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Abstract

Studies in sport and exercise medicine routinely use samples of highly
trained individuals in order to understand what characterizes elite en-
durance performance, such as running economy and maximal oxygen up-
take (VOzmaX). However, it is not well understood in the literature that
using such samples most certainly leads to biased findings and accord-
ingly potentially erroneous conclusions because of endogenous selection
bias. In this paper, I review the current literature on running economy
and VOgmax and discuss the literature in light of endogenous selection
bias. I demonstrate that the results in a large part of the literature may
be misleading, and provide some practical suggestions as to how future
studies may alleviate endogenous selection bias.

Key points

1 Using samples restricted (truncated) to contain only elite athletes or highly
trained individuals may result in biased results.

2 The association between running economy and VOgmax in truncated samples
is at least partially spurious.

3 The effect size of running economy and VOgmaX on race performance in trun-
cated samples is attenuated.
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1 Introduction

Many studies in sport and exercise medicine are conducted to determine what
characterizes elite performances, as well as understand how elite athletes can
improve further [24, 32, 28, 25, 42]. For instance, studies examine to what extent
maximal oxygen uptake (VOQmaX) affects race performance [30] or if rearfoot
striking is more economical than midfoot striking [37]. There is a widespread
belief that in order to gain insights into elite performances, researchers cannot
rely on studies of all runners. Instead, these studies typically select subjects
based on race performance, either intentionally (e.g., studies of Olympic quali-
fiers) or as a result of convinience sampling. Having a homogeneous sample of
highly trained individuals, or even elite athletes, is assumed to be an advantage
in the literature.

However, it is not well-known in the literature that in observational studies
(i.e., non-experimental studies), selecting subjects based on prior race perfor-
mance will likely result in spurious correlations because of endogenous selection
bias [40, 10]. The problem is twofold. First, when some individuals in the entire
population (e.g., all US citizens) have a higher probability of being included in
the population of interest (e.g., elite athletes), restricting the analysis to the
population of interest amounts to conditioning on whatever increases the prob-
ability of being in the group of interest (e.g., prior race performance). Second,
conditioning on the outcome variable or an effect of the treatment variable,
such as race performance, may substantially bias the correlations and lead to
erroneous conclusions. Perhaps because of its paradoxical and counter-intuitive
nature [4], this second point is difficult to recognize and not sufficiently acknowl-
edged in the literature.

In this review article, I discuss the widespread issue of endogenous selection
bias in the literature on running performance, VOamax, and running economy
(RE), and provide some suggestions on how to solve this issue. After provid-
ing a narrative review of the literature, I use simple models and hypothethical
data to demonstrate how sample restriction induces bias in the findings in the
literature. First, I show how endogenous selection bias induces an inverse rela-
tionship between VOapax and RE, even though no such relationship exists in
the population. Second, I show that having an elite sample most likely results
in attenuated estimates of the effects of VOgmax and RE on race performance.

The primary aim of this article is to review and discuss the literature on
running performance, VOomax, and RE. However, the article has relevance for
other studies within sport and exercise medicine. It demonstrates that unless the
independent variable of interest is randomized (which it seldom is [16, 7]), the
choice of study subjects not only has implications for whom the results could be
generalized to (external validity), but may also affect the internal validity. The
take-away point of this article is that when defining a population of interest, one
should always consider whether individuals with certain characteristics are more
likely to be included in the population of interest, and if these characteristics in
some way are related to the outcome or independent variables in the analyses.



2 Literature review

2.1 Determinants of running performance

The classic model of endurance running was initially established more than a
century ago [32, 25], and suggests that the physiological ‘concepts’ VOomax
RE, lactate threshold, and fractional utilization of VOgmay affect race perfor-
mance [32]. Still, we have yet to fully understand the determinants of elite race
performance, and developments in our understanding of the role of the brain
[36] and mental fatigue [27] have recently added to our understanding of race
performance.

All of the physiological ‘concepts’ have been subject to extensive research,
but I will mainly focus on RE and VOgmaX in this narrative review. VOQmaX is
one of the main studied measures of athletic competence, while RE has become
increasingly studied as a response to the complete dominance of Kenya and
Ethiopia in distance running over recent decades [28]. However, endogenous
selection bias is also relevant in the literature on other physiological factors.

2.2 Maximal oxygen uptake (VOQmaX)

VOomax reflects an individual’s maximal rate of energy expenditure [18], and has
for a century been linked to running performance [25]. In studies that include
relatively heterogeneous pools of runners, VOsmax has repeatedly been shown to
be highly correlated with race performance [11, 26]. In one study of well-trained
but not elite runners (i.e., VOgmaX at about 60 ml kg~! min~! for males and 50
ml kg~! min~" for females), VOomayx explained 90.2% of the variance in a 10 mile
run and was the single best predictor of running performance [32]. Legaz-Arrese
et al. [19] provide a graphical overview of the literature, showing the relationship
between VOamax and International Association of Athletics Federations (TAAF)
scores reported in the literature.

The correlation between \'/OzmgLX and race performance is also evident by the
fact that elite athletes typically have very high VOamax, for men often between
70 and 85 ml kg~! min~! and for women about 10% lower [25, 12, 30, 51, 22, 18].
This is about 50 to 100% higher VOgmax than the normal active population [25,
55]. Among elite athletes, VOsmax is shown to be similar for runners competing
in the 3000m to the marathon distance [19].

Although elites have a higher VOgpax, some longitudinal studies of elite
athletes suggest that VOgmayx changes very little in well-trained or elite athletes
[22, 18]. However, this may also be because elite athletes tend to do very little
high-intensity training [34]. While low intensity training may lead to rapid
increase in VOagpayx for individuals who initially have low VOgmax, much higher
intensity may be needed for well-trained athletes [34]. Studies that include
training at or near VOgmaX for well-trained runners indicate that VOQmaX may
increase also in well-trained athletes [34].

