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Abstract	17 

Motivation: DNA methylation plays an important role in human health and disease, and 18 

methods for the identification of differently methylated regions are of increasing interest. 19 

There is currently a lack of statistical methods which properly address multiple testing, i.e. 20 

control genome-wide significance for differentially methylated regions.  21 

Methods: We introduce a scan statistic (DMRScan), which overcomes these limitations. We 22 

benchmark DMRScan against two well established methods (bumphunter, DMRcate), using a 23 

simulation study based on real methylation data. An implementation of DMRScan is available 24 

from Bioconductor. 25 

Results: Our method has higher power than alternative methods across different simulation 26 

scenarios, particularly for small effect sizes. DMRScan exhibits greater flexibility in statistical 27 

modeling and can be used with more complex designs than current methods. 28 

Conclusion: DMRScan is the first dynamic approach which properly addresses the multiple-29 

testing challenges for the identification of differently methylated regions. DMRScan 30 

outperformed alternative methods in terms of power, while keeping the false discovery rate 31 

controlled. 32 

Keywords	33 

Differentially methylated regions; Scan statistics; Sliding window; Genomics 34 

Introduction	35 

DNA methylation is an epigenetic marker, which can explain variation in gene expression, as 36 

well as cell differentiation and other variability in cell phenotypes[1-3]. It is the most studied 37 
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epigenetic modifier on a genome-wide scale[4]. DNA methylation is believed to play an 38 

important role in the pathology of complex diseases. In cancer, large changes in the global 39 

methylation level have been observed[5]. However, for most other complex diseases, there 40 

has been little evidence of such a global change in DNA methylation. This has led to the 41 

notion that local methylation differences in smaller regions (called differentially methylated 42 

regions; DMRs) may be relevant for these diseases[6]. Although methylation at specific CpG 43 

sites may have an effect on its own[7], it is often assumed that multiple methylation sites 44 

within a cluster of CpGs are involved in a change of cell characteristics[3]. Several CpGs 45 

within a region might contribute to a disease or phenotype, but their individual effects may 46 

not be strong enough to pass a genomic-wide significance threshold. In recent genome-wide 47 

methylation studies, there has been an increasing focus on identifying significant DMRs by 48 

combining methylation information from neighboring CpG sites[8]. The underlying thought is 49 

to increase power by reducing the requirements for multiple testing adjustments through 50 

accumulation of correlated signals.  51 

There are two types of procedures for determining DMRs. The first procedure is based on 52 

underlying biological knowledge with respect to the unit of interest. For instance, the CpG 53 

sites can be grouped by their affiliation to genes, regulatory regions, CpG islands or pathways. 54 

These fixed units can be analyzed separately with respect to the phenotypes of interest, and 55 

the units are classified as DMRs if there is enough evidence for association. Multiple testing 56 

procedures can be easily applied by taking into account the number of predetermined regions. 57 

The second type of aggregation is dynamic, where the borders are not pre-determined, but 58 

rather data driven, as CpG sites in close proximity are collapsed into regions in order to 59 

identify potential DMRs. Adjustment for multiple testing when using this approach is 60 

challenging and still developing. 61 
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Several methods have been proposed to identify DMRs, such as BSmooth, bumphunter, 62 

Comb-p, DMRcate, dmrseq, DMRMark, and ProbeLasso [2, 9-13]. Additionally, there are 63 

methods (csaw and PeakSeq [14, 15]) for peak detection involving ChIP-seq data, thus relying 64 

on count data. The underlying theory, however, could also be applied to DNA methylation 65 

data. Many of these methods are tailored to a specific technology (e.g. dmrseq, DMRMark, 66 

BSmooth and ProbeLasso), while some are compatible with almost any measurement 67 

technology (bumphunter, Comb-p, and DMRcate). Applying peak detection methods for 68 

ChIP-seq on methylation data requires non-trivial adaptations and is outside the scope of this 69 

paper. We selected methods based on dynamic aggregation, identifying DMRs which are 70 

independent of technology and appropriate to use for both sequencing and chip data. This 71 

excludes static methods such as ProbeLasso and methods only applicable to one specific 72 

technology, such as dmrseq, BSmooth, and DMRMark. Two widely used methods meeting 73 

these criteria were selected for comparison purposes to our method; bumphunter and 74 

