image planes,
it is referred to as torsion (°/cm). LV rotational mechanics (twist
and torsion) are assessed by STE.
Compared with the LV, the RV myofiber architecture is

composed of superficial oblique and dominant deep longitudinal
layers. The myofibers in the RV are aligned in a more longitudinal
direction than in the LV, and as the dominant pattern of RV
deformation, longitudinal shortening provides the major con-
tribution to stroke volume during systole and is a more sensitive
indicator of RV dysfunction.3,13,17 Deformation in the circumfer-
ential and radial directions in the RV may prove to be a valuable
measure of function in certain neonatal conditions (i.e., congenital

heart disease), but there is a paucity of studies that use these
measures in clinical practice and those studies have not been able
to demonstrate significant reliability in neonates.18,19

There are two established methods for assessing and calculat-
ing deformation entitled Lagrangian strain and Eulerian (natural)
strain.14,20 Lagrangian strain refers to the change in length relative
to an unstressed baseline length, against which all subsequent
deformation will be measured.21 Since Lagrangian strain is
measured as the separation distance between two regions of
myocardium relative to the original separation distance in end-
diastole, it is not affected by the heart rate (HR).22 STE lends itself
more readily to the calculation of Lagrangian strain, since the
baseline length is always known and can easily be used as a
reference.14 Eulerian strain calculation is based on a reference
length that is different at each interrogation time point, i.e., each
color TD frame, and is better suited for use with TDI. Natural and
Lagrangian strains are related so that one can be converted into
the other. STE software packages will report Lagrangian strain, but
natural strain (i.e., TD) can be derived from STE by conversion from
the Lagrangian strain. Studies that utilized strain and SR
measures to characterize ventricular function in neonates
must therefore indicate the software package and the type of
strain or SR.

INFLUENCES OF MYOCARDIAL CONTRACTILITY AND LOAD
DEPENDENCE
Deformation is affected by several factors that should be
considered when using strain imaging in clinical practice.
Specifically, global and regional strains (%) are influenced by
preload (which increases wall strain) and afterload (which reduces
wall strain; 14). Compared to strain, SR is thought to be less
dependent on loading conditions, and is a more accurate
reflection of intrinsic myocardial contractile function.23 Preclinical
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Fig. 4 The relationship between loading conditions and deformation parameters. There is a negative relationship between strain and
systemic vascular resistance (a surrogate of afterload) but a positive relationship between strain and left ventricle end-diastolic diameter (a
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studies in animal models have demonstrated that preload has a
positive impact on strain, whereas increasing afterload is
associated with its reduction.23–25 In preterm clinical studies,
surgical ligation of patent ductus arteriosus (PDA) results in a
sudden elevation in LV afterload and a reduction in LV preload
that significantly decreases LV strain in the immediate post-
operative period.2 In the early transitional period in preterm
infants, there is a negative correlation between strain and
measures of afterload and positive correlation between strain
and measures of preload.19,26 Antenatal magnesium sulfate
administration is associated with lower systemic vascular resis-
tance (SVR) and higher myocardial function as measured by strain
imaging, but SR appeared to be less influenced by loading
conditions, further validating the lower SR dependency on loading
conditions (27; Fig. 4).

VARIABILITY AND STANDARDIZATION OF DEFORMATION
IMAGING
Three factors modulate variability in deformation imaging; these
include variability in image acquisition, intra- and inter-observer
variability in post-acquisition processing, and differences between
echocardiographic equipment and proprietary software for image
analysis.3,28,29 This review addresses the first two factors (proper
image acquisition and validation of deformation measurements),
but in light of the push to standardize the acquisition of
these measures and reduce inter-vendor differences and ambi-
guities,21,30 it is important for the reader to review any details of
hardware settings, manual settings, and local imaging protocols to
get a better understanding of the values presented.
To measure and calculate myocardial strain and SR, there are

two different types of echocardiographic imaging modalities: TDI
and STE. First introduced as a post-processing feature of TDI with
velocity data converted to strain and SR, strain imaging
information has more recently also been derived from STE

computer processing.31 These imaging modalities derive informa-
tion on myocardial strain and SR from two fundamentally different
ways and will be considered separately.

