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Abstract

Magnetic properties are an important application area in quantum chemistry. How-
ever, for the most widely used method in electronic structure calculations, density-functional
theory, it is still not understood how to include the magnetic field into the exchange–
correlation functional. With this work, we contribute to and further develop magnetic-
field density-functional theory (BDFT), which is an alternative to, but less well-known,
than current density-functional theory (CDFT). Using the four-way correspondence of
convex analysis, we put BDFT into a common framework with CDFT and compare both
approaches.

In order to improve upon current density functional approximations (DFAs), we ex-
tensively study their shortcomings when used for magnetic properties. We consider the
field dependence of each Kohn–Sham energy component individually and study the self-
consistent density of several frequently used DFAs. We make the important observation
that the main error of present DFAs arises from their poor self-consistent densities. To
fully benefit from a field dependence, it is therefore necessary to improve the density first.

Another main part of this work is to study and make use of adiabatic connection (AC)
curves for systems including magnetic fields, both with highly accurate ab-initio methods
and with DFAs. We show that the behaviour of AC curves depends on the choice of
geometry. If the equilibrium geometry for zero field strength is kept for all fields, the
curves bend more with increasing field strength, corresponding to an increase of static
correlation. When each curve is calculated at the equilibrium geometry of that field
strength, the magnetic field does not result in any significant changes regarding the shape
of the AC curves. For AC curves computed with DFAs, the main error in the presence of
a magnetic field is already there at zero field strength. To obtain more accurate results for
magnetic properties with DFAs, it is therefore important not only to introduce the missing
field dependence, but also to reduce the errors of present, field-independent functionals.

The investigations and results of this work provide valuable information both for the
further theoretical development of BDFT and for the proper inclusion of magnetic field
effects into DFAs, which will allow more accurate results for all kinds of density-functional
calculations involving magnetic fields.





Preface

This thesis is the result of my work at the University of Oslo from August 2013 to April
2018 at the Centre for Theoretical and Computational Chemistry (CTCC), which was
then taken over by the Hylleraas Centre for Quantum Molecular Sciences.

First, I would like to thank my main supervisor Trygve Helgaker for letting me work on
this project. I am grateful for the support, the numerous discussions and all advice during
those years, as well as to be given enough time and financial support to finish the project in
the final stressful period. I furthermore appreciate having had the opportunity to attend
several summer and winter schools, in addition to various conferences, allowing me to
experience not only the work in the office but also the quantum chemistry community "in
the big world".

I would further like to particularly thank Ulf Ekström, my first co-supervisor, who
took really well care of me in the first years of the project. With my background from
physics, he introduced me patiently to the language of quantum chemistry and guided me
and the project into the right direction.

Moreover, I would very much like to thank Alex Borgoo, my second co-supervisor,
who took over after Ulf finished working in the department. Changing the supervisor
in the midst of a project is always challenging, but Alex took over really well, and was
particularly helpful in the completion of the project, when the publication of papers and
the writing of the thesis needed to be sped up in order to come to an end.

I would further like to thank all co-authors of the papers in my thesis. Since this
thesis is centred around those papers, it would definitely not have been possible without
all their work and effort regarding those papers, where we all complemented each other to
get the best results. I would particularly like to thank Andy Teale, who his co-author in
all of my papers and who answered the many questions that I had, especially concerning
the use of the Dalton code, almost immediately, no matter at which time of the day (or
night) I sent a mail. I am also grateful for the week he let me spend with him at the
University of Nottingham, where I was impressed over how he so patiently and calmly
debugged the completely convoluted code we had to work with.

I also want to thank all members of the CTCC for being a very pleasant group to work
with. As daily user of the CTCC kitchen for making lunch, I hopefully did not interfere

3



with the coffee cookers too much, and especially apologize to Thomas Bondo Pedersen
for the frequent cleaning of my pot exactly when he needed the water tap for the coffee.
I also want to mention Jan Ingar Johnsen, our head of office, who was of incredible help
with respect to any practical or administrative issues. In addition, it was nice to clear
my mind now and then by having casual chats with him, or by watching the beautiful
Norwegian sunset from his office window.

A special thanks goes to Lukas Wirz and Benjamin Knorr for reading through this
thesis and helping to correct spelling and grammar, as well as pointing out potential
ambiguities for people with another scientific background. Last, but not least, I would
like to thank my family and friends who have supported and encouraged me throughout
my studies and when working with this project.

It is important to realize that the results of this PhD go far beyond the numerical
results presented here. What is presented here, are only the final outcomes. What is
hidden and can only vaguely be imagined, is the process itself. Four years of intensive
work on a project. Four years of daily challenges, four years with many reasons for
frustration, worries and trouble. But also many opportunities to learn how to deal with
them. Learning to accept that there are issues that we just have not understood and
cannot understand with the data we have and can obtain by the end of the project. This
means agreeing upon that we do not always find the final answers ourselves, but being
content with having provided necessary preliminaries that other people can build upon.
Learning how to face challenges as a group, realizing how far one can push oneself, but also
seeing one’s own limitations and knowing when to ask for help. All these are incredibly
valuable skills that a PhD project gives many opportunities to work with, even if this
does not become evident by reading a thesis. But finally these are the skills that can be
taken along one’s way. Many calculations fail, many of the numbers might get forgotten,
but these experiences can be used and applied in whichever direction life evolves. And it
evolves every day and leads us somewhere.

4



List of Papers

This thesis is based on the work presented in the following papers. A copy of each paper
can be found at the end of the thesis.

I The importance of current contributions to shielding constants in density-functional
theory.
S. Reimann, U. Ekström, S. Stopkowicz, A. M. Teale, A. Borgoo and T. Helgaker
Phys. Chem. Chem. Phys., Volume 17, Pages 18834-18842, 2015
DOI:10.1039/c5cp02682b

II Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic
Connection.
S. Reimann, A. Borgoo, E. I. Tellgren, A. M. Teale and T. Helgaker
J. Chem. Theory Computat., Volume 13, Pages 4089-4100, 2017
DOI:10.1021/acs.jctc.7b00295

III Kohn–Sham energy decomposition for molecules in magnetic fields.
S. Reimann, J. Austad, A. Borgoo, E. I. Tellgren, A. M. Teale, T. Helgaker and S.
Stopkowicz
Submitted to: Molecular Physics

5





Contents

1 Introduction 11
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Problems Addressed in this Work . . . . . . . . . . . . . . . . . . . . . . . 12

2 Exact Density-Functional Theory in a Magnetic Field 13
2.1 Density-Functional Theory in the Absence of a Magnetic Field . . . . . . . 13

2.1.1 Rayleigh–Ritz Variation Principle . . . . . . . . . . . . . . . . . . . 14
2.1.2 Hohenberg–Kohn Theory . . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Levy–Lieb Constrained-Search Formalism . . . . . . . . . . . . . . 16
2.1.4 Lieb’s Convex–Conjugate Theory . . . . . . . . . . . . . . . . . . . 18
2.1.5 The Adiabatic Connection . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.6 Kohn–Sham Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Magnetic-Field Density-Functional Theory (BDFT) . . . . . . . . . . . . . 27
2.2.1 Hamiltonian and Rayleigh–Ritz Variation Principle in BDFT . . . . 27
2.2.2 The BDFT Hohenberg–Kohn and Lieb Variation Principles . . . . . 28
2.2.3 The Adiabatic Connection in BDFT . . . . . . . . . . . . . . . . . 28
2.2.4 The BDFT Kohn–Sham Equations . . . . . . . . . . . . . . . . . . 30

2.3 Current Density-Functional Theory (CDFT) . . . . . . . . . . . . . . . . . 31
2.3.1 Hamiltonian and Rayleigh–Ritz Variation Principle in CDFT . . . . 31
2.3.2 The CDFT Hohenberg–Kohn and Lieb Variation Principles . . . . . 32
2.3.3 The Adiabatic Connection in CDFT . . . . . . . . . . . . . . . . . 32
2.3.4 The CDFT Kohn–Sham Equations . . . . . . . . . . . . . . . . . . 33

2.4 Comparison between BDFT and CDFT . . . . . . . . . . . . . . . . . . . . 34
2.4.1 BDFT in the (u,A)-Representation . . . . . . . . . . . . . . . . . . 34
2.4.2 Four-Way Correspondence of DFT . . . . . . . . . . . . . . . . . . 35

3 Approximate Density-Functional Theory 37
3.1 Density Functional Approximations . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Local Density Approximation . . . . . . . . . . . . . . . . . . . . . 38
3.1.2 Generalized Gradient Approximation . . . . . . . . . . . . . . . . . 38

7



3.1.3 Meta-Generalized Gradient Approximation . . . . . . . . . . . . . . 40
3.1.4 Hybrid Density Functional Approximation . . . . . . . . . . . . . . 42

3.2 Adiabatic Connection Curves for Approximate Functionals . . . . . . . . . 43

4 Application of Density-Functional Theory in a Magnetic Field 49
4.1 Computational Aspects in Magnetic Fields . . . . . . . . . . . . . . . . . . 49

4.1.1 Gauge-Origin Transformations . . . . . . . . . . . . . . . . . . . . . 49
4.1.2 London Orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Diamagnetic and Paramagnetic Molecules . . . . . . . . . . . . . . . . . . 51
4.3 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Energy Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 Field-Dependence of Magnetic Properties . . . . . . . . . . . . . . . 54

4.4 Computation of Magnetic Properties . . . . . . . . . . . . . . . . . . . . . 55
4.4.1 Numerical Differentiation . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.2 Analytical Differentiation . . . . . . . . . . . . . . . . . . . . . . . 57

4.5 Lieb Optimization in the Context of BDFT . . . . . . . . . . . . . . . . . . 59
4.5.1 Our Procedure for Computing AC Curves with the Lieb Optimization 60
4.5.2 Our Implementation of the Lieb Optimization . . . . . . . . . . . . 61

5 Discussion of Papers 63
5.1 Paper I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Paper II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Additional Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Paper III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Additional Material . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Summary and Outlook 73
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Appendix A Proof of the Hohenberg–Kohn Theorem 83

Appendix B Derivation of the Diamagnetic Part of the Magnetizability for
Closed-Shell Atoms 85

8



Abbreviations

AC Adiabatic Connection

BDFT Magnetic-Field Density-Functional Theory

CCSD Coupled-Cluster with Single and Double excitations

CCSD(T) Coupled-Cluster with Single, Double and Perturbative Triple excitations

CDFT Current Density-Functional Theory

DFA Density Functional Approximation

DFT Density-Functional Theory

FCI Full Configuration Interaction

GGA Generalized Gradient Approximation

LDA Local Density Approximation

mGGA Meta-Generalized Gradient Approximation

NMR Nuclear Magnetic Resonance

OEP Optimized Effective Potential

9





Chapter 1

Introduction

1.1 Motivation

Molecules in magnetic fields are an active area of research, studied as ultra-strong fields in
astrophysics [1, 2, 3] and as weaker fields in quantum chemistry. In chemistry, magnetic
properties like nuclear magnetic resonance (NMR) shielding constants and magnetizabili-
ties play a major role. Over the last decades, quantum chemical calculations have reached
a stage where they can strongly help to interpret experimental measurements, among oth-
ers in magnetic-resonance spectroscopy [4, 5]. Using various levels of electronic structure
theory, spectroscopic constants can gradually be brought closer to the exact, experimental
value. But not only accuracy is progressively improved upon, in addition great effort is
made to handle larger and larger systems [6, 7, 8]. The goal is that magnetic properties
of systems comprised of hundreds of atoms can routinely be computed in the future.

Density functional theory (DFT) is the most widely used method in quantum chem-
istry. With the electron density as the basic variable, it is less expensive than methods
working directly with the wave function. Moreover, it shows a faster basis-set conver-
gence [9]. Since the exact universal density functional of DFT is not known, a large
number of density functional approximations (DFAs) have been developed in the last
decades.

However, those functionals have been developed without the consideration of magnetic
fields. In the presence of a magnetic field, the electronic Hamiltonian changes, which
needs to be reflected in the DFAs. How exactly the magnetic field enters the exchange–
correlation functional is still unresolved. Therefore, with present DFAs, the results of
DFT for molecular magnetic properties are not always satisfactory [10, 11, 12, 13]. The
development of such functionals is an active field of research [13, 14].
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1.2 Problems Addressed in this Work

This work aims at identifying the shortcomings of present DFAs regarding the compu-
tation of magnetic properties, since those errors point to the areas where the effects of
the magnetic field are not properly understood and need to be improved upon when
introducing a field-dependence into exchange–correlation functionals.

We particularly motivate the further development of magnetic-field density-functional
theory (BDFT), which we demonstrate to be a worthwhile alternative to current density-
functional theory (CDFT), and which has not been developed further after its introduction
by Grayce and Harris in 1994 [15]. We present both BDFT (in Section 2.2) and CDFT (in
Section 2.3) and put them into a common framework using the four-way correspondence
of convex analysis (Section 2.4). We particularly focus on establishing and studying
adiabatic connection (AC) curves in the framework of BDFT (Subsection 2.2.3 and content
of Paper II).

We investigate magnetic properties in the context of DFT, since the prediction of those
properties relies on an explicit dependence on the magnetic field. That way, magnetic
properties allow us to apply the concepts of BDFT and serve as a test case of how well
the field dependence is understood. Our study of magnetic properties is mainly presented
in the papers attached to this work and summarized in Chapter 5. There, among other
things, we quantify how large the field-dependent part of the NMR shielding constant and
the magnetizability is, analyse the errors of existing DFAs, and study the field dependence
of the Kohn–Sham energy components.

The results give insight into the behaviour of the exact energy components and our
conclusions provide impetus for the development of improved DFAs.
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Chapter 2

Exact Density-Functional Theory in a
Magnetic Field

In this chapter, we discuss theoretical aspects of DFT in magnetic fields. We here consider
the exact theory from a mathematical point of view, whereas approximations that are
needed for practical calculations are dealt with in Chapters 3 and 4.

First, we present the basics of DFT without magnetic fields. This shows how the
theory was historically developed and, outlining the fundamental theorems, it gives us
the opportunity to introduce notation. We then expand on this first part by including
magnetic fields. We establish and discuss first BDFT, then CDFT, and consider the
adiabatic connection in those two frameworks. Finally, we put BDFT and CDFT into a
common framework and relate them to each other.

2.1 Density-Functional Theory in the Absence of a Mag-

netic Field

Formally, DFT is an exact approach to determine the quantum mechanical ground state
of a many-body system. DFT can be formulated using three different formalisms, the
Hohenberg–Kohn formalism, the Levy–Lieb constrained-search formalism and Lieb’s convex–
conjugate theory. All three theories are discussed in the following, but first we introduce
the Rayleigh–Ritz variation principle, which forms the basis of all three theories and DFT
in general.
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2.1.1 Rayleigh–Ritz Variation Principle

Considering a system of N interacting electrons, the Rayleigh–Ritz variation principle
states that the ground-state energy is given by

E(v) = inf
Ψ∈WN

〈Ψ|Ĥ(v)|Ψ〉, (2.1)

where Ĥ(v) is the molecular electronic Hamiltonian and WN is the set of all normalized
anti-symmetric N -electron wave functions Ψ with a finite Hamiltonian expectation value.
The spin-free electronic Hamiltonian can be written as

Ĥ(v) = −1

2

N∑

i=1

∇2
i +

∑

i<j

1

rij
+

N∑

i=1

(
−
∑

K

ZK
riK

)
(2.2)

= T̂ + V̂ee +
N∑

i=1

v(ri), (2.3)

with interelectronic distance rij = |ri − rj|, kinetic energy operator T̂ , electron–electron
interaction V̂ee, external potential

∑
i v(ri) due to nuclear attraction, and where ZK de-

notes the charge of nucleus K. To arrive at this Hamiltonian, the Born-Oppenheimer
approximation has been adopted. This approximation is needed for all theory in this
work. It is based on the fact that the nuclei are several orders of magnitude heavier than
the electrons and therefore move much slower than the electrons. To a good approxima-
tion, the geometry of the nuclei can then be considered to be fixed, since the electrons
will immediately adapt to each nuclear configuration. For the remainder of this work,
we always work within the Born-Oppenheimer approximation, assuming fixed positions
of the nuclei.

