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Abstract. Reduction of mitochondrial activity is a subtle and early event in the pathogenesis of Alzheimer’s disease. Mito-
chondrial damage and consequentially enhanced production of reactive oxygen species is particularly occurring in the vicinity
of amyloid plaques. Since all cells are affected by mitochondrial damage, analyses of cell type-specific effects are challenging.
To study the impact of mitochondrial alterations on microglial activity in a homogeneous genetic background, we generated
bone marrow chimeras of irradiated 46-days-old APP-transgenic mice. For reconstitution, bone marrow from CX3CR1-eGFP
mice with mitochondria of either non-obese diabetic or C57BL/6J animals was utilized. Successful reconstitution was evident
in 100-day-old animals, by the presence of eGFP-positive cells in liver and spleen. In the brain, one-third of IBA1-positive
microglia cells were newly recruited eGFP-expressing cells. Although donor-derived microglia were equally located in the
proximity of amyloid plaques, no difference was observed in either the amyloid level, total number, or microglial coverage
of plaques. These results indicate that during this brief and early phase of amyloid deposition, beneficial mitochondrial
alterations in the newly recruited third of microglial cells were not sufficient to affect the amyloidosis in APP-transgenic
mice.
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INTRODUCTION24

Alzheimer’s disease (AD) is a chronic and progres-25

sive neurodegenerative amyloidosis. Histopathologi-26

cally, it is characterized by extracellular deposition27
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of amyloid-� (A�) and intracellular accumulation 28

of hyperphosphorylated tau [1]. The extracellular 29

plaques consist primarily of the 42-amino-acid-long 30

isoform of A� [2], derived by proteolytic process- 31

ing of the amyloid-� protein precursor (A�PP) [3]. 32

The accumulation of monomeric A� leads to the 33

generation of small soluble oligomers which further 34

aggregate into larger insoluble fibrils [4] that also 35

activate microglial cells [5]. It was long perceived 36

that amyloid plaques are surrounded by reactive 37

microglia; however, their specific role during disease 38

progression is ambiguous and therefore still a mat- 39

ter of debate. The more recent identification of 40
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various risk factors related to microglial function, like41