DMRcate[2, 10]. The bumphunter algorithm is among the most commonly used approach 75 

when interrogating DMRs and can be considered as the “gold standard” for DMR calling. The 76 

peak calling packages are mostly directed towards ChIP-seq data, and the input data are often 77 

structured differently than for methylation data; as such it is difficult to apply directly to 78 

methylation data without modifying the source code.  79 

Bumphunter was among the first methods that proposed a multiple-testing adjusted procedure 80 

when scanning the epigenome for significant regions[10]. Bumphunter’s multiple testing 81 

adjustment for the region p-values considers regions where the effect sizes exceed a threshold. 82 

There are two ways to adjust the p-values for the selection step, either by permuting the case-83 

control status or with Monte Carlo simulation from a truncated multivariate normal 84 

distribution of the same size as the detected region [16]. DMRcate reports a minimum p-value 85 
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within a region as well as an aggregated p-value based on Stouffers method[17]. Both these p-86 

values can be hard to interpret, and do not necessarily keep the overall α-level.  87 

There is a wide range of literature on scan statistics, which is based on extreme value theory 88 

and uses a well-defined theoretical framework, which allows us to overcome the limitations of 89 

current methods and to identify genome-wide significant DMRs. Our introduced method, 90 

DMRScan, properly adjusts for multiple testing by keeping the false positives controlled at 91 

the α-level significance threshold. Several variants of scan statistics have been successfully 92 

applied on different types of genomic data[5, 7]. We propose an adoption of a sliding window 93 

approach previously used in peak detection for ChIP-chip tiling arrays[18]. Despite of some 94 

similarity to the csaw R-package [14], there are notable differences. The csaw method 95 

addresses the issue of FDR control by combining locus-wise p-values to a region-wise p-value 96 

using Simes’ method. The region-wise p-values are adjusted using a Benjamini-Hochberg 97 

FDR correction, while our method relies on Poisson heuristics to assess genome wide 98 

significance.  99 

Material	and	Methods	100 

Bumphunter and DMRcate 101 

Bumphunter[10] identifies all CpG sites over a certain percentile of the test statistic 102 

distribution (cut-off parameter). These sites are aggregated together into clusters based on 103 

their genomic position. Region-wise p-values are estimated using either permutation or 104 

bootstrap approaches. By permuting the outcome variable, a set of null regions are 105 

constructed. The candidate regions are compared with the distribution of the null regions in 106 

both length and area under the curve. The proportion of null regions with an area under the 107 



 

6 

 

curve and a region length being at least as extreme as the candidate region is presented as the 108 

family-wise error rate for the given region.  109 

DMRcate[2] applies a Gaussian kernel smoothing on the site-wise test statistic, after using a 110 

limma model[19] on each CpG. Using the method of Satterthwaite[20], probe-wise p-values 111 

are calculated for the smoothed test statistic. After adjustment for multiple testing (by FDR), 112 

nearby genome-wide significant probes are aggregated into regions. Using Stouffer’s 113 

method[17] on the adjusted probe-wise p-values, a region-wise p-value is calculated using all 114 

probes within the candidate regions.  115 

DMRScan 116 

DMRScan is a sliding window approach based on extreme value theory, which has earlier 117 

been applied to peak detection for transcription factor binding sites[18]. It is based on the 118 

observation from Aldous[21], that for a large enough threshold, the number of significant 119 

windows in a scan statistic surpassing the threshold will follow a Poisson distribution. 120 

Using extreme value theory, Zhang deduced a relationship between the significance level (α) 121 

and the intensity of the Poisson distribution (λ) for the number of peaks above a threshold. 122 

Assuming independent tests, we get that: α = 1 – e-λ. By putting a constraint that no two 123 

overlapping windows can both be significant, Zhang constructs independent observations. A 124 

natural extension of this is to use different window sizes. To create independent observations, 125 

nested or overlapping windows cannot both be significant. In such a case, the smallest 126 

window would be regarded as the significant window[18]. 127 

The intensity (λ) is dependent on the window threshold (t), the correlation structure of the test 128 

statistics, and the window size (k). Using a Monte Carlo simulation with different thresholds, 129 
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Zhang was able to derive a relationship between the threshold and the significance level of the 130 

test for each window size[18].  131 

For every CpG site, a linear regression analysis was done with methylation level as the 132 

dependent variable and case-control status as the explanatory variable. However, there are no 133 

restrictions with respect to the statistical model used on each CpG site in order to determine 134 

the probe wise statistic. Different link functions can be chosen and additional explanatory or 135 

confounding variables can be added with little computational cost. Hence, one is able to select 136 

a statistical model which fits the data best. The CpG wise test statistic will be denoted as TCpG. 137 

