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Summary 

In the microenvironment of a malignancy, tumor cells do not exist in isolation, but rather in a 

diverse ecosystem consisting not only of heterogeneous tumor-cell clones, but also normal cell 

types such as fibroblasts, vasculature, and an extensive pool of immune cells at numerous 

possible stages of activation and differentiation. This results in a complex interplay of diverse 

cellular signaling systems, where the immune cell component is now established to influence 

cancer progression and therapeutic response. It is experimentally difficult and laborious to 

comprehensively and systematically profile these distinct cell types from heterogeneous tumor 

samples in order to capitalize on potential therapeutic and biomarker discoveries. One 

emerging solution to address this challenge is to computationally extract cell-type specific 

information directly from bulk tumors. Such in silico approaches are advantageous because 

they can capture both the cell-type specific profiles and the tissue systems level of cell-cell 

interactions. Accurately and comprehensively predicting these patterns in tumors is an 

important challenge to overcome, not least given the success of immunotherapeutic drug 

treatment of several human cancers. This is especially challenging for subsets of closely related 

immune cell phenotypes with relatively small gene expression differences, which have critical 

functional distinctions. Here we outline the existing and emerging novel bioinformatics 

strategies that can be used to profile the tumor immune landscape.   

Immune cell diversity – an expanding universe of repertoires in the TME  

The human immune system encompasses the set of processes and cells that protect the body by 

responding to invading cells. Components of the immune system have one critical task, they 

must be able to recognize and distinguish between self and non-self such as non-self antigens 

from harmful bacteria, viruses, fungi, parasites, and tumors. More specifically, immune cells 

are responsible for maintaining tissue homeostasis by identifying potentially harmful non–-



self-molecules, neutralizing targets by adaptive cytotoxic and phagocytic responses against 

invading, malignant or stressed/damaged cells. Since pathogens can rather quickly evolve and 

adapt, the immune system must be particularly sophisticated and robust. A top level simplified 

description divides the immune system into two main layers: the innate immune and adaptive 

immune response. The innate system is composed of the first responders in immune defense 

and includes neutrophils, eosinophils, basophils, macrophages, dendritic cells, mast cells and 

natural killer cells. Many of these cell types have documented presence in the tumor 

microenvironment. The innate response is triggered by several possible events; usually distress 

signals caused by injured or dying cells. Once activated, for the most part, innate immune cells 

act in a non-specific manner attacking all pathogens. The cell types in the innate response have 

diverse roles. Some play facilitator roles, such as mast cells. They recruit more immune cells to 

the microenvironment of the inflamed tissue site, by secreting inflammatory cytokines and 

chemokines. Other innate immune cells are responsible for neutralizing threats by engulfing 

and digesting invaders, such as macrophages, while for example granulocytes neutralize 

through the granulated secretion of cytotoxic molecules in a cell-to-cell interaction with a 

pathogen.  

The adaptive response has evolved to take effect over a more gradual time period compared to 

the almost instantaneous non-specific innate immune response. The hallmark of cells within the 

adaptive immune system is their expression of unique rearranged immune receptors. Hence, the 

adaptive immune response is more targeted, as it recognizes pathogen’s specific antigens. 

Critically, the adaptive immune cells are often driven towards an adaptive cellular memory 

phenotype, which provides the opportunity to instigate an immediate response upon any future 

recognition of the pathogen specific antigen.  

Lymphocytes, more particularly the small lymphocytes, B cells and T cells, are the main 

components in the adaptive immune response. Each of these cell types may exist in one of 



three main stages of activation; naive cells that have yet to encounter an antigen, effector cells 

which are currently fighting an antigen, and memory cells which remain after a previous attack 

ready to recognize the same pathogen again. Besides sharing these three main stages of 

activation, the key effector cells of the adaptive immune system, B cells and T cells, have 

diverse functional phenotypes, both within and between these immune cell lineages. 

B cells have been shown to play a role in immune surveillance during tumor progression. Their 

primary responsibility is to produce specific antibodies to tag and neutralize antigens [1]. With 

the assistance of CD4+ T-helper cells, B cells can differentiate into antibody-producing 

factories (plasma cells) or memory cells ready for secondary exposures. In terms of pathogen 

recognition, a key difference between B cells and T cells stems from the ability to recognize 

antigens. B cells can recognize antigens without assistance, whereas T cells typically require 

some preprocessing of the antigen before they can recognize them. 

