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Abstract 

The human cerebral cortex is highly regionalized, and this feature emerges from morphometric 

gradients in the cerebral vesicles during embryonic development. We tested if this principle of 

regionalization could be traced from the embryonic development to the human lifespan. Data-driven 

fuzzy-clustering was used to identify regions of coordinated longitudinal development of cortical 

surface area (SA) and thickness (CT) (n = 301, 4-12 years). The principal divide for the developmental 

SA clusters extended from the inferior-posterior to the superior-anterior cortex, corresponding to the 

major embryonic morphometric anterior-posterior (AP) gradient. Embryonic factors showing a clear 

AP gradient were identified, and we found significant differences in gene expression of these factors 

between the anterior and posterior clusters. Further, each identified developmental SA and CT 

cluster showed distinguishable lifespan trajectories in a larger longitudinal dataset (4-88 years, 1633 

observations), and the SA and CT clusters showed differential relationships to cognitive functions. 

This means that regions that developed together in childhood also changed together throughout life, 

demonstrating continuity in regionalization of cortical changes. The AP divide in SA development also 

characterized genetic patterning obtained in an adult twin sample. In conclusion, development of 

cortical regionalization is a continuous process from the embryonic stage throughout life.   
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Expansion of cortical surface area (SA) in human development is highly regionalized (Amlien et al. 

2016). According to the protomap (Rakic 1988) and radial unit models (Rakic et al. 2009), the 

blueprint for this regional cortical expansion is established already in early embryonic development. 

Cortical neurons are not born within the cerebral cortex itself, but migrate from the ventricular zone 

to their final destination. The major morphometric gradient governing areal identity runs along the 

anterior-posterior axis (Rakic et al. 2009). However, it is not known if the governing principles of 

embryonic brain development apply to cortical expansion in children. In the present study, we tested 

this hypothesis, which would show a continuity of cortical expansion from the early fetal to the latest 

stages of development in the pre-teen years.  

 

Moreover, the related tenet that late-life brain health and cognitive function have developmental 

origins is getting increasing support (Jagust 2016; Walhovd et al. 2016). Adult genetic SA topography 

– the delineation of regions influenced by the same genes - is characterized by an anterior-posterior 

gradient, likely due to prenatal factors (Rakic 2009; Walhovd et al. 2012), corresponding to our 

hypothesis for organization of SA development. Thus, an intriguing possibility is that the fundamental 

organizational principles for regional brain development in children, likely reflecting patterns from 

embryonic development, can be traceable also in higher age. This would mean that anatomical 

regions that develop together also show distinct lifespan trajectories of adult cortical change and 

decline in aging. We know that cortical maturation to some degree proceeds along functional and 

structural networks established in adults (Zielinski et al. 2010; Raznahan, Lerch, et al. 2011; 

Alexander-Bloch et al. 2013; Walhovd et al. 2015; Krongold et al. 2017; Sotiras et al. 2017), but not 

whether brain regions that develop together also change together through the rest of life. Testing 

this was the second main aim of the project.  

 

These hypotheses were addressed through several steps. First, a data-driven fuzzy clustering 

approach was used to parcellate longitudinal change in SA and apparent thickness (CT) of the 

cerebral cortex into regions of coordinated development. CT and SA develop differently (Raznahan, 

Shaw, et al. 2011; Amlien et al. 2016; Walhovd et al. In press) and have different genetic and 

molecular foundations (Rakic 1988; Panizzon et al. 2009; Rakic et al. 2009). We selected an age-range 

when SA still expands and apparent CT is continuously declining, i.e. 4-12 years (n = 301). Clustering 

was based on 1.5 years longitudinal change to avoid confounds from cross-sectional differences. The 

principal axes of the developmental clusters were extracted and tested against the anterior-posterior 

morphometric gradient from gene expression patterns in embryonic development, identified in 

(Rakic et al. 2009).  
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The developmental clusters were further tested against genetic cortical topography established in an 

adult sample of twins (Chen et al. 2012; Chen et al. 2013). CT shows more age change and is more 

affected by later-life events than SA (Engvig et al. 2010; Wenger et al. 2012; Storsve et al. 2014), and 

the original genetic patterning work predicted that CT clusters, more than SA clusters, would show 

genetic relatedness with clusters of similar maturational timing (Chen et al. 2013). Thus, we 

hypothesized that developmental SA change would adhere more closely to prenatal gene expression 

gradients while CT change clusters would be more similar to genetic clusters obtained from adult 

twins (Fjell et al. 2015).  

 

Next, we tested if the developmental clusters showed different age-trajectories in a longitudinal 

dataset covering more than eight decades (4.1-88.5 years, n = 974, 1633 scans). On the assumption 

of continuity between fetal and child development and lasting impacts of early-life factors on later 

brain changes, we hypothesized that the residual variance in each developmental cluster would be 

differentially related to age when the common variance shared among the clusters was accounted 

for. This means that we expected each developmental cluster to show different lifespan trajectories. 

 

Finally, we tested whether the developmental clusters showed differential relationships to four 

empirically derived domains of cognitive function – episodic memory, executive-speed, working 

memory and general cognitive ability (GCA). These domains were identified from a principal 

component analysis (PCA) of multiple cognitive scores from an extended longitudinal dataset (4.1-

93.4 years, 4065 observation). As SA and CT have different early determinants and show different 

developmental and lifespan trajectories, we hypothesized different relationships to cognition. We 

expected the SA clusters to relate to GCA, which is likely heavily influenced by early life factors and 

shows high life-span stability (Lyons et al. 2009; Deary et al. 2012; Vuoksimaa et al. 2015; Walhovd et 

al. 2016). The scores included in the GCA component (matrix reasoning and vocabulary) load strongly 

on the g-factor (Deary et al. 2010), and have previously been found to correlate more with SA than 

CT (Vuoksimaa et al. 2015; Walhovd et al. 2016). As likely more amendable to environmental 

influences through life, CT was hypothesized to correlate more strongly with more specific cognitive 

functions, indicated by lower loadings on the g-factor. These could include episodic memory and 

executive-speed, which show different change trajectories across people (Salthouse 2016) and are 

less strongly related to global cognitive change (Tucker-Drob 2011).  