2.1.2 Hohenberg–Kohn Theory

For a given number of electrons, the specific form of the Hamiltonian (2.3) is determined by
the nuclear potential v, which is a particular case of a more general multiplicative external
potential. As a consequence of this form of the Hamiltonian, the wave function Ψ, as a
solution of the Schrödinger equation (2.4),

Ĥ(v)Ψ = E(v)Ψ, (2.4)

is determined by this external potential, too. This wave function Ψ is used the construct
the N -electron density ρ(r), which depends only on three spatial coordinates r,

ρ(r) = N

∫
|Ψ(r, s,x2, . . . ,xN)|2 ds dx2 . . . dxN , (2.5)
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where the integration goes over N − 1 space-spin coordinates xi = (ri, si) and the spin
index s, but not the spatial coordinate r, of the N -th particle. Since v determines Ψ and
Ψ is used to construct ρ(r), it is quite obvious that, for non-degenerate ground states,
ρ(r) then is a functional of v.

In 1964, Hohenberg and Kohn published a paper that states that the converse is also
true [16]. This statement became later known as the Hohenberg–Kohn theorem and lay
historically the theoretical foundation for DFT. In particular, it states the following:

First Hohenberg–Kohn Theorem. The ground-state density ρ determines the external
potential v up to a scalar.

In other words, the theorem establishes that up to an arbitrary constant, there is a
one-to-one correspondence between v(r) and ρ(r). A proof is given in Appendix A.

Representability restrictions It should be noted that Hohenberg–Kohn theory is only
valid for the restricted sets of ρ-representable potentials VN and v-representable densities
AN [17, 18],

VN = {v| Ĥ(v) has an N -electron ground state}, (2.6)

AN = {ρ| ρ comes from an N -electron ground state}. (2.7)

A v-representable density determines all properties of its associated ground state, since
through the one-to-one mapping, the potential v(r) and with it the specific form of the
Hamiltonian Ĥ(v), are uniquely defined. However, the conditions for a density ρ to be
v-representable and for a potential v to be ρ-representable are still unknown. Neither VN
nor AN are explicitly known and a priori, it is impossible to determine whether a given
density ρ belongs to AN or whether a given potential v belongs to VN .

However, this restriction of Hohenberg–Kohn theory is lifted in Subsection 2.1.3, where
the set of densities and potentials is extended to a larger and known set.

Hohenberg–Kohn functional Let us denote the ρ-representable potential which sup-
ports a particular ground state with density ρ by vρ. The universal Hohenberg–Kohn
functional FHK(ρ) can then be defined as

FHK(ρ) = E(vρ)− (vρ|ρ), v ∈ VN , ρ ∈ AN , (2.8)

with (vρ|ρ) =
∫
vρ(r)ρ(r) dr. With the Hamiltonian of Eq. (2.3), this is equivalent to

FHK(ρ) = T (ρ) + Vee(ρ), ρ ∈ AN , (2.9)
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where the kinetic energy T (ρ) and the electron-electron interaction term Vee(ρ) are ob-
tained as expectation values with the ground state wave function Ψ(ρ) associated with
the density ρ,

T (ρ) = 〈Ψ(ρ)|T̂ |Ψ(ρ)〉, ρ ∈ AN , (2.10)

Vee(ρ) = 〈Ψ(ρ)|V̂ee|Ψ(ρ)〉, ρ ∈ AN . (2.11)

This decomposition is unique in the absence of degeneracies.

Hohenberg–Kohn variation principle

In their landmark paper [16], Hohenberg and Kohn restated the Rayleigh-Ritz variational
principle in terms of the density. This theorem is also known as the second Hohenberg–
Kohn theorem and can be formulated the following way, valid for all v ∈ VN ,

E(v) = min
ρ∈AN

(FHK(ρ) + (v|ρ)) . (2.12)

This result validates the use of the variational principle in DFT. It is much simpler than the
Rayleigh–Ritz variation principle, since not the complicated wave function, but the ground
state density ρ is used, which is a function of merely three variables, independent of the
numberN of electrons. In their original paper [16], Hohenberg and Kohn treated only non-
degenerate ground states, but their results are also valid for degenerate systems. However,
Hohenberg–Kohn theory has limitations related to representability, since it relies on the v-
representability of the electron density ρ and the ρ-representability of the potential v and
the sets AN and VN are not explicitly known. Moreover, reasonable non-v-representable
densities have been shown to exist [19, 20].

2.1.3 Levy–Lieb Constrained-Search Formalism

The limitations of Hohenberg–Kohn theory were removed with the introduction of the
Levy–Lieb constrained-search formalism. The Levy–Lieb constrained-search functional is
defined as [21, 19]

FLL(ρ) = min
Ψ 7→ρ
〈Ψ|T̂ + V̂ee|Ψ〉. (2.13)
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Thus the Hohenberg–Kohn variation principle of Eq. (2.12) can in the Levy–Lieb constrained-
search formalism be restated as

E(v) = inf
ρ∈IN

(
inf

Ψ7→ρ
〈Ψ|T̂ + V̂ee +

∑

i

v(ri)|Ψ〉
)

= inf
ρ∈IN

(
inf

Ψ7→ρ
〈Ψ|T̂ + V̂ee|Ψ〉+ (v|ρ)

)

= inf
ρ∈IN

(FLL(ρ) + (v|ρ)) , v ∈ X∗. (2.14)

Compared to Hohenberg–Kohn theory, the set of allowed densities is extended from the
set AN of v-representable densities to the set IN of N -representable densities [18],

IN = {ρ| ρ can be obtained from some Ψ ∈ WN}. (2.15)

The set IN can be shown to be equivalent to the set of all non-negative functions that
integrate to N and have a finite von Weizsäcker kinetic energy

TW (ρ) =
1

2

∫ ∣∣∇ρ1/2(r)
∣∣2 dr =

1

8

∫
|∇ρ(r)|2 ρ−1(r) dr. (2.16)

In other words, IN can be defined as

IN = {ρ | ρ ≥ 0,

∫
ρ(r) dr = N, TW (ρ) <∞}. (2.17)

At the same time, the set of admissible external potentials is extended to X∗ = L3/2 +L∞,
where the space L3/2 is a Lp-space with p = 3/2. An Lp-space is a space of functions f
on a set S, for which the p-th power of the absolute value is Lebesgue integrable,

‖f‖p =

(∫

S

|f |p dµ
)1/p

<∞. (2.18)

For functions f in L∞, there exists a positive constant C < ∞, such that f(s) < C for
almost all s ∈ S. The minimization in Eq. (2.13) is constrained in the way that one only
searches in the space of trial wave functions Ψ that give the ground state density ρ. Lieb
proved that, for the Levy–Lieb functional of Eq. (2.13), a minimizing wave function exists
for all ρ ∈ IN [20]. Thus FLL can also be expressed in terms of this minimizing wave
function Ψρ,

FLL(ρ) = min
Ψ7→ρ
〈Ψ|T̂ + V̂ee|Ψ〉 = 〈Ψρ|T̂ + V̂ee|Ψρ〉. (2.19)
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The Levy–Lieb functional FLL is a continuation of the Hohenberg–Kohn functional FHK

from the unknown domain AN to the known domain IN [17], with

FLL(ρ) = FHK(ρ), ρ ∈ AN . (2.20)

The N -representability condition is weaker than the v-representability condition and is
satisfied for any reasonable density.

2.1.4 Lieb’s Convex–Conjugate Theory

Lieb formulated DFT in terms of convex conjugation, applying general results from convex
analysis to DFT [20]. For a more general discussion of convex analysis, we refer to
Ref. [22]. Lieb’s convex-conjugate theory is based on the observation that E(v) is concave
and continuous in v. While continuity is difficult to show, concavity is simple to prove.
It is instructive to demonstrate concavity explicitly, since this shows how the concavity
of E(v) depends on the linearity of the Hamiltonian Ĥ(v) in v and the Rayleigh–Ritz
variation principle.

Proof of concavity of E(v) To prove that E(v) is concave in v, we have to show
that for each v = λv1 + (1 − λ)v2, with λ ∈ (0, 1), it holds that E(λv1 + (1 − λ)v2) ≥
λE(v1) + (1− λ)E(v2): Using the Rayleigh–Ritz variation principle, we have that

E(λv1 + (1− λ)v2) = inf
Ψ
〈Ψ|Ĥ(λv1 + (1− λ)v2)|Ψ〉. (2.21)

The Hamiltonian is linear in v, which can easily be shown using Eq. (2.3),

Ĥ(λv1 + (1− λ)v2) = T̂ + V̂ee + λv1 + (1− λ)v2

= λT̂ + λV̂ee + λv1 + (1− λ)T̂ + (1− λ)V̂ee + (1− λ)v2

= λĤ(v1) + (1− λ)Ĥ(v2), (2.22)

where we have used that λ + (1 − λ) = 1, and where we, for simplicity, have omitted
the summation over particles for the potential. Using the linearity of the Hamiltonian,
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Eq. (2.21) then becomes

E(λv1 + (1− λ)v2) = inf
Ψ
〈Ψ|λĤ(v1) + (1− λ)Ĥ(v2)|Ψ〉

= inf
Ψ

(
〈Ψ|λĤ(v1)|Ψ〉+ 〈Ψ|(1− λ)Ĥ(v2)|Ψ〉

)
(2.23)

≥ inf
Ψ
〈Ψ|λĤ(v1)|Ψ〉+ inf

Ψ
〈Ψ|(1− λ)Ĥ(v2)|Ψ〉 (2.24)

= λ inf
Ψ
〈Ψ|Ĥ(v1)|Ψ〉+ (1− λ) inf

Ψ
〈Ψ|Ĥ(v2)|Ψ〉

= λE(v1) + (1− λ)E(v2). (2.25)

In the step from (2.23) to (2.24), we have applied the Rayleigh–Ritz variation principle.
While in Eq. (2.24), the minimizing wave function is found separately for Ĥ(v1) and
Ĥ(v2), this flexibility is not possible when the combined system is minimized, such that
the energy is higher. With Eq. (2.25), the proof is completed.

With the two fundamental properties of continuity and concavity of E(v), it follows
from convex analysis that there exists a convex function F (ρ), such that

F (ρ) = sup
v∈X∗

(E0(v)− (v|ρ)) , ρ ∈ X (2.26)

E(v) = inf
ρ∈X

(F (ρ) + (v|ρ)) , v ∈ X∗ (2.27)

where X = L3 ∩ L1 and X∗ = L3/2 + L∞. From a physical point of view, ρ can now be
identified with the electron density. The domain X is the Banach space (complete normed
vector space) of densities that integrate to N particles,

∫
ρ(r) dr = N , and give a finite

kinetic energy. The dual space X∗ is the set of potentials v for which (v|ρ) is finite for all
ρ ∈ X.

The functional F (ρ) is convex and lower semi-continuous, but everywhere discontinu-
ous. A function f is said to be lower semi-continuous if for all x and for any ε > 0, there
exists a real number δ > 0, such that ‖x− y‖ < δ implies that f(x)− ε < f(y).

Equation (2.26) is called Lieb variation principle and it is the inverse of the Hohenberg–
Kohn variation principle of Eq. (2.27). The functionals E(v) and F (ρ) are said to be
conjugate functionals. Note that each of the functionals contains enough information to
generate the other. Likewise, ρ and v are conjugate variables. The variation principles
are examples of Legendre–Fenchel transforms, analogous to the transformation between
Lagrangians and Hamiltonians in classical mechanics. While the Hohenberg–Kohn mini-
mizers are precisely the ground-state densities of v, the Lieb maximizers are the potentials
v with ground state density ρ.

The Lieb functional F (ρ) is not the same as the Levy–Lieb constrained-search func-

19



tional FLL of Eq. (2.13) unless FLL is expressed in terms of ensembles, since

F (ρ) =





minγ 7→ρ tr γ(T̂ + V̂ee) ρ ∈ IN
+∞ ρ /∈ IN .

(2.28)

The density matrix γ ∈ DN is given by

γ =
∑

i

ci|ψi〉〈ψi|, ci ≥ 0,
∑

i

ci = 1, (2.29)

with antisymmetric wave functions ψi ∈ WN and where DN is the set of all normalized
N -electron density matrices with a finite kinetic energy [23]. It should be noted that F (ρ)

is finite only for N -representable densities ρ ∈ IN ⊂ X. However, since E(v) is obtained
as an infimum, only densities ρ ∈ IN contribute to the ground-state energy.

In Lieb’s convex-conjugate theory, the domains are explicitly known and since the Lieb
functional F (ρ) is convex and E(v) concave, each solution is a global solution. Further-
more, this theory reflects the fundamental symmetry between densities and potentials.
Unless otherwise indicated, we will therefore work in Lieb’s convex-conjugate framework,
using the Lieb functional F (ρ), in the remainder of this thesis.

2.1.5 The Adiabatic Connection

The same procedure as above can be applied to different interaction strengths. By scaling
the electron-electron interaction with a coupling parameter λ ∈ [0, 1], a series of partially
interacting systems is generated, with λ = 0 corresponding to the noninteracting Kohn–
Sham system and λ = 1 corresponding to the physically interacting system.

While, in principle, there exist many possible ways of including the coupling param-
eter [24], the simplest and most common choice is to scale the electron–electron interac-
tion V̂ee linearly. The Hamiltonian of Eq. (2.3) then reads

Ĥλ(v) = T̂ + λV̂ee +
∑

i

v(ri). (2.30)

The total energy is given by the Rayleigh–Ritz variation principle,

Eλ(v) = inf
Ψ∈WN

〈Ψ|Ĥλ(v)|Ψ〉. (2.31)
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Since Eλ(v) is concave and continuous in v, we have as before

Fλ(ρ) = sup
v∈X∗

(Eλ(v)− (v|ρ)) , ρ ∈ X (2.32)

Eλ(v) = inf
ρ∈X

(Fλ(ρ) + (v|ρ)) , v ∈ X∗. (2.33)

In contrast to the Lieb and Hohenberg–Kohn variation principle of Eqs. (2.26) and (2.27),
now both the ground state energy Eλ and the Lieb functional Fλ depend on λ. In
Eq. (2.32), Fλ is expressed in the framework of Lieb’s convex–conjugate theory. For
N -representable densities, Fλ may also be expressed in the constrained-search form,

Fλ(ρ) = min
γ 7→ρ

tr γ
(
T̂ + V̂ee

)
= tr γρλ

(
T̂ + V̂ee

)
, ρ ∈ IN , (2.34)

where γρλ is one of the minimizers. We may now relate Fλ at λ = 0 and λ = 1 using the
integral representation,

Fλ(ρ) = F0(ρ) +

∫ λ

0

F ′µ(ρ) dµ

= F0(ρ) + λF ′0(ρ) +

∫ λ

0

(
F ′µ(ρ)− F ′0(ρ)

)
dµ, (2.35)

where the prime indicates differentiation with respect to µ. The functional Fλ(ρ) is
continuous and concave in λ. Since it is nearly linear in λ, it is useful to extract the linear
part as done above. Although in principle, Fλ(ρ) may not be everywhere differentiable
with respect to λ, it is everywhere right and left differentiable and we may take the
prime to indicate one of these one-sided derivatives. A function f(x) is said to be right
differentiable at a point x0, if the derivative exits as x0 is approached from the right (at
values x = x0 + ε) and f(x) is said to be left differentiable at x0 if the derivative is
approached from the left (at values x = x0 − ε), with ε > 0.

Starting from this mathematical definition, we now identify the individual terms. For
λ = 0, the constrained-search version of the Lieb functional, given by Eq. (2.34), reduces
to

F0(λ) = min
γ 7→ρ

tr γT̂ = Ts(ρ), (2.36)

where we have defined the noninteracting kinetic energy Ts(ρ). To obtain the derivative
F ′λ(ρ), we apply the Hellmann–Feynman theorem:

F ′λ(ρ) =
d tr γρλ

(
T̂ + V̂ee

)

dλ
= tr γρλV̂ee =Wλ(ρ). (2.37)
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We may now rewrite the adiabatic connection in the form

Fλ(ρ) = Ts(ρ) + λW0(ρ) +

∫ λ

0

(Wµ(ρ)−W0(ρ)) dµ. (2.38)

We introduce the Hartree functional J(ρ), also called Coulomb term, which describes the
classical part of the electron-electron interaction,

J(ρ) =

∫∫
ρ(r)ρ(r′)

|r− r′| drdr′. (2.39)

It constitutes one part of W0(ρ), while the rest gives the exchange functional Ex(ρ),

Ex(ρ) =W0(ρ)− J(ρ). (2.40)

The last term of Eq. (2.38), in general much smaller than the linear term, is the correlation
functional Ec,λ(ρ),

Ec,λ(ρ) =

∫ λ

0

(Wµ(ρ)−W0(ρ)) dµ. (2.41)

Using these definitions of J(ρ), Ex(ρ) and Ec,λ(ρ) in Eq. (2.38), we obtain the Kohn–Sham
decomposition of the universal density functional,

Fλ(ρ) = Ts(ρ) + λJ(ρ) + λEx(ρ) + Ec,λ(ρ). (2.42)

Often the exchange and correlation functional are combined to the exchange–correlation
functional:

Exc,λ(ρ) = λEx(ρ) + Ec,λ(ρ). (2.43)

The exchange–correlation functional is the only unknown in the Lieb functional. The
strength of the adiabatic connection, as noted by Becke already in the early 1990s, is
that an integration of the AC curve with respect to λ gives the exchange–correlation
functional [25].