TISSUE DOPPLER DEFORMATION IMAGING
Principles and validation in neonates
Echocardiographic strain was first derived from TDI velocity data
using the Doppler equation to convert ultrasound frequency shifts
to velocity information along the scan lines.31 In the longitudinal
plane of the ventricle, there is a velocity gradient from the base of
the heart toward the apex. Basal myocardial tissue moves at a
higher velocity (toward the apex in systole) than myocardial tissue
at the apex due to the tethering effects and the stationary position
of the apex (Fig. 5). TD-derived (longitudinal) deformation imaging
calculates SR by assessing the difference in velocity (the velocity
gradient) between points along the longitudinal plane. Strain is
then assessed by integrating the SR values by time. Only velocities
along (parallel to) the beam of the ultrasound are measured by the
TD method; therefore, deformation indices measured using TD are
highly dependent on the angle of insonation. Due to the high
temporal resolution of this technique, TD is well suited for
measurement of SR values in neonates (with a higher baseline HR)
as it employs a calculation method that utilizes the high TD frame
rates (FRs) (>180 frames per second; 26,32). In neonates, TDI-
derived deformation values can be obtained from several regions
of the heart. Longitudinal deformation can be measured from
most parts of the LV and RV and is more often measured in
neonates.26,32 Circumferential and radial deformation can only be
assessed in a few LV regions.33

To characterize ventricular function with longitudinal strain, some
studies have reported values from many heart segments,33–38 while
others have obtained values from the basal segment of the LV and
RV free walls, in addition to the septum.26,39–41 The LV
base remains the most challenging segment to assess with TD.

Fig. 5 Difference in velocity between two points along the long axis of the septum. The curves show tissue velocities by tissue Doppler during
the cardiac cycle. The point closer to the base (yellow) has a higher systolic and diastolic velocity when compared with the point closer to the
base (green). The difference in velocity is used to calculate strain rate and derive strain of that segment bordered by the two points
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The reliability of the results obtained from the LV base is reduced
because artifacts arising from the lungs often obscure the base.
This high dependency on the requirement for clear imaging of the
myocardial walls and the angle dependency (it is difficult to
maintain an angle insonation less than 20° between the
ultrasound beam and the LV wall), coupled with the artifacts of
extra-cardiac structures and image dropouts, can lead to over- and
underestimation of strain and SR values.42

The feasibility and reproducibility of TD-derived deformation
parameters have been established in term and preterm neo-
nates.11,36,37,41 The most reproducible measurements are assessed
in longer segments and when the LV base free wall is avoided as
site of measurement.35 Nestaas et al. conducted the first studies of
reproducibility in term infants and revealed moderate reproduci-
bility in obtaining strain and systolic SR with intraclass correlation
coefficients (ICC) ranging between 0.6–0.7 for intra-observer and
0.4–0.5 for inter-observer repeated measures.36,43 With enhanced
image optimization techniques, reliability data have improved in
term neonates for basal strain with coefficients of variation (COV)
values <15% and ICC values >0.75.35,38,40 In preterm infants,
measurements are feasible in about 90% of studies when
adequate imaging quality is achieved.41 Poon et al. reported
COV values of <5% for LV, septal and RV basal strain in preterm
infants.38 Helfer et al. further illustrated more modest reproduci-
bility results in preterm infants; the septum showed the best COV
ranging from 10% to 34% for intra- and 22% to 27% for inter-
observer variability, whereas the left wall had a higher and wider
range of values (17–57% for intra- and 29–60% for inter-observer
variability; 39). James et al. demonstrated that reproducibility of
basal longitudinal strain and SR measurements in the RV and
septum were more favorable than the LV in preterm infants.41 All
of these studies in preterm and term infants consistently show
reduced reproducibility of LV basal strain values, and cited poor
image quality and difficulty in obtaining an angle on insonation
<20° as the main reasons.

Image acquisition and offline data measurement
To obtain reliable deformation values, strain by TD imaging and
post-processing analysis protocols have been developed and
implemented in neonates.36,43 A clear electrocardiogram (ECG)
signal with a well-defined QRS complex is necessary for obtaining
a complete cardiac cycle for offline processing. Pulsed wave

Doppler of the aortic and mitral valves should be used to annotate
the timing of events. Timing of the aortic valve closure may also
be obtained from the TDI curves.44 An apical four-chamber view is
used to obtain a clear image of the walls with minimal artifact. The
transducer should be manipulated to align the wall of interest
parallel to the ultrasound beam. The sector width and depth
should be narrowed to just beyond the borders of the wall to
obtain a high FR (>180). The velocity scale (pulse repetition
frequency, PRF) should be adjusted to avoid aliasing. Three-cycle
analysis is more reproducible than single-cycle analysis in TD
imaging, and a minimum of three cycles must be recorded for
offline processing.1