 

Materials and methods 
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Sample 

A total of 1633 valid scans from 974 healthy participants (508 females/ 466 males), 4.1 to 88.5 years 

(mean visit age 25.8, SD 24.1), were drawn from three Norwegian studies coordinated by the 

Research Group for Lifespan Changes in Brain and Cognition; The Norwegian Mother and Child 

Cohort Neurocognitive Study (MoBa)/ Neurocognitive Development (ND)/ Cognition and Plasticity 

Through the Lifespan (CPLS)) (see SI for details). 635 participants had two scans and 24 had 3 (mean 

scan interval 2.3 years [0.2-6.6]). The sample is identical to (Fjell et al. 2015). All were screened for 

conditions assumed to affect CNS function. Number of observations in different age spans is 

provided in Table 1. 

 

The cluster-forming sample consisted of all MoBa participants with two scans (n = 301, 602 scans in 

total, mean age 7.3 years [range 4.1-12.0], mean scan interval 1.5 years [1.0-2.2]). This is a 

population based sample, with participants recruited by the Norwegian Medical Birth Registry 

through the national Norwegian Mother and Child Cohort Study (82), see (8, 83) and Supplementak 

information for details. The age-range is well covered, with good sample density across. 

 

The twin sample used to generate the genetic clusters consisted of 406 middle-aged men (55.8 years 

[51-59]), including 110 monozygotic and 93 dizygotic twin pairs, from the Vietnam Twin Study of 

Aging (see SI and (Kremen et al. 2013) for details).  

 

[Insert Table 1 about here] 

 

Cognitive testing 

All participants underwent extensive neuropsychological testing. Cognitive test scores were entered 

into a principal component analysis (PCA) with varimax rotation with Kaiser normalization. The 

following test scores were included in the analysis: verbal learning (California Verbal Learning 

Test[CVLT], sum of trials 1 to 5), 30 minutes recall and 30 min recognition (Delis et al. 2000), Stroop 

reading, Stroop color naming and Stroop incongruent color naming (MacLeod 1992), digit span 

forward and backward (Wechsler 2008), vocabulary and matrix reasoning (Wechsler 1999), see SI for 

details about the tests. In contrast to the measured scores, the PCA derived components are free of 

measurement errors. To obtain a stable and generalizable component solution, the PCA was run on a 

larger healthy sample from the same research center, screened with the same instruments as the 

MRI subsample, containing 4065 participant observations (age 4.1-93.4 years, 2285/ 1722 females/ 

males observations), inclusive of those used in the present study. In case of missing values, the ‘mean 



6 

 

substitution’ method was used. Inspection of the scree plot revealed that both three and four 

components were reasonable solutions. The four-component solution gave most sense from a 

neuropsychological perspective, and the four component solution was thus chosen for further 

analyses, yielding 81.53% explained variance. See Table 2 and SI for details. 

 

[Insert Table 2 about here] 

 

To ensure that the PCA from the larger samples was representative also for the subsample used in 

the present paper, Procrustes rotation was used to assess degree of dissimilarity. This procedure 

rotates a matrix to maximum similarity with a target matrix minimizing the sum of squared 

differences. 10.000 permutations were run, yielding a p-value of 9.999e-05, sum of squares of 0.099 

and a correlation for a symmetric Procrustes rotation of 0.95, indicating excellent correspondence 

between the matrices. This was further confirmed by a Mantel permutation test for similarity of two 

matrices, yielding an observed r of .95 and a simulated p-value of 9.999e-05 for 10.000 permutations. 

Thus, applying the PCA solution from the larger sample to the MRI subsample was clearly a valid 

approach.  

 

MRI data acquisition and analysis 

Imaging data (except VETSA) were acquired using a 12-channel head coil on two 1.5-Tesla Siemens 

Avanto scanners (Siemens Medical Solutions, Erlangen, Germany), yielding 2 repeated 3D T1-

weighted magnetization prepared rapid gradient echo (MPRAGE): TR/TE/TI = 2400 ms/ 3.61 ms/ 

1000 ms, FA = 8°, acquisition matrix 192 × 192, FOV = 240 mm, 160 sagittal slices with voxel sizes 

1.25 × 1.25 × 1.2 mm. For most children 4-9 years old, iPAT (integrated parallel imaging) was used, 

acquiring multiple T1 scans within a short scan time with the same parameters as above, enabling us 

to discard scans with residual movement and average the scans with sufficient quality. Previous 

studies have shown that accelerated imaging does not introduce significant measurement bias in 

surface-based measures when using FreeSurfer for image analysis, compared with a standard 

MPRAGE protocol with otherwise identical voxel dimensions and sequence parameters (97), which is 

in accordance with our own analyses.  

 

MRI data (except VETSA) were processed and analyzed with FreeSurfer 5.3 

(http://surfer.nmr.mgh.harvard.edu/) (Dale 1993; Dale et al. 1999) longitudinal stream (Fischl and 

Dale 2000; Reuter and Fischl 2011; Reuter et al. 2012). SA maps were smoothed using a circularly 

symmetric Gaussian kernel with a full width at half maximum (FWHM) of 26 mm and CT maps with a 
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kernel of 21 FWHM. Movement is a major concern (Reuter et al. 2015), so scans were manually rated 

1-4, and only 1 or 2 (no visible or only very minor possible signs of movement) were included. Also, 

all reconstructed surfaces were inspected, and discarded if they did not pass internal quality control. 

This led to the exclusion of 46 participants from MoBa-Neurocog and 9 from ND, reducing the total 

sample to the reported 1633 scans.  