TREM2 [6–8], TYROBP [9, 10], CD33 [11], TLR442

[12], PGRN [13], or INPP5D [14] in genome-wide43

association studies further emphasized their impact44

on disease progression. In the early stages of the AD,45

microglia fulfill a beneficial role by eliminating solu-46

ble [15] and fibrillary forms of A� [16]. In this phase,47

further unspecific activation by lipopolysaccharide48

decreases plaque burden [17], while an impaired49

recruitment caused by the loss of the chemokine (C-C50

motif) receptor 2 (CCR2) accelerates the pathologic51

progression [18, 19].52

On the other hand, it is equally established that53

the chronic activation of microglia is aggravating.54

Once activated, cellular functions are shifted to55

release cytotoxic factors like reactive oxygen species56

(ROS) [20], nitric monoxide (NO) [21], and tumor57

necrosis factor-� (TNF-�) [22]. Interruption of the58

proinflammatory IL-12/IL-23 pathway by genetic59

ablation resulted in decreased amyloid burden in60

transgenic AD mice [23]. The detrimental effects61

of chronic activation are supported by epidemio-62

logic studies revealing that usage of nonsteroidal63

anti-inflammatory drugs (NSAIDs) decreased the64

incidence of AD [24]. Rapamycin, an immuno-65

suppressant that diminished microglial activation66

but increased autophagy and degradation of A�,67

was able to reduce amyloid burden and prevent68

memory decline in a mouse model of AD [25].69

A fundamental, yet crucial factor for an adequate70

microglial function is sufficient energy supply by71

mitochondrial activity. Analyses of postmortem AD72

brains revealed impaired activities of key enzymes of73

the Krebs cycle (pyruvate dehydrogenase complex,74

�-ketoglutarate dehydrogenase complex, isocitrate75

dehydrogenase) [26] and the cytochrome c oxi-76

dase (COX, complex IV) of the electron transport77

chain [27]. It is therefore supposed that mitochon-78

drial insufficiencies significantly contribute to the79

pathophysiology of AD. We previously analyzed con-80

plastic mice on the C57BL/6J background containing81

the mitochondria of common inbred mice strains82

(C57BL/6J, AKR/J, FVB/NJ, NOD/LtJ). Mitochon-83

drial deviations in these mice led to significant84

differences in microglial response and A� load [28].85

Mice with NOD/LtJ mitochondria had the highest86

levels of ATP, elevated microglial response with87

enhanced phagocytotic activity, and the lowest amy-88

loid burden [28]. To further analyze the impact of89

mitochondrial alterations on microglial activity in a90

uniform genetic background, we created bone mar-91

row chimeras using the well-established method of92

lethal irradiation and bone marrow reconstitution 93

[29]. 94

MATERIALS AND METHODS 95

Animals 96

Inbred C57BL/6 mice (B6) were purchased 97

from the Jackson Laboratory (JAX stock #000664) 98

and used as background strain. Mice expressing 99

mutated human amyloid precursor protein (APP 100

KM670/671NL) and mutated human presenilin 1 101

(PSL166P) controlled by the Thy1-promotor were 102

provided by the University of Tübingen (Ger- 103

many) and are referred to as ‘hAPPtg’ mice [30]. 104

Non-obese diabetic (NOD/LtJ) mice were acquired 105

from the Jackson Laboratory (JAX stock #001976). 106

NOD/LtJ mice have three variations compared to 107

B6 mice, in cytochrome c oxidase III (G > A at 108

position 9348), NADH dehydrogenase 3 (T > C at 109

position 9461), and mitochondrial tRNA arginine 110

(A > AAA at position 9828) [28]. Mice with the 111

C57BL/6J background (B6) and mitochondria of the 112

NOD/LtJ strain were generated by mating female 113

NOD/LtJ and male C57BL/6J mice for at least 114

9 generations and are referred to as B6-mtNOD
115

[31]. CX3CR1/eGFP mice were purchased from the 116

Jackson Laboratory (JAX stock #005582) and have 117

previously been described as fertile and devoid of 118

developmental deficits [32]. CX3CR1/eGFP-mtNOD
119

and CX3CR1/eGFP-mtB6 were generated by mating 120

male CX3CR1/eGFP mice with female B6-mtNOD
121

or B6 mice, respectively. All mice were housed 122

in 12-h day/night cycles at 22◦C with free access 123

to food and water. All experiments were approved 124

and carried out according to the local animal ethics 125

committee. 126

Isolation of primary bone marrow cells 127

Required bone marrow cells were isolated from 128

six to eight weeks old CX3CR1/eGFP-mtNOD or 129

CX3CR1/eGFP-mtB6 mice. After cervical dislo- 130

cation, femur and tibia were removed, epi- and 131

metaphyses were cut off, and bone marrow was 132

flushed into a 50 mL tube using a 25-gauge needle 133

and 5 mL medium (DMEM supplemented with 134

10% (v/v) FCS, 1% (v/v) GlutaMAX™, 1% (v/v) 135

Penicillin-Streptomycin). Cells were centrifuged 136

(10 min, 150 g, 4◦C), resuspended in 50 mL medium 137

and counted using a Fuchs-Rosenthal chamber. 138

Cells were centrifuged again (10 min; 150 g; 4◦C) 139
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and resuspended in PBS to a final concentration of140