Strain and SR values are generated during offline analysis. The
parameters are derived from a sample area (segment). The size of
the segment is set by the size of a specific region of interest (ROI)
within the myocardial wall, which is determined by the operator
(length and width) and a strain length (SL). The length of the ROI
should be adequate for optimal calculation, while minimizing
noise, and the width should not be larger than the width of the
actual wall of interest. The operator must set the SL, also referred
to as a computational distance. The SL is the length along the
ultrasound beam against which the velocities for each point
within the ROI are compared to derive the velocity gradient. The
segment size will be larger than the ROI as it stretches parallel to
the ultrasound beams toward the apex and the base of the heart.
The SL should not project outside the borders of the wall (into the
atrial tissue for example; Fig. 6). Additional “optional” settings, i.e.,
Gaussian smoothing and drift compensation, can be utilized to
minimize noise; however, with good image quality these settings
are most likely not necessary (Fig. 7). Optimal probe choices, ideal
ROI width and length and SL lengths have been published for
term and preterm infants and are summarized in
Table 1.35,36,38,39,43

Reference ranges and clinical applicability in the neonatal
population
Reference ranges for deformation parameters exist in the term
and preterm neonates26,35,37,45 (Table 2). In the term population,
LV longitudinal strain values range between −20 and −25 (%),
while SRs values range between −1.5 and −2.5 1/s, SRe between
2.8 and 3.2 1/s, and SRa slightly lower between 2.1 and 2.4 1/s. The
RV free wall has higher strain values when compared with LV

Fig. 6 Offline measurement of SR and strain using tissue Doppler. The sector width should be narrowed to increase the frame rate. The basal
segment of the wall is usually interrogated to obtain SR and strain values. The ROI dimensions (length and width) are set by the operator.
Strain length is also set while ensuring that the borders of the segment are not in contact with artifact or atrial tissue. The ROI can be moved
slightly along the wall to obtain a clean and noise-free SR and strain curve (see Fig. 7)
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free wall and septum; however, SR values are comparable. The
differences between LV and RV strain values may reflect the
differing loading conditions between the RV and LV in the early
neonatal period that may have an impact on strain but not SR. HR

and the persistence of fetal shunts during the early transitional
period appear to have a negligible impact on the measurements,
but age may play a role in the first year of age.11

There is early evidence of the utility of deformation parameters
in several disease states in term infants. Nestaas et al. demon-
strated that LV and RV deformation parameters are uniformly
lower in infants with hypoxic ischemic encephalopathy (HIE)
compared with healthy controls.35 Interestingly, these differences
occurred while SF was preserved between groups, further
demonstrating that strain imaging permits a more comprehensive
assessment of myocardial performance in neonates that could not
be previously obtained with conventional imaging.35 The same
group of investigators also demonstrated that infants with HIE
have similarly impaired myocardial function during days 1–3,
irrespective of whether they received therapeutic hypothermia,
suggesting that myocardial injury may be a result of the initial
insult rather than “cooling” treatment.46 In term infants with
severe persistent pulmonary hypertension of the newborn (PPHN)
not responsive to inhaled nitric oxide, RV strain significantly
improves following the administration of milrinone over a 24-h
period.47 With the establishment of reference values, TD-derived
deformation measures can now be used to assess the efficacy of
patient management strategies in health and disease and monitor
treatment response.
In the preterm population, transitional strain and SR values are

uniformly lower than those of term infants (Table 2). Two studies
have examined the maturational changes of basal deformation
parameters over the first few weeks of age.26,34 LV free wall strain
and SR values remain stable over the first week of age with LV
global strain showing a slight increase by 36 weeks post-
menstrual age (PMA). Septal and RV free wall show a steadier
increase over the first week of age and through 36 weeks
PMA.26,34 Like term infants, weight, gestation, and HR have a
minimal impact on these parameters. However, in the early
transitional period, there is a negative correlation between
echocardiography-derived estimates of SVR and LV and septal
strain values, and a positive correlation between increasing
preload associated with a PDA and LV strain.26,34 The relationship
between SR values and cardiac loading measures were less
pronounced, further supporting the dominant load dependency
of strain but not SR. Finally, infants with chronic lung disease (CLD)
have lower RV strain (–26.4 vs. –30.7%, p= 0.0.1) and RV SRa [4.2
vs. 5.3 1/s, p= 0.04) independent of gestation. CLD was shown to
be associated with increased pulmonary arterial pressure, which
may explain this association.34