 

For VETSA, images were acquired on two Siemens 1.5 Tesla scanners. Sagittal T1-weighted MPRAGE 

sequences were employed with a TI=1000ms, TE=3.31ms, TR=2730ms, flip angle=7 degrees, slice 

thickness=1.33mm, voxel size 1.3x1.0x1.3mm. Similar to the other data, the scans were run through 

FreeSurfer and manually inspected and quality checked, with minimal manual editing performed. 

Details about the VETSA MRI processing can be found here (Chen et al. 2013). 

 

Fuzzy clustering 

The fuzzy clustering procedure was performed using the ‘cluster’ package implemented in R (www.r-

project.org/). The individual de-meaned annualized symmetrized percentage change (APC) maps 

were fed into the cluster algorithm. The APC maps were computed by calculating the difference in 

thickness/ area for each vertex between timepoints, divide by the mean thickness/ area across time 

points for that vertex, and multiply by 100. Clustering methods partition the dataset into clusters 

based on the chosen proximity relations. We calculated pair-wise correlations of thickness and area 

change between every two vertices on the cortex for the left and right hemispheres separately. To 

reduce computation time, we subsampled the standardized cortical-surface tessellation from the 

original 163.842 to 2.562 vertices per hemisphere. We then transformed the change correlation 

matrix into the distance matrix by subtracting each correlation from 1. In fuzzy clustering, objects can 

belong to more than one cluster and with different degrees of membership to the different clusters, 

between 0 and 1. Thus, the memberships of objects at the overlapping boundaries will typically 

express the ambiguity of the cluster assignment. Fuzzy clustering aims to minimize the objective 

function 

 
where n is the number of observations, k is the number of clusters, r is the membership exponent, u 

is the cluster membership, and d(i, j) is the dissimilarity between observations i and j (Kaufman and 

Rousseeuw 1990). The cluster memberships u are nonnegative and sum to one for a given data point. 

http://www.r-project.org/
http://www.r-project.org/
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To investigate the stability of the clustering in relation to initialization, we randomly initialized the 

algorithm for 100 runs and picked the cluster solution that maximized the likelihood function.  

 

In addition, we generated random clusters to compare with the power of the real clusters. The 

performance of the developmental clusters was compared to randomly generated clusters for a 

three-cluster solution, since the three-cluster solution was used for the lifespan analyses (see below). 

The random clusters were generated using k-means algorithm implemented in MATLAB (R2015b). 

The spatial locations of the cerebral cortex mesh were partitioned into 15 clusters using the squared 

Euclidean distance metric and k-means++ algorithm for cluster center initialization. One of the 

clusters resulted in capturing the whole temporal lobe, therefore, it was further sub-divided into 4 

clusters using the same procedure. The final 18 clusters were merged into 3 clusters of similar size to 

the empirically derived clusters. 

 

Genetic clustering 

The developmental clusters were compared to previously published genetic clusters (Chen et al. 

2013), made accessible for formal comparisons to the present study. The genetic clusters were 

derived using a similar Fuzzy clustering approach to the one described above. The clustering was 

performed on genetic correlation maps for cortical thickness and area based on the VETSA sample. 

The resulting clusters represent boundaries of cortical divisions that are maximally under control of 

shared genetic influences. The present two- and three-cluster solutions for cortical thickness and 

area development were compared to the genetic two- and three-cluster thickness and area solutions 

by use of the Rand Index (see below).   

 

Gene expression analyses 

Cortical gene expression data were obtained from the BrainSpan Atlas of the Developing Human 

Brain (2010) (www.brainspan.org) (Miller et al. 2014), which provides a transcriptome of the 

developing human brain. We rated 31 transcription factors assumed responsible for shaping the 

partitioned neocortex (Rakic et al. 2009) according to how well their expression patterns were 

aligned to the AP axis. 18 factors showed a clear and four a partial AP gradient, yielding evidence that 

the AP axis constitutes a major regionalization gradient in early cortical development. To test 

whether this cluster gradient could be detected in later human gene expression patterns, we 

selected the candidate with the most established anterior-posterior expression pattern, PAX6 

(Bishop et al. 2000), and the candidate with the most pronounced posterior-anterior expression 

pattern, P75 (Rakic et al. 2009). Thirty-four out of the forty-two donor brains in the BrainSpan Atlas 

http://www.brainspan.org/
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had valid probe data from at least one cortical region within each of the empirically derived 

developmental clusters (see below). Mean expression values for cortical regions falling within the 

developmental clusters were extracted for the 34 participants from the BrainSpan Atlas. For each 

donor, the average PAX6/P75 expression was estimated through mean averaging of normalized 

expression values (Reads Per Kilobyte Million; RPKM) from cortical samples overlapping with the 

developmental clusters.  

 

Statistical analyses 

Analyses were run in R (https://www.r-project.org) using Rstudio (www.rstudio.com) IDE, except the 

PCA (SPSS v25). The Rand index (RI) and Silhouette plots (Rand 1971), in combination with visual 

inspections, were used to inform the choice of specific cluster solutions. RI is a number between 0 

and 1 that quantifies the degree of similarity between two cluster solutions by computing the 

proportion of vertices that are given the same cluster label in both solutions. It is possible for some 

vertices to have the same cluster label by chance, and this is accounted for in the adjusted RI. 

Adjusted RI was used to compare area to thickness clusters, and the developmental clusters to the 

genetic clusters.  

 

To characterize each two-cluster cluster solution according to the main axes (anterior-posterior [AP], 

inferior-superior [IS], lateral-medial [LM]), the cortical surface was divided in 20 bins along each axis. 

The mean probability of all the vertices within each bin along the AP axis to belong to a given cluster 

was calculated, and the same for the IS and LM axes. These values were then correlated with the axis 

bin numbers (from 1 to 20), yielding an objective measure of how much of the variance of the 

different cluster solutions that could be explained by each of the three principal axes.   