Studies of the effect of VOgax on race performance in well-trained or elite
athletes have reported mixed findings. Some studies have found fairly strong



correlations between race performance and VOgmaX (-.5 to -.87) in well-trained
runners [15, 29, 9, 35]. However, several studies failed to find a correlation be-
tween race performance and VO2maX in homogeneous samples consisting of only
elites [30, 28, 18]. Of particular interest is a longitudinal study of 32 athletes
who were followed over three years, in which Legaz-Arrese et al. [18] demon-
strated only small changes in VOomax and no relationship between changes in
VOomax and race performance. One interpretation of this finding has been that
a high VOomax 18 necessary to gain membership in the elite performance cluster,
but that within this elite cluster, VOomax does not discriminate further [19].

However, it is possible that the entire relationship between VOgmaX and race
performance is spurious. Evaluating longitudinal data on sedentary individuals,
Vollard et al. [52] found that VOoumax and race performance were related in a
cross-sectional case, but that not even in this group of sedentary individuals did
improvements in VOaomax lead to any improvements in race performance [52].
Other longitudinal studies have also failed to find a positive correlation between
changes in VOgmaX and changes in race performance. In Ramsbottom et al. [44]
improvements in a 5 km trial were correlated with RE but not VOgmaX7 while in
Paavolainen et al. [39] 5 km performance actually declined with improvements
in VOQmaX.

2.3 Running economy (RE)

Over the last few decades, East-African runners, particularly from Kenya and
Ethiopia, have dominated middle- and long-distance running events. Several
possible explanations have been proposed [56], but VOomax s probably not the
explanation, as Kenyan and Ethopian runners do not have superior VOgmaX
compared to for instance European runners [46]. However, elite East-African
runners are typically small, even compared to other elite runners, and studies
have shown that smaller runners and runners with thin lower legs have better
RE [12]. For instance, a recent study of competitive Kenyan distance runners
demonstrated that having low body mass index (BMI), lower mid-thigh and
ankle circumference, as well as a short Achilles moment arm, all had a positive
influence on RE [28].

RE is defined as the oxygen costs of endurance running at a given speed [25],
meaning that efficient or economical runners have a low RE value. RE has been
shown to vary about 30-40% among individuals, and about 20 to 30% among
elite athletes [28, 30]. We know little about whether RE can be improved [12],
but some studies suggest that an increase in high intensity interval training,
plyometric training, altitude training, and heat exposure may improve RE [47].

RE has been researched extensively over the last few decades [47], and many
studies have found a strong association between RE and race performance. Some
studies indicate that RE is an even better predictor of race performance among
elite runners than VOopax [47]. However, a recent study questions whether RE
is indeed the explanation for the East-African running dominance [28]. In a
sample of 32 competitive Kenyan distance runners, Mooses et al [28] found that
RE was not associated with running performance among elites. Similar findings



were reported by Grant et al. [15], who studied a sample of well-trained runners.

2.4 Association between VOQmaX and RE

An interesting and seemingly non-intuitive finding in the literature is a moderate
positive correlation between VOgmax and RE in samples of highly trained or elite
athletes [30, 28, 50, 51], and a weak positive correlation in diverse samples of
recreational runners [38]. In the literature, this positive correlation is typically
described as an inverse association between VOQmax and RE, meaning that
individuals with high VOamax have on average poorer RE. Some researchers,
for instance Joyner [23], have suggested that high VOamax may be incompatible
with excellent RE (or lactate threshold).

An inverse association between VOQmaX and economy is also found among
world-class cyclists. Lucia et al. [20] found that cyclists with higher VOgmaX had
lower cycling economy (CE) and gross mechanical efficiency (GE), which led to
a fruitful discussion about how expressing both VOomax and “economy” relative
to body mass may lead to spurious findings [1, 21, 2].1 However, after accounting
for body mass, the inverse association among cyclists [21] and runners [51] still
exists.

An inverse relationship between VOgmaX and RE is counter-intuitive, because
elite athletes have on average both higher VOgmax and better RE [31, 43]. At
this point there is no clear understanding of why there is an inverse relationship,
only speculations [30, 38, 51]. One suggested explanation of this non-intuitive
finding is that runners with higher VOQmaX rely more on fat utilization [38].
Another explanation is that greater lower limb mass will result in higher VOQmax
but also poorer RE, which could explain the inverse relationship [30]. Finally,
overstriding leads to excessive vertical oscillation and breaking forces (i.e., poor
RE) but possibly also recruitment of larger muscle mass, which may result in
higher VOomax [51].

However, in cross-sectional observational studies, the relationship between
RE and VOspay is most definitely biased by endogenous selection bias. In fact,
as the next section explains in detail, considering the strong relationship between
RE and VOopayx on the one hand and being an elite athlete on the other hand,
it is likely that the entire inverse association is spurious.

3 Endogenous selection bias

3.1 Inverse association between VOgmaX and RE

Let us consider a hypothetical study (for simplicity, costs and availability are
no issue here). Say that we defined the population of interest as male runners

INote that although most studies express economy and efficiency directly as the oxygen
cost, some studies define economy and efficiency so that a high value indicate higher efficiency
[21]. In the study of Lucia et al. [20], the correlations between VOgmay and CE/GE are
indeed negative.



with a marathon time below 02:15:00, and that we have drawn a random sample
from this population of 50 male athletes where we have (perfectly) measured RE
and VOsuax. For these 50 hypothetical athletes, we find a correlation between
VOgmax and RE of 0.25. The correlation is significant and the confidence interval
is fairly narrow, and we can accordingly generalize the effect to the population.

From a merely descriptive point of view, this correlation is valid in the sense
that the correlation would have been very similar had we used data on the entire
population of sub-02:15:00 male marathoners. Our hypothetical study lets us
conclude that athletes having high VOQmaX on average are less efficient (i.e.,
higher oxygen cost) and those having exceptional RE on average have lower
VOgmax, which is similar to the conclusions that could be drawn based on the
studies in the literature [30, 28, 50, 51, 38, 20].2

However, observed associations consist of both causal and various non-causal
(i.e., spurious) components [10].> Although the observed inverse association
can be generalized to the population, it is nevertheless at least partly spurious.
Meaning that the elite marathoners with the lowest level of VOamax typically
have, on average, better RE than the elite marathoners with the highest level
of VOgmaX, but that we should not expect to see a detoriation of an individual’s
RE if he/she increased his/her VOapay (through for instance interval training).