TWO-DIMENSIONAL
SPECKLE TRACKING ECHOCARDIOGRAPHY
Principles and validation in the neonatal population
Two-dimensional STE (2D STE) is an imaging technique that uses
standard B-mode images to measure deformation by tracking the
movement of speckles within the myocardial wall. Speckles
represent fixed tissue markers, or “natural acoustic markers,” that
are randomly distributed throughout the myocardium and have
their own unique signature or “fingerprint”.20 The speckle patterns
result from acoustic backscatter generated by the reflected
ultrasound beam. The movement of this speckled pattern follows
myocardial tissue motion as it tracks the defined region of
speckles, frame by frame and eventually over the entire heart
cycle deriving the following information from segments of the
myocardial wall: displacement (the movement of those speckles),
velocity (the speed at which this movement occurs), strain (the
relative change in distance between those speckles), and SR (the
speed at which the change in distance occurs; 9).
Specialized measuring software programs divide the myocardial

walls of interest into segments and generate strain and strain rate
values for each region (Fig. 8). Both regional and global functional

Table 1. Optimal setting for tissue Doppler deformation
measurement

Term infants Preterm infants

Probe 5s or 7s 10s or 12s

Sector width Narrow Narrow

Sector depth Shallow Shallow

Velocity scale (cm/s) (avoid aliasing) −16 to 16 −16 to 16

Transducer frequency (MHz) 2.5–3.0 8.0

Pulse repetition frequency (kHz) 1.0 2.0

Velocity scale (cm/s) 16 16

Frame rate (FPS) >200 >200

Region of interest length (mm) 1 1

Region of interest width (mm) 2 or 3 2 or 3

Strain length (mm) 10–20 6

Linear drift compensation On On

Gaussian smoothing On On

These settings apply for the General Electric Vivid scanners and Echo Pac
Software (GE Medical, Milwaukee, USA). These recommendations are a
guide only and setting may differ depending on new information
emerging

Fig. 7 An example of clear and artifact-free strain and strain rate
curves over three cardiac cycles. Note the timing of events within
the cardiac cycle. Strain peaks at end-systolic at aortic valve closure
(AVC) and systolic strain rate peaks in mid-systole between aortic
valve opening (AVO) and AVC
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parameters can be derived using this 2D STE deformation. 2D STE is
angle independent within the ultrasound sector allowing the
software to track the speckles in any direction.48 This angle-
independency is the major advantage of 2D STE over TD-derived
deformation, as the alignment of the wall relative to ultrasound
beam is not necessary. With this relative freedom, enhanced
imaging of the myocardial walls is possible. This is of particular
importance to the LV free wall, as it can now be imaged at an angle
to avoid lung artifact. However, 2D STE employs relatively lower FRs
than TD-derived deformation (80–120 frames/s vs. >200 frames/s)
and SR parameters, which rely on high temporal resolution, may
not be as easy to interpret as strain, particularly in preterm infants
with high HRs. Circumferential deformation is more prone to under
sampling due to low FRs when compared with longitudinal
deformation;49 generally, under sampling is avoided by a FR/HR
ratio above 1 frame per second/beat per minute (in vitro model).
Although 2D STE is less influenced by artifact, it remains highly
reliant on clear imaging of the walls without dropouts.50

2D STE strain imaging is feasible in neonates with over 85% of
acquisitions deemed as adequate quality to analyze.2,3,11,32 In
preterm infants, the reproducibility of LV global longitudinal strain
(LV GLS) is high with intra- and inter-observer ICC values of 0.92
and 0.93, respectively, and Bland–Altman analysis showing no

significant bias between observers, with good agreement.2,11 de
Waal et al. also reported that LV circumferential strain was highly
reproducible with intra- and inter-observer ICC >0.85 and COV
<10%, but radial strain demonstrated very poor reproducibility
with COV values between 18 and 50%.19,32 With RV-focused
imaging, there is a high degree of intra-observer (bias 3%; COV
2.7%; ICC 0.97) and inter-observer (bias 7%; COV 3.9%; ICC 0.93; p
< 0.05) agreement for RV longitudinal strain.3 In term infants, Jain
et al. demonstrated that LV and RV longitudinal strain measure-
ments are highly reproducible with ICCs >0.9 and COVs <10%.10,51

Recently, Nestaas et al. demonstrated that the intra- and inter-
observer ICC for longitudinal peak systolic strain and SR were all
above 0.87 for LV and RV analysis.1 Septal strain and SR from a
nine-segment model of the three apical views also have moderate
reproducibility measures.11

Image acquisition and offline measurement
Regional and global LV longitudinal deformation parameters are
obtained from the apical four-, two-, and three-chamber views
(Fig. 9). LV circumferential, radial, and rotational deformation are
obtained from the parasternal short axis view at the level of
the mitral valve (base), papillary muscles (mid-ventricular), and the
apex.50 RV longitudinal deformation is obtained from a focused RV

Table 2. Reference ranges for tissue Doppler deformation parameters in the neonatal population

Study and Equipment Population Values 
Pena et al. (48)