T cells can be further subdivided into a large and diverse lineage tree of specific types, such as 

cytotoxic-T-lymphocytes (CTL), T-helper 1 cells (Th1), T-helper 2 cells (Th2), T-helper 17 

cells, T follicular helper cells (Tfh), and regulatory T cells (Treg). CTLs are responsible for 

killing infected and damaged or dysfunctional cells through the secretion of cytotoxins, namely 

perforin and granzyme. CTLs are major players in cancer immunology because they are 

primarily responsible in the first wave recognition and elimination of tumor cells. 

The T-helper cells can be conceptually perceived as the moderators of the immune response. 

They secrete cytokine and chemokine signaling molecules that direct pathogen-specific 

responses. Th1 cells produce IFNγ, which is necessary for the regulation of immunogenic 

responses, antigen processing and presentation of tumor cells, for the function of macrophages 

and for the production of CTLs. Th2 cells secrete interleukins, such as IL4, IL5, IL6, IL9, IL10, 

and IL13, that help increase B cell production and B cell differentiation into plasma cells. More 



generally, Th1 cells signal to increase the immune response to attack compromised cells, and 

Th2 cells signal to increase the immune response to attack pathogens outside of the cells. It is 

also important to note that the Th1 and Th2 cell signaling networks are involved in positive and 

negative feedback loops, whereby the components in the complex network of immune cell 

types in the tumor microenvironment (TME) regulate other [2]. 

The complexity of unraveling this infiltrate in the TME is magnified when considering the 

diversity of highly similar immune cell subsets. For example, it was recently demonstrated with 

the use of 28 molecular surface markers, that there is an estimated up to 30,000 phenotypic 

subsets of NK cells within each donor and more than 100,000 NK cell phenotypes among the 

entire panel of 17 donors [3]. The emergence of a mass cytometry technology, which combines 

the workflow of flow cytometry with the precision of mass spectrometry made this observation 

possible [4] and creates new bioinformatics challenges related to profiling the repertoire of 

immune cells at the single-cell level. These are outside the scope of this overview, but are 

covered in a recent comprehensive review on the topic [5]. These technology platforms hold 

great potential to capture the enormous diversity of the immune cell repertoire in the TME, 

however the advantages of using bioinformatics to predict accurate immune signatures from 

bulk native tumor tissue is that the functional intracellular and intercellular transcriptome 

profiles are preserved, whereas in the purified immune cells the molecular profiles will have 

inherently different patterns when isolated from native tissue. The remarkable diversity 

revealed by these and similar recent studies pose significant research challenges for the in 

silico identification of distinct immune cell subsets that are predictive of a clinical outcome or 

response to therapy in biomarker discovery. 



The properties of immunosurveillance in the TME and the dynamic anti-tumor immune 

response  

During the dynamic stages of cancer progression, when normal or primary tumor cells progress 

toward aggressive metastatic cell populations; mutated cell-surface markers, metabolism, 

cytokine and chemokine profiles may change from a state of self to a non-self inflamed state. 

This transition toward and altered composition of immune activation in the TME may radically 

alter its immune-cell composition. This process of the immune-cell component being shaped in 

the TME during cancer progression has been effectively summarized during the resurgence in 

our understanding of the anti-tumor immune response over 10 years ago as the “3E’s of cancer 

immune-editing”- elimination, equilibrium and escape [6]. When considering the scale of 

diversity and dynamics of immune cells in the TME during immune-editing, it becomes clear 

that there is dire need for developing bioinformatics tools to capture this in formation in a 

manner which is more fit-for-purpose.  

In the elimination phase the perturbed state in the TME and disruption of the normal immune 

homeostasis may activate the innate immune system leading to the recruitment of some of the 

general innate immune-cell types to the TME. These cells of the innate immune system may 

recognize ligands on the tumor either by the emergent inflammation or the cellular 

transformation process in the progressing tumor. Regardless of the specific mechanisms of the 

various possible cell-cell interactions between innate immune cells in the TME, the most 

frequent outcome is a significant production of IFN-γ that promotes further recruitment of 

innate immune-cell subsets and enhance tumor cell killing. The increased supply of antigenic 

material from dead tumor cells stimulates recruitment of immune-cells of the adaptive immune 

response. For example, tumor-specific CD4+ and CD8+ T adaptive cells are recruited to the 

TME and participate in the killing of antigen-positive tumor cells.  The cytokine IL-2 

production by the CD4+ T helper maintains the activation of the cytotoxic CD8+ T cells 



function and viability of the tumor-specific CD8+ T cells. The increased IFN-γ also enhances 

the antigen presentation of tumor cells themselves, allowing for efficient recognition by the 