To see why, we have to consider what factors influence the probability of
being included in the population of interest (sub-02:15:00 marathon). Consider
the empirically based but simplified example in Figure 1a where RE and VOamax
are determined independently, both RE and VOaomax affect race performance
(RP), and race performance affects the probability of being an elite athlete.
In this example, VOomax and RE are marginally independent, meaning that
knowing an individual’s level of \./OgmaX in the full population (elites and non-
elites) does not provide any information about the individual’s level of RE (no
correlation between VOgmaX and RE). However, conditioning on elite status (or
restricting the population of interest to elites) will induce a spurious inverse
relationship between VOomax and RE, assuming that the path coefficient 7 is
negative and the path coefficient v is positive [4].

Linear path modeling is a useful tool to see why two marginally independent
variables (RE and VOgmaX in Figure 1a) may become dependent if we condition
on a common outcome of these variables (elite status in Figure la) [41]. If we

2Statistical generalization from a sample to a population (of interest) depends on assump-
tions such as random sampling. When using convenience samples, typical in the literature, the
statistical significance of the correlations may be misleading [5]. With convenience samples,
not all elites or highly trained individuals are equally likely to be included in the sample, and
the study participants are likely to be more alike with regard to for instance training princi-
ples (e.g., amount of high-intensity interval training) than what the participants would have
been had they been selected through a probability sample. I suspect that this will lead to
P-values being too small and that the uncertainty of the results is underestimated. However,
the literature routinely report P-values without any discussion. To explain their sampling
procedure, and discuss any potential bias, researchers should consider using guidelines for re-
porting observational studies, for instance the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) Statement [53].

3Following the counterfactual model of causality, causal effects are defined as contrasts
between potential outcomes [33].
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Figure 1: Hypothesized associations between maximal oxygen uptake (\‘/Ogmax)7 running
economy (RE), race performance (RP), and being an elite athlete (Elite) in the entire popu-
lation. The single-headed arrows represent direct effects from causes to effects (e.g., VO2max
affects RP), while bidirectional arrows indicate that two variables have one or more causes in
common. The Greek letters are path coefficients between pairs of variables, and are in this
article interpreted as correlations (e.g., 7 is the correlation between VOgmax and RP). a A
simplified example where both VOomax and RE are assumed to affect RP, but are marginally
independent in the population (no arrow between VOQmaX and RE). Controlling for RP or
its descendant Elite induces a spurious association between VOomax and RE, because RP is
a common outcome of VOayay and RE (i.e., collider variable). b An example where (1) an
increase in VOamax is hypothesized to impair RE () and (2) the association between VO2max
and RE is confounded (). Controlling for RP or its descendant Elite still induces a spurious
association between VOzmax and RE.

in a full population sample estimate the standardized regression coefficient (B)
of RE on VOgpax conditional on elite status, we identify
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Since the true causal effect is 0 (i.e., no correlation), equation (1) reveals that
conditioning on elite status induces bias. This is generally known as Berkson’s
paradox [4], endogenous selection bias [10], or collider bias [40]. Restricting
the analysis to a subsample of elite athletes amounts to conditioning on elite
status, and hence results in bias for the same reason [10].* This is often known
as sample selection bias [41] or sample truncation bias [10].

It may seem counter-intuitive at first that restricting the sample to elite
athletes induces a spurious inverse association between RE and VOQmaX, but
it is actually straightforward. Consider knowing that an individual is an elite
marathoner (sub-02:15:00 marathon) and that this individual has only a mediocre
RE compared to other elite marathoners. What could then be inferred about
his/her VOomax? It is likely exceptional, because he/she is unlikely to run a
sub 02:15:00 marathon with a mediocre RE and a mediocre VOzmax. It is not
that a high VOgmaX leads to poor RE (causal component), but that individuals
that become elite athletes despite being inefficient must necessarily have other
traits that compensate, such as a very high VOgmax (non-causal component).

4Linear path models allow us to calculate coefficients under the assumption of linearity and
homogeneous effects (no interactions). Restricting the analysis to elite athletes is the same as
adding a control for elite athletes and interaction between elite athletes and all independent
variables.



Note that this endogenous selection bias occurs not simply because the sam-
ple is restricted to a subgroup of the population in itself, but because it is
restricted in a specific way. For instance, restricting the sample to individuals
with a VOamax above 70 ml kg~ min~! will not lead to endogenous selection
bias, as long as all individuals in the population of interest (individuals with
VOamax above 70 ml kg~! min~—!) have an equal chance of being sampled re-
gardless of whether they are elites or not. In that case, and assuming that
VOomax and RE are truly independently determined, there would be no reason
to expect that those with a relatively low VOQmaX have a higher RE than those
with high VOamax. Thus, the problem occurs when conditioning on the collider
variable elite status or, similarly, restricting the sample to elites only.

Endogenous selection bias is not about whether the effects are different for
elites and non-elites. Endogenous selection bias is about how spurious asso-
ciations are introduced in the data because of for instance sample restriction,
resulting in erroneous correlations in the subgroup studied. Thus, the results
are not valid even for the subgroup studied, but are rather statistical artifacts.

3.2 The size of the spurious inverse relationship

The simple formula in equation (1) demonstrates that the association between
VOomax and RE becomes inverse after conditioning on race performance when
working with population data, and, intuitively, the same holds when restricting
the sample to elite athletes only. Figure 2a illustrates the amount of bias we
may expect in settings where (1) the amount of variation in race performance
that VOQmaX and RE explains is varied and (2) the sample selectivities differ.
However, to illustrate the amount of bias, we need some assumptions. In Figure
2a, the correlation between RE and VOsax in the full population is constrained
to be zero. Additionally, the size of the correlations between VOgmax and race
performance and RE and race performance is constrained to be of equality. The
implication of this latter assumption is that Figure 2a illustrates an upper bound
of the bias, as further discussed in Electronic Supplementary Material Appendix
S2. Electronic Supplementary Material Appendix S3 provides a supplementary
data simulation.