General Electric

Gest: 39Wks ±1.2

Wt=3.17Kg ±0.37

N=55

Age= 20 hours

LV Septum RV
S –24.5 (3.8) –25.9 (4.8) –28.3 (4.9)
SRs –1.8 (0.4) –1.9 (0.6) –1.9 (0.5)

SRe 3.2 (1.5) 3.2 (1.6) 2.8 (0.8)
SRa 2.1 (1.3) 2.4 (0.9) 2.1 (0.9)

Nestaas et al. (38)

General Electric

Gest: 41Wks[37- 42]

Wt: 3.7Kg±0.7

N=48

Day 1: 12 Hours
Day 2: 36 Hours
Day 3: 57 Hours

Day 1 Day 2 Day 3
LV S –21.1 –20.0 –21.5
LV SRs –1.8 –1.6 –1.9
Septum S –15.8 –17.1 –15.8
Septum SRs –1.4 –1.6 –1.5
RV S –22.7 –25.1 –25.1

–1.9RV SRs –1.7 –2.0

James et al. (26)

General Electric

Gest: 27Wks[26-28]

Wt: 965kg[785-1135]

N=105

Day 1: 10 Hours
Day 2: 43 Hours
Day 5-7: 143 Hours
36 Wks PMA (n=47) 

Day1 Day2 Da 5-7 36 wks
LV
S –12.2 (2.8) –12.8 (2.8)

–1.7 (0.6)
–12.7 (2.2)
–1.7 (0.5)

–15.0 (2.2)
–1.8 (0.5)SRs –1.5 (0.5)

SRe 1.6 (0.8) 2.1 (0.6) 2.1 (0.7) 2.1 (0.9)
SRa 2.6 (0.8) 2.7 (1.0) 2.7 (0.9) 3.2 (1.2)
Septum
S –15.5 (3.0)

–1.6 (0.3)
–17.4 (3.5)
–1.9 (0.4)

–17.9 (3.1)
–2.0 (0.4)

–20.6 (3.6)
–2.1 (0.4)SRs

SRe 1.7 (0.6) 2.1 (0.6) 2.1 (0.7) 2.0 (0.6)
SRa 2.3 (0.8) 2.7 (1.0) 2.7 (0.9) 2.7 (1.0)
RV
S –22.8 (4.8)

–2.1 (0.5)
–24.3 (4.7)
–2.5 (0.7)

–25.1 (4.9)
–2.9 (0.7)

–28.0 (5.5)
–3.0 (0.7)SRs

SRe 2.4 (0.8) 2.6 (0.7) 2.7 (0.9) 2.9 (0.9)
SRa 3.6 (1.0) 4.4 (1.3) 4.3 (1.3) 4.6 (1.6)

Nestaas et al. (25)
General Electric

Gest: 39Wks ±1.2

Wt=3.17Kg ±0.37

N=55

Age= 1-3 days

LV Septum RV
S –19.9 (6.2)

–1.6 (0.4)
–15.9 (4.8)
–1.4 (0.4)

24.6 (4.8)
–1.8 (0.5)SRs

SRe 2.2 (1.2) 1.4 (0.8) 2.2 (1.0)
SRa 2.0 (1.0) 1.6 (0.8) 2.8 (1.0)

Values presented as means and standard deviations if available. All values are obtained from the basal segments in the four-chamber view. All strain units are
%, strain rate 1/s
Gest gestation, N number of infants, Wt birthweight, Wks weeks, LV left ventricle, RV right ventricle, PMA post-menstrual age, S strain, SRs systolic strain rate, SRe
early diastolic strain rate, SRa late diastolic strain rate (during atrial contraction)
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four-chamber view (3,18,52; Fig. 10), and has been shown to provide
the most feasible and reproducible measure of RV longitudinal
deformation analysis in neonates.3 A modified RV three- chamber
view can also be used to obtain RV deformation parameters. This
view allows for “capture” of the maximum RV cavity, and provides
a more direct assessment of the RV-pulmonary vascular axis
between the RV free wall and the pulmonary circulation through
the RV outflow tract.10 Although, in theory, the septum can be
regarded as bi-layered and contributing to function of both
ventricles, it is currently regarded as part of LV function.53

For optimal results, the same principles of image acquisition
described for TD-derived deformation apply to 2D STE. Echocar-
diographic evaluation can be acquired in the resting state without
sedation and gray scale images need to illustrate walls clearly and
without artifact. An ECG signal is also mandatory in addition to
event timing annotation, as described earlier. Fundamental and
harmonic imaging with different probe types have not shown
differences in strain and SR values in an in vitro study.49 The
choice of transducer should be based on the frequency, which
obtains the highest quality images with clear speckles. 2D STE is