For each window-size k, we used Monte Carlo simulation to determine the minimal threshold 138 

tk based on the significance level α. We chose the window threshold (tk) of the window 139 

statistic (TDMR) such that the expected number of significant tests (Ek) for each window size k 140 

was equal (see Appendix 1, eq. 2).  141 

Three variants of DMRScan using different methods to determine the window thresholds tk 142 

were implemented: DMRScan (MCMC), DMRScan (Importance sampling) and DMRScan 143 

(Siegmund). In the first two approaches, a Monte Carlo simulation is used to determine the 144 

threshold given the dependency structures for the TCpG’s. For DMRScan (Siegmund), the 145 

thresholds are calculated using an analytic expression. 146 

In DMRScan (MCMC), a Monte Carlo simulation was used to determine the number of 147 

significant tests over the threshold. In this algorithm, one is free to choose the optimal model 148 

for the dependency structure of the test statistic TCpG based on the underlying data.  149 

DMRScan (Importance sampling) uses a local average of independent Gaussian variables to 150 

describe the dependency structure of the statistic TCpG, assuming a dependency of two probes 151 

in both directions. Properties of the standard normal distribution in a fast importance sampling 152 
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algorithm were used to simulate the intensity of the number of windows exceeding the 153 

threshold. Importance sampling was over 700 times faster than the MCMC algorithm. 154 

A modification of Zhang’s method was introduced by Siegmund et al.[22] and implemented 155 

in DMRScan (as the option “Siegmund” in the DMRScan function call). Here, the intensity 156 

for the Poisson distribution (λ) is analytically calculated as a function of the desired threshold. 157 

This derivation is based on the assumption that the test statistic follows an Ornstein-158 

Uhlenbeck process (OU-process). A closed form solution was first published by 159 

Siegmund[23] and later re-formulated in[24] [pp. 112], 160 

𝜆 = 2𝛽𝐿𝑡'𝜙(𝑡')𝜈(𝑡'(2𝛽𝛥)-//)			 161 

Here 𝜆 is the intensity of windows over the threshold (tk), L is the genetic length of the 162 

chromosome (in number of CpGs), β = 1/k is the autoregressive parameter of the OU-process 163 

where k is the window size, Δ is the spacing between observations (assumed to be 1). The 164 

function ν(.) can be approximated by	165 

𝜈(𝑦) ≈ 	
(2/𝑦)(𝛷(𝑦/2) − 0.5)
(𝑦/2)𝛷(𝑦/2) + 	𝜙(𝑦/2)	 166 

The functions Φ(.) and ϕ(.) are the cumulative distribution and the density function of the 167 

standard normal distribution, respectively.  168 

Multiple-testing adjusted p-values for the genome-wide significant DMRs can be derived by a 169 

combination of empirics and theoretical properties. The variance of the test statistic of the 170 

window of interest with window size k is approximated using simulation and theoretical 171 

asymptotic p-values are derived using the standard normal distribution (see Appendix, eq 3). 172 

Alternatively, empirical p-values can be calculated by comparing the value of the test statistic 173 
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TDMR for the window of interest of window size k with the distribution of all test statistics 174 

TDMR for windows with the same window size k. 175 

DMRScan, together with an example dataset is implemented as an R library in Bioconductor. 176 

An illustrating example of its usage is given in the supplementary material to this paper.  177 

Results	178 

Simulation study 179 

Procedure 180 

We used real methylation data from chromosome 22 from the Finnish Health in Teens study 181 

(Fin-HIT, http://www.finhit.fi/for-researchers/), described in more detail here [25]. The 182 

backbone for the CpG regions was known CpG regions at chromosome 22. To evaluate and 183 

compare the methods, we tested them on 100 causal regions. This number is a trade-off 184 

between few regions (biological plausibility) and having an extensive testing of the methods 185 

(many regions). We let the frequency of the causal region be inversely proportional to its 186 

length, thus shorter regions were more frequent than longer regions in the simulation. We 187 

added an effect by changing the methylation beta-values[26] of the causal CpGs such that the 188 

mean difference between cases and controls in that region were equal to the effect size. The 189 

beta-values are ranging from 0 to 0.15 and always within the legal limit of 0 to 1. The first 190 

simulation was on the original data set with no added effect. The causal regions ranged in size 191 

from 5 to 100 sequential CpG sites, reflecting the range which seems biologically relevant and 192 

plausible [27]. A CpG island could not have more than one causal region and the maximum 193 

distance between the causal CpGs could not exceed the maxGap parameter in all methods.  194 



 

10 

 

In each causal region, we added an artificial effect and compared the performance in retrieval 195 

of these 100 regions for the five methods (i) bumphunter, (ii) DMRcate, (iii) DMRScan 196 