Decomposition of the AC integrand To study the exchange–correlation part only,
the full AC integrand Wλ(ρ), given by Eq. (2.37), is often split into parts excluding the
known Hartree term and exchange energy. We here follow the notation used in Ref. [26],
where

Etyp(ρ) =

∫ 1

0

Wtyp,λ(ρ) dλ (2.44)

and “typ” in the AC integrandWtyp,λ can be Hartree-exchange–correlation (Hxc), exchange–
correlation (xc), or correlation only (c). The following relations are useful to relate the
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different quantities [27],

Wxc,λ(ρ) = tr γρλV̂ee − J(ρ) (2.45)

Wc,λ(ρ) =Wxc,λ(ρ)−Wxc,0(ρ). (2.46)

Since only the correlation energy Ec,λ of Eq.(2.41) depends on λ in a non-trivial way, the
main interest is to study the dependence of Ec,λ on λ. A number of models to describe
Wc,λ have been proposed, and this is still an ongoing topic of research [26, 28].

Properties of Adiabatic Connection Curves

All AC curves share some common properties. Two important features are that Wλ(ρ) is
monotonically decreasing in λ, and that Ec,λ(ρ) ≤ 0 is concave in λ. This follows from
the fact that Fλ(ρ) ≥ 0 is concave in λ and that the term Ts(ρ) + λJ(ρ) + λEx(ρ) ≥ 0 is
affine in λ [26]. Provided that the same ansatz Eλ(v) is used for all values of λ, which is
trivially satisfied, this holds for approximate theories, too.

The AC integrandWc,λ gives the correlation contribution of V̂ee at interaction strength λ
and therefore, we have that for the noninteracting system

Wc,0 = 0. (2.47)

The relationships between WHxc,λ, Wxc,λ and Wc,λ can be obtained using
Eqs. (2.45) and (2.46),

Wxc,λ = λEx +Wc,λ =WHxc − J, (2.48)

which we want to point out since we mainly work with Wc,λ in Paper II of this work.
Figure 2.1 illustrates a typical AC curve. The integral above the AC curve, up toWxc,0 =

tr γρ0 V̂ee − J(ρ), corresponds to Ec(ρ). The exchange energy is equal to the AC integrand
at λ = 0, which means Ex(ρ) = Wxc,0(ρ) = tr γρ0 V̂ee − J(ρ). The Hartree contribution
J(ρ) is a constant, which means a shift of the AC curve along the y-axis.

Another quantity that can be obtained from the adiabatic connection is the correlation
correction to the kinetic energy, Tc, which is defined as Tc(ρ) = T (ρ)−Ts(ρ): The integral
below the AC curve, down to Wxc,1 = tr γρ1 V̂ee − J(ρ), corresponds to −Tc(ρ), such that

Wc,1(ρ) = −Tc(ρ) + Ec(ρ). (2.49)

For each value of λ, Tc,λ(ρ) can thus be obtained as [27]

Tc,λ(ρ) =Wc,λ(ρ)− Ec,λ(ρ) =

∫ λ

0

(Wc,µ(ρ)−Wc,λ(ρ)) dµ. (2.50)
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Wxc,0 = tr γρ0 V̂ee − J(ρ)

Wxc,1 = tr γρ1 V̂ee − J(ρ)

area=−Tc

area=Ec =
∫ 1

0
Wxc,λ dλ− Ex

Figure 2.1: Typical adiabatic connection curve, demonstrating the relationship between
Ec, Tc and Ex.

Dynamic and static correlation

AC curves are a useful tool to quantify the ratio between dynamic and static correlation in
a system. Dynamic correlation refers to the instantaneous correlation between electrons,
for example those ones occupying the same spatial orbital. Static correlation, on the
other hand, is associated with electron pair that have a larger spatial separation. Static
correlation becomes especially import in systems with near-degeneracies, when different
orbitals have similar energies. A large amount of static correlation is problematic for
methods that rely on a single Slater determinant as a reference, for example Hartree–
Fock or coupled-cluster theories. [29]

For a molecular system with purely dynamic correlation, the AC curve is a nearly
straight line, with the limit Ec(ρ) = −Tc(ρ). A linear curve reflects a correlation energy
that is proportional to λ2. If the curve bends, dynamic correlation is mixed with static
correlation. The curvature increases with the amount of static correlation. A larger
curvature implies that Ec > −Tc. In the extreme case, where there is purely static
correlation, the whole area between the Wxc,0-line and the Wxc,1-line corresponds to Ec

and we have that Tc = 0. In this case the AC curve has an infinitely negative curvature
in the beginning, follows the y-axis downward and than makes a 90 degree angle to follow
the Wxc,1-line up to λ = 1. However, in practice there will always be some dynamic
correlation left, unless there is a complete dissociation into uncorrelated parts.

24



A typical example for introducing static correlation is the stretching of a bond. For
the hydrogen molecule, AC curves have been studied for increasing bond lengths and
it has been shown that the curvature increases with the bond length, with the initial
slope getting continuously steeper [26]. The increasing curvature as a measure for static
correlation will be more discussed in the context of magnetic fields in Subsection 2.2.3.

2.1.6 Kohn–Sham Theory

Having introduced the Kohn–Sham decomposition of Fλ(ρ) at various interaction strengths
in Eq. (2.42), we may now set up the corresponding Hohenberg–Kohn variation principle:

Eλ(v) = inf
ρ∈X

(Ts(ρ) + (v|ρ) + λJ(ρ) + Exc,λ(ρ)) . (2.51)

In particular, we are interested in the fully interacting and noninteracting system,

E1(v) = inf
ρ∈X

(Ts(ρ) + (v|ρ) + J(ρ) + Exc(ρ)) (2.52)

E0(vs) = inf
ρ∈X

(Ts(ρ) + (vs|ρ)) , (2.53)

where we use the notation Exc(ρ) = Exc,1(ρ). Furthermore, for the noninteracting system
we have that Exc,0(ρ) = 0, since the Hamiltonian reduces to Ĥ0(vs) = T̂ +

∑
i vs(ri)

and there is no contribution from the electron–electron interaction. It is much easier to
find a minimizing density for the noninteracting system (2.53) than for the interacting
system (2.52). To work with the noninteracting system instead of the interacting system,
we must find a potential vs, such that the noninteracting minimizing density becomes
identical to the interacting minimizing density with external potential v. The Euler
equations for the two systems, describing the stationary condition, are

δTs(ρ)

δρ(r)
= µ− v(r)− vH(ρ)(r)− vxc(ρ)(r) (2.54)

δTs(ρ)

δρ(r)
= µs − vs(r), (2.55)

where the Hartree and exchange–correlation potential are given by

vH(ρ)(r) =
δJ(ρ)

δρ(r)
, vxc(ρ)(r) =

δExc(ρ)

δρ(r)
, (2.56)
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and where µ and µs are chemical potentials, arising from the constraint
∫
ρ(r) dr = N .

Since both Eqs. (2.54) and (2.55) must hold simultaneously, we conclude that

vs(r) = v(r) + vH(ρ)(r) + vxc(ρ)(r)

= v(r) +

∫
ρ(r′)

|r− r′| dr′ +
δExc(ρ)

δρ(r)
. (2.57)

Thus the ground-state density of the interacting system can be determined by solving the
noninteracting system with Hamiltonian

Ĥ0(vs) = −
∑

i

1

2
∇2
i +

∑

i

vs(ri). (2.58)

and corresponding Rayleigh–Ritz variation principle

Es(vs) = inf
Φ∈WN

〈
Φ|Ĥ0(vs)|Φ

〉
, (2.59)

where the minimization is over Slater determinants only. This approach was introduced by
Kohn and Sham [30], such that the noninteracting system with potential vs is also referred
to as Kohn–Sham system. This problem is separable and the Kohn–Sham orbitals φi are
solutions to the Kohn–Sham equations

[
−1

2
∇2 + vs(r)

]
φi(r) = εiφi(r), (2.60)

where εi are the orbital energies. The exact wave function is a single Slater determinant Φ,
which consists of N occupied Kohn–Sham orbitals φi,

Φ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) . . . φN(x1)

φ1(x2) φ2(x2) . . . φN(x2)
...

... . . . ...
φ1(xN) φ2(xN) . . . φN(xN)

∣∣∣∣∣∣∣∣∣∣

(2.61)

with space-spin coordinates xi = (ri, si) and electron density

ρ(r) =
∑

i

∑

s

|φi(r, s)|2. (2.62)

Since vs depends on the density, the Kohn–Sham equations (2.60) must be solved iter-
atively: One begins with a guess for the density ρ(r) to construct vs(r) according to
Eq. (2.57). With the help of the Kohn–Sham equations (2.60) one then determines the
new orbitals, uses them to construct the new density according to Eq. (2.62) and so on.

The Kohn–Sham method has the advantage that only a small fraction of the total
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energy, the exchange–correlation energy Exc, is unknown. In particular, the method
provides a way of computing the dominant part of the kinetic energy, the noninteracting
kinetic energy Ts, exactly. However, the drawback is that the introduction of orbitals
increases the number of variables from three to 3N spatial variables.1 Moreover, the
functional Fλ is not known. Much effort has been put into understanding its properties
and finding good approximations, which is discussed in Section 3.1.

2.2 Magnetic-Field Density-Functional Theory (BDFT)

In the following, we consider systems that include a magnetic field. We will set up DFT
in the framework of BDFT. The formal basis of BDFT was first discussed by Grayce
and Harris in 1994 [15]. We proceed as above, considering first the Hamiltonian and
Rayleigh–Ritz variation principle, then setting up the Hohenberg–Kohn and Lieb variation
principles, establishing the adiabatic connection and finally setting up the Kohn–Sham
equations.

2.2.1 Hamiltonian and Rayleigh–Ritz Variation Principle in BDFT

Let us consider an external uniform magnetic field B, which is represented by a vector
potential A, such that B = ∇×A. The electronic Hamiltonian is now given by

Ĥλ(v,A) = T̂ (A) + λV̂ee +
∑

i

v(ri) +
∑

i

B(ri) · S, (2.63)

where S is the spin operator. Since we in this work consider closed-shell systems only, the
last term, the spin-Zeeman term, does not contribute, such that we in the following work
with the Hamiltonian

Ĥλ(v,A) = T̂ (A) + λV̂ee +
∑

i

v(ri). (2.64)

The kinetic energy operator now includes the vector potential,

T̂ (A) =
1

2

∑

j

(
− i∇j + A(rj)

)2
. (2.65)

The zero-field Hamiltonian Ĥλ(v) is thus expanded in the following manner,

Ĥλ(v,A) = Ĥλ(v)− i
∑

j

A(rj) · ∇j +
1

2

∑

j

A2(rj), (2.66)

1Orbital free approaches to DFT exist, but at the moment they are in general less accurate than
Kohn–Sham DFT models [31].
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with A = |A| and assuming Coulomb gauge, ∇ ·A = 0. We refer to the first additional
term as orbital paramagnetic term, while the second one is called diamagnetic term. The
ground-state energy is defined in terms of the Rayleigh–Ritz variation principle:

Eλ(v,B) = inf
γ∈DN

trγ Ĥλ(v,A). (2.67)

Gauge invariance of Eλ(v,B) is ensured since a gauge transformation A → A′ is pre-
cisely compensated for by a gauge transformation γ → γ′ such that trγ′ Ĥλ(v,A

′) =

trγ Ĥλ(v,A) [32]. The topic of gauge-origin transformations is discussed in more detail
in Subsection 4.1.1.

The theory of BDFT can be formulated in terms of either the vector potential A or in
terms of the magnetic field B. Both representations are equivalent, since after choosing the
gauge, the magnetic field B determines the vector potential A via the relation B = ∇×A.
Were are therefore free to work with either Eλ(v,B) or Eλ(v,A). In this work, we use
consistently B as second variable in BDFT.

2.2.2 The BDFT Hohenberg–Kohn and Lieb Variation Principles

Since Eλ(v,B) is concave and continuous in v for a fixed magnetic field B and a fixed
interaction strength λ, we may introduce DFT in the usual manner

Eλ(v,B) = inf
ρ∈X

[Fλ(ρ,B) + (v|ρ)] , (2.68)

Fλ(ρ,B) = sup
v∈X∗

[Eλ(v,B)− (v|ρ)] . (2.69)

Both the Hohenberg–Kohn variation principle of Eq. (2.68) and the Lieb variation prin-
ciple of Eq. (2.69) are simple extensions of their field-free counterparts. In both cases,
B is treated as a parametric variable. The Lieb functional may also be expressed in
constrained-search form,

Fλ(ρ,B) = min
γ 7→ρ

tr γĤλ(0,A) = tr γρλ,AĤλ(0,A), (2.70)

where at least on minimizer γρλ,A exists. The gauge invariance of Fλ(ρ,B) follows from
the gauge invariance of Eλ(v,B), depending on B rather than A. All arguments apply to
all values of λ. Since Fλ(ρ,B) explicitly depends on B in addition to ρ, it is said to be
semi-universal.

2.2.3 The Adiabatic Connection in BDFT

The difference between the field-free Hamiltonian in Eq. (2.30) and the magnetic Hamilto-
nian in Eq. (2.64) is that the kinetic energy operator now explicitly depends on the mag-
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(a) H2, calculations at the FCI / aug-cc-pVTZ
level.
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Figure 2.2: AC curves of H2 and LiH in a perpendicular magnetic field (atomic units, Wc

in Eh). Each curve is calculated at the equilibrium bond distance in the applied field. The
figure is taken from Paper II of this thesis, “Magnetic-Field Density-Functional Theory
(BDFT): Lessons from the Adiabatic Connection”.

netic field. To set up the adiabatic connection, we therefore introduce the field-dependent
noninteracting kinetic energy

Ts(ρ,B) = F0(ρ,B) = tr γρ0,AT̂ (A) (2.71)

and the AC integrand
Wλ(ρ,B) = F ′λ(ρ,B) = tr γρλ,AV̂ee, (2.72)

whose gauge invariance follows from the gauge invariance of Fλ(ρ,B). We then obtain
precisely as before

Fλ(ρ,B) = Ts(ρ,B) + λJ(ρ) + λEx(ρ,B) + Ec,λ(ρ,B), (2.73)

where we have introduced the field-dependent BDFT exchange and correlation functionals,

Ex(ρ,B) =W0(ρ,B)− J(ρ), (2.74)

Ec,λ(ρ,B) =

∫ λ

0

(Wµ(ρ,B)−W0(ρ,B)) dµ. (2.75)

The field-dependence of the Hamiltonian affects the values of Wλ and particularly, the
curvature of the AC curve. How the shape of the curve is influenced by the magnetic field
is in detail studied in Paper II of this work.

Figure 2.2 is taken from Paper II and demonstrates our result that, as long as at each
magnetic field strength the equilibrium geometry of the molecule at this particular field
strength is used, the AC curves are almost indistinguishable and their shape is not affected
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Figure 2.3: AC curves for H2 at different magnetic field strengths with fixed bond length
3.0a0. Shown are accurate ab-initio AC integrandsWc,λ(ρ,A) =Wxc,λ(ρ,A)−Wxc,0(ρ,A)
using the FCI density for each magnetic field strength (atomic units, Wc,λ in Eh).

by the field. However, Paper II also points out that this is not the case when the geometry
is kept fixed at the one corresponding to zero field strength. In this case, we observe a
greater curvature of the AC curve with increasing field strength, corresponding to an
increase of static correlation. This is shown in Figure 2.3 and we refer to the discussion
of Paper II in Section 5.2 for more details.

2.2.4 The BDFT Kohn–Sham Equations

The Kohn–Sham equations in BDFT are set up in the usual manner, by considering the
interacting and noninteracting systems with the same minimizing density, but different
potentials,

E1(v,B) = inf
ρ∈X

(Ts(ρ,B) + (v|ρ) + J(ρ) + Exc(ρ,B)) (2.76)

E0(vs,B) = inf
ρ∈X

(Ts(ρ,B) + (vs|ρ)) , (2.77)

where we have

vs = v + vH(ρ) + vxc(ρ,B) (2.78)

= v +
δJ(ρ)

δρ
+
δExc(ρ,B)

δρ
. (2.79)
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The BDFT Kohn–Sham equations then read
[

1

2
(−i∇+ A(r))2 + vs(ρ,B)(r)

]
φn(r,B) = εn(B)φn(r,B). (2.80)

When solving the Kohn–Sham equations (2.80), the additional difficulty in BDFT is that
Exc(ρ,B) must be modelled not only as a function of the electron density ρ, but also of
the magnetic field B. Until now, no field-dependent approximations of the exchange–
correlation functional exist.