Fig. 9 Segmental strain in the three apical planes of the LV and a summary in a “Bullseye” pattern. Global longitudinal strain (often referred to
as GLS) is the peak value in a compound curve made from the region of interest from the three planes

Fig. 8 2D Speckle Tracking Echocardiography. Speckles are acoustic back scatter that form a unique pattern within the myocardial walls.
Those can be tracked throughout the cardiac cycle to derive deformation measurements. In this apical 3-chamber view of the LV, the
myocardial walls are divided into segments and deformation parameters are presented individually for each segment to determine regional
function. In addition, deformation for the whole region of interest is used to determine global function
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angle independent so the transducer can be manipulated off
plane to obtain the ideal image. Sanchez et al. demonstrated that
in order to obtain optimal reproducibility results for longitudinal
strain assessment, an FR to HR ratio of at least 0.7–0.9 needs to be
applied to the acquired images. Manipulations of depth and
sector width can be used to achieve this ratio.54 Generally, an FR
of 110–130 is required for preterm infants and 90–110 for term
infants.54 The images should be optimized to demonstrate the
speckles and endocardial and epicardial borders clearly.
In neonates, analysis of deformation parameters is performed

offline using dedicated vendor-customized analysis software.3

Newer packages of imaging and software systems allow for strain
measurements to be assessed on the ultrasound machine in real
time during image acquisition, but its feasibility and reliability
have not been assessed in neonates. Vendor-independent soft-
ware packages are available for speckle tracking analysis with any
image acquisition platform.19 In some software packages, an ROI is
defined by tracing the endocardial border of the myocardium at
end-systole. The width of the ROI is set to match the width of the
wall of interest (Fig. 8). The software then automatically tracks
the movement of speckles to derive the deformation parameters.
The acceptability of the tracking is automatically suggested by the
software. The user can also visually inspect the quality of
the tracking before finally accepting or rejecting analysis of the
segment. To enhance the STE capabilities, the ROI is readjusted
repeatedly to avoid free wall base over excursion, tracking of the
trabeculations, and avoid artifact. Cine-loop images with persis-
tently inadequate tracking should be excluded from analysis. Once
the integrity of myocardial STE is visually confirmed by the user,
the software algorithm generates seven curves for each view of
heart (i.e., apical four chamber, parasternal short axis view at the
mitral valve, etc.) based on the timing of the opening and closure
of the semilunar valves (aortic valve for LV strain and pulmonary
valve for RV strain). Each curve represents the measured

myocardial deformation (strain) for the six specific myocardial
segments (basal septum, mid-septum, apical septum, basal lateral,
mid-lateral, and apical lateral) and one global value representing
the combined strain from all segments within the specific
echocardiographic view (Fig. 10).

REFERENCE RANGES AND CLINICAL UTILITY IN THE NEONATAL
POPULATION
Normative data and reference ranges are still emerging for
deformation parameters obtained using 2D STE in the preterm
and term infants. Reference ranges have been published in
healthy uncomplicated term10,35,37,45,51,55–58 and preterm popula-
tion,11,19,26,32,53,59,60 or reported results from control groups of
neonates (who were recruited for specific studies; 61–66). The
process of standardization and reference values in neonates stems
from relatively small number of infants included in each study, the
varying time points at which echocardiograms were acquired in
the first year of age, and the multitude of vendors and
software versions utilized for acquisition and post-processing.
In addition, only two studies have assessed true “global”
LV longitudinal (from the three apical chamber views; 11,51),
while most have reported LV longitudinal strain values from the LV
four-chamber.10,19,53,57,58,64,65 There are only two studies that
report circumferential strain, and both only generate circumfer-
ential strain from the mid-ventricular (papillary muscle) level of the
LV free wall.60,64 Table 3 summarizes the current available
literature. Radial deformation values and diastolic SR parameters
(early and atrial) measured using 2D STE remain unreliable in the
neonatal population.26 In general, LV deformation parameters
measured using 2D STE appear to remain stable during the
transitional period and up to 28 days.19,26,65–67 RV strain
parameters gradually increase beyond the transitional period
and through the first year of age.11,26,59 Strain and SRs values are

Fig. 10 Strain and strain rate curves from the LV four-chamber view and the RV free walls. The colored lines represent the deformation values
from each segment and the dotted white line represents the values from the whole region of interest. Notice the relative increased level of
noise in the strain rate curves (see text)
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Table 3. Reference ranges for speckle tracking echocardiography deformation parameters in the neonatal population
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Table 3 continued
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higher in the RV than the LV, reflective of the changing loading
conditions specific to each ventricle.11,26 In the LV, circumferential
deformation parameters appear to be slightly higher than
longitudinal deformation.60,64