 

Generalized Additive Mixed Models (GAMM) implemented in R (www.r-project.org) using the 

package “mgcv” (Wood 2006, 2011) were used to derive age-functions for morphometric and 

cognitive variables. Akaike Information Criterion (AIC) (Akaike 1974) and the Bayesian Information 

Criterion (BIC) was used to guide model selection and help guard against over-fitting. The 

smoothness of the age-curve is estimated as part of the model fit, and the resulting effective degrees 

of freedom (edf) was taken as a measure of deviation from linearity. The p-values associated with the 

smooth terms are only approximate, as they are based on the assumption that a penalized fit is equal 

to an unpenalized fit with the same edf, and do not take into account uncertainty associated with the 

smoothing parameter estimation. The major advantage of GAMM in the present setting is that 

relationships of any degree of complexity can be modelled without specification of the basic shape of 

https://www.r-project.org/
http://www.rstudio.com/
http://www.r-project.org/
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the relationship, and GAMM is thus especially well-suited to map life-span trajectories of 

neurocognitive variables which can be assumed to be non-linear and where the basic form of the 

curve is not known (Fjell et al. 2010). Sex was used as covariate in the area analyses, as sex is related 

to area but less to thickness (Fjell et al. 2009).  

 

Results 

Clusters of cortical change in development 4-12 years 

Clusters are presented in Figure 1 (SA) and Figure 2 (CT). The two-cluster SA solution followed a clear 

anterior-posterior (AP, correlation with the AP axis r = .91) and inferior-superior (IS, r= .97) gradient, 

with less influence from the lateral-medial (LM, r = .19) axis. The AP division was tilted 19° from the 

base plane, causing the strong IS correlation. The posterior cluster covered the central sulcus and the 

adjacent anterior regions of the frontal cortex (premotor cortex), extending back to encapsulate the 

dorsolateral occipital cortex, and inferiorly down to the cingulum. For the three-cluster solution, an 

occipital-limbic cluster emerged. In the four-cluster solution, a new cluster appeared inferior to the 

first posterior cluster, distinguishing this cluster from the rest of the clusters both medially and 

laterally.  

 

The two-cluster CT solution showed a very strong IS gradient (r = .97), with less AP (.39) and LM (.46) 

influence. With three clusters, an occipital-limbic cluster emerged. In the four-cluster solution, the 

superior cluster was split in two clusters. For both CT and SA, the silhouette values flattened after 4 

clusters, suggesting that 5 clusters were too many (see SI). The adjusted Rand Index (adj RI) showed 

substantial overlap between the 2-cluster SA and CT solutions (adj RI = .88), with less similarity for 

three (adj RI = .27) and four (adj RI = .22) clusters. Still, the medial limbic cluster and the prefrontal – 

anterior-temporal relationship was similar between SA and for CT across the 3- and 4- cluster 

solutions. 

 

 [Insert Figure 1 and 2 about here] 

 

To validate the Fuzzy clustering results, we ran seed point analyses from 360 seeds based on a multi-

modal parcellation scheme (Glasser et al. 2016). The critical features of the cluster results were 

confirmed, including the AP axis for SA, the IS axis for CT, and the prefrontal-temporal relationship 

and delineation of the limbic clusters for both SA and CT (see SI). 

 

Adherence of SA development to early morphometric gradients 
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Mean expression values for PAX6/ P75 in cortical regions falling within the anterior and the posterior 

developmental clusters were extracted for 34 participants from the BrainSpan Atlas 

(www.brainspan.org). Five samples from the atlas fell within the superior-anterior cluster: samples 

from dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, orbital frontal cortex, 

inferolateral temporal cortex, and anterior cingulate cortex. Four samples fell within the inferior-

posterior cluster: primary motor cortex, primary somatosensory cortex, posteroventral parietal 

cortex, and primary auditory cortex. Difference in expression between the superior-anterior cluster 

and the inferior-posterior cluster was assessed for PAX6 and P75(NGFR) separately using paired-

samples t-tests. Expression values of PAX6 were significantly higher (t = 4.24, df = 33, p < .0002) in 

the anterior than the posterior development cluster, while the opposite was found for P75 (t = -3.03, 

df = 33, p < .005) (Figure 3). Put together, this shows that traces of the major expression patterns in 

embryonic development can be recovered in later childhood, and that the gene expression patterns 

in humans follow cortical change in ways predicted from early embryonic development. It was not 

given that genes with strong AP gradients during embryonic brain development would also adhere to 

an empirically derived AP cluster solution based on cortical changes during childhood development. 

 

[Insert Figure 3 about here] 

 

Resemblance to cortical genetic patterning 

After having established that SA development follows the main AP gradient identified in embryonic 

development, we tested how similar the developmental SA and CT clusters were to mid-life genetic 

cortical topography (Chen et al. 2013) (Figure 4). Genetic topography represents the delineation of 

regions influenced by the same genes. Rand Index suggested low overlap (adj RI < .10 for 2 and 3 

cluster solutions) between genetic topography and the developmental clusters. The AP division was 

seen for both, but the boundary between the clusters was shifted from inferior-posterior to anterior-

superior for the development clusters (-71° from the perpendicular axis) compared to inferior-

anterior to superior-posterior (+38°) for the genetic clusters. Adherence to the AP axis was slightly 

higher for the genetic (r = .96) vs. the developmental (r = .91) clusters, and slightly lower for the IS 

axis (r = .82 for genetics vs. r = .91 for development).  

 

Comparing the developmental and the genetic CT clusters, the same IS division was seen for the 2-

cluster solution (r = .96 for genetics vs. .93 for development, RI = .69, adj RI = .39). The genetic 

clusters also followed the AP (r = .90) and to a lesser extent the medial-lateral (r = .25) gradient. For 

the 3-cluster solution, the medial delineation of the limbic developmental cluster included the medial 

http://www.brainspan.org/
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temporal lobe and the cingulum as well as the occipital cortex, while the genetic homologue cluster 

did not include the occipital lobe but more of the prefrontal cortex laterally and medially. RI 

indicated similar genetic-developmental overlap (RI = .68) for the three-cluster solutions, but adj RI 

dropped to .31, with a further drop to the 4-clusters solution (RI = .70, adj RI = .23). Thus, the overlap 

between CT development and genetic topography dropped with higher number of clusters.  