Figure 2a illustrates that the amount of bias is a function of two aspects.
First, the bias is greatest in cases where VOgmax and RE explain most of the
variation in race performance (i.e., a stronger correlation between VOgmaX and
race performance and RE and race performance). Second, a more elite sample
will lead to more bias, which is intuitive. In a sample of the best 100 marathoners
in the world, those with (relatively) low VOomax must have exceptionally RE.
However, in a sample that consists of all but the slowest 10% of the population,
those with low VOgmaX could very well have a poor RE. That said, the bias may
be substantial even if we include all but the slowest 25% of runners (see the top
75% line in Figure 2a).

After accounting for body mass, the correlation between RE and VOamax
in samples of highly trained individuals ranges from about 0.25 to 0.30 [51]. In
Figure 2a, we see that among the top 1 and 25% of the runners, the estimated
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Figure 2: Tllustration of the size of endogenous selection bias (see Electronic Supplementary
Material Appendix S1 for the Stata code). a The figure is constructed by generating a set of
hypothetical full populations where the correlation between RE and VOaomax is constrained
to be zero, while the amount of variation in race performance (R?) that RE and VOomax
explain varies between 0 and 0.98 (x-axis). The size (but not sign) of the correlations be-
tween RE and race performance and VOazmax and race performance are constrained to be of
equality. From each of these populations, the estimated correlation between RE and VO2max
is estimated (Y-axis) for individuals in the subpopulations with the top 1, 25, 50, 75, and
99% race performances, as well as for the entire popoulation. b The figure is constructed
by generating a set of hypothethical full populations where the correlation between VO2max
and race performance varies between 0 and 0.75 (x-axis). From each of these populations,
the estimated correlation between VOQmax and race performance is estimated (Y-axis) for
individuals in the subpopulations with the top 1, 25, 50, 75, and 99% race performances, as
well as for the entire popoulation. Replacing VOgmax with RE produces the same results,
only with different signs.



correlation is about 0.25-0.30 (upper bound) when VOgmax and RE explains
about 50% of the variation in race performance in the population.® Thus,
for the entire correlation between RE and VOgmaX to be spurious, RE and
VOaomax may only need to account for approximately 50% of the variation in
race performance, which, based on the literature, is plausible [32, 11, 26, 47].
This demonstrates that restricting the sample to elite athletes has the potential
to substantially bias the findings in the literature.

The discussion thus far has relied on the simplified model where RE and
VOomax are assumed to be marginally independent (Figure 1a). However, we
could also expect RE and VOagpmax to be marginally dependent (Figure 1b).
First, elite runners have both higher VOomax and higher RE than good runners
[43]. This may indicate that some unobserved background factors (e.g., genetics)
affects both VOopax and RE, as suggested by the curved dotted line in Figure
1b. Second, we have also seen several explanations for why a high VOgpay may
actually impair RE [30, 38, 51]. Thus, Figure 1b includes a direct effect of
VOsmax on RE.

Given this more complex example, the path coefficients become more com-
plicated (for a general example, see Pearl [41]) but the bias is no less present.
The correlation between VOgmax and RE in an elite sample would be equal to
the causal effect o and some bias caused by (1) unobserved confounding (\) and
(2) endogenous selection bias.

Section 3.1 explains why restricting the sample to contain only elite ath-
letes may result in a spurious inverse association between VOomax and RE,
while section 3.2 has illustrated the amount of bias we may expect given some
simplified assumptions. In the next section, I show that the effects of RE on
race performance and VOgmaX on race performance may be biased for the same
reason.

3.3 The effects of RE and VOQmaX on race performance

Many studies that have used elite samples have failed to find a significant effect
of RE and VOspax on race performance [30, 28, 18]. Consider the study of
32 competitive Kenyan runners, in which Mooses et al. [28] found neither a
significant effect of RE on IAAF score (r = —0.01) nor of VOomax on IAAF
score (r = 0.29) [28].° A study of Olympic trials qualifiers also found a non
significant correlation between VOgpay and race performance (r = —0.21) [30)].

However, restricting the sample to elite athletes not only induces an in-
verse spurious association between RE and VOgmax, it also biases the effects
of RE and VOgmax on race performance. Conditioning on elite status, which
is a descendant of the outcome variable race performance, induces a spurious

5The coefficient of determination (R?) can be calculated by summing the squared semi-
partial correlations, which in this case is identical to the pairwise correlations (Figure la):
R? = 72 4 ~42. Since 7 and 7 is constrained to equality, 7 and v could be calculated from the
figure using (R2 x %)%

6This study also found an inverse relationship between RE and VOgmax (r = 0.42), which,
as discussed in section 3.1, is at least partially spurious.
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association between the predictor variable and all unmeasured causes of elite
status.

To keep things simple, let us first consider what happens if we condition
on elite status in a regression of race performance on VOomax in a population
sample where VOapax is hypothesized to be exogenous. Based on Figure 1a, we
identify [41]:

2

BRP,RE.Elite = % (2)
, which in this particular example means that the estimate is biased towards zero
,as 0 > 0. To see the estimated effect of RE, m simply needs to be replaced by .
Restricting the sample to a subsample of elite athletes amounts to conditioning
on race performance, and hence results in bias for the same reason.

Figure 2b illustrates the size of the endogenous selection bias in some set-
tings, based on the model in Figure la (see Electronic Supplementary Material
Appendix S3 for a supplementary data simulation). If there is no bias, we should
expect the value on the x-axis (the true correlation between VOgmaX and race
performance) to perfectly match the value on the y-axis (the estimated correla-
tion), as is the case when the correlation is estimated in the entire population. If
the value of the y-axis is smaller than the value on the x-axis, as is the case in all
of the subpopulations, then the estimated effect of VOomax is underestimated.

There are two important take-away points from Figure 2b. First, we see that
the amount of attenuation bias depends on sample selectivities. When compar-
ing results from studies of elite athletes, highly-trained runners, recreational
runners, and untrained runners, it may be tempting to, for example, conclude
that VOQmaX matters more for untrained than elites. In fact, cross-sectional
studies often suggest that using a homogeneous sample of elite athletes in itself
could explain the failure to find a significant relationship between RE and/or
VOouax and race performance [28, 20, 30]. However, Figure 2b illustrates that
the amount of attenuation is a function of sample selectivities, and that even if
the (causal) correlation is identical for all runners, one may find quite different
results in different samples simply because of endogenous selection bias.