2D STE has also been examined in some disease states in
neonates.2,27,61,63,66 One of the first studies of 2D STE in preterm
infants illustrated the negative impact of PDA ligation on LV GLS in
the immediate post-operative period, followed by recovery 24 h
later.2 The reduction in LV GLS post-operatively was attributed to
the increase in afterload and the decrease in preload associated

with the procedure. In the early transitional period, another study
demonstrated that the administration of antenatal magnesium
sulfate is associated with a lower SVR and a higher LV GLS on day 1
of age.27 These studies further highlight the load dependency of
strain. The influence of common cardiopulmonary abnormalities in
preterm infants (such as CLD and pulmonary hypertension) appear
to leave a negative effect on RV and septal strain, with preservation
of LV strain patterns.11,61,65 LV and RV function have also been
evaluated in term infants of diabetic mothers (gestational and pre-
gestational diabetes; 63,68). LV GLS is lower in pre-gestational

Table 3 continued

Values presented as means and standard deviations if available, unless stated otherwise. All strain units are % and strain rate 1/s
Gest gestation, N number of infants,Wt birthweight,Wks weeks, LV left ventricle, RV right ventricle, Sep septum, PMA post-menstrual age, Circ circumferential, LS
longitudinal strain, SRs systolic strain rate, SRe early diastolic strain rate, SRa late diastolic strain rate

Deformation imaging and rotational mechanics in neonates: a guide to. . .
A EL-Khuffash et al.

S12

Pediatric Research _#####################_



(−10.4 ± 3.2, n= 20) and gestational (−13.1 ± 4.7, n= 25) groups
when compared with the control group (−19 ± 2, n= 45)
(p < 0.01).63 Similarly, LV GLS can identify dysfunction in severely
asphyxiated term infants who are undergoing therapeutic
hypothermia when compared with healthy controls (−11.01% ±
2.48 vs. −21.45% ± 2.74, p < 0.001; 66). LV GLS has a significant
correlation with troponin levels (r2= 0.64, p < 0.001) suggesting
that LV GLS is also capable of grading disease severity.66 Finally, 2D
STE strain was found to be significantly lower in term infants with
proven sepsis in the first month of age when compared to age-
and weight-matched controls.

LV ROTATIONAL MECHANICS
Principles and validation in the neonatal population
Myocardial shear deformation in the circumferential-longitudinal
plane results in torsional deformation of the LV during ejection
and is utilized to characterize functional changes in systole and
diastole.69 The complex architecture of the LV myocardium results
in inhomogeneous contraction patterns. The myofiber orientation
changes continuously from a right-handed helix in the

subendocardium to a left-handed helix in subepicardium,
enabling the LV to have unique rotational properties.50 The LV
base rotates in a clockwise direction (displayed as negative
rotation in degrees, Fig. 11a) and the apex rotates in a counter
clockwise direction (displayed as positive rotation in degrees.
Figure 11b; 14). Twist (degrees) is defined as the difference
between apical and basal systolic rotation (Fig. 11c), and the net
effect of this phenomenon is an LV wringing motion that improves
the ability of the LV to eject blood during systole. Torsion (°/cm) is
the term used to describe LV twist indexed to its LV end-diastolic
length (LV length is measured from the apical four-chamber view
in diastole by measuring the distance between the midpoint of
the mitral valve annulus and the apex) and enables the
comparison of LV twist across differing LV sizes. The temporal
derivative of twist is referred to as twisting and untwisting rate
(°/s; 21). LV twist rate (LVTR) is the velocity at which twist occurs per
unit time and is depicted as a positive value (°/s). Untwisting is
the motion opposite to the direction of twist occurring in diastole.
The speed at which LV untwist occurs is termed LV untwist rate
(LVUTR; Fig. 11d). During diastole, the LV untwists to return to its
baseline un-deformed and untwisted shape. The act of untwisting

a

b

c d

Fig. 11 Left ventricle rotational mechanics. a Basal rotation occurs in a clockwise direction (negative) and b Apical rotation occurs in an anti-
clockwise direction (positive). c The net effect of the opposing rotations is called Twist. d The speed at which twist occurs is called twist rate
(LVTR) and the speed at which untwist occurs is called untwist rate (LVUTR)
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also aids in diastolic function and contributes to early diastolic
filling. This process is highly dependent on the elasticity of the
LV.70 LV untwist is facilitated by the kinetic energy stored during
twisting in systole and therefore, LVUTR is highly dependent on
LVTR (an example of systolic–diastolic interdependence).12 Like
natural strain, increasing afterload appears to decrease LV twist
and untwist rate in experimental animal models and human
adults.71 Similarly, in preterm infants increased afterload appears
to negatively impact these measurements.27 LVUTR also appears
to be negatively influenced by increasing afterload, as it is highly
dependent on LV twist.12 Ramani et al. demonstrated that basal LV
rotation was reduced with preserved LV apical rotation in adult
patients with pulmonary arterial hypertension.72