 

[Insert Figure 4 about here] 

 

Lifespan-trajectories of developmental clusters 

Mean CT and SA values in each cluster from the 3-cluster solutions were extracted for each 

participant and time point in the full MRI sample from 4.1 to 88.5 years, yielding 1633 observations. 

Generalized Additive Mixed Models (GAMM) with cluster as dependent variable, age as predictor and 

a random effect for intercept, showed that all clusters showed highly non-linear relationships to age 

(all p’s < 2e-16, effective degrees of freedom [edf] for all > 5). SA differs as a function of sex (Amlien et 

al. 2016), and was included as a nuisance covariate in the SA analyses. As expected, CT clusters 

showed mainly monotonous negative relationships to age (Figure 2), with steeper reductions in 

childhood and adolescence, while SA increased in the first part of the age-span (Figure 1), peaking in 

early teenage years, followed by reductions for the rest of the life-span.  

 

To test whether the clusters showed unique age-trajectories, analyses were repeated with all clusters 

for each modality (SA, CT) as simultaneous predictors of age. For SA, this yielded highly significant 

residual age-relationships for all clusters (all p’s < 4.07-5). The limbic cluster showed residual 

reductions with higher age throughout the whole age-span, while the anterior cluster showed slight 

increases and the posterior a U-shaped trajectory (Figure 1, right panel, bottom). The analyses were 

also re-run without the cluster-forming development sample, and all clusters were still highly 

significantly related to age when run separately (all p’s < 2e-16) and simultaneously (n = 502, 860 

observations, all p’s < .05), both for CT and SA.  

 

Random clusters 

To test whether the independent lifespan trajectories of the developmental clusters reflected an 

inherent feature of any cortical cluster of a given size, we created random clusters of approximately 

the same size and repeated the GAMMs with all clusters as simultaneous predictors of age (Figure 5). 

The developmental clusters performed substantially better than the random clusters on all model fit 
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measures (CT: developmental clusters - random clusters, ∆AIC = -150.75, ∆BIC = – 150.75, logLik = 

75.38/ SA: ∆AIC = -53.57, ∆BIC = – 53.58, logLik = 26.79).  

 

[Insert Figure 5 about here] 

 

In conclusion, we were able to detect large cortical regions with unique and independent trajectories 

across the lifespan through data-driven clustering of longitudinal change in children. We proceeded 

to test whether the clusters were related to cognitive performance.  

 

Cognitive components – relationship to developmental clusters 

All cognitive components showed highly significant (p < 2e-16) and non-linear (edf > 4.9) age-

trajectories (Figure 6A, Table 3). Each component was then used as dependent variable in separate 

GAMMs, with age and each developmental cluster as predictors, intercept as a random effect and 

subject time point as covariate to control for retest effects. Selected results are presented in Figure 

5C and numeric results in Table 4 and 5 (full results in SI). All SA clusters were positively related to 

GCA (p < .0002). The anterior cluster was also related to working memory span (p = .008), while the 

limbic (p = .03) and posterior (p = .018) did not survive Bonferroni corrections. None were related to 

memory or executive-speed. In contrast, the CT superior cluster (p = .005) was related to memory, 

while the limbic and inferior (both p’s = .02) did not survive corrections. The limbic (p = .01) and 

inferior (p = .005) were related to executive-speed (after corrections). The relationships were non-

linear, as would be expected based on the monotone negative thickness–age relationships coupled 

with the typical inverse U-shaped cognition-age relationships. The differential relationships between 

cognitive function and CT and SA are illustrated in the heat maps in Figure 6B.  

 

[Insert Figure 6, Table 3, Table 4 and Table 5 about here] 

 

Discussion 

The present results show that cortical expansion in childhood development follows the major gene 

expression patterns of factors responsible for shaping the partitioned and specialized human 

neocortex during prenatal development (Rakic et al. 2009). Through a data-driven parcellation of the 

cerebral cortex based on longitudinal change in SA in 4-12 year old children, we were able to detect 

the major anterior-posterior developmental gradient known from embryonic development (Bishop et 

al. 2000). This demonstrates a continuity in cortical expansion from the earliest stages to the period 

when regional arealization reaches its peak. While this represents continuity between the 
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fundamental principles for embryonic brain development (Rakic 1988; Rakic et al. 2009) and later 

childhood SA maturation, in line with known influences of neonatal characteristics on SA (Walhovd et 

al. 2012), CT change more strongly followed adult genetic organization principles, as predicted from 

previous work on genetic cortical patterning (Chen et al. 2013). Importantly, the developmental 

clusters showed statistically distinguishable trajectories through more than eight decades of life, in 

accordance with the view that fundamental principles governing brain development in children have 

lasting impact on the brain. Thus, brain regions that develop together also change together through 

the rest of life. Finally, since SA is highly determined by prenatal factors, we expected correlations 

with GCA, which loads highly on the g-factor (Deary et al. 2010) and has high between-person 

lifespan stability (Lyons et al. 2009; Deary et al. 2012). This was confirmed, in contrast to CT, which 

was more strongly related to cognitive domains with lower loading on the g-factor (Deary et al. 2010), 

such as memory and executive-speed. This suggest that cortical characteristics (arealization and 

thickness) beyond anatomical boundaries are the more important in defining relationships to 

cognition.  