Second, the amount of attenuation bias depends on the true (causal) correla-
tion, and the bias is zero when the true correlation is zero. Thus, unlike the case
of the inverse relationship between RE and VOgmax, adjusting for a descendant
of the outcome variable would only generate bias if there is a marginal associa-
tion (confounding or causal effect) between VOQmaX and race performance. This
could also be seen by replacing 7 with 0 in equation (2), in which the numerator
reduces to 0, the denominator reduces to 1, and the estimated association is 0.

The amount of attenuation in studies by Mooses et al. [28] and Morgan
and Daniels [30] is difficult to predict, as we do not know the true correlation
between race performance and elite status (§) nor do we know if RE and VOgmaX
are exogenous (i.e., no-confounding assumption). Sample sizes of 32 [28] and 22
[30] also mean that the point estimates are imprecise. However, assuming that
RE and VOsyay are exogenous, correlations of —0.01, 0.29, and —0.21 in an elite
sample (top 1%) would be expected if the true correlations were about —0.05,
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0.7, and —0.6. Although this is only speculation, based on assumptions such as
the no-confounding assumption and taking the point estimates at face value, it
suggests that we could expect large bias when regressing race performance on
predictors in a sample that consists of elite athletes.

Some studies have used longitudinal data to investigate how change in VOQmaX
relates to change in race performance [19, 52]. The next section discusses how
the within-estimator removes endogenous selection bias, but also has some draw-
backs.

4 Why longitudinal data may not be the solu-
tion

4.1 Within-subject variance as a solution

Let us consider the question of what level of RE individual ¢; would have, had
he/she a VOomax of 70 ml kg~—! min~' rather than 65 ml kg~! min~!. Since
we only could observe the actual VOomax (65 ml kg=! min~—!) and not the
counterfactual one (70 ml kg=! min~!), we have a missing data problem. In the
cross-sectional case, we solve this missing data problem by comparing individual
i1 with another individual i that has a VOamax equal to 70 ml kg~ min~!,
under the assumption that these two individuals are equal in all other relevant
aspects. However, when using a sample consisting of elites, the individual iy is
not otherwise identical to 41, as he/she likely has a lower RE. This is why the
cross-sectional comparison breaks down, as explained in section 3.

However, if we have repeated observations on each individual (i.e., longitudi-
nal data), then we can compare individual 4 at time ¢; with the same individual
at time t5. Under the assumption that the bias is invariant over time and there
is no selective attrition, the fixed effects model takes account of bias caused by
both confounding and endogenous selection [54, 3, 6], and we can identify causal
effects. Although not motivated by endogenous selection bias, some studies have
used this methodology to investigate the association between VO2maX and race
performance, finding no association [18, 52].

4.2 Small sample size and noisy measures

Despite the fact that the fixed effects estimator solves endogenous selection
bias, use of within-subject variation has major drawbacks that renders it ba-
sically ineffective in the literature. For instance, studies of elite athletes have
demonstrated that heavy training may not change VOsmax at all or change it
only marginally [18, 22]. Thus, by discarding all between-subject variation, we
utilize only a fraction of the variance in the data set. The implication is likely
large standard errors and imprecise results.

Imprecise results are especially problematic given the small sample sizes
in the literature [51, 18, 52], and accordingly low statistical power. Adding
individual fixed effects will likely not increase statistical power, which means
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that the correlations need to be very large for this design to be able to detect
any significant effects [14, 3].”7 This casts some doubt on the studies that find
no effect of RE and VOoyax using longitudinal data [18, 52].

Additionally, RE and VOapayx would likely differ depending on factors such
as altitude [28], time of year [22], and running surface [49, 48], as well as being
measured with some error [47, 17]. For instance, the typical measurement error
of RE is shown to be about 2.4% [48]. Although this amount of measurement
error is of little concern in a cross-sectional case, it will likely substantially
attenuate the estimates when using a within-subject estimator. For example,
because VOamax changes very little in elite athletes, the within-subject variation
we observe may to a large extent be caused by random measurement error (i.e.,
noise) [17], and because the measurement error is random, it is accordingly not
related to race performance. In sum, null findings may not be that surprising
in studies that evaluate longitudinal data [18, 52].

5 Conclusions

In this article, I have provided a critical review of the literature that investigates
the associations between RE, VOgmax, and elite running performance. Studies
in this literature routinely use samples of highly trained individuals, which in-
evitably results in endogenous selection bias. The crux of the problem is that
restricting the analysis sample to a population of interest amounts to condition-
ing on whatever increases the probability of being in the group of interest, such
as prior race performance. If, for instance, (prior) race performance is either
(1) the common outcome of two variables (VOamay and RE) or (2) the outcome
variable or a descendant of the outcome variable (race performance), then the
sample restriction induces bias in the analysis.

The main conclusions of this review can be summarized as follows. First, I
have demonstrated that the inverse relationship between RE and VOomax that
many studies find [30, 28, 51, 50] is likely spurious. Second, I have demonstrated
that endogenous selection bias may substantially attenuate the effects of pre-
dictors on race performance, which may explain why some studies that use elite
samples fail to find significant effects of VOomay [30, 28, 18] and RE [28, 15].
Third, I have shown that a more elite sample will lead to more bias, but that
the bias may be substantial even in samples of recreational runners. Fourth, I
have argued that using within-subject variation is problematic. Given the small
sample sizes in the literature, the fact that VOsmax changes only marginally
in elite athletes [18, 22], and the problem of measurement error [48, 17], null
findings [18] are not surprising.

Studies in the literature provide many interesting findings, for example, the
relationship between anthropometric variables and RE in Mooses et al [28].8

"This means that studies that estimate within-subject correlations with small sample sizes
and do find significant effects would most likely exaggerate the correlation.

8This association is also biased by endogenous selection, but the bias is likely small and
the findings accordingly informative. Given the following model: anthropometric variable —
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Like many other studies, Mooses et al. [28] also contribute by describing key
characteristics of elite distance runners. However, caution should be exercised
when estimating correlations between RE, VOgmaX, and race performance in
observational samples of elite runners.