6 × 104/�L.141

Immunohistochemistry142

Immunohistochemistry was performed as pre-143

viously described [33–37]. In brief, mice were144

sacrificed by cervical dislocation and subsequently145

perfused with 20 mL of phosphate-buffered saline146

(PBS; pH 7.4). One hemisphere was immedi-147

ately snap-frozen in liquid nitrogen and stored at148

–80◦C, the second hemisphere was transferred to149

4% buffered paraformaldehyde (PFA) and fixed150

overnight. Paraffin-embedded, 4 �m-thick coronal151

sections were deparaffinized and stained using hema-152

toxylin and eosin (H&E). Immunohistochemical153

staining was performed using Bond-Max™ (Leica154

Biosystems GmbH/Menarini; Germany) automated155

staining system. Antibodies against ionized calcium-156

binding adapter molecule 1 (IBA1; 1:1000; Wako157

019-19741; Germany) and �-Amyloid (6F3D; 1:200;158

DAKO M0872; Germany) were used. Slides were159

developed using Bond™ Polymer Refine Detection160

kit (Menarini/Leica; Germany) and digitized using161

MIRAX MIDI Scanner (Zeiss MicroImaging GmbH;162

Germany).163

Plaque number and microglial coverage of164

plaques165

Digitized slides were semi-automatically analyzed166

using the AxioVision software (Zeiss Microimag-167

ing GmbH, Germany) as previously described in168

[35]. In short, cortical regions of interest (ROIs)169

were initially defined and microglia and plaques were170

detected and separated based on their RGB color pro-171

file. The resulting binary images were automatically172

processed, plaque number and sizes were quanti-173

fied and a rectangle was placed around each plaque.174

Finally, the microglial area within the rectangle was175

calculated and obtained data was exported for nor-176

malization and further analysis. For quantification,177

n ≥ 5 animals of both sexes, and n ≥ 4 sections per178

animal were analyzed.179

Immunofluorescence180

Brains were harvested as described above. PFA-181

fixed hemispheres were consecutively immersed in182

15% and 25% sucrose solution and incubated for 12 h183

each, to remove PFA. Whole brains were mounted184

and frozen in cryo media (OCT Compound; Tissue185

Tek). 16 �m coronal sections within a specific range 186

(bregma –1.5 mm to bregma –2.2 mm) were cut 187

(Leica CM3050S). Slices were washed three times 188

with PBS and blocked for one hour in blocking 189

buffer (PBS supplemented with 5% goat serum and 190

0.5% Triton X-100). Sections were then incubated 191

free-floating using primary antibodies against IBA1 192

(1:500; Wako 019-19741; Germany) and A� (6E10; 193

1:500; Covance SIG-39320; Germany) for 90 min 194

in blocking buffer at 4◦C. Afterward, slices were 195

incubated using fluorescence-labeled secondary anti- 196

bodies (1:500 anti-rabbit Cy3; 1:500 anti-mouse Cy3; 197

Dianova; Germany) for 60 min and counterstained 198

for 10 s using DAPI (1�g/mL). Slides were finally 199

covered using DePex (Serva Electrophoresis; Ger- 200

many), visualized using a Zeiss LSM 700 microscope 201

(Carl Zeiss; Germany) and analyzed using ZEN 202

2 software (Carl Zeiss; Germany). IBA1-positive 203

and eGFP-positive cells were counted in isocorti- 204

cal region A (retrosplenial area, posterior parietal 205

association areas, primary somatosensory area, and 206

auditory areas), isocortical region B (temporal associ- 207

ation areas, ecto- and perirhinal areas), hippocampus 208

and brain stem (n ≥ 1500 IBA1+ cells per animal, 209

n ≥ 3 sections per animal, n ≥ 4 animals of both sexes 210

per group). 211

Enzyme-linked immunosorbent assay (ELISA) 212

Measurement of A�42 concentration in whole 213

brain homogenates was performed as described 214

previously [33]. Briefly, snap-frozen hemispheres 215

without cerebellum and brain stem were slowly 216

thawed on ice and homogenized using a Pre- 217

Cellys24 (12 s; 6,000 rpm). Homogenate was mixed 218

with 50 volumes of carbonate buffer (1 M sodium 219

carbonate, 50 mM sodium chloride, pH 11.5, sup- 220

plemented with protease inhibitors (cOmplete mini, 221

Roche Diagnostics International AG, Switzerland) 222

using PreCellys24 (5 s; 5,000 rpm) and subse- 223

quently centrifuged (90 min, 24,000 g, 4◦C) to 224

separate soluble and insoluble A�-species. The 225

supernatant (buffer-soluble fraction) was mixed 226

with 1.6 volumes guanidine hydrochloride buffer 227

(8.2 M guanidine hydrochloride, 82 mM Tris, pH 228

8.0). Protein content was measured using a Nan- 229

odrop1000 device (Thermo Fisher Scientific; USA). 230

ELISA (hAmyloid �42 ELISA, TK42HS, The 231

Genetics Company (TGC), Schlieren, Switzerland) 232

was performed according to the manufacturer’s 233

instructions. 234
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Fig. 1. Transplanted hematopoietic stem cells yield immune cells migrating to liver and spleen. An overview of the liver shows migrated,
green fluorescent cells which originated from transplanted bone marrow (A). The magnified section (C) presents a central vessel encircled
by eGFP-positive cells. The overview (B) and a magnified section (D) of the spleen revealed an even distribution of green fluorescent cells.
(Magnification in A, B: 10x; C, D: 40x).