2.3 Current Density-Functional Theory (CDFT)

The foundations of CDFT were introduced in the 1980s by Vignale, Rasolt and Gel-
dart [33, 34]. In contrast to BDFT, CDFT has since then been studied quite extensively
in a number of works, for example by Pan and Sahni [35, 36], Tellgren et al. [23, 37], Lieb
and Schrader [38], and Furness et al. [13].

2.3.1 Hamiltonian and Rayleigh–Ritz Variation Principle in CDFT

In standard DFT and BDFT, the concavity of E(v) and E(v,B) in v allows the conju-
gation of v to yield ρ, such that we can set up DFT with functionals F (ρ) and F (ρ,B).
The natural question is whether we can treat the vector potential in the same manner,
such that not only the scalar potential, but also the vector potential is conjugated. How-
ever, convex conjugation requires concavity of the respective variable, and E(v,A) is not
concave in A since the Hamiltonian does not depend linearly on A, see Eq. (2.66).

To set up CDFT, we therefore use a different parametrization of the Hamiltonian.
Introducing u = v + 1

2
A2, variables can be changed from (v,A) to (u,A), yielding a

Hamiltonian that is linear in A,

H̄λ(u,A) = H̄λ(u)− i
∑

i

A(ri) ·∇i. (2.81)

As a result, the ground-state energy

Eλ(u,A) = inf
γ∈DN

tr γH̄λ(u,A) (2.82)

is concave in both variables. The (v,A)- and (u,A)-representation are related through
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the identities

H̄λ(v +
1

2
A2,A) = Ĥλ(v,A), H̄λ(u,A) = Ĥλ(u−

1

2
A2,A) (2.83)

Eλ(v +
1

2
A2,A) = Eλ(v,A), Eλ(u,A) = Eλ(u−

1

2
A2,A). (2.84)

2.3.2 The CDFT Hohenberg–Kohn and Lieb Variation Principles

The concavity of Eλ(u,A) in both u and A allows concave conjugation to be applied to
both variables:

Eλ(u,A) = inf
ρ,jp

[Gλ(ρ, jp) + (u|ρ) + (A|jp)], (2.85)

Gλ(ρ, jp) = sup
u,A

[Eλ(u,A)− (u|ρ)− (A|jp)], (2.86)

where the universal density functional Gλ(ρ, jp) is convex in the electron density ρ and the
paramagnetic current density jp. It may also be expressed in constrained-search form,

Gλ(ρ, jp) = min
γ 7→(ρ,jp)

tr γH̄λ(0,0) = tr γρ,jpλ H̄λ(0,0). (2.87)

2.3.3 The Adiabatic Connection in CDFT

To set up the adiabatic connection in CDFT, we introduce, as before, the noninteracting
kinetic energy

Ks(ρ, jp) = G0(ρ, jp) = tr γρ,jp0 H̄0(0,0) (2.88)

and the AC integrand
Mλ(ρ, jp) = G ′λ(ρ, jp) = tr γρ,jpλ V̂ee. (2.89)

As before, we then obtain the CDFT Kohn–Sham decomposition

Gλ(ρ, jp) = Ks(ρ, jp) + λJ(ρ) + λGx(ρ, jp) + Gc,λ(ρ, jp), (2.90)

where we have introduced the CDFT exchange and correlation functionals

Gx(ρ, jp) =M0(ρ, jp)− J(ρ), (2.91)

Gc,λ(ρ, jp) =

∫ λ

0

(Mµ(ρ, jp)−M0(ρ, jp)) dµ. (2.92)

With the Kohn–Sham decomposition of Eq. (2.90), the CDFT Hohenberg–Kohn variation
principle (2.85) becomes

Eλ(u,A) = inf
ρ,jp

[Ks(ρ, jp) + λJ(ρ) + Gxc,λ(ρ, jp) + (u|ρ) + (A|jp)] , (2.93)

32



which is valid for all λ and where we have combined the CDFT exchange and correlation
functionals to the CDFT exchange–correlation functional

Gxc,λ(ρ, jp) = λGx(ρ, jp) + Gc,λ(ρ, jp). (2.94)

2.3.4 The CDFT Kohn–Sham Equations

To set up Kohn–Sham theory in CDFT, we proceed in the usual manner. We consider
the interacting and noninteracting systems

E1(u,A) = inf
ρ,jp

[Ks(ρ, jp) + (u|ρ) + (A|jp) + J(ρ) + Gxc(ρ, jp)] (2.95)

E0(us,As) = inf
ρ,jp

[Ks(ρ, jp) + (us|ρ) + (As|jp)] (2.96)

and require that they have identical minimizers. This means that not only the electron
density ρ, but also the paramagnetic current density jp must be equal in the interacting
and the noninteracting case, (ρ, jp) = (ρs, jp,s). For the potentials, this implies

us = u+ vH(ρ) + uxc(ρ, jp) (2.97)

As = A + Axc(ρ, jp) (2.98)

where the requirement on us follows from differentiation with respect to ρ and the re-
quirement on As follows from differentiation with respect to jp. The scalar and vector
exchange–correlation potentials are thus given by

uxc(ρ, jp)(r) =
δGxc(ρ, jp)

δρ(r)
(2.99)

Axc(ρ, jp)(r) =
δGxc(ρ, jp)

δjp(r)
. (2.100)

As in usual DFT, Eq. (2.96) needs to be solved iteratively with potentials (2.99) and (2.100),
such that we obtain the same ground-state density as in Eq. (2.95). Only a few CDFT
exchange–correlation functionals Gxc have been proposed, most of them based on the vor-
ticity ν = ∇× (jp/ρ) , as suggested by Vignale, Rasolt and Geldart [39] and by Higuchi
and Higuchi [40]. Another promising recent approach, which is found to be numerically
more stable, is CDFT via the generalized kinetic-energy density as discussed by Furness
et al. [13].
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2.4 Comparison between BDFT and CDFT

In this section, we compare BDFT and CDFT and put both approaches into a common
framework.

2.4.1 BDFT in the (u,A)-Representation

In Section 2.2, we have introduced BDFT in the (v,A)-representation. To make a direct
comparison to CDFT, which relies on the (u,A)-representation to have Eλ(u,A) con-
cave in both variables, we here present BDFT in the (u,A)-representation. As shown
in Eqs. (2.83) and (2.84), the (v, A)- and (u,A)-representation can at any point easily
be transformed into each other. To distinguish BDFT in the (u,A)-representation from
BDFT in the (v,A)-representation, we use a different notation. In particular, we use the
symbols F , E and Ts, instead of F , E and Ts, for the Lieb functional, the energy and the
noninteracting kinetic functional in the (u,A)-representation, respectively.

Using u and A, the BDFT variation principles read

Eλ(u,A) = inf
ρ∈X

[Fλ(ρ,A) + (u|ρ)] , (2.101)

Fλ(ρ,A) = sup
u∈X∗

[Eλ(u,A)− (u|ρ)] . (2.102)

In the equivalent constrained-search form, the BDFT density functional of Eq. (2.70)
becomes

Fλ(ρ,A) = min
γ 7→ρ

tr γĤλ(0,A)− 1

2
(A2|ρ), (2.103)

since the term 1
2
(A2|ρ) is included in (u|ρ) and therefore needs to be subtracted from the

density functional Fλ. For the same reason, the noninteracting kinetic energy functional
of Eq. (2.71) gets

Ts(ρ,A) = tr γρ0,AT̂ (A)− 1

2
(A2|ρ). (2.104)

With these changes for Fλ and Ts, the Kohn–Sham decomposition of the BDFT density
functional in the (u,A)-representation is given as before by

Fλ(ρ,A) = Ts(ρ,A) + λJ(ρ) + Exc,λ(ρ,A). (2.105)

In terms of Fλ(ρ,A) and Ts(ρ,A), the exact ground state energy Eλ(u,A) then is

Eλ(u,A) = inf
ρ∈X

(Ts(ρ,A) + λJ(ρ) + Fxc,λ(ρ,A) + (u|ρ)) . (2.106)
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Figure 2.4: Four-way correspondence of DFT in a magnetic field. The figure is taken from
Paper II of this work, which we also refer to for more details.

2.4.2 Four-Way Correspondence of DFT

The four-way correspondence, which in a general convex analysis context is discussed
in Refs. [41] and [42], enables us to put BDFT and CDFT into a common framework,
applying the theory of convex conjugation to DFT in two variables. This is illustrated in
Fig. 2.4.

For both BDFT and CDFT, the starting point is the ground state energy Eλ(u,A),
a concave function depending on the scalar potential u and the vector potential A. In
BDFT, the Lieb variation principle of Eq. (2.102) corresponds to the partial conjugation
u→ ρ from Eλ to Fλ, where Fλ is a concave–convex saddle function. The upward conjuga-
tion u→ ρ is a maximization with negative pairing −(u|ρ). The BDFT Hohenberg–Kohn
variation principle of Eq. (2.101) is the convex conjugate of the Lieb variation principle,
corresponding to the partial conjugation ρ → u from Fλ to Eλ, which is a minimization
with positive pairing +(u|ρ).

The CDFT Lieb variation principle of Eq. (2.86) involves the full conjugation (u,A)→
(ρ, jp) from Eλ to Gλ, where Gλ is a convex function. In addition to the upward conjugation
u → ρ, it also requires the conjugation A → jp, which is a maximization with negative
pairing −(A|jp). The CDFT Hohenberg–Kohn variation principle of Eq. (2.85) corre-
sponds to the full conjugation (ρ, jp)→ (u,A), where the downward conjugations u→ ρ

and A→ jp are minimizations with positive pairings +(u|ρ) and +(A|jp), respectively.

Fig. 2.4 also contains the concave–convex saddle function Hλ(v, jp), which corresponds
to the partial conjugation A → jp. Since it currently lacks any application in DFT, we
will not discuss it further.
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The BDFT and CDFT density functionals are related by

Fλ(ρ,A) = inf
jp

[Gλ(ρ, jp) + (A|jp)] (2.107)

Gλ(ρ, jp) = sup
A

[Fλ(ρ,A)− (A|jp)] , (2.108)

which follows from the general four-way correspondence, irrespective of the application to
DFT. Whether the semi-universal density functional of BDFT is easier or more difficult
to model than the universal density functional of CDFT, is an open question.
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Chapter 3

Approximate Density-Functional
Theory

3.1 Density Functional Approximations

To use DFT in practical calculations, the exchange–correlation functional needs to be
approximated. A wide range of density functional approximations (DFAs) has been devel-
oped, each with a specific functional form. The development of more accurate exchange–
correlation functionals is still one of the main research topics in theoretical chemistry.

Typically, the functionals are separated into an exchange part and a correlation part,

EDFA
xc (ρ) = EDFA

x (ρ) + EDFA
c (ρ). (3.1)

In this section, we introduce the functionals used in this work. We follow the “Jacob’s
ladder of DFT” [43], which means starting with the simplest approximation and gradually
adding more elements, increasing the complexity.

However, first we want to address one of the main problems of present DFAs, the
problem of self-interaction, which is only partially solved for some selected DFAs, as the
meta-generalized gradient approximations (mGGAs) discussed on Subsection 3.1.3.

Self interaction

The electron-electron interaction part V̂ee of the electronic Hamiltonian of Eq. (2.3) ex-
cludes the self-interaction term where i = j, since an electron does not interact with itself.
When splitting V̂ee into the Hartree term J and the exchange–correlation energy Exc, it
is therefore necessary that the Coulomb energy of each occupied Kohn–Sham orbital is
cancelled by its exchange–correlation energy. In Hartree–Fock theory, this is the case, and
the self-exchange energy compensates for the self-Coulomb energy for each Hartree–Fock
orbital. Approximate exchange–correlation functionals, however, often fail to satisfy this
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condition.

Self-interaction leads to the wrong asymptotic behaviour of the exchange–correlation
potential, which should satisfy

vxc(r)→ −1

r
for r →∞, (3.2)

and many of the most popular DFAs have a wrong long-range behaviour of vxc. For a
recent review of possible self-interaction corrections, we refer to Ref. [44].

3.1.1 Local Density Approximation

The local density approximation (LDA) is the oldest approximation in DFT and was
proposed by Kohn and Sham [30]. It is assumed that the density can locally be treated
as that of a uniform electron gas.

The exchange energy is then a known quantity, given by the Dirac formula

ELDA
x = −Cx

∫
ρ4/3(r)dr, (3.3)

with Cx = 3
4

(
3
π

)1/3 . Since in this work, we only treat closed-shell atoms, we will restrict
ourselves to the presentation of the functionals in their more basic form, without con-
sidering the case where the spin-up and spin-down density are not equal. For LDA for
example, the alternative for a non-equal spin-up and down-down density would be the
Local Spin Density Approximation (LSDA).

For the correlation energy, an exact expression exists only for the high and low density
limit. However, very precise Monte Carlo simulation data [45] have been used by Vosko,
Wilk and Nusair (VWN) [46] for parameterizations of ELDA

x . To date, the most common
form used for LDA is the so-called VWN5 correlation functional.

Although, for the application to molecules, the assumptions made in LDA are rather
crude, the accuracy of the results is usually better than those obtained with the Hartree–
Fock method. Ground state energies, molecular geometries and vibrational frequencies are
reproduced within a few percent, although there is a systematic overbinding [47]. One of
the main problems of LDA is its wrong asymptotic behaviour of the exchange–correlation
potential due to self-interaction.

3.1.2 Generalized Gradient Approximation

As an improvement upon LDA, exchange–correlation functionals belonging to the class
of generalized gradient approximations (GGAs) depend in addition to the density ρ(r) on
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the gradient of the density, ∇ρ(r),

EGGA
xc (ρ) =

∫
εGGA
xc (ρ(r),∇ρ(r)) dr. (3.4)

The specific form of εGGA
xc varies for the different functionals. Hundreds of GGA func-

tionals have been developed over the years. The general idea has been to construct
explicit expressions for εGGA

xc that satisfy as many of the known exact properties of εxc as
possible, while remaining reasonably simple and giving good results. Some functionals
have been specifically developed for the computation of certain chemical properties, as
for example KT2 [48] for NMR shielding constants, which is discussed below. Typically,
calculations with GGA functionals reproduce exchange–correlation energies and other
integrated quantities quite well, giving much better results than corresponding LDA cal-
culations. Exchange-correlation potentials, on the other hand, are often of poor quality.

BLYP

For the BLYP functional, the exchange energy is modelled by the Becke functional (B)
[49]. It gives the correct 1/r-asymptotic behaviour of the exchange potential and contains
only one empirical parameter to fit the Hartree–Fock exchange energies for a wide range
of atomic systems. The correlation part is given by the Lee-Yang-Parr functional (LYP)
[50], which is based on the correlation-energy formula by Colle and Salvetti [51].

PBE

John Perdew and co-workers have developed a series of GGA functionals which are non-
empirical. Instead of fitting parameters to empirical data, these functionals have been
constructed to satisfy as many exact conditions as possible. They all consist of both an
exchange and a correlation part. The Perdew-Burke-Ernzerhof functional (PBE) [52],
which can be considered as the most refined one, employs the LDA functional and adds
further terms and corrections to it.

KT2

In 2003, Keal and Tozer published two new functionals, developed to give accurate Kohn–
Sham exchange–correlation potentials [48]. The idea was that these potentials determine
directly the Kohn–Sham orbitals and orbital energies and that good orbital energies are
important. In particular, Keal and Tozer demonstrated a correlation between the eigen-
value difference of the lowest unoccupied and highest occupied orbital and the accuracy
of NMR shielding constants.

One of their functionals, the KT2 functional, contains four parameters and has the
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form
EKT2

xc = αELDA
x + βELDA

c + γ
∑

σ

∫ |∇ρσ(r)|2

ρ
4/3
σ (r) + δ

dr, (3.5)

where the parameters γ = −0.006, δ = 0.1 were empirically fitted to reproduce NMR
shielding constants for a set of molecules, while the parameters α = 1.07173 and β =

0.576727 were empirically fitted for thermochemical and structural predictions. The KT2
functional typically gives shielding constants that are 2-3 times more accurate than those
obtained using the most common GGAs. Atomization energies, ionization potentials and
molecular bond lengths are comparable with those of most GGAs, while total energies
are rather poorly reproduced.