The challenge of estimating causal effects using a random sample of ob-
servational data from a population is in itself formidable [33], and having a
(convenience) sample of elite or well-trained athletes magnifies the challenge.
Although eliminating all sources of bias, such as measurement error, is difficult
to achieve, the bias caused by endogenous selection in this particular litera-
ture is so fundamental that it cannot be ignored. Finding a good solution to
the problem of endogenous selection bias is difficult, mainly because elite run-
ners by definition are rare, but also because they are unlikely to participate in
randomized trials (which would eliminate endogenous selection bias).

Nevertheless, perhaps the best solution is to conduct experiments to inves-
tigate the effects of changes in VOgmaX and RE and how these relate to changes
in race performance [44, 39]. Another solution is to use case-control studies,
commonly used in the epidemiological literature, assuming that the population
of interest is restricted by either the treatment or the outcome, and not both
[45, 10]. A third solution is to gather a population-based sample of runners, pos-
sibly with oversampling of highly trained individuals, and use an unconditional
quantile regression model to investigate the effects in different parts of the race
distribution [13], possibly with subject fixed effects [8]. If none of these solu-
tions are possible, perhaps the best alternative is to use qualitative single-case
studies to suggest likely causes of success (e.g., Jones [22]).

This review points to a need for greater attention to causal inference in the
literature, as well as more careful thought about the implications of the sam-
pling procedures. However, the review also has several limitations. First, the
assumptions underlying the models have been very simple, such as assuming a
linear relationship between variables, no interactions, and no unobserved con-
founding. Relaxing these assumptions will not make the problem of endogenous
selection bias less problematic, as shown in the literature on directed acyclic
graphs [40]. However, it means that the suggested size of the bias is somewhat
speculative.

Second, I have, for ease of presentation, treated race performance, VOomax,
and RE as time-invariant in the main discussion (section 3). This choice is to
some extent justified by the fact that these factors are relatively stable over
time, such as VOgpmay in elite athletes [18, 22]. Additionally, many studies do
not measure race performance directly, especially studies of elite or near-elite
athletes [28, 30, 29, 20], but rather rely on for example the best performance in
the ongoing season [28]. Nevertheless, if race performance, RE and/or VOomax
change over time, then the bias induced by selection of research subjects based
on prior race performance would not be identical to the bias induced by se-

RE — RP — elite, then the elite variable is a descendant of the outcome variable RE, and
restricting the sample to elites amounts to conditioning on the outcome variable. However,
since the effects of RE on elite are less than the effects of RP on elite, the bias would most
likely be small.
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lection of subjects based on current race performance. As briefly discussed
in Electronic Supplementary Material Appendix S4, endogenous selection bias
may both increase or decrease. More research and thinking about the causes
and consequences of endogenous selection bias in the literature on elite running
performance is therefore needed.
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Electronic Supplementary Material Appendix S1

Stata code for Figure 2a

local c=0
forvalues i1=.05(.05).71 {
local ++c

matrix b‘c’=J(1,7,-99)

clear

matrix m = (1, ‘i1’, -¢i1’> \ ¢‘i1’, 1,0\ -‘i1’,0,1)
qui corr2data race re vo2max, corr(m) mean(0 0 0) ///
sds(1 1 1) n(300000) seed(10000) clear

regress race re vo2max
matrix bc’[1,1]=e(r2)

pctile prosentil=race, nq(100)

local r=1
foreach i2 in 1 25 50 75 99 {
local ++r

cap drop elite
gen elite=race>prosentil[¢i2’]

qui cor re vo2max if elite==
matrix b‘c’[1, ‘r’]=r(rho)

}

qui cor re vo2max
matrix b‘c’[1,7]=r(rho)

matrix b=nullmat(b)\b‘c’
}

mat 1 b

svmat b

twoway (line b6 bl) (line b5 bl) (line b4 bl) ///

(line b3 b1l) (line b2 bl) (line b7 bl) ///

, ytitle(Estimated correlation) xtitle(R{sup:2}) ///
legend(order(1 "Top 1%" 2 "Top 25%" 3 "Top 50%" 4 "Top 75%" ///
5 "Top 99%" 6 "Entire population")) name(b, replace) ///
graphr(color(white)) ylabel(,angle(horizontal)) ///
xlabel(,format(%3.2f)) ylabel(,format(%3.2f))
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Stata code for Figure 2b

local c=0
forvalues i1=0(.05).8 {
local ++c

matrix b‘c’=J(1,7,-99)
matrix b‘c’[1,1]=-¢i1’

clear

matrix m = (1, -‘i1’> \ -‘i1’, 1)

qui corr2data race vo2max , corr(m) mean(0 0) ///
sds(1 1) n(3000000) seed(10000) clear

pctile prosentil=race, nq(100)

local r=1
foreach i2 in 1 25 50 75 99 {
local ++r

cap drop elite
gen elite=race>prosentil[‘i2’]

qui cor race vo2max if elite==
matrix b‘c’[1, ‘r’]=r(rho)

}

qui cor race vo2max
matrix b‘c’[1,7]=r(rho)

matrix b=nullmat(b)\b‘c’
}

mat 1 b

svmat b

twoway (line b6 bl) (line b5 bl) (line b4 bl) ///

(line b3 b1l) (line b2 bl) (line b7 bl) ///

, ytitle(Estimated correlation) xtitle(True (causal) correlation) ///
legend(order(1 "Top 1%" 2 "Top 25%" 3 "Top 50%" 4 "Top 754" ///

5 "Top 99%" 6 "Entire population")) name(r3, replace) ///
graphr(color(white)) ylabel(,angle(horizontal)) ///
xlabel(,format(%3.2f)) ylabel(,format(%3.2f))
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Electronic Supplementary Material Appendix S2

The relative importance of RE and VOQmaX for race perfor-
mance

In Figure 2a in the main text, the correlation between RE and race performance
(y) is assumed to equal the correlation between VOgmaX and race performance
(m), and the x-axis shows the coefficient of determination (R?). However, differ-
ent combinations of RE and VOgmax could generate the same R2. In cases where
RE and VOQmaX explain the same amount of variation in race performance in
the full population, the estimated correlation between RE and VOQmaX in a
sample restricted to elites will differ depending on the relative importance of
RE and VOamax.