Statistical analysis235

Results were statistically analyzed using unpaired236

t-test in GraphPad Prism 6 (GraphPad Software Inc.,237

USA) and considered significant for p ≤ 0.05. Data238

are presented as arithmetic mean with the correspond-239

ing standard error of the mean (SEM).240

RESULTS241

Generation of an AD-model with mitochondrial242

alterations restricted to microglia243

To generate animals with the NOD- (NOD/LtJ) or244

B6-derived (C57BL/6J) mitochondria and microglia245

specific eGFP-expression, C57BL/6J-mtB6 and246

previously described conplastic C57BL/6J-mtNOD
247

[28] females were mated with male CX3CR1/eGFP248

mice. Next, hAPPtg mice were lethally irradiated249

(two times with 9 Gy and a 4-h pause using a 137Cs250

source) at the age of 45 days (n ≥ 5 animal per group).251

After 24 h, 6 × 106 isolated bone marrow cells were252

transplanted via the tail vein. Six- to eight-weeks-old 253

CX3CR1/eGFP-mtNOD or CX3CR1/eGFP-mtB6
254

mice acted as donors. To confirm the efficiency of 255

the bone marrow reconstitution, liver and spleen of 256

100-days-old mice were analyzed using immunoflu- 257

orescence microscopy. Green-fluorescent cells were 258

present in liver and spleen (Fig. 1), indicating a suc- 259

cessful transplantation of hematopoietic stem cells. 260

Furthermore, green fluorescent cells resembling 261

microglia in size and shape were evident in different 262

parts of the brain, including isocortex, hippocampus, 263

and brain stem (Fig. 2). Immunofluorescent stains 264

against microglial maker IBA1 confirmed this 265

assumption and displayed the expected double 266

fluorescent microglia (Fig. 3). Quantification of 267

IBA1-positive cells revealed a similar percentage 268

of IBA1+ eGFP+ cells in the brains (mtNOD: 35%; 269

mtB6: 37%). Donor-derived microglial cells were 270

located in the immediate surrounding of amyloid 271

plaques (Fig. 4). In sum, these results indicate 272

the successful generation of an amyloidosis (AD) 273

mouse model with specific mitochondrial deviations, 274
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Fig. 2. Newly recruited green fluorescent labeled cells populate different brain regions. Overviews of (A) isocortical area, representing retro-
splenial, posterior parietal association, primary somatosensory, and auditory areas, (B) isocortical area, representing temporal association-,
ecto-, and perirhinal areas, (C) hippocampus, and (D) brain stem, representing thalamus and hypothalamus, revealed the consistent pres-
ence of eGFP-positive cells in different brain regions. Corresponding higher magnifications (E-H) demonstrate that green fluorescent cells
resemble microglia in size and shape. (Scale bars: A–D: 400 �m; E - H: 50 �m).

Fig. 3. Microglia cells in the brain of bone marrow transplanted mice. (D) Merged picture of donor bone marrow-derived GFP-positive cells
(A, green), IBA1 stained microglial cells (B, red) with nuclear counterstain (C, blue) shows resident microglia of acceptor animal (only
IBA1+, red) and donor-derived, newly recruited microglial cells (IBA+ and eGFP+, green-yellow) in the cortex of bone marrow transplanted
mice. (Scale bars: 50 �m).
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Fig. 4. Recruited microglia are in close proximity to amyloid depositions. D) Merged picture of donor bone marrow-derived GFP-positive
cells (A, green), 6E10 stained amyloid plaque (B, red) with nuclear counterstain (C, blue) demonstrates that donor-derived microglial cells
are recruited to the brain and interact with amyloid plaques. (Scale bars: 50 �m).