3.1.3 Meta-Generalized Gradient Approximation

If, in addition to the density ρ(r) and its gradient ∇ρ(r), the Laplacian of the density
or the orbital kinetic energy density are also included, we arrive at the meta-generalized
gradient approximations (mGGAs). The exchange–correlation functional is then of the
form

EmGGA
xc (ρ) =

∫
εmGGA
xc (ρ(r),∇ρ(r),∇2ρ(r)) dr (3.6)

for the Laplacian or

EmGGA
xc (ρ) =

∫
εmGGA
xc (ρ(r),∇ρ(r), τ(r)) dr (3.7)

for the orbital kinetic energy density τ , with

τ(r) =
1

2

∑

i

|∇φi(r)|2. (3.8)

In this thesis, we only consider mGGAs containing τ , but it should be noted that the
information contained in the kinetic energy density is essentially equivalent to the one of
the Laplacian of the density, since they are related via [29]

τ(r) =
1

2

∑

i

εi|φi(r)|2 − v(r)ρ(r) +
1

2
∇2ρ(r). (3.9)

However, the use of τ is usually more stable than the use of∇2ρ(r). One complication that
all functionals employing τ encounter is that vxc = δExc/δρ cannot directly be computed,
since τ is not an explicit functional of the density. One solution to this problem is the use
of OEPs [53, 54], which, however, is computationally very expensive. Usually, mGGAs
are therefore implemented such that the total energy is made stationary with respect
to orbital variations. This, however, means that the local multiplicative Kohn–Sham
potential is replaced with a differential operator [55]. Alternatively, GGA Kohn–Sham
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orbitals can be used to evaluate the total energy, instead of the self-consistent orbitals.

TPSS

The Tao-Perdew-Staroverov-Scuseria (TPSS) functional [56, 57] is based on the PBE GGA
and constructed to satisfy exact constraints without the use of empirical parameters.
It employs the kinetic energy density τ , which for single real orbitals equals the von
Weizsäcker kinetic energy τW ,

τW (r) =
|∇ρ(r)|2

8ρ(r)
. (3.10)

Utilizing the iso-orbital indicator
z =

τW
τ
≤ 1, (3.11)

the TPSS functional can identify one- or two-electron regions and is therefore partially
free of self-interaction.

Extension to magnetic fields In magnetic fields, it is necessary to modify the kinetic-
energy density to ensure independence of the particular choice of the gauge origin. One
possible choice is the physical (mechanical) kinetic energy density proposed by Maximoff
and Scuseria [58],

τMS(r) =
1

2

∑

l

∣∣(−i∇+ A(r))φl(r)
∣∣2. (3.12)

This approach is well suited to BDFT, since τMS explicitly depends on the vector potential
and therefore on the magnetic field.1

Another option is the gauge-invariant kinetic energy density proposed by Dobson [59]
and used by Becke [60] and Tao [61],

τD(r) = τ(r)− j2
p(r)

2ρ(r)
. (3.13)

In contrast to τMS, the use of τD ensures that the iso-orbital indicator in the functional
is extended in a rigorous way [62]. The performance of both generalizations is studied in
the papers of this thesis. While we first retained the name TPSS and explicitly specified
whether τMS or τD had been used, we later adopted different names for the two general-
izations, as done in Paper III of this thesis. If working with τD, we refer to the functional
as cTPSS, as done by Furness et al. [13], indicating that one uses the current to make
τ gauge-invariant. Utilizing τMS, we call the functional aTPSS, indicating the use of the
vector potential A to ensure gauge-invariance.

1We note that in Paper II of this thesis, τMS has been called τphys due to its characteristic of being
the physical kinetic energy density. We later decided to go back to the notation of Paper I, where the
sub-index ‘MS’ indicates who first proposed it. This is also the notation used in this thesis throughout.
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SCAN

The SCAN functional [63] satisfies all known exact constraints that a mGGA functional
can satisfy, specifically six for exchange, six for correlation and five for the sum of these
two. Moreover, it is fitted to particular cases for which it is extremely accurate, in
particular rare-gas atoms and non-bonded interactions. Since it is not fitted to any real
bonded systems, it can be regarded as a non-empirical functional that can be applied to
a wide range of molecular systems.

The accuracy of the SCAN functional is outstanding for systems where the exact
exchange–correlation hole is localized near the electron. In general, SCAN is often com-
parable or even better than hybrid functionals, but at a lower computational cost.

3.1.4 Hybrid Density Functional Approximation

Another class of approximate functionals are the hybrid density functional approximations.
They are based on the observation that the exchange energy is given by the first point of
an AC curve, Ex(ρ) = Wxc,0(ρ) = 〈Ψρ

0|V̂ee|Ψρ
0〉 − J(ρ). The expression for the exchange

energy is the same as in Hartree–Fock theory, but in terms of Kohn–Sham orbitals,

Ex(ρ) = −1

2

∑

i,j

∫
φ∗i (r)φ∗j(r

′)φj(r)φi(r
′)

|r− r′| drdr′, (3.14)

However, in general the Hartree–Fock orbitals differ from the Kohn–Sham orbitals.
Hybrid models include a certain percentage of exact exchange by mixing it with a

standard LDA, GGA or mGGA exchange. A hybrid GGA, for example, is of the form

Ehyb,GGA
xc = aEHF

x + (1− a)EGGA
x + EGGA

c , (3.15)

where the semi-empirical constant a is typically around 0.25. The first hybrid functional
was introduced by Becke in 1993, where he mixed in an amount of 50% exact exchange
in his half-and-half functional. However, already in this initial paper he suggested that
even better results could be obtained by semi-empirical models where the amount of exact
exchange is used as a parameter [25]. In general, approximate functionals rely on an error
cancellation between exchange and correlation energies and this needs to be taken into
account when determining the amount of exact exchange to be used.

B97

The B97 functional of Becke [64] is based on least-square fits to accurate thermochemical
data. It is of the form

EB97
xc = EGGA

x + EGGA
c + cxE

exact
x , (3.16)
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Figure 3.1: AC curves with several DFAs, for the H2 molecule, bond length 1.4a0 (atomic
units, Wc in Eh). All calculations have been performed with a contracted aug-cc-pVTZ
basis.

where cx = 0.1943 incorporates some exact exchange. The exchange and correlation
energy functionals are of GGA type and contain three and six parameters, respectively,
making a total of ten parameters. Becke claims that, with this large number of parameters,
the limits have been attained regarding how much accuracy can be obtained within the
GGA framework [64].

B3LYP

The Becke-3-parameter-Lee-Yang-Parr (B3LYP) functional is a hybrid GGA of the form

EB3LYP
xc = (1− a)ELDA

x + aEHF
x + bEB88

x + cELYP
c + (1− c)ELDA

c , (3.17)

with a = 0.20, b = 0.72 and c = 0.81 [65]. In the original paper by Becke [66], the
PW91 correlation functional is used instead of LYP. The B3LYP functional is the most
popular density functional and in the period of 1990-2006, it was used in 80% of all DFT
calculations [67]. Close to equilibrium, it outperforms most other GGAs and mGGAs for
calculations of structural and energetic properties.

3.2 Adiabatic Connection Curves for Approximate Func-

tionals

Approximate density functionals have been developed for the fully interacting system,
λ = 1. However, also the cases λ 6= 1 can be calculated, using scaling relations. Thus AC
curves as illustrated in Figure 3.1 can be generated.
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For any approximate functional, the AC integrand can be computed using [68]

Wc,λ(ρ,A) =
∂

∂λ
(λ2Ec(ρ1/λ,A)), (3.18)

where the scaled density

ρ1/λ(r) = λ−3ρ(r/λ) = λ−3ρ(r′) (3.19)

is obtained by linear scaling of the coordinates, r′ = r/λ. The scaling formula of Eq. (3.18)
follows exactly as in standard DFT:2

Wc,λ(ρ,A) =
∂

∂λ
Ec,λ(ρ,A)

=
∂

∂λ
(Fλ(ρ,A)− Ts(ρ,A)− λJ(ρ)− λEx(ρ))

=
∂

∂λ
λ2(Fλ(ρ1/λ,A)− Ts(ρ1/λ,A)− J(ρ1/λ)− Ex(ρ1/λ)

=
∂

∂λ
λ2Ec(ρ1/λ,A), (3.20)

where we in the third step used the following coordinate scaling relations [68]

Fλ(ρ,A) = λ2Fλ(ρ1/λ,A)

Ts(ρ,A) = λ2Ts(ρ1/λ,A)

J(ρ) = λJ(ρ1/λ)

Ex(ρ) = λEx(ρ1/λ)

(3.21)

Note that we here consider the correlation part Wc,λ(ρ,A) only. The exchange part is
trivially obtained, since it follows a simple linear scaling relation, see Eq. (2.48).

From relations (3.18) and (3.19), all quantities needed to evaluate a particular exchange–
correlation functional can be computed. An overview over the most important equations
is given in Paper II of this thesis. Here we discuss the relations and their derivation in
more detail.

2We note that this derivation is presented in Paper II of this thesis in terms of B instead of A. Both
formulations are equivalent, and we here reformulate it in terms of A to be consistent with the notation
of the remaining part of this thesis.
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LDA

For a correlation functional that depends locally on the density only, the correlation energy
is obtained by using the scaled density when evaluating the functional,

ELDA
c (ρ1/λ) =

∫
εLDAc (ρ1/λ(r)) dr = λ3

∫
εLDAc (λ−3ρ(r′)) dr′. (3.22)

GGAs

GGAs depend in addition on the gradient, which must also be scaled,

∂ρ1/λ(r)

∂r
= λ−3∂ρ(r′)

∂r
= λ−3∂ρ(r′)

∂r′
∂r′

∂r
= λ−4∂ρ(r′)

∂r′
(3.23)

=⇒ ∇1/λ
r ρ1/λ(r) = λ−4∇r′ρ(r′). (3.24)

The expression for the correlation energy then becomes

EGGA
c (ρ1/λ) =

∫
εGGA
c (ρ1/λ(r),∇1/λ

r ρ1/λ(r)) dr

= λ3

∫
εGGA
c (λ−3ρ1/λ(r), λ−4∇r′ρ(r′)) dr′. (3.25)

mGGAs

For mGGAs, furthermore the scaled kinetic energy density is needed. Using Eq. (3.19),
it follows that

∑

i

|φ1/λ
i (r)|2 = ρ1/λ(r) = λ−3ρ(r/λ) = λ−3

∑

i

|φi(r/λ)|2, (3.26)

implying that the orbitals and their derivatives scale as

φ
1/λ
i (r) = λ−3/2φi(r

′), (3.27)

∂φ
1/λ
i (r)

∂r
= λ−

3
2
∂r′

∂r

∂φi(r
′)

∂r′
= λ−

5
2
∂φi(r

′)

∂r′
. (3.28)

The kinetic energy density τ , needed for mGGAs, then transforms as

τ 1/λ(r) =
1

2

∑

i

∣∣∣∣∣
∂φ

1/λ
i (r)

∂r

∣∣∣∣∣

2

=
1

2

∑

i

∣∣∣∣∣
∂φ

1/λ
i (r′)

∂r′

∣∣∣∣∣

2

= λ−5τ(r′). (3.29)

For the use in magnetic fields, the gauge invariant generalizations of τ , that were intro-
duced in Subsection 3.1.3, need to be scaled. Both scale exactly as τ , as we show in the
following.
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For the physical kinetic energy density

τMS(r) =
1

2

∑

l

∣∣(−i∇+ A(r))φl(r)
∣∣2, (3.30)

we use that
∂

∂r
=
∂r′

∂r

∂

∂r′
=

1

λ

∂

∂r′
=⇒ ∇1/λ

r = λ−1∇r′ (3.31)

and that A1/λ(r) = λ−1A(r′). We obtain

τ
1/λ
MS (r) =

1

2

∑

l

∣∣(−i∇1/λ
r + A1/λ(r))φ

1/λ
l (r)|2

=
1

2

∑

l

∣∣(−iλ−1∇r′ + λ−1A(r′))λ−3/2φl(r
′)|2

=
λ−5

2

∑

l

∣∣(−i∇r′ + A(r′))φl(r
′)|2

= λ−5 τMS(r′), (3.32)

This shows that τMS has the same scaling factor as τ . The same holds true for τD, which
was defined in Subsection 3.1.3 and which we here repeat for convenience,

τD(r) = τ(r)− j2
p(r)

2ρ(r)
. (3.33)

From the definition jp(r) = 1
2i

∑
k

(
φ†k(r)∇φk(r)− (∇φ†k(r))φk(r)

)
, it follows that

j1/λ
p (r) =

1

2i

∑

k

(
φ

(1/λ)†
k (r)∇1/λ

r φ
1/λ
k (r)− (∇1/λ

r φ
(1/λ)†
k (r))φ

1/λ
k (r)

)

=
1

2i

∑

k

(
φ†k(r

′)

λ3/2

∇r′φk(r
′)

λ5/2
− ∇r′φ

†
k(r
′)

λ5/2

φk(r
′)

λ3/2

)

=
1

λ4

1

2i

∑

k

(
φ†k(r

′)∇r′φk(r
′)− (∇r′φ

†
k(r
′))φk(r

′)
)

=
1

λ4
jp(r′), (3.34)

where we have utilized Eqs. (3.27) and (3.28). This relation (3.34) implies that

j
(1/λ)2

p (r)

2ρ1/λ(r)
=

j2
p(r′)

λ8

λ3

2ρ(r′)
=

1

λ5

j2
p(r′)

2ρ(r′)
,

which scales in the same way as τ , and shows that

τ
1/λ
D (r) =

1

λ5
τD(r′). (3.35)
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For mGGAs, one then uses the scaled density of Eq. (3.19), the scaled gradient of
Eq. (3.24) and one of the scaled kinetic energy densities of Eqs. (3.29), (3.32) or (3.35) to
compute the correlation functional,

EmGGA
c (ρ1/λ) =

∫
εmGGA
c (ρ1/λ(r),∇1/λ

r ρ1/λ(r), τ 1/λ(r)) dr

= λ3

∫
εmGGA
c (λ−3ρ1/λ(r), λ−4∇r′ρ(r′), λ−5τ(r′)) dr′. (3.36)

47





Chapter 4

Application of Density-Functional
Theory in a Magnetic Field

While Chapter 2 deals with exact DFT in magnetic fields from a theoretical point of view,
this chapter focuses more on the application of this theory and computational aspects of
calculations in magnetic fields. First, we consider some additional complications that arise
with the introduction of magnetic fields from a computational point of view. We then
outline the difference between dia- and paramagnetic molecules as background for Paper
III, where these molecules are studied separately. Next, we discuss magnetic properties,
one of the key topics of this work, in particular the magnetizability and NMR shielding
constants. We review two different ways to compute magnetic properties. Both methods,
numerical and analytical differentiation, are used in our papers. Finally, we describe our
implementation of the Lieb optimisation, whose theoretical aspects have been discussed
in Chapter 2.

4.1 Computational Aspects in Magnetic Fields

The introduction of a magnetic field into the Hamiltonian results in additional computa-
tional challenges. One major complication is that the vector potential is dependent on
the choice of the coordinate system, but the final results should not to be affected by this
choice. This problem can be solved with the correct choice of orbitals, which is discussed
in the following.

4.1.1 Gauge-Origin Transformations

The vector potential

AO(r) =
1

2
B× rO (4.1)
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is dependent on the gauge origin, here denoted by O, which is located where the vector
potential vanishes,

AO(O) = 0. (4.2)

A gauge transformation of the vector potential means that the location of O is changed
to G. It may be expressed in terms of the gauge function f ,

AG(r) = AO(r) +∇f, f(r) = −AO(G) · r (4.3)

The corresponding changes in the Hamiltonian are compensated for by the exact wave
function, such that observables are not affected [32]. However, there may not be invariance
in the case of approximate calculations. Truncations in the wave function, for example,
can mean that not all the terms that are needed for the compensation of the gauge
transformation are included.