In this appendix, instead of constraining v and 7 to be of equal size, 1
keep the amount of variation in race performance that RE and VOayay explain
constant, and vary the relative size of v and 7. Figure S2.1 shows the estimated
correlation between RE and VOapax in hypothetical samples consisting of the
top 1% fastest runners (y-axis), and where RE and VOgmaX explains 50, 70,
and 90% of the variation in race performance in the full population. The x-
axis shows the importance of RE (), and we can calculate the importance of
VOoumax (7) based on the following formula: = = /R2 —~+2.! For instance,
when v = 0.20 and R? = 0.50, 7 is equal to 0.68.

0.80+
0.60

0.40

Estimated correlation

0.20

Figure S2.1: The consequences of the relative importance of RE and VOomax for the es-
timated correlation between RE and '\./OgmaX in a sample consisting of elite runners. The
figure is constructed by generating a set of hypothetical populations where the correlation be-
tween RE and VOgmax is constrained to be zero, while the correlation between RE and race
performance and VOomax and race performance is varied. The x-axis show the correlation
between RE and race performance in the full population, while the y-axis shows the estimated
correlation between RE and VOgmax in a sample consisting of the top 1% runners.

L R? can be calculated by summing the squared semipartial correlations, which in this case
is identical to the pairwise correlations (Figure la): R2 = 72 + ~2. Thus, if we know ~ and

R2, we can calculate 7 by using the formula: 7 = 1/ R2 — ~2.
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Figure S2.1 reveals that the estimated correlation between RE and VOgmax
in samples restricted to elite athletes is highest when + and 7« are of equal size
(0.50 when R? = 0.50, 0.59 when R? = 0.70, and 0.67 when R? = 0.90), which
shows that Figure 2a in the main manuscript provides an upper bound of the
bias. When either v or 7 is weak, then the estimated bias between RE and
VOgmaX is also small. Nevertheless, in most cases, the bias is substantial.

Stata code for Figure S2.1

version 14.2

local c=0
forvalues i1=.01(.01).98 {
local ++c

matrix b‘c’=J(1,4,.)

local r=1
foreach r2 in 50 70 90 {
local ++r

local i2=sqrt(0.‘r2’-i1°"2)

capture {

matrix m = (1, ‘i1’, -¢i2’ \ ‘i1’, 1,0\ -‘i2’,0,1)
qui corr2data race re vo2max, corr(m) mean(0 0 0) ///
sds(1 1 1) n(300000) seed(10000) clear

pctile prosentil=race, nq(100)
cap drop elite
gen elite=race>prosentil[99]

matrix b‘c’[1,1]=¢i1’

qui cor re vo2max if elite==
matrix b‘c’[1, ‘r’]=r(rho)

}

}

matrix b=nullmat(b)\b‘c’

}

mat 1 b

svmat b

twoway (line b4 b1l) (line b3 bl) (line b2 b1) ///

, ytitle(Estimated correlation) xtitle({&gamma}) ///

legend(order(1 "R{sup:2}=0.90" 2 "R{sup:2}=0.70" 3 "R{sup:2}=0.50")) ///
graphr(color(white)) ylabel(,angle(horizontal)) ///
xlabel(,format(%3.2f)) ylabel(,format(%3.2f))
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Electronic Supplementary Material Appendix S3

Data simulations

The Monte Carlo data simulation in this appendix supplements Figure 2 in
the main text by explicitly drawing repeated samples from the hypothetical
population of interest and estimating the correlation in each draw.

Full population and population of interest

I begin the simulation by defining the full population, of which the population
of interest is selected from. In my hypothetical data, the full population consists
of 5,000,000 males, with average marathon race time of 3 hours and 40 minutes
(220 minutes), average VOgmax of 43 ml kg~! min~—', and average RE of 260 ml
O2/kg/km (Table S3.1). The correlation between RE and VOomax is constrained
to be zero, while the correlation between RE and marathon time is 0.4 and
the correlation between VOagpay and marathon time is -0.7 (Table S3.2). All
associations in the hypothetical data are constrained to be linear and there are
no interaction effects. That is, the correlation between VOgmax and marathon
time is equal for all, regardless of whether the individual is an elite or not.

Table S3.1: Characteristics of the full population.

N Mean SD Min Max
Marathon time 5000000 220 23 105.922  337.162
RE 5000000 260 19 162.262  358.908
VOomax 5000000 43 8 2.924 84.646

Table S3.2: Correlation matrix in the full population.

Marathon time RE VO2max

Marathon time 1
RE 0.400 1
VOomax -0.700 0.000 1

I define three subpopulations of interest: (1) Individuals who have run a sub-
03:00:00 marathon (<180 minutes), (2) individuals who have run a sub-02:30:00
marathon (<150 minuts), and (3) individuals who have run a sub 02:15:00-
marathon (<135 minutes). From each of these subpopulations (of interest), I
draw 10,000 random samples of size 20 with replacement. In each sample, I
estimate the correlation between RE and \./Ogmax7 the correlation between RE
and marathon time, and the correlation between VOQmaX and marathon time.

Correlation between RE and VOgmaX (supplement to Figure 2a)

Table S3.3 and Figure S3.1 show the correlation between RE and VOomax in the
three subpopulations of interest. The simulations demonstrate, as Figure 2a in
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the manuscript, that when restricting the sample to elite athletes, the results are
biased by endogenous selection bias. We see that despite no correlation between
RE and VOoyay in the population, the correlations in samples consisting of sub
03:00:00-, 02:30:00-, and 02:15:00-marathoners are on average 0.35, 0.38, and
0.40 respectively. The reason for this bias is that race performance is a common
outcome of RE and VOgmax, and restricting the sample to elite athletes or
well-trained recreational runners amounts to conditioning on race performance.

Table S3.3: The average correlation between RE and VOomax (Mean), standard deviation
of the correlations (SD), the lowest correlation (Min), and the highest correlation (Max) from
10,000 random draws of size 20 in three subpopulations of interest.