There is a small, yet growing literature on the validation of
rotational mechanics in neonates.12,63,73–75 Although the recom-
mendations of European Association of Cardiovascular Imaging,
EACVI, and the American Society of Echocardiography (ASE) task
force to Standardize Deformation Imaging urge caution in the use
of twist and torsion because both parameters are poorly defined
in 2D echocardiography, recent work has demonstrated the
improving feasibility and reproducibility analysis of rotational
mechanics in neonates.12,73–75 In preterm infants, James et al.
demonstrated acceptable intra- and inter-observer reliability with
ICC ranging from 0.70 to 0.89.12 Zhang et al. demonstrated that
inter-operator COV was ≤5%.73 Al-Naami does not report
reproducibility statistics, but comments that imaging was feasible
in all subjects.75 Kim et al. reported slightly lower feasibility at 80%
with ICC >0.9 for all parameters.74

Image acquisition and offline measurement
Two-dimensional STE method is also used to derive rotational
parameters. The methodology for image acquisition and offline
assessment is similar to deformation assessment described above.
Two-dimensional grayscale images of the LV base (at the level of
the mitral valve leaflets) and apex (distal to the papillary muscles)
are acquired from LV parasternal short-axis view. Image acquisi-
tion at the two planes of interest is carried out to ensure that the
LV cross-section is as circular as possible. A protocol for rotational
mechanics imaging and post-processing data analysis exists for 2D
STE in neonates.12

Reference ranges and clinical utility in neonates
There is a paucity of data on LV rotational physiology in neonates.
There are several age-related studies that have assessed the changes
in rotational mechanics from birth through early adolescents, which
also include a small subset of neonates.73–76 There are a few single-
study reports that define control cohorts to compare with specific
diseases in term neonates.63,68,77,78 Al-Biltagi et al.63 showed that
cardiac torsion was impaired in infants of diabetic mothers (IDMs),
and Liao et al.68 demonstrated a similar decrease in torsion, but with
persevered EF, suggesting that rotational mechanics may offer a
more sensitive measure of ventricular function. Xie et al. evaluated
the utility of torsion analysis in the assessment of infants with
congenital heart disease.77

Rotational mechanics was recently studied in late preterm [mean
(SD) gestation of 36.0 (±1.5), n= 31]27 and extreme preterm infants
[mean (SD) gestation of 26.8 weeks (±1.5), n= 51].12 In extreme
preterm infants, apical rotation remains constant over the first
week of age [11.8° (±5.0) vs. 12.1° (±6.1) vs. 11.7° (±8.3), on days 1,
2, and 5–7; p= 0.92]. Basal rotation, however, changes from
counter clockwise on day 1 and 2 to clockwise on day 7 [5.5 [−0.3
to 8.3] vs. 4.0 [−4.7 to 7.2] vs. −4.5 [−5.8 to −2.3], p < 0.001] with a
resultant net increase in twist, torsion, and LVUTR.12 Future studies
are now required to determine the clinical relevance of rotational
mechanics, the effects of various disease states (cardiomyopathies,
chronic cardio-respiratory disease, sepsis, etc.), explore the
relationships to conventional echocardiographic measures, and
to determine reference ranges in preterm and term infants.

CONCLUSION
The assessment of deformation parameters to properly character-
ize cardiac function in neonates has gained considerable interest.
The emerging literature continues to demonstrate the feasibility
and reproducibility of strain values derived by both TDI and 2D
STE in the neonatal (term and preterm) population, and the
relative advantages of those techniques when compared to
conventional measures. With the establishment of reference
ranges and normative data, the routine clinical use of strain, SR,
and rotational mechanics is likely to become more common. As
the clinical applicability of these measures is further elucidated in
neonates, we will begin to understand their ability to direct
management, monitor treatment response, and predict outcomes
to optimize the care delivered to neonates. Future work should
focus on the ability of those measurements to distinguish
between myocardial dysfunction secondary to adverse loading
conditions and dysfunction resulting from impaired intrinsic
contractility (or a mixture of both). This will help tailor the
therapeutic interventions to more accurately target the underlying
pathophysiological consequences of disease states.
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