4.1.2 London Orbitals

To compensate for the gauge transformation of the Hamiltonian, the wave function must
change as Ψ′ = exp(−if)Ψ [32]. With the gauge transformation of Eq. (4.3), the exact
wave function transforms in the following manner,

ΨG = exp(iAO(G) · r)ΨO = exp

(
i
1

2
B× (G−O) · r

)
ΨO, (4.4)

where B denotes the magnetic field and G the gauge origin. The exponential term
is a position-dependent phase factor, introducing oscillations in the wave function. To
model the phase factor accurately in approximate calculations, standard atomic orbitals
do not have enough flexibility. As a consequence, with such orbitals, large basis sets
have to be used to obtain accurate results in the presence of magnetic fields. In 1937,
however, London introduced London orbitals, also known as gauge-origin including atomic
orbitals [69], which incorporate the oscillatory behaviour directly into the orbitals,

ω(rK,B,G) = exp

(
i
1

2
B× (G−K) · r

)
χ(rK), (4.5)

where χ(rK) is a standard atomic orbital which is centred at K, with corresponding
position vector rK = r − K. When using London orbitals for atomic systems, the un-
perturbed wave function is an eigenfunction of the perturbed Hamiltonian to first order
in the field [4]. London orbitals improve the quality and basis-set convergence of cal-
culations involving magnetic fields. Importantly, the calculation of observables becomes
gauge-origin independent.
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4.2 Diamagnetic and Paramagnetic Molecules

If the energy of a molecule increases when exposed to an external magnetic field, this
molecule is said to be diamagnetic, whereas when the energy decreases, it is said to be
paramagnetic. All open-shell systems are paramagnetic. They have a permanent magnetic
moment and in the field, an alignment of this magnetic moment with the field results in a
lowering of the energy. Closed-shell molecules, which do not have a permanent magnetic
moment, may either be dia- or paramagnetic. Most of them, however, are diamagnetic.

Let us consider the Hamiltonian in a magnetic field, Eq. (2.66), repeated here for
convenience,

Ĥλ(v,A) = Ĥλ(v)− i
∑

j

A(rj) · ∇j +
1

2

∑

j

A2(rj). (4.6)

The term quadratic in the field can only raise the energy and dominates over the linear
operator for a diamagnetic molecule. The paramagnetic term, which is linear in the field,
may either raise or lower the energy. For a paramagnetic molecule, it dominates over the
quadratic term and lowers the energy.

For closed-shell paramagnetic molecules, a common feature is a low-lying excited state
that couples with the ground state in the presence of a magnetic field. When the coupling
is strong enough, the two states avoid each other, such that no crossing may occur.
This mechanism leads to a lowering of the energy for sufficiently small fields. However,
if the field gets strong enough, the diamagnetic term will always dominate, such that
paramagnetic molecules become diamagnetic from a certain field strength on. [70]

4.3 Magnetic Properties

In this section, we introduce magnetic properties and, in particular, consider those two
properties that are studied in the papers of this thesis, the magnetizability and the NMR
shielding constant. Next, we discuss how the computation of magnetic properties depends
on an accurate description of the field dependence, before we discuss how to perform these
calculations in practice.

4.3.1 Energy Derivatives

Introducing a perturbation µ to a molecular electronic system, the energy can be written
as a Taylor expansion in terms of this perturbation,

E(µ) = E0 +
dE
dµ

µ

∣∣∣∣
µ=0

+
1

2
µT

d2E

dµ2
µ

∣∣∣∣
µ=0

+ . . . , (4.7)

51



where E0 denotes the unperturbed energy. An external homogeneous magnetic field B

and the magnetic moment
MK = γKIK , (4.8)

associated with spin IK and gyromagnetic ratio γK of nucleus K, can be considered as
such perturbations to a field-free system. To second order in these two perturbations, the
expression for the energy becomes

E(B,M) =E0 +
1

2
BT d2E(B,M)

dB2

∣∣∣∣
B=0

B +
∑

K

BT d2E(B,M)

dBdMK

∣∣∣∣
B,M=0

MK

+
1

2

∑

K 6=L
MT

K

d2E(B,M)

dMKdML

∣∣∣∣
M=0

ML,

(4.9)

where the magnetic moments are collectively referred to as M = {MK}. The expansion
in Eq. (4.9) does not include first-order terms since these terms vanish for closed-shell
systems [4], which we exclusively consider in this work. The energy derivatives correspond
to specific molecular properties, and the two relevant for this work, the magnetizability
and the nuclear shielding constant, are be discussed in the following.

Magnetizability

The magnetizability is defined as the second-order response of a molecule to an external
magnetic field,

ξ = − d2E(B)

dB2

∣∣∣∣
B=0

. (4.10)

For closed-shell systems, second-order perturbation theory yields the following explicit
expression [71],

ξ = −1

4

〈
0
∣∣(rTOrOI− rOrTO

)∣∣ 0
〉
− 1

2

∑

n6=0

〈
0
∣∣lTO
∣∣n
〉
〈n |lO| 0〉

E0 − En
, (4.11)

where I is the 3× 3 unit matrix, and rO and lO are the position vector and the electronic
angular momentum vector around the gauge origin O, respectively. We here follow the
common notation of e.g. Ruud and Helgaker [71], where the summation over electrons is
omitted for simplicity.

The first term, an expectation value depending on the ground state only, is called
diamagnetic contribution, whereas the second term, a sum over states is called paramag-
netic contribution. The average of the diagonal elements of the magnetizability tensor is
referred to as isotropic magnetizability,

ξiso =
1

3
Trξ. (4.12)
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For atoms in a homogeneous magnetic field, the simple relationship

ξdia = −1

6

〈
r2
〉

(4.13)

with r = |r| holds, as explicitly derived in Appendix B. Furthermore, for closed-shell
atoms, the paramagnetic contribution vanishes since their ground-state is an eigenstate
of the angular momentum operator with eigenvalue 0. Thus, only the diamagnetic part
given in Eq. (4.13) contributes, such that the total magnetizability is directly proportional
to the expectation value of r2.

Nuclear Shielding Constant

Another second-order property is the nuclear shielding constant. It is used for molecular
structure determination in NMR spectroscopy and therefore an important application area
of quantum chemistry. The shielding constant describes the modification of an external
magnetic field at the nucleus due to the magnetic field resulting from the motion of the
electrons.

The shielding tensor σK associated with nucleus K describes the coupling between
an external field and the nuclear magnetic moment of nucleus K. It is defined as the
second-order derivative of the molecular electronic energy with respect to the magnetic
field B and the magnetic moment MK of that nucleus1,

σK =
d2E(B,M)

dB dMK

∣∣∣∣
B,M=0

+ I. (4.14)

The subdivision into dia- and paramagnetic contributions in approximate calculations is
not unique and different conventions can be found in literature. We here follow the one of
Helgaker et al. [74], where the diamagnetic contribution only contains terms that can be
computed as an expectation value with the ground state wave function. All other terms
are put into the paramagnetic part.

Again omitting the summation over electrons for simplicity, second-order perturbation
theory yields Ramsey’s expression for nuclear shielding constants [73]

σK =
1

2

〈
0

∣∣∣∣
rTOrK − rOrTK

r3
K

∣∣∣∣ 0
〉
−
∑

n

〈0|lO|n〉〈n|lTKr−3
K |0〉

En − E0

+ I, (4.15)

where rK , rO and lK , lO are the position vectors and the orbital angular momentum vectors
relative to nucleus K and gauge origin O, respectively. We have added the unit matrix I

to Ramsey’s original expression to be consistent with our definition of the shielding tensor
in Eq. (4.14).

1Note that sometimes the unit matrix is dropped in literature, see e.g. Refs. [72, 73].
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The first term is the diamagnetic contribution, the second term the paramagnetic
contribution. Since σK depends on the choice of the gauge origin, it is necessary to use
London orbitals in order to obtain gauge-invariant results. As for the magnetizability, the
paramagnetic term vanishes for closed-shell atoms, such that the shielding is given by the
simple relationship

σK =
1

3

〈
0

∣∣∣∣
1

rK

∣∣∣∣ 0
〉
, (4.16)

which is called Lamb formula [75]. The isotropic shielding constant is defined as

σisoK =
1

3
TrσK . (4.17)

Comparing the expression for the shielding tensor, Eq. (4.15), with that of the magnetiz-
ability, Eq. (4.11), we note that the shielding tensor is more sensitive to regions close to
the nuclei, whereas the magnetizability is more dependent on regions further away. This
fact can be used to assess the quality of approximate exchange–correlation functionals
in DFT. An accurate value for the magnetizability, but a poorer one for the shielding
constant, for example, may indicate that the functional does not model regions close to
the nuclei well enough.

4.3.2 Field-Dependence of Magnetic Properties

As mentioned above, for all magnetic properties there exists a (non-unique) subdivision
into diamagnetic and paramagnetic parts. For the analysis of approximate methods,
we further subdivide the paramagnetic part into field-independent and field-dependent
parts. We use this subdivision for the NMR shielding constant in Paper I and for the
magnetizability in Paper II .

There are thus three terms, here demonstrated for the magnetizability,

ξ = ξdia + ξparaρ + ξparaA , (4.18)

where the first term refers to the diamagnetic part, the second term to the field-independent
paramagnetic part, and the last term to the field-dependent paramagnetic part. The use-
fulness of this decomposition is that it allows us to quantify how large the error is if the
field-dependent part is neglected. This is the case for all standard DFAs, where there is
no explicit field-dependence in the exchange–correlation functional.

Computation of magnetic properties in practice From a practical point of view,
the diamagnetic part is easily obtained as an expectation value, using the one-electron
density matrix. For the paramagnetic contributions, first a calculation of the interacting
system, at λ = 1, is performed. This can be done with any electronic structure method,
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for example FCI, coupled-cluster or Hartree–Fock models. The obtained density matrix
is used in a subsequent Lieb calculation at λ = 0, as discussed in Subsection 4.5. The
obtained orbitals and orbital energies are then used to compute the property of inter-
est, using the perturbative approach a response calculation, as discussed in Section 4.4.2.
Within the limits of the method which is used to obtain the density, this response calcu-
lation with the Kohn–Sham orbitals gives the exact, but field-independent value for the
property of interest. This is due to the fact that the response calculation does not con-
tain any field dependence, but simply receives the orbitals that give the correct density,
calculated in the Lieb calculation.

The field-dependent part is then obtained as the difference between the value of the, for
example, coupled-cluster or FCI calculation, and the one from the Kohn–Sham response
calculation. For the magnetizability, this gives ξparaA = ξ − ξKS, and the same expression
holds for the shielding constant with σ instead of ξ. The field-independent paramagnetic
part is the difference between the Kohn–Sham value and the diamagnetic part, for the
magnetizability in particular ξparaρ = ξKS − ξdia. The density used in the Kohn–Sham
calculation has to be the same one with which the diamagnetic part is computed. The
different steps are illustrated in Figure 4.1.

4.4 Computation of Magnetic Properties

To compute magnetic properties, there exist two main approaches. One way is to compute
the energy derivatives numerically. This is what we primarily do in the papers of this
work, using the method of finite difference. Alternatively, the properties can be computed
analytically, employing response theory. A short overview over both methods, along with
their advantages and disadvantages, is given in the following two subsections.

4.4.1 Numerical Differentiation

As discussed in Subsection 4.3.1, magnetic properties are obtained as energy derivatives
with respect to the magnetic field, computed at zero field strength. This means that
any finite difference approach can be utilized, where the energy is computed for several
sufficiently small field strengths. Afterwards, either the derivative is formed, or the points
are fitted by a polynomial. For example, for the magnetizability, which is the negative
second-order derivative of the energy with respect to the field, ξ = −d2E(B)/dB2|B=0,
one needs at least three points. The challenge is to find a step length and an appropriate
number of points, such that the derivative is computationally stable. A too large step
length will make the method less accurate by the inclusion of higher-order terms. The
derivative is needed at zero field strength, and one should therefore aim at step lengths as
small as possible. However, too small steps give rise to numerical instabilities, such that
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λ = 1
FCI, CCSD(T),. . .

λ = 0
Lieb calculation

Response
calculation

Response
calculation

ξparaA = ξ − ξKS

ξparaρ = ξKS − ξdia

φKS, εKS

γ

ξ, ξdia

ξKS

Figure 4.1: Demonstration of the different steps needed to compute all components of a
magnetic property, here the magnetizability ξ. To have access to the field-independent
part ξKS, we first perform a calculation at λ = 1. The obtained density matrix γ is
used in a subsequent Lieb calculation at λ = 0, yielding Kohn–Sham orbitals φKS and
Kohn–Sham energies εKS. Used in a response calculation, the Kohn–Sham orbitals and
energies give the field-independent part of the magnetizability, ξKS, while the results from
the (λ = 1)-calculation give the total and diamagnetic part, ξ and ξdia, respectively.
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the right balance needs to be found.

One useful property of the molecular energy is that, due to symmetry, we have E(B) =

E(−B), such that for each calculation of the energy at non-zero field strength, two points
for the finite difference method are obtained.

The disadvantage of the numerical method is that calculations of the energy have
to be done at several field strengths with tight convergence thresholds, which can be
computationally costly, and that an optimal step length has to be determined to avoid
numerical instabilities. The advantage, on the other hand, is that it is easy to implement.

4.4.2 Analytical Differentiation

To avoid having to perform calculations at several field strengths and to achieve greater
speed and precision, magnetic properties can be computed analytically, using the method
of response. We here restrict ourselves to time-independent, second-order properties,
since only these are studied in our papers. A more general discussion of response theory
is beyond the scope of this work. We will here follow the lectures of Trygve Helgaker at
the Sostrup Summer School [76].

Consider the Taylor expanded energy of Eq. (4.9) up to second order in the perturba-
tions B and M. All energy derivatives,

d2E(B,M)

dB2

∣∣∣∣
B=0

,
d2E(B,M)

dBdMK

∣∣∣∣
B,M=0

,
d2E(B,M)

dMKML

∣∣∣∣
M=0

(4.19)

are time-independent, second-order properties, to which the theory of linear response can
be applied.

Perturbation theory yields explicit expressions for the energy derivatives, as given
in Eq. (4.11) for the magnetizability and Eq. (4.15) for the NMR shielding constant.
However, to compute these expressions explicitly, one would need the complete set of
eigenstates |n〉 and associated eigenvalues En, which are only available at the FCI level.
Therefore, these expressions are therefore not helpful for approximate methods like the
Hartree–Fock and coupled-cluster methods.

For approximate methods, the energy functional E(µ,Λ) depends on two sets of pa-
rameters, the external perturbation parameter µ, as for example the magnetic field B

or the magnetic moment M, and the wave function parameters Λ = (λ1, λ2, . . . ), like
the molecular orbitals or cluster amplitudes. The parameters Λ(µ) depend implicitly on
the external parameter µ, while the Hamiltonian depends explicitly on µ. For each fixed
value of µ, the parameters Λ in E(µ,Λ) are optimized to give the total energy E(µ) with
optimal values Λ∗(µ),

E(µ) = E(µ,Λ∗). (4.20)
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Depending on the method, this optimization is not necessarily variational (e.g. for
coupled-cluster theory). To compute the derivatives of E(µ) with respect to µ, both
the explicit and the implicit dependence must be taken into account.

For the first-order derivative, this means

dE(µ)

dµ
=
∂E(µ,Λ∗)

∂µ
+
∑

i

∂E(µ,Λ)

∂λi

∣∣∣∣
Λ=Λ∗

∂λ∗i
∂µ

, (4.21)

where the first term considers the explicit dependence on µ and the second one the implicit
dependence through the parameters Λ. The quantity ∂λ∗i /∂µ is the linear response of
the wave function, describing the change of the electronic structure when the system is
perturbed.

Variational wave functions In the case of variational wave functions, the stationary
condition

∂E(µ,Λ)

∂λi

∣∣∣∣
Λ=Λ∗

= 0 (4.22)

leads to a simplification of the molecular gradient to

dE(µ)

dµ
=
∂E(µ,Λ∗)

∂µ
. (4.23)

This means that the response of the wave function is not needed for the first derivative
of the energy.

For the second-order derivative of E(µ),

d2E(µ)

dµ2
=

d
dµ

∂E(µ,Λ∗)

∂µ

=

(
∂

∂µ
+
∑

i

∂λ∗i
∂µ

∂

∂λi

∣∣∣∣∣
Λ=Λ∗

)
∂E(µ,Λ∗)

∂µ

=
∂2E(µ,Λ∗)

∂µ2
+
∑

i

∂2E

∂µ∂λi

∣∣∣∣∣
Λ=Λ∗

∂λ∗i
∂µ

, (4.24)

however, the first-order response ∂λ∗i /∂µ is required. To compute the response, the sta-
tionary condition ∂E(µ,Λ)/∂λi|Λ=Λ∗ = 0, which holds for all perturbations µ, is differ-
entiated with respect to µ,

d
dµ

∂E(µ,Λ)

∂λi

∣∣∣∣
Λ=Λ∗

=
∂2E(µ,Λ)

∂µ∂λi

∣∣∣∣
Λ=Λ∗

+
∑

j

∂2E(µ,Λ)

∂λi∂λj

∣∣∣∣∣
Λ=Λ∗

∂λ∗j
∂µ

= 0. (4.25)

58



This gives rise to the first-order time-independent response equations,

∑

j

∂2E(µ,Λ)

∂λi∂λj

∣∣∣∣∣
Λ=Λ∗

∂λ∗j
∂µ

= − ∂2E(µ,Λ)

∂µ∂λi

∣∣∣∣
Λ=Λ∗

(4.26)

The first factor ∂2E(µ,Λ)/∂λi∂λj is the electronic Hessian, a Hermitian matrix. The
response equations (4.26) form a linear system of equations. Solving them yields the
linear response vector ∂λ∗i /∂µ. Usually, the response equations are solved iteratively,
where the Hessian is multiplied with a trial vector. The Hessian matrix itself is generally
too large to be explicitly constructed and stored.