 

Parcellation of the developing human cerebral cortex 

The results showed that the cortex can be parcellated in meaningful ways based on developmental 

change data alone. The anterior-posterior SA axis followed the major gene expression gradient 

identified in animal studies (Bishop et al. 2000; Rakic et al. 2009). This link was further supported in 

the present study through the finding of significantly different gene expression in the anterior vs. the 

posterior cluster for PAX6 and P75, both established anterior gradient factors in embryonic 

development (Bishop et al. 2000). Such correspondence between childhood SA maturation and 

cortical ontogenesis is in line with the protomap (Rakic 1988) and radial unit tenets (Rakic et al. 2009). 

According to these, neural progenitors in the ventricular zone form a mosaic of proliferative units 

that establish an embryonic cortical map in early development. During migration of neurons into the 

cortex, their position is then retained by restraints imposed through the radial glial scaffolding. 

However, it has not been established that these principles laid down in the first stages of CNS 

development are reflected in cortical maturation in later childhood in humans. 

 

Although there was good overlap between SA and CT for the two-cluster solution, this dropped 

substantially with higher cluster numbers. CT and SA are shaped by independent genes (Rakic 1988; 

Panizzon et al. 2009) and different neurobiological mechanisms in early fetal life (Rakic et al. 2009), 

and they also follow fundamentally different trajectories in development (Raznahan, Shaw, et al. 

2011; Amlien et al. 2016; Walhovd et al. In press) and aging (Storsve et al. 2014). As expected, there 
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was a fundamental difference in the principal axis distinguishing CT and SA even for the two-cluster 

solution, with the CT clusters adhering to an inferior-superior axis, with the plane of the cluster 

division tilted 19° for SA. While the anterior-posterior SA division was seen also in a previous 

developmental study, the inferior–superior CT axis was not (Krongold et al. 2017). This could possibly 

result from methodological differences, e.g. that the previous study used both combined cross-

sectional and longitudinal information. A second longitudinal study with an alternative analysis 

approach reported indirect evidence for an inferior-superior gradient in CT development (Alexander-

Bloch et al. 2013), and it has previously been suggested that such a division could be due to 

cytoarchitectonic features and connectivity patterns (Chen et al. 2013). 

 

The three- and four cluster solutions revealed additional interesting patterns. Not only local clusters 

were seen, but also relationships between functionally connected regions crossing lobar boundaries. 

For instance, lateral prefrontal cortex and the lateral anterior temporal cortex were included in the 

same SA and CT clusters. This fronto-temporal connection fits earlier observations (Raznahan, Lerch, 

et al. 2011; Krongold et al. 2017), and would be expected from structural connections represented by 

the uncinate fasciculus (Schmahmann and Pandya 2006). A limbic cluster encapsulating the medial 

temporal lobe, the cingulum and insula, and extending backward covering the lingual gyrus, cuneus 

and occipital cortex, was also seen for both SA and CT. This demonstrates that cortical maturation 

not necessarily follows lobar boundaries, but rather extends beyond what would be expected from 

anatomical proximity. Similarly, SA of auditory cortex in the superior temporal lobe clustered 

together with somatosensory, motor and visual cortices in the two-cluster solution, i.e. mimicking 

functional clusters. Still, morphological change did not follow functional boundaries in a clear-cut 

manner, as calcarine sulcus (V1) and ventral visual areas clustered with the inferior/ anterior cortex, 

not the rest of the visual cortex. 

 

Importantly, the developmentally defined clusters showed statistically distinct lifespan trajectories. 

Although the general form of the trajectories is well known (Fjell et al. 2015; Walhovd et al. 2016), 

the analyses revealed residual age-relationships for single clusters independently of other clusters. 

This finding was in accordance with the hypothesis that variations in cortical development has life-

long impacts, and consequently that regions that develop together tend to change together through 

the rest of life. We have previously shown that correlations between longitudinal changes in CT 

across predefined smaller ROIs are similar in development and aging (Fjell et al. 2015). Here we show 

that the trajectories of clusters based solely on coordinated developmental change, with no 

anatomical restrictions imposed on the clustering, can be delineated in a sample spanning more than 
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80 years, both for SA and CT. Cluster solutions above four were not stable, which caused the clusters 

to be anatomically extensive. Consequently, they encompassed sub regions found in previous 

research to show partly different developmental trajectories (Fjell et al. 2015; Amlien et al. 2016). 

Importantly, however, the clusters consist of regions of correlated developmental change, not 

necessarily regions with similar trajectories. These main regions of coordinated change will naturally 

generalize across sub-regions, but the coordination of change across the sub-regions was not stable 

enough to allow identification of coordinated change across anatomically more fine-grained regions. 

 

Adherence to genetic patterning 

The clusters were tested against genetic cortical patterning results (Chen et al. 2013). For CT, we 

found overlap between developmental and genetic patterns. This fits with our previous finding that 

regional differences in cortical thinning adhered to genetic organizational principles (Fjell et al. 2015). 

In the present study, we defined clusters based on developmental change, independently of the 

genetic patterning. Although the genetic overlap was lower with a higher number of clusters, certain 

similarities between developmental and genetic organization patterns remained, for instance the 

prefrontal-temporal relationship (Chen et al. 2013). Thus, partly the same genes seem to govern 

absolute frontal and temporal CT. A genetic fronto-temporal relationship was also seen in a 

developmental twin sample for CT and SA (Schmitt et al. 2017). 

 

In contrast, there was limited overlap between the developmental SA clusters and the genetic 

clusters, revealing interesting differences. Genetic SA relationships seem local or lobar, lacking strong 

long-distance or cross-region correlation patterns, with generally lower – and more age-invariant - 

correlations across the cortex (Chen et al. 2011; Schmitt et al. 2017; Strike et al. 2018). The 

developmental organizational patterns crossed anatomical boundaries, such as the fronto-temporal 

and the limbic clusters. Another difference was that premotor and postcentral/ somatosensory 

regions clustered together in development, as seen in previous fetal work (Johnson et al. 2009), but 

have distinct adult genetic patterns (Chen et al. 2013). Notably, the genetic-developmental similarity 

for CT is in line with the prediction from the original genetic patterning paper that CT clusters would 

show genetic relatedness with clusters of similar maturational timing (Chen et al. 2013).  