(MCMC) with thresholds based on extreme value theory using Monte Carlo simulation, (iv) 197 

DMRScan (Importance Sampling), where an importance sampling algorithm was used to 198 

determine the thresholds, (v) and DMRScan (Siegmund), with an analytic expression was 199 

used to determine the window thresholds.  200 

For each effect size, we counted the number of true positive and false positive DMRs (Figure 201 

1 A-B). Any DMRs overlapping with a causal region was counted as true positive 202 

observation. We also summed the number of significant probes in each DMR, occurring both 203 

inside and outside of the causal regions (Figure 1 C-D). Hence, the number of true and false 204 

discoveries from both a DMR and CpG perspective were gathered. 205 

DMRScan 206 

When inspecting the test statistics TCpG on a subset of the data, an AR(2) process gave the 207 

best description of the dependence structure in our subset. Hence we used an AR(2) process 208 

as a null model to determine the thresholds in DMRScan (MCMC).  209 

For window thresholds between 0.8 to 4 with regular increments of 0.2, and different window 210 

sizes (k) from 2 to 10, we simulated test statistics from a null model and applied DMRScan 211 

with fixed window size and no overlapping significant windows. We determined the number 212 

of significant windows for the different window sizes and thresholds. This was done using 213 

both the MCMC and the Importance sampling approach. For the different window sizes (k), 214 

we chose the window threshold (tk) such that the expected number of significant tests 215 

E[significant.window] was equal for all window sizes (see Appendix, eq. 2). Since we placed 216 
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the different thresholds on a grid, interpolation was used to determine the minimal threshold 217 

keeping the significance level α at a genome wide significance level.  218 

Using the analytic formula of Siegmund, we calculated thresholds tk for each window size k 219 

such that the expected number of significant tests E[significant.window] is equal for all 220 

window sizes (see Appendix, eq. 2). A detailed explanation for the parameter choices is given 221 

in the supplementary materials and methods, and a full list of our parameter choices is listed 222 

in Table 1. 223 

Power assessment 224 

We define the power as the proportion of true, genome wide significant causal DMRs. The 225 

number of true positive and false positive regions is shown in Figure 1 (A and B), as a 226 

function of increasing effect size. All three versions of the DMRScan algorithm had a faster 227 

convergence in power compared to bumphunter when calling DMRs. DMRcate outperformed 228 

Bumphunter in DMR calling, however, this came at a cost of a higher number of false 229 

positive probes (Figure 1 C-D). The false positive probes in DMRcate were in close proximity 230 

of the causal regions, but the proportion of false positive probes was considerable as 231 

compared to the other methods.  232 

Since the thresholds for the sliding windows are static, the false discovery rate for DMRScan 233 

was independent of the added effect size and remained fixed throughout the simulations 234 

(Figure 1 B). The number of false positive of DMRscan(siegmund) was approximately equal 235 

to that of Bumphunter. For DMRcate, the number of false positive sites increased with 236 

increasing effect size, this can be seen in Figure 1(D). On closer investigation, all of the 237 

reported false discoveries lay on the edges of a causal region, and no false positive regions 238 

independent of any causal DMRs were detected. The false positive discoveries were due to 239 
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DMRcate’s smoothing effect on the border of the regions, where the smoothing extended the 240 

reported regions beyond the causal part. DMRScan with a theoretically derived threshold 241 

using Siegmund’s model had the lowest false positive rate, which was close to zero. The 242 

importance sampling threshold had a marginally higher false positive rate, but a substantially 243 

faster convergence in true positives.  244 

We observe the biggest difference between the methods for small effect sizes. Bumphunter 245 

had a negligible proportion of true positives for effect sizes under 0.05, while the sliding 246 

windows and DMRcate were much more responsive for small effect sizes. DMRcate tended 247 

to have a higher false positive rate than the sliding windows approaches, even for very low 248 

effect sizes. For the DMRScan with importance sampling and Monte Carlo thresholds, the 249 

number of false positive observations was small. Three and 5 of 971 regions (0.5%) were 250 

falsely detected, respectively. 251 

Discussion	252 

We have proposed a new method for identifying DMRs, based on Poisson heuristics and a 253 

sliding window approach. We compared this to other established methods for identifying 254 