It should be noted that only the first-order derivative of the wave function is needed
to compute the second-order derivative of the energy. In general, we have the 2n + 1-
rule, which says that for variational wave functions, the nth derivative of a wave function
determines the energy derivatives to order 2n+ 1.

Non-variational wave functions For non-variational wave functions, as for example
coupled-cluster and the configuration interaction method, the energy can be made sta-
tionary by Lagrange’s method of undetermined multipliers. For Lagrange multipliers the
derivative of the wave function to order n determines the energy to order 2n+ 2.

Advantages and disadvantages Compared to numerical differentiation, the advan-
tages of the analytical differentiation are that the exact expressions allow a higher precision
and are computationally more efficient. The main drawback is that the implementation is
more difficult and requires more work. Moreover, for each property a different expression
is needed while a numerical implementation can be used for any property.

4.5 Lieb Optimization in the Context of BDFT

In the BDFT framework, the Lieb functional is given by Eq. (2.69), which we repeat here
for further use,

Fλ(ρ,A) = sup
v∈X∗

[Eλ(v,A)− (v|ρ)] . (4.27)

In practice, the exact energy functional Eλ(v,A) is not known, but approximate models
can be used, as for example coupled-cluster or Hartree–Fock models. For the compu-
tation of AC curves in practice, we need to compute the AC integrand Wxc,λ(ρ,A) =

〈Ψλ,A|V̂ee|Ψλ,A〉−J(ρ). This requires wave functions with a fixed density ρ and at a fixed
magnetic field, but with varying values for the interaction parameter λ.

In this work, we perform for each value of λ a Lieb optimization as given by Eq. (4.27).
We follow the procedure by Wu and Yang [77], who originally applied this scheme in the
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context of optimized effective potentials at λ = 0. This optimization method has later
been applied to all interaction strengths λ ∈ [0, 1], see for example Ref. [26].

The one-electron potential is constructed as a sum of the nuclear potential vnuc(r),
a reference potential vref(r) and a linear expansion in a basis set of Gaussians {gt} with
expansion coefficients {bt},

veff(r) = vnuc(r) + (1− λ)vref(r) +
∑

t

btgt(r). (4.28)

As a reference potential, we chose the Fermi-Amaldi potential [78],

vref(r) =
N − 1

N

∫
ρ(r′)

|r− r′| dr′, (4.29)

which ensures the correct long-range behaviour of the effective potential [79].

The aim in the Lieb maximization is to find those coefficients {bt} that maximize the
quantity

Gλ,b(ρ,A) = Eλ(vλ,b,A)−
∫
vλ,b(r)ρ(r) dr. (4.30)

Depending on which optimization scheme is used, the gradient and the Hessian may be
needed for the calculations, too. First-order methods, like the quasi-Newton method,
require only the gradient, given by

∂Gλ,b(ρ,A)

∂bt
=

∫
[ρλ,b(r)− ρ(r)] gt(r)dr, (4.31)

whereas second-order methods, like the full Newton method, also require the Hessian,

∂2Gλ,b(ρ,A)

∂bt∂bu
=

∫∫
gt(r)gu(r

′)
δρ(r)

δv(r′)
drdr′. (4.32)

4.5.1 Our Procedure for Computing AC Curves with the Lieb

Optimization

When generating an AC curve, we proceed in the following way:

1. First, we run a calculation at λ = 1 with a method of choice, for example Full
Configuration Interaction (FCI), which gives a ground state density ρ(r).

2. We then perform a Lieb optimization to find the optimal set of coefficients {bt},
which determines the effective potential veff(r) and with it the exact expression of
the Hamiltonian Ĥλ(v,A).
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3. With this set of coefficients {bt}, we obtain the AC integrand Wxc,λ as

Wxc,λ(ρ,A) =
1

λ
〈Ψ1,A|V̂ee|Ψ1,A〉 − J(ρ)

=
1

λ

(
Eλ(v,A)− T (ρ,A)− (v|ρ)

)
− J(ρ),

(4.33)

since Vee scales linearly in λ [68],

〈Ψλ,A|V̂ee|Ψλ,A〉 = λ〈Ψ1,A|V̂ee|Ψ1,A〉. (4.34)

4.5.2 Our Implementation of the Lieb Optimization

To find the optimal coefficients {bt} for the potential in Eq. (4.28), we employ the Newton
algorithm, which we, out of several optimization algorithms, found to require the smallest
number of iterations until convergence. With Newton’s method one approximates the
function locally by a quadratic polynomial and uses the gradient and the Hessian matrix
of second derivatives to find the optimum.

In practice, we start with a guess for the coefficients {bt}. Then, with this set of
coefficients, we perform an electronic structure calculation, e.g. on the FCI or coupled-
cluster level, using the LONDON quantum-chemistry software [80, 81]. This code supplies us
with the functional of Eq. (4.30) and the Lieb gradient of Eq. (4.31). Moreover, it provides
us with the Hessian at the Hartree–Fock level, which we use as an approximation to the
exact Hessian. In LONDON, this Hessian is computed as Htu =

∑
ai〈i|gt|a〉〈a|gu|i〉/(εa− εi),

where a, i are the molecular orbital coefficients and εi, εa the molecular orbital energies.
The functional Gλ,b, Lieb gradient and Hessian are used to determine iteratively the
next set of coefficients {bt} until the norm of the gradient is smaller than a user-defined
threshold.

Regularization to ensure a maximum

The Lieb functional of Eq. (4.27) does not necessarily have a maximum, in which case
the optimizer fails to find a solution. Moreover, in the context of optimized effective
potentials (OEPs), it has largely been discussed that the use of a finite basis set for the
Kohn–Sham orbitals and the potential makes the problem ill-posed [82, 83, 84]. When
the exchange–correlation functional is constructed in a finite basis set, its response to
orbital perturbations is limited. The basis set for the potential can be inappropriate and
there may be cases where changes in the potential cannot be properly reflected in the
orbitals. Many different potentials, including non-physical ones, can numerically give the
same total energy and orbitals.

One typical appearance, for example, are potentials with strong oscillations. Such
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potentials are numerically possible if the oscillations occur in regions where the orbitals
almost vanish, or if the potentials change so rapidly that the orbitals cannot adjust.
Through regularization, however, it can be ensured that only physically meaningful po-
tentials are generated. In the case of oscillations, it is possible to introduce a penalty
term ‖vλ,b(r)‖2, as done by Heaton-Burgess et al. [82] and Bulat et al. [84]. In this way,
smooth potentials are favoured in the optimization procedure.

In our work, we use another regularization, which is inspired by the Moreau–Yosida
regularization [85], easy to implement and at the same time effective to yield stable results
in the optimization procedure: Instead of maximizing the quantity of Eq. (4.30), we are
maximizing

Gλ,b(ρ,A)− 1

2
µ‖b‖2 = Eλ(vλ,b,A)−

∫
vλ,b(r)ρ(r) dr− 1

2
µ‖b‖2, (4.35)

where b =
∑

t bt is the sum of the expansion coefficients of the potential and µ is a
user-defined regularization constant. Accordingly, the gradient becomes

∂Gλ,b(ρ,A)

∂bt
− µ‖b‖ =

∫
[ρλ,b(r)− ρ(r)] gt(r)dr− µ‖b‖. (4.36)

Working with this regularization, one needs to choose µ large enough to achieve conver-
gence, but at the same time one should try to keep it as small as possible in order not to
change the Hamiltonian too much. Only for small values of µ, the regularized solution is
a good approximation to the unregularized one.
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Chapter 5

Discussion of Papers

In this chapter, the papers that form the foundation of this thesis are presented. For each
paper, a short summary of the main results is given. Moreover, additional material may
be included, mainly results that are closely linked to or have been important during the
work on the paper, but that were eventually not included in the paper. Still, this material
can be considered as valuable background information and is therefore presented in the
context of this thesis.

5.1 Paper I

Title: The importance of current contributions to shielding constants in density-functional
theory

Formal citation:
Reimann, S.; Ekström, U.; Stopkowicz, S.; Teale, A.M.; Borgoo, A.; Helgaker, T. The
importance of current contributions to shielding constants in density-functional theory.
Phys. Chem. Chem. Phys. 2015, 17, 18834-18842.

5.1.1 Main Results

In this paper, we studied the sources of error in the calculation of NMR shielding constants
when utilizing standard DFAs. The aim is to quantify the error when the magnetic
field and its corresponding current are neglected, which in turn serves as a motivation to
develop BDFT to reduce this error. Moreover, errors originating from the electron density
are analyzed, since the current (or field) corrections are in most cases relatively small. It
is therefore important that errors in the underlying DFA are reduced as far as possible.
Only in this way, the full benefits of a field-dependent functional can be realized and the
advantages are not outweighed by much larger, field-independent errors.
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Paper I is written from the perspective of CDFT and in terms of current corrections,
instead of field corrections as done in the subsequent papers. We want to point out that
all results presented here are equally valid for field corrections in the context of BDFT.

The main conclusions of this paper are given in the following paragraphs.

Missing current contribution is a leading source of error in shielding calcula-
tions using DFAs As explained in Subsection 4.3.2, we have subdivided the shielding
tensor into a diamagnetic part, a current-independent paramagnetic part and a current-
dependent paramagnetic part, and we analyzed those parts individually. Using the Lieb
optimization outlined in Section 4.5, we were able to isolate the current-dependent para-
magnetic part for a set of molecules. We found that, although the current contribution
typically is one to two orders of magnitude smaller than the dia- and paramagnetic con-
tributions, it may still be important since the dia- and paramagnetic contributions have
opposite signs and in some cases nearly cancel. For the carbon atom in CO, for example,
the current contribution is twice as large as the total shielding constant. A neglect of this
contribution, which is the case for conventional DFAs, leads therefore to a large error in
shielding calculations.

Assessment of current-independent functionals It is useful to judge existing,
current-independent functionals on their ability to reproduce accurate ab-initio shielding
constants, for example from coupled-cluster calculations, where the current contribution
has been subtracted. If comparing the results of current-independent DFAs to ab-initio
results including current effects, it is impossible to distinguish between the errors of a
DFA and the missing current dependence. As a result, the functionals might not even
benefit from accurate current corrections.

TPSS is a promising starting point Of the DFAs investigated, we found the gauge-
invariant generalizations of TPSS to be the most promising candidates to apply a current
correction to. Good current-independent shieldings require that the diamagnetic part is
well described, which depends on a good density at zero field strength. For most DFAs,
we observed large errors in the density around the nuclei, considerably larger than for
Hartree–Fock. We consistently found TPSS to give the best densities. Also including the
current-independent paramagnetic part, we found TPSS and its generalizations to be the
approximate functional with the most balanced error.

5.2 Paper II

Title: Magnetic-Field Density-Functional Theory (BDFT): Lessons from the Adiabatic
Connection
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Formal citation:
Reimann, S.; Borgoo, A.; Tellgren, E. I.; Teale, A.M.; Helgaker, T. Magnetic-Field
Density-Functional Theory (BDFT): Lessons from the Adiabatic Connection. J. Chem.
Theory Comput. 2017, 13, 4089-4100.

5.2.1 Main Results

In this paper, the main question is whether for the accurate computation of magnetic
properties using DFAs, we first need to fix the field-free functional or if the introduction
of a field-dependence should be prioritized.

To address this question, we extend the study of AC curves to molecular systems
involving magnetic fields, since by now, AC curves have only been studied for field-free
systems. In particular, we take the approach from the perspective of BDFT. The intention
is to consider both the weak-field and the strong-field regime, since an understanding of
weak fields is necessary for an accurate modeling of magnetic properties, whereas strong
fields are useful to improve our understanding of fundamental physical and chemical con-
cepts.

Another aim of the paper is to compare the BDFT and CDFT correlation functionals,
using the four-way correspondence of convex analysis, and to establish the relationships
between those two approaches. We have presented most of this material in Section 2.3 of
this thesis.

The main conclusions of the paper are presented in the following paragraphs.

Improvement of the magnetizability by using field-dependent density function-
als We decompose the energy and its second derivative with respect to the magnetic field
into its Kohn–Sham components, keeping in mind that the second derivative is propor-
tional to the magnetizability, see Eq. (4.10). This decomposition allows us to study the
individual contributions to the magnetizability in detail.

We show that the magnetizability is primarily determined by those energy components
that are related to the density, namely (v|ρ), J(ρ) and Ts(ρ). For the magnetizability,
therefore the benefit of improving the density of existing DFAs will be larger than the
benefit of introducing a magnetic-field dependence in the correlation functional. This is
further motivated by our calculations which show how poor the self-consistent densities
of present approximate functionals are.

At the same time, we show that once a good density has been attained, only an
inclusion of magnetic-field effects into the functionals can lead to highly accurate results.
This is illustrated by the fact that for some molecules, the field-dependent part of the
magnetizability is comparable to the total correlation contribution. To get a good density,
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however, we need a good correlation functional already at zero-field.

Behaviour of AC curves depends on the choice of geometry Studying AC curves
in the regime of strong magnetic fields, we find that as long as each curve is calculated
at the equilibrium geometry of that field strength, the curves are very close to each other
and the magnetic field does not result in any significant changes.

However, if for all AC curves the equilibrium geometry of the field-free system is used,
the curves bend more with increasing field strength. The reason is that static correlation
is getting more important. Static correlation increases with the field, since a magnetic
field results in a compression of the charge density. This means that keeping the molecular
geometry fixed while increasing the magnetic field is equivalent to effectively stretching
the bonds. We demonstrate that existing models for the AC integrand are able to capture
this behaviour.

AC curves using approximate functionals Computing AC curves with approximate
functionals, we show that the main error in the presence of a field is already present at zero
field strength. The field does not introduce a major additional error, which justifies the
use of DFAs for systems in strong fields without the need to treat additional correlation
effects. For the DFAs studied in this paper, the most accurate AC integrands are obtained
with TPSS using τMS, see Eq. (3.30), which we also refer to as aTPSS.

Since the major errors in the correlation functional are already present at zero-field,
it is important to improve the functionals in the absence of a field. Only then can the
benefits of field-dependent corrections be fully realized.

5.2.2 Additional Material

One of the main messages of this paper is that, when computing the magnetizability with
DFAs, the main error comes from the poor self-consistent densities. We therefore thought
it would be instructive to study to which a degree a better density could affect the results.
From Paper I we know that, especially around the nuclei, the Hartree–Fock method has
a much smaller error in the density than all DFAs we studied. Hence we wanted to
investigate whether combining the correlation part of any DFA with 100% exact exchange
would lead to an improvement of the density and the magnetizability. We are of course
aware of the fact that this combination breaks the error cancellation between exchange
and correlation part that most DFAs rely on for good energetics, apart from the fact that
the internal parameters were optimized for the DFA and not the exact exchange. However,
this analysis still gives an indication if, at least for the magnetizability, the importance
of the density is so large that a slightly worse value for the exchange–correlation energy
could be accepted and whether there are consistent trends when increasing the amount of
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He Ne HF H2O NH3 CH4 CO N2

PBE −0.02 −0.04 0.03 −0.04 −0.14 −0.01 −1.17 −1.22
HFx+PBEc 0.01 0.06 0.17 0.10 −0.02 0.09 −1.06 −1.18

BLYP −0.02 −0.05 0.02 −0.06 −0.15 0.02 −1.19 −1.24
HFx+LYPc 0.01 0.04 0.14 0.07 −0.04 0.08 −1.09 −1.22

SCAN −0.08 −0.25 −0.26 −0.46 −0.69 −0.53 −1.76 −1.81
HFx+SCANc −0.02 −0.09 −0.03 −0.16 −0.32 −0.21 −1.40 −1.51

aTPSS −0.05 −0.21 −0.20 −0.34 −0.49 −0.28 −1.57 −1.63
HFx+aTPSSc −0.03 −0.10 −0.05 −0.18 −0.36 −0.25 −1.44 −1.56

Table 5.1: Error in the magnetizability compared to CCSD(T), ∆ξ = ξ−ξCCSD(T), given in
atomic units (EhB−2

0 with B0 = 2.35×105 T). For TPSS, we work with τMS of Eq. (3.30),
and we therefore refer to it as aTPSS, see Subsection 3.1.3. For those lines in the ta-
ble where exact exchange is combined with the correlation part of a DFA, we have, for
emphasizing, indicated an improvement of the magnetizability with a blue number and a
worsening with a red number.

exact exchange. This information can be valuable for the further development of DFAs.