 

The difference in genetic overlap for CT and SA further illuminates the developmental origins 

hypothesis. We expected SA change to adhere to major gradients from embryonic development, and 

CT change to overlap with genes responsible for CT at a later point in life. SA reaches its maximum 

expansion in early adolescence (Amlien et al. 2016), with the major determinant likely being the 
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number of cell division cycles of the neural stem cell pool at the premitotic stage of neural 

development (Rakic 2009). The width of the cortical mini-column at birth is around one-third of its 

adult size (Buxhoeveden and Casanova 2002), and expansion of cortical SA in childhood can likely be 

explained by growth of these (Lyall et al. 2015). The developmental SA clusters likely reflect the last 

part of an expansion that can be traced back to embryonic stage, as also evidenced by the 

demonstrated adherence to the anterior-posterior gradient of gene expression patterns. In contrast, 

CT ceases to increase early after birth and reaches 97% of adult values in two years (Lyall et al. 2015). 

Early CT is affected by asymmetric cell division cycles of the cortical founder pool, determining the 

number of cells within each column (Rakic 2009). However, the number of neurons in each column is 

hardly a determinant of cortical changes after the initial CT increase, which rather can be attributed 

to dendritic branching, synaptogenesis and gliogenesis (Huttenlocher and Dabholkar 1997). Thus, CT 

change from 4 to 12 years likely reflects either different processes or differences in the relative 

contributions of the same processes compared to CT change in very early development. Studies show 

that the genetic contribution to CT but not SA changes during development (Schmitt et al. 2017; 

Teeuw et al. 2018), and CT shows steeper slopes during adolescent development (Amlien et al. 2016) 

and later aging (Storsve et al. 2014) than SA. We argue that CT to a greater extent than SA reflects 

accumulated life-long genetic and environmental impact. Thus, SA is usually more strongly related to 

early life factors and CT relatively more also to later life factors. Empirical support comes from 

studies showing larger effects of birth weight and other obstetric factors on SA than CT (Martinussen 

et al. 2005; Raznahan et al. 2012; Walhovd et al. 2012; Jha et al. 2018), and environmental 

interventions affecting CT (Engvig et al. 2010; Wenger et al. 2012).  

 

Cognitive correlates of developmental clusters 

SA and CT were expected to correlate with different cognitive domains. We hypothesized that SA 

would be related to GCA, which shows high between-person stability across life (Lyons et al. 2009; 

Deary et al. 2012), likely due to the impact from early life-factors. Accordingly, we found highly 

significant lifespan relationships between GCA and the SA clusters, but not CT clusters, in line with 

previous observations (Vuoksimaa et al. 2015; Walhovd et al. 2016). In contrast, we speculated that 

since CT is more strongly related to age and sensitive to environmental influences, it would be 

related to more specific cognitive functions with lower loadings on the g-factor and less established 

lifelong between-person stability. Episodic memory and executive-speed have lower g-loadings than 

GCA (Deary et al. 2010) and declines steeply with age (Salthouse 2004). We found relationships 

between these components and all CT clusters. No significant relationships were seen between 

executive-speed and SA, while the relationships between SA and memory were just significant (limbic 
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and posterior clusters) or showed a trend (p = .06, anterior cluster). Working memory span, which 

was relatively invariant during adult life, showed comparable relationships with CT and SA. 

Importantly, however, greater age effects do not equal less between-person stability, and it is as of 

yet not clear whether memory and executive-speed show less between-person stability over the life-

course than GCA. People differ in the amount of change in memory and speeded tasks over time 

(Salthouse 2016), and change in GCA is more strongly related to “global cognitive” change than 

changes in episodic memory and speed are (Tucker-Drob 2011). Still, correlations of change within 

and across cognitive domains tend to increase with age (Tucker-Drob et al. 2014), and a recent meta-

analysis showed that 59% of the variance in change is shared across abilities (Tucker-Drob et al. 

2018). In any case, a conclusion from the present results is that relationships between cognitive 

function and cortical morphometry adhere more strongly to modality than anatomical region. 

Vertex-wise analyses across the cortex could potentially detect more anatomically specific 

relationships with cognition, but at the levels of major clusters, measurement type seems more 

important than anatomical location.  

 

Conclusion 

In conclusion, cortical SA expansion during childhood was organized according to an AP gradient, 

seen also during early embryonic development, and related to gene expression and genetic 

patterning. Clusters of cortical development showed statistically distinct trajectories through 8 

decades of life, and correlated with cognitive function in predictable ways, demonstrating continuity 

of human cortical development from early to late stages of life.  
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Figure legends 

 

Figure 1 Surface area 

Left panel: Clusters of coordinated surface area in development, two- (top), three- (middle), and 

four- (bottom) cluster solutions. Right panel: The lifespan trajectories of each cluster from the three-

cluster solution. Top: Trajectories residualized on age (x-axis). Bottom: The residual age-relationship 

(y-axis) for each cluster accounting for the other two clusters. These curves show the relationship 

between each cluster and age, if the common variance shared with the other clusters are accounted 

for. Relative to the other clusters, the anterior cluster shows a slight increase with age (larger cluster 

area goes with older age), while the limbic cluster shows a linear decline (larger cluster area goes 

with younger age). The colors of the curves correspond to the cluster color in the left figure. The 

shaded area denotes +/-2 standard errors of the mean. 

 

Figure 2 Cortical thickness  

Left panel: Clusters of coordinated cortical thickness in development, two- (top), three- (middle), and 

four- (bottom) cluster solutions. Right panel: The lifespan trajectories of each cluster from the three-

cluster solution. Top: Trajectories residualized on age (x-axis). Bottom: The residual age-relationship 

(y-axis) for each cluster accounting for the other two clusters (see Figure 1 legend for explanation). 

The colors of the curves correspond to the cluster color in the left figure. The shaded area denotes 

+/-2 standard errors of the mean. 