Marathon time N Mean SD Min Max

<135 10000 0.398 0.196 -0.455 0.890
<150 10000 0.384 0.204 -0.452 0.905
<180 10000 0.346 0.204 -0.618 0.847
a b c

0.08 0.08 0.08-

0.06

o
=
8

0.06

0.04

Fraction

o

=Y

4
Fraction

o

>

3
Fraction

o
S
N

o

S

N

0.02

0. 0.00 0.
-0.50 0.00 0.50 1.00 -0.50 0.00 0.50 1.00 -0.50 0.00 0.50 1.00
Estimated correlation Estimated correlation Estimated correlation

Figure S3.1: The correlation between RE and VOomax in 10,000 random samples of size 20
in three subpopulations of interest. a The population of interest is all males who have run a
sub-03:00:00 marathon. b The population of interest is all males who have run a sub-02:30:00
marathon. ¢ The population of interest is all males who have run a sub-02:15:00 marathon.

Effects of RE and VOgmax on race performance (supplement to Figure
2b)

Table S3.4 and Figure S3.2 show that the correlation between RE and marathon
time is attenuated when restricting the population of interest to elite athletes
or well-trained recreational runners. While the true causal correlation in the
full population as well as in the subpopulations is set to be 0.4, the correlations
in samples consisting of sub 03:00:00-, 02:30:00-, and 02:15:00-marathoners are
on average 0.15, 0.12, and 0.08 respectively.

We see the same pattern regarding the correlation between VOgmaX and
marathon time, in table S3.5 and Figure S3.3. While the true causal correlation
is -0.7, the correlations in samples consisting of sub 03:00:00-, 02:30:00-, and
02:15:00-marathoners are on average -0.32, -0.23 , and -0.20 respectively.
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Table S3.4: The average correlation between RE and marathon time (Mean), standard
deviation of the correlations (SD), the lowest correlation (Min), and the highest correlation
(Max) from 10,000 random draws of size 20 in three subpopulations of interest.

Marathon time N Mean SD Min Max
<135 10000 0.084 0.240 -0.710 0.805
<150 10000 0.119 0.229 -0.716 0.781
<180 10000 0.149 0.226 -0.643 0.812
a b c
0.06- 0.06 0.06
g 004 5 004 < 004
- 0.02- B 0.02 B 0.02
o -1.00 -0.50 0.00 0.50 1.00 o -1.00 -0.50 0.00 0.50 1.00 o -1.00 -0.50 0.00 0.50 1.00
Estimated correlation

Estimated correlation Estimated correlation

Figure S3.2: The correlation between RE and marathon time in 10,000 random samples
of size 20 in three subpopulations of interest. a The population of interest is all males who
have run a sub-03:00:00 marathon. b The population of interest is all males who have run a
sub-02:30:00 marathon. ¢ The population of interest is all males who have run a sub-02:15:00

marathon.

Table S3.5: The average correlation between VOgmax and marathon time (Mean), standard
deviation of the correlations (SD), the lowest correlation (Min), and the highest correlation
(Max) from 10,000 random draws of size 20 in three subpopulations of interest.

Marathon time N Mean SD Min Max
<135 10000 -0.197 0.219 -0.823 0.752
<150 10000 -0.227 0.219 -0.869 0.605
<180 10000 -0.320 0.214 -0.885 0.652
a b c
0.08- 0.08 0.08
0.06- 0.06 0.06
% 0.04 % 0.04 % 004
0.02- 0.02 0.02
0 -1.00 -0.50 0.00 0.50 1.00 o -1.00 -0.50 0.00 0.50 o -1.00 -0.50 0.00 0.50 1.00
Estimated correlation Estimated correlation

Estimated correlation

Figure S3.3: The correlation between VOgmax and marathon time in 10,000 random samples
of size 20 in three subpopulations of interest. a The population of interest is all males who
have run a sub-03:00:00 marathon. b The population of interest is all males who have run a
sub-02:30:00 marathon. ¢ The population of interest is all males who have run a sub-02:15:00

marathon.
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Stata code for the data simulations in Appendix S3

version 14.2

*[1]* Generate the full population

matrix m = (1, .4, -.7 \ .4, 1,0\ -.7,0,1)

corr2data race re vo2max, corr(m) mean(220 260 43) ///
sds(23 19 8) n(5000000) clear seed(5649)

save fullpop, replace

*[2]* Identify elite athletes (based on race times), and save subpopulations
foreach e in 180 150 135 {

preserve

gen race‘e’=race<‘e’

keep if race‘e’==1

save race‘e’, replace

restore

}
postfile buffer racetime corl cor2 cor3 using results, replace

*[3]* Repeat simulation for following race times (in minutes)
foreach e in 180 150 135 {

*[4]* Run the simulation (results saved in results.dta)
set seed 12345

forvalues i=1/10000 {

qui {

use race‘e’, clear

sample 20, count

cor re vo2max

local cl=r(rho)

cor re race

local c2=r(rho)

cor vo2max race

local c3=r(rho)

post buffer (‘e’) (‘c1’) (‘c2’) (‘c3?)
}

}

}

postclose buffer
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Electronic Supplementary Material Appendix S4

Allowing VOgmaX, RE, and RP to change across time

Allowing maximal oxygen uptake (VOQmax), running economy (RE), and race
performance (RP) to change over time affects the amount of endogenous selec-
tion bias. To get an idea of the variation in bias, we need some assumptions.
In Figure S4.1, changes in VOspax, RE, and RP from time 1 (t1) to time 2
(t2) is assumed to be random, in which case we can think in terms of random
measurement error in the variables.

With regard to the inverse spurious association between VOgmaX and RE,
it would likely be smaller if RE and VOzmax are measured at t2 compared to
RE and VOsypax measured at 1 (Figure S4.1a). With regard to the effects of
RE (or VOgmax) on RP, the endogenous selection bias may be larger or smaller
(Figure S4.1b). The association between RE at 2 and RP at ¢2 would likely
be less attenuated, while the association between RE at ¢t2 and RP at t1 would
likely be more attenuated.
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Figure S4.1: Hypothesized associations between maximal oxygen uptake (VOgmax)7 run-
ning economy (RE), race performance (RP), and being an elite athlete (Elite) in the entire
population measured at time 1 (¢t1) and time 2 (¢2).
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