0.6 0.4 0.2 0.0 0.2 0.4 0.6
z (Bohr)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

∆
ρ
 (

B
o
h
r−

3
)

BLYP
HFx+LYPc
PBE
HFx+PBEc
SCAN
HFx+SCANc
TPSS
HFx+TPSSc

(a) N2

0.5 0.0 0.5 1.0
z (Bohr)

0.2

0.0

0.2

0.4

0.6

0.8

1.0

∆
ρ
 (

B
o
h
r−

3
)

BLYP
HFx+LYPc
PBE
HFx+PBEc
SCAN
HFx+SCANc
TPSS
HFx+TPSSc

(b) CH4

Figure 5.1: Error in the density compared to CCSD(T), ∆ρ = ρ− ρCCSD(T). For N2, the
plot is along the molecular axis and shows only one nitrogen atom, which is located at
the origin. For CH4, the plot is along the C-H bond, where the carbon atom is located at
the origin. All calculations have been done with a contracted aug-cc-pVQZ basis.

Figure 5.1 shows the error in the density compared to CCSD(T) for two molecules,
both for the ordinary DFA and when the correlation part is combined with 100% exact
exchange. When the DFA exchange is replaced by exact exchange, for all considered func-
tionals, there is a considerable improvement of the density in the region of the nuclei. This
leads to the question whether the magnetizability, too, benefits from this replacement.

Table 5.1 lists the error in the magnetizability compared to CCSD(T), ∆ξ = ξ −
ξCCSD(T) for several ordinary DFAs, as well as for the case where their correlation part is
combined with 100% –Fock exchange. In most cases, the use of exact exchange leads to

67



an improvement of the result. It works particularly well for aTPSS and SCAN. For BLYP,
however, the magnetizability gets in some cases worse, for PBE even in the majority of
cases. This holds even for CH4, where Fig. 5.1 explicitly shows a major improvement of
the density for all DFAs. Consequently, an improvement of the density alone does not
necessarily improve the magnetizability. Using 100% exact exchange apparently leads to
a better density, but affects the exchange–correlation energy too much. This is confirmed
by the fact that it works better for TPSS and SCAN, which already have a better density
in the first place. Relatively, the change of the density and the effect on the exchange–
correlation energy is therefore smaller, such that the magnetizability can benefit from
the improvement of the density to a larger degree. Moreover, it may be that SCAN and
TPSS, which are newer and more elaborate functionals than PBE and BLYP, rely less on
the error cancellation between exchange and correlation energy, such that a replacement
of the exchange with exact exchange is less problematic.

For the development of new approximate functionals, it is of course not necessary to
use 100% exact exchange and most likely, it would be beneficial to optimize the amount,
as it is done for hybrid functionals. Moreover, the test set of molecules would need to
be increased, as well as the number of considered DFAs. We only chose a small selection
here to get some first indication.

However, this preliminary study that arose in connection with Paper II, is enough to
ascertain that a higher percentage of exact exchange usually results in a better density, but
does not necessarily improve the magnetizability. This holds true despite of our finding
that the major error that DFAs make in the magnetizability, arises from their poor self-
consistent density. It is important to maintain the optimized exchange–correlation energy.
For future work, the task therefore is to find a way to improve the density of approximate
functionals without breaking their refined exchange–correlation energy.

5.3 Paper III

Title: Kohn–Sham energy decomposition for molecules in magnetic fields
Authors: S. Reimann, J. Austad, A. Borgoo, E.I. Tellgren, A.M. Teale, T. Helgaker and
S. Stopkowicz

Submitted to Molecular Physics

5.3.1 Main Results

As in Paper II, we decompose the total energy into its Kohn–Sham components and
investigate their behaviour in a magnetic field. The aim of this paper is to extent the
study to a larger set of systems than in Paper II and to include both diamagnetic and
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paramagnetic molecules. We analyze to which extent different approximate functionals
are able to capture the correct field dependence obtained from Lieb optimizations based
on magnetic-field dependent CCSD densities.

The main conclusions of the paper are presented in the following paragraphs.

Modeling of the Kohn–Sham components by approximate functionals We show
that popular approximate exchange–correlation functionals at the GGA, mGGA and hy-
brid levels of theory model the Kohn–Sham components qualitatively well, although they
neglect all field dependence in the correlation functional. This holds especially for dia-
magnetic molecules and can here be attributed to the fact that the exchange–correlation
energy changes only slightly in a magnetic field.

For neutral closed-shell paramagnetic molecules, we find that not only the total energy
behaves oppositely to (neutral) diamagnetic molecules, but all Kohn–Sham components
do. An exception is the CH+ molecule where the density becomes more compact rather
than more diffuse with increasing field strength, corresponding to a decrease of the nuclear
attraction energy, and at the same time a decrease in the noninteracting kinetic energy
and an increase in the Hartree energy. In contrast to the diamagnetic molecules, the
exchange–correlation energy increases with increasing field strength for all paramagnetic
molecules, and the change in the field is larger than for diamagnetic molecules. It is
therefore not surprising that approximate functionals and the MP2 method work less
satisfactorily for paramagnetic molecules than for diamagnetic ones, since larger changes
in the electronic structure have to be modelled. However, the qualitative behaviour of the
Kohn–Sham components is nevertheless recovered by all approximate methods.

Performance of approximate functionals Utilizing the magnetizability as a measure
for the performance in a magnetic field, we found that the errors approximate functionals
make are one to two orders of magnitude larger for paramagnetic than for diamagnetic
molecules. This means that the DFAs struggle much more to describe the correct field
dependence of paramagnetic molecules than of diamagnetic molecules. While compared
to CCSD(T), the LDA functional is least reliable, we found the cTPSS functional, with
τD of Eq. (3.33), to perform particularly well. It significantly outperforms MP2 and gives
similar errors for dia- and paramagnetic molecules.

Field dependence of the exchange energy To study the magnetic-field dependence
of the universal density functional without interfering effects from the density, we have con-
sidered the dependence of the BDFT density functional Fλ(ρ,B) for a fixed density ρ. We
have shown that for atoms, where the Hamiltonian commutes with the angular-momentum
operator in the field direction, the exchange energy is unaffected by the magnetic field.
This holds also for single-orbital systems like the H2 molecule. We observed that for
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LiH and H2O, too, the exchange-energy remains unaffected within the precision of our
method. For these systems with constant exchange energy, this justifies the use of Ex(ρ)

from field-free DFT without further modifications, and to put all field dependence into
the correlation part Ec(ρ,B). By contrast, aromatic systems, like benzene and pyrrole,
and paramagnetic molecules show a significant field dependence. The different qualitative
behaviour of the molecules implies that the explicit dependence on the magnetic field is
not trivial.

5.3.2 Additional Material

The major part of this paper was to decompose the total energy into its Kohn–Sham
components and to analyze them separately. In principle, the kinetic energy can be
even further subdivided, by splitting the kinetic energy operator of Eq. (2.65) into three
contributions

T̂ (A) =
1

2

N∑

i=1

(
− i∇i + A(ri)

)2

= −1

2

∑

i

∇2
i − i

N∑

i=1

A(ri) · ∇i +
1

2

N∑

i=1

A2(ri). (5.1)

The total kinetic energy then consists of the the canonical kinetic energy
Tcan = −1

2

∑N
i ||∇φi(r)||2, the paramagnetic part Tpara = −i

∑N
i=1 φ

†
i (r)A(ri) ·∇φi(r) and

the diamagnetic part Tdia = 1
2

∑N
i=1 ρ(ri)A

2(ri). Those individual components, however,
are not gauge invariant and their behaviour will be dependent on the exact location of the
gauge origin. We were therefore interested whether this gauge dependence is only small
or if there are significant qualitative differences in the shape of the curves.

Figure 5.2 shows for the H2 all components of the kinetic energy as a function of the
magnetic field, with different choices of the gauge origin. Both the the total kinetic energy
T and Tdia are independent of the location of the gauge origin. However, the behaviour
of the other two components, Tcan and Tpara, is strongly gauge-dependent. When the
gauge-origin is located at the center of mass, O = (0, 0, 0), the upward curvature of Tcan
is smaller than of the total T , and the paramagnetic contribution Tpara bends down just
very slightly. Moving the origin to O = (3, 3, 0), the positive curvature of Tcan and the
negative one of Tpara are significantly increasing, such that the plots become qualitatively
different. In particular the curve of Tcan now bends much more than the one of T . Moving
the gauge origin even farther away from the center of mass, to O = (5, 5, 0), the qualitative
behaviour of the curves stays as for O = (3, 3, 0), with the curvatures of Tcan and Tpara

further increasing in absolute value.

In conclusion, this shows that the behaviour of Tcan and Tpara depends very much on
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Figure 5.2: For the H2 molecule, all components of the kinetic energy are shown as a
function of the magnetic field strength, with different locations of the gauge origin. The
molecule is aligned with the z-axis, with the center of mass at (0,0,0), and the magnetic
field is directed in x-direction. All calculations have been done at the FCI/aug-cc-pVTZ
level.
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the location of the gauge origin. It is valuable to know that the degree of this dependence
is quite large, such that it generally makes little sense to study those components indi-
vidually. The total kinetic energy T and Tdia, however, are both unaffected by the choice
of origin.
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Chapter 6

Summary and Outlook

6.1 Summary

In this work, we have investigated the importance to introduce a field dependence into
approximate exchange–correlation functionals to improve the computation of magnetic
properties. We have concluded that the missing field dependence is a leading source of
error in NMR shielding calculations using DFAs.

For the magnetizability, however, we have found that the main error is due to the poor
self-consistent density that present DFAs give. Therefore, for this property, the benefit
of improving the density of existing DFAs will be larger than the benefit of introducing
a magnetic-field dependence into the correlation functional. Since the main error that is
made in the density in the presence of a magnetic field is already present at zero field
strength, it is important to improve DFAs even in the absence of a field. Only then can we
fully benefit of field-dependent corrections. Present DFAs struggle particularly to describe
the magnetizability and its components for paramagnetic systems, where the changes of
the electronic structure in the magnetic field are more dramatic than for diamagnetic
systems. However, we have also shown that once a good density has been attained,
highly accurate results can only be attained by an inclusion of magnetic-field effects into
the approximate functionals and that a good density alone does not ensure the desired
accuracy. This serves as a strong motivation for the development of BDFT, since until
now, there do not exist any correlation functionals with an explicit field dependence.

We have presented BDFT in the context of Lieb’s convex-conjugate theory, put it into
a common framework with CDFT and compared both approaches. We have shown that
BDFT is a promising alternative to CDFT, and the results of our calculations strongly
suggest that an inclusion of magnetic field effects in the context of BDFT will allow a
more accurate computation of magnetic properties. Presently, meta-GGA functionals
that have been generalized to ensure independence of the gauge origin, are most suited
for calculations in magnetic fields.
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It is important to note that it is challenging to distinguish effects caused by an im-
provement of the density from effects due to an inclusion of the magnetic field into the
exchange–correlation functional. Both effects are mutually dependent, since the inclusion
of the magnetic field into the density functional also affects the self-consistent density
obtained with this functional. We have shown that it is crucial to work on both aspects,
since the neglect of one of them makes it impossible to fully optimize the other one.

6.2 Future Work

While this work provides many of the necessary preliminaries for the implementation of
field-dependent functionals, the next step is to incorporate this information into actual
exchange–correlation functionals. Having shown that a major error of present DFAs arises
from their poor self-consistent density, we conclude that if the field-dependence is to be
introduced as a correction to an already existing DFA, it is necessary to use one with a
comparatively accurate density, as for example one of the gauge-invariant generalizations
of TPSS. Alternatively, or even better, it would be to first find ways to improve the
density of existing approximate functionals. Only this way the improvements due to a
field-dependence will not be obscured by much larger errors introduced by poor densities.

Our work also points out that highly accurate results can only be obtained if modifi-
cations related to improved densities and field-dependencies do not break the otherwise
optimized exchange–correlation energy of existing DFAs. This serves as an important
reminder for future developers to take into account the limitations of current DFAs when
improving upon them, since changes related to field-dependencies might impair otherwise
well-balanced parameters that present approximate functionals rely on.

A central topic of this work have been Lieb optimizations at different interaction
strengths, which we used for all three of our papers. While in theory, Lieb optimizations
provide easily useful information about the Lieb functional, we found that in practice,
the optimization is often difficult. Even with advanced optimisation algorithms and mak-
ing use of different regularization parameters, the minimizing potential cannot always
be found. For most molecules, if the optimization is performed at equilibrium density,
we encounter no problems and the optimization converges smoothly within a few steps.
However, if the Lieb optimization is performed at λ > 0 with a reference density that
does not correspond to the equilibrium of the molecular system, for example utilizing a
(B = 0)-density for a Hamiltonian with B 6= 0, the optimization often fails, which means
that no potential can be found that minimizes the Lieb functional. Why exactly the
optimizing potential is so difficult to find in those cases, is presently not clear to us and
should be further investigated.
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Appendix A

Proof of the Hohenberg–Kohn Theorem

The Hohenberg–Kohn theorem states that each N -electron density ρ is the ground state
density of at most one external potential v(r) + c, which is, up to an additive constant c,
uniquely determined.

In other words, two different potentials cannot give rise to the same density. The proof
is remarkably simple. Let us consider two different N -electron systems with potentials

v1(r) 6= v2(r) + c. (A.1)

From Eq. (A.1), it follows that the associated Hamiltonians, Ĥ(v1) and Ĥ(v2), have two
different ground state wave functions

Ψ1 6= γΨ2. (A.2)

Applying the Rayleigh-Ritz variation principle for the two ground states, we get

E(v1) < 〈Ψ2|Ĥ1|Ψ2〉 = 〈Ψ2|Ĥ(v2)|Ψ2〉+ 〈Ψ2|Ĥ(v1)− Ĥ(v2)|Ψ2〉
= E(v2) + (v1 − v2|ρ2) (A.3)

E(v2) < 〈Ψ1|Ĥ2|Ψ1〉 = 〈Ψ1|Ĥ(v1)|Ψ1〉 − 〈Ψ1|Ĥ(v1)− Ĥ(v2)|Ψ1〉
= E(v1)− (v1 − v2|ρ1). (A.4)

Adding both inequalities leads to the strict inequality

E(v1) + E(v2) < E(v1) + E(v2) + (v1 − v2|ρ2 − ρ1). (A.5)

If both potentials v1 and v2 gave rise to the same density, which means that ρ1 = ρ2, then
Eq. (A.6) would simplify to

E(v1) + E(v2) < E(v1) + E(v2), (A.6)
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which is a contradiction. As a result, if two potentials v1 and v2 differ by more than an
additive constant, then the associated densities ρ1 and ρ2 cannot be equal.
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Appendix B

Derivation of the Diamagnetic Part of
the Magnetizability for Closed-Shell
Atoms

In the following, we will derive Eq. (4.13),

ξdia = −1

6

〈
r2
〉
, (B.1)

which is the diamagnetic part of the magnetizability for closed-shell atoms in a homoge-
neous magnetic field. From the Hamiltonian of Eq. (2.66), only the kinetic part depends
on the magnetic field, such that we can write

ξdia = −1

2

d2

dB2
(ρ|A2)

∣∣∣∣
B=0

(B.2)

With A = 1
2
B× r, we have that

A2 =
1

4
|B× r|2 =

1

4
BT (r2I− rrT )B. (B.3)

For a homogeneous magnetic field, B = (0, 0, Bz), this implies

A2 =
1

4
B2
z (x

2 + y2). (B.4)

Equation (B.2) thus becomes Using the argument that, due to symmetry, the magnetic
field does not enter the density to first order, dρ/dBz = 0, only two terms remain after
the second derivation,

ξdia = −1

8

{∫
ρ(r)

dB2
z

B2
z (x

2 + y2) dr

∣∣∣∣
Bz=0

+ 2

∫
ρ(r)(x2 + y2) dr

∣∣∣∣
Bz=0

}
. (B.5)
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From those two terms the first one vanishes due to the condition that the derivative is
taken at Bz = 0. Hence

ξdia = −1

4

∫
ρ(r)(x2 + y2) dr (B.6)

= −1

6

∫
ρ(r)r2 dr, (B.7)

= −1

6
〈r2〉 (B.8)

where we have used that 〈x2 + y2〉 = 2
3
〈r2〉.
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