DMRs. The approach introduced in this paper is based on an approach presented by Zhang 255 

which was originally introduced for ChIPseq analysis. With some modifications, it is now 256 

applicable to DNA methylation analysis. However, the method itself may not be restricted to 257 

those two areas. Scan statistics can be used for peak detection on any data containing 258 

correlated observations.  259 

For most complex diseases, CpG-wise test statistics are not likely to contain distinct peaks 260 

like those observed in ChIP-seq. Thus, the thresholds for the region wise test statistics have to 261 

be very close to the observed test statistic, TDMR, in order to pick up any signals. When the 262 
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threshold lies close to the observed test statistic, the number of false positive windows will be 263 

very sensitive to small changes in the threshold.  264 

Having 100 causal regions in one analysis is quite optimistic, but was chosen to provide a 265 

good spread on the different length of causal DMRs while maintaining computational 266 

efficiency. Longer DMRs were assumed rare and few causal regions spanned more than 40 267 

CpGs. 268 

Since the sliding windows are applied on the test statistic and not on the raw data, they are not 269 

as prone to many of the challenges the other methods face, such as probe bias for the 270 

methylation microarrays, or varying depth in sequencing studies, which all can be accounted 271 

for in the first step of the modeling. Both DMRcate and bumphunter use very specific models 272 

to evaluate point-wise methylation, leaving few options for the user to apply more complex 273 

designs, like repeated measures, non-linear effects, or logistic regression. This is in contrast to 274 

DMRScan, which relies only on the summary statistic, and can be applied on the test statistics 275 

from any model as long as the underlying distribution of the test statistic is approximately 276 

normal. Additionally, since the marginal summary statistic only has to be calculated once for 277 

DMRScan, covariates and confounders can be included without any notable increase in 278 

computational time.  279 

When doing whole genome bisulfite sequencing or reduced representation bisulfite 280 

sequencing, the methylation data set can be substantially larger than that of chip data. Since 281 

DMRcate and DMRScan do not use permutation, they are not affected by this issue as much 282 

as bumphunter, where the computational time can be substantial.  283 

The three compared methods use different approaches for constructing p-values for the 284 

candidate DMRs. One possible solution, by DMRcate, is to report the minimum p-value, or to 285 
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aggregate the p-values using Stouffer’s method. Stouffer’s method is a way of combining p-286 

values by adding the Z-score normalized by the length of the candidate DMRs. For highly 287 

dependent p-values, this may induce inflation in the test statistic, if the sum is not weighted 288 

accordingly[28]. Bumphunter uses the minimum p-values in each DMR as its region-wise p-289 

values, which often deflates the p-values. Moreover, an “adjusted p-value” based on a 290 

permutation test is given for each region, which is much more conservative. For the 291 

bumphunter implementation, Jaffe et al. acknowledge that the region-wise adjusted p-values 292 

may not always be representative, and that care should be taken when interpreting the 293 

findings[10]. By applying a sliding window to call DMRs, we can utilize a well-defined 294 

framework to construct p-values for each DMR which are adjusted for multiple testing. 295 

Unlike bumphunter and DMRcate, the regions detected by the DMRScan method are always 296 

genome-wide significant for the false discovery level set by the user. 297 

DMRcate  298 

An important gain of the applicability of summary statistics in our approach is the possibility 299 

to analyze data from already published DNA methylome studies separately or in a meta-300 

analysis setting. In most methylomic or genomic meta-analysis, the individual raw data from 301 

each separate study are not accessible, but a summary test statistic for each locus can often be 302 

obtained across the different studies. This can open a new opportunity for meta-analysis 303 

efforts in identification of DMRs. 304 

Conclusion	305 

DMRScan is a data-driven approach which properly addresses the multiple-testing challenge 306 

when claiming genome-wide significance for differentially methylated regions. DMRScan 307 
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performs better in terms of power compared to previously introduced methods, while keeping 308 

the false discovery rate controlled. 309 

List	of	abbreviations	310 

AR(p) Autoregressive process of order p 
ChIP Chromatin Immunoprecipitation 
DMR Differentially methylated region 
Ek Expected number of significant windows of size k 
FDR False discovery rate 
MCMC Markov Chain Monte Carlo 
OU-process Ornstein-Uhlenbeck process 
tk Window threshold for sliding windows of size k 
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Table 1 Comparison of the parameters between the five models used in the benchmarking. 422 

Figure 1 Comparison of the convergence in power for all five methods, as well as the false 423 

positive rate, both as a function of increasing effect size. Top panel (A-B) represents the 424 

power to detect causal DMRs for the two different scenarios. The lower panel (C-D) 425 

represents the power to detect CpGs within a causal DMR. The dashed lines represent false 426 

positives. Bumphunter and DMRScan (Siegmund) had a very similar false positive rate 427 

cannot be distinguished as they are directly on top of each other.  428 
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