limited to hematopoietic system. In the brain,275

these alterations are restricted to newly recruited276

microglial cells.277

Impact of mitochondrial alterations on278

microglial activity279

Acceptor mice with transplanted, mitochondrial280

NOD-type bone marrow (hAPPtg-CX3CR1/eGFP-281

mtNOD) were analyzed at 100 days of age.282

Chimeric B6-type mice (hAPPtg-CX3CR1/eGFP-283

mtB6) with transplanted mitochondrial B6-type bone284

marrow served as controls. Cortical amyloidosis and285

microglial activation were analyzed in both groups286

using semi-automated analysis of digital slides (as287

previously described [35]). The mean plaque num-288

ber per 10 mm2 was on a similar level (Fig. 5)289

in mtB6 (212 Plaques/10 mm2) and mtNOD (223290

Plaques/10 mm2) transplanted animals. The aver-291

age size of individual plaques and accordingly the292

cortical area covered by amyloid plaques were not293

changed in chimeric animals with mtNOD microglia.294

ELISA quantification further revealed a similar con-295

centration of soluble A�42. Finally, activation and296

recruitment of microglia were likewise not signif-297

icantly changed, as microglial coverage of plaques298

was at a similar level in both groups (Fig. 5).299

DISCUSSION 300

Reduced energy metabolism [38] and mitochon- 301

drial activity [39] are early, precedent events in 302

the pathogenesis of AD and risk factors for early 303

onset and accelerated progression [40]. Mitochon- 304

drial alterations occur particularly in the vicinity of 305

amyloid plaques [41]. These dysfunctional mitochon- 306

dria become key targets of the autophagic degradation 307

in AD [42], entailing a declined number of mitochon- 308

dria [43] and increased levels of ROS in the course 309

of the disease [44]. Finally, ROS is sufficient to boost 310

generation of A� [44], closing the vicious circle of 311

mitochondrial dysfunction, ROS production, and A� 312

formation. As mitochondrial activities are absolutely 313

fundamental, consequences of an impaired function 314

are diverse and detrimental. In microglia, defective 315

mitochondrial function and elevated levels of ROS 316

contribute to the polarization to an M(1) phenotype 317

[45], activation of NFκB and MAPK signaling and 318

increased expression of various pro-inflammatory 319

mediators [46, 47]. However, a reasonably distinction 320

of mitochondrial effects in distinct cell types was so 321

far most challenging. 322

Here, we introduced a model in which mito- 323

chondrial alterations in the brain are limited to 324

microglial cells. These cells are easily recognizable 325

by their exclusive expression of eGFP, achieved by 326
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Fig. 5. Cortical amyloidosis and microglial activation is unchanged in bone marrow chimeric mice. The number of cortical plaques (A)
and cortical plaque coverage (B) were at a similar level. Furthermore, microglial coverage of plaques (C) and levels of buffer-soluble A�42
(D) revealed no significant differences between mice transplanted with either mtNOD or mtB6 bone marrow. (Unpaired t-test displayed no
significant differences, n ≥ 4 animals per group, n ≥ 3 sections per animal).

replacement of the fractalkine receptor (chemokine327

(C-X3-C motif) receptor 1; CX3CR1) by eGFP328

[32]. The newly recruited microglia derived from329

transplanted heterozygous bone marrow cells, func-330

tionally co-express eGFP and CX3CR1 [32].331

Therefore, the suspected involvement of CX3CR1 in332

microglial clearance of A� in a gene dose-dependent333

manner has to be considered in interpreting the334

results. In 3xTg-AD mice, knockout the fractalkine335

receptor ameliorated neuronal loss while A� levels336

and microglial phagocytosis activity were unchanged337

[48]. In contrast, Lee et al. [49] demonstrated338

that CX3CR1-deficiency alters microglial activation.339

While CX3CR1-deficient animals presented with340

fewer microglia in the vicinity of plaques and reduced341

deposition of A�, heterozygous animals exhibited342

an intermediate phenotype [49]. Since phagocytic343

capacity is increased in CX3CR1-deficient microglia344

[49–51], the newly recruited microglia might rather345

be characterized by an amplified phagocytic activity346

compared to wild-type cells with natural CX3CR1-347

expression.348

Although the newly recruited microglia harboring349

mitochondrial alterations were found in the vicinity350

of plaques, they had no significant effect on amy-351

loid deposition at the evaluated age of 100 days.352

The microglial coverage of plaques was likewise353

unchanged. In contrast, conplastic APP-B6xmtNOD354

mice have previously been described with reduced355

number and size of plaques and enhanced microglial356

coverage starting at 100 days of age [28]. Therefore,357

the introduced mitochondrial alterations in microglial358

cells do not seem to immediately interfere with359

amyloid deposition in APP-transgenic mice. How-360

ever, in the formerly analyzed models, mitochondrial361

alterations affected all cell-types, including those 362

that likewise play crucial roles in amyloid elimina- 363

tion, like astrocytes [52, 53], pericytes [54–56], and 364

endothelial cells [33, 54, 56]. Furthermore, at 100 365

days of age, only a third (35%) of the microglial 366

cells originated from the transplanted mtNOD bone 367

marrow, providing another possible explanation for 368

the minimal impact of mtNOD microglial cells. Since 369

mtNOD microglia were shown to have a higher phago- 370

cytic activity in vitro and reduced A�-levels in 371

vivo [28], the induction of an increased microglial 372

turnover, e.g., by specific ablation [57, 58], and 373

expanded observation periods will provide an advan- 374

tageous approach to reveal the full potential of the 375

microglia-specific alterations in AD in the future. 376
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Gerda Brüsch for help with animals. 383

The work of J.P. is/was supported by the fol- 384

lowing grants: Deutsche Forschungsgemeinschaft/ 385

Germany (DFG PA930/9, DFG PA930/12); Leib- 386

niz Society/ Germany (SAW-2015-IPB-2); HelseSØ/ 387

Norway (2016062); Norsk forskningsrådet/ Norway 388
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