 

Figure 3 Genetic patterns  

A: Surface area (SA) developmental clusters, top view. B: Anterior-posterior gradient of PAX6 (left) 

and P75 (right) from (Rakic et al. 2009). The error bar plot (bottom) shows higher expression of Pax6 

in the anterior cluster and higher expression of P75 in the posterior cluster in the BrainSpan database.  

 

Figure 4 Comparison of developmental and genetic clusters 

Thickness clusters in the left panel, area clusters in the right panel. 1st column is the development 

clusters (left hemisphere only shown), middle column is the genetic clusters from (Chen et al. 2013), 

right column is a conjunction map of the concordance/ discrepancy of development vs. genetics. 

Vertices belonging to the same cluster across the developmental and the genetic clusters are shown 

in blue/ red/ yellow. Vertices that are discordant between the developmental and the genetic 

clusters are shown in green. Thus, the size of the green area represents amount of discrepancy 
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between the developmental and the genetic cluster solutions. As can be seen, the overlap is better 

for the two- compared to the three-cluster solutions, and better for thickness than area.   

 

Figure 5 Random clusters 

The random clusters generated using the k-means algorithm. 
 

Figure 6 Cognitive relationships 

A: Each cognitive domain plotted against age, residualized on time point to remove retest effects. For 

trajectories of the tests loading highly on GCA (matrix reasoning, vocabulary) see SI. B: Heat maps of 

F-values illustrating the relationship between each cluster and each cognitive function, regressed on 

age and sex (SA). C: Examples of brain cognition-relationships for the limbic cluster for thickness (two 

plots to the left) and area (two plots to the right). Plots for all variables are presented in SI. The 

shaded area denotes +/-2 standard errors of the mean. 
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 Obs n Age1  Follow-up interval 

< 20 years 1021 644 9.2 (4.1-19.7) 1.7 (1.0-3.2) 

20-50 years 234 136 35.2 (20-50) 3.2 (0.2-6.3) 

> 50 years 378 194 64.8 (50.5-85.3) 1.6 (0.2-6.6) 
1 Age at baseline 

Obs: Number of observations 

n: Number of participants 

 

Table 1 Number of observations 
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 Memory 

Excecutive

-speed 

Working 

memory GCA 

Recall 30min .86    

Learning .82    

Recognition .81    

Stroop words  .92   

Stroop colors  .85   

Stroop colors/ words  .83   

Digit span forward   .87  

Digit span backward   .78  

Vocabulary    .82 

Matrix reasoning .47   .69 

 

Table 2 Rotated component matrix 

Values below .40 are suppressed. Rotation Method: Varimax with Kaiser Normalization. Rotation 

converged in 5 iterations. GCA: General Cognitive Ability. Recall, learning and recognition from CVLT, 

Vocabulary and Matrix from WASI. 
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 edf F 

s(Age) 

p 

s(Age) 

R2 (adj) 

model 

Memory 7.36 89.5 <2e-16 .62 

Executive-speed 8.25 44.9 <2e-16 .77 

Working memory 4.90 38.8 <2e-16 .36 

GCA 7.01 405.5 < 2e-16 .78 

 

Table 3 Effects of age on the cognitive components 

Generalized additive mixed effects models (GAMM) were run with age as a smooth term, subject 

timepoint as a linear covariate and subject as random effect. Adjusted R2 refers to the full model 

including covariates. GCA: General Cognitive Ability. Edf: effective degrees of freedom for the smooth 

term. 
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 edf F 

 

p 

 

Memory    

Limbic 1.00 3.4 0.07 

Posterior 1.00 2.8 0.09 

Anterior 1.00 2.5 0.12 

Executive-speed    

Limbic 1.04 0.0 0.88 

Posterior 1.00 0.0 0.84 

Anterior 1.00 0.1 0.80 

Working memory    

Limbic 1.00 4.3 0.03 

Posterior 1.00 5.6 0.018 

Anterior 1.00 7.1 0.008 

GCA    

Limbic 1.00 15.0 0.0001 

Posterior 1.00 14.3 0.0002 

Anterior 1.00 14.5 0.0001 

 

Table 4 Effects of cluster surface area on the cognitive factors in the full sample 

Generalized additive mixed effects models (GAMM) were run with age as a smooth term and cluster 

as a linear predictor. Subject time point was included as a linear covariate and subject as a random 

effect variable.  
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Bold p < .05 corrected (adjusted Bonferroni correction for four cognitive factors and 3 clusters taking 

between-cluster correlations into account) Bold italics p < .05 uncorrected. 

 GCA: General Cognitive Ability 

edf: effective degrees of freedom for the smooth term (a measure of deviation from linearity) 
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 edf F 

 

p 

 

Memory    

s(Limbic) 2.16 3.8 0.02 

s(Superior) 2.70 6.7 0.005 

s(Inferior) 2.70 4.4 0.02 

Executive-speed    

s(Limbic) 3.39 8.3 0.01 

s(Superior) 2.04 3.4 0.10 

s(Inferior) 2.93 9.9 0.005 

Working memory    

s(Limbic) 1.00 2.3 0.13 

s(Superior) 1.00 4.7 0.03 

s(Inferior) 1.00 2.2 0.14 

GCA    

s(Limbic) 2.16 2.9 0.06 

s(Superior) 1.00 0.0 0.98 

s(Inferior) 1.00 0.0 0.90 

 

Table 5 Effects of cortical thickness on the cognitive factors in the full sample 

Generalized additive mixed effects models (GAMM) were run with age and each cluster as smooth 

terms. Subject time point was included as a linear covariate and subject intercept as a random effect 

variable.  
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Bold p < .05 corrected (adjusted Bonferroni correction for four cognitive factors and 3 clusters taking 

between-cluster correlations into account) Bold italics p < .05 uncorrected. 

GCA: General Cognitive Ability 

edf: effective degrees of freedom for the smooth term 

 