CD8 T cells and their eradication of the tumor [7]. If tumor elimination is carried out to 

completion, the sculpting of tumor development by the immune system comes to an end and 

the tumor is completely eradicated. However in progressing tumors the immunoediting process 

enters the equilibrium phase [6] where the activity of CD8+ T cells and  IFN-γ production 

continues to kill tumor cells  while simultaneously tumor cells with a high mutated phenotype 

are evolutionarily selected to survive. Over potentially a long time period, phenotypic 

alterations caused by external stimuli, genomic and epigenomic changes that are beneficial for 

overall tumor survival will be selected for and the tumor may have a diminished potential to be 

immunogenic in this equilibrium phase. Eventually in the escape phase of cancer 

immunoediting, the tumor bypasses an operative immune system in the TME and can grow 

unchecked and cancer cells survival, invasion, and dissemination of tumor cells is enhanced. 

The transition to immune escape may occur due to various possible signaling, genomic and 

epigenetic perturbations in the tumor [6, 8]. 

The type, density and spatial location of immune cells in a tumor are dynamic features, which 

are both patient-specific and highly unique for each tumor lesion [2]. Yet, a few general 

patterns have emerged from advanced immunophenotyping studies. B cells are more likely to 

be found in the invasive margin of the tumor and the areas adjacent to the tumor tissue. T cells, 

specifically the CTLs are typically found in deep in the core of the tumor, with fewer in the 

invasive margin and surrounding tissue [9]. For a progressing tumor to reach immune escape it 

usually has recruited an immune suppressive environment in the TME. Understanding the 

mechanisms of how tumors may promote the recruitment of immune suppressive cells is an 

active area of research, and is important for development of anti-cancer therapies.  The actions 

of distinct populations of certain T regulatory cells, myeloid derived suppressor cells (MDSC), 



and macrophages are highly implicated in this process. These suppressor cells are present in the 

TME as heterogeneous population of immature cells that suppress innate and adaptive 

immunity. The MDSCs utilize a variety of mechanisms to suppress T cell activation and 

promotes a transformation of the TME to promote tumor growth [10]. The presence and 

activation of MDSCs in the TME well characterized; however, the tumor-promoting 

mechanism and functional aspects of MDSCs on cancer cells is poorly defined [11]. The 

bioinformatics tools to profile for immunosuppressive cells in the TME at the resolution of 

capturing detailed subpopulation that have precisely defined mechanisms of action are in their 

infancy. The continuous development and improvements on the bioinformatics tools reviewed 

here may add to the growing body of evidence indicating that upon immune escape, 

immune cells with a suppressive phenotype contribute to broad and complex 

immunosuppressive network in the TME.  

All tumors elicit an immune response, but some more so than others. One recent idea is that the 

number of unique cancer antigens expressed by tumors explain this phenomenon [12]. If a 

tumor cell expresses entirely tolerated antigens, it is more difficult for the immune system to 

recognize it as a threat. In an additional layer of complexity, tumors actively block the immune 

system by expressing proteins that interfere with antigen presentation, immune cell recruitment, 

activation, and differentiation. These “checkpoint” proteins, which are conventionally used to 

regulate the immune response, are maliciously used by the tumor as defense. Some recent well 

studied examples are programmed cell death protein 1 (PD1) and cytotoxic T lymphocyte 

antigen 4 (CTLA4), which both negatively regulate T cell responses, particularly inhibiting 

CTLs. Treatments that block the expression of PD1 and CTLA4 have been particularly 

promising in eliminating tumors in melanoma, prostate, lung, and other cancers [12-14].  



The	TME	composition	as	a	biomarker	for	a	successful	anti-tumor	response	 

Recent discoveries that examine how immune cell activation is regulated in the TME, have 

allowed for the characterization of targetable “checkpoint” proteins which have translated to 

therapeutic effect [15]. Long term positive clinical outcomes and survival greater than 10 years 

have been observed [16] in a small subset of patients with metastatic melanoma. These 

developments lead us on the path to deliver curative therapies to cancer patients, but in order to 

maximize the potential of discovering new checkpoint control drugs and understand how their 

molecular mode of action operates, especially in non-responders, we need a way to thoroughly 

examine the TME prior to, during and after therapy [17]. The bioinformatics tools outlined in 

this review may be beneficial for this type of profiling in future areas of TME clinical research.  

The TME is sculpted in a spatiotemporal fashion by the process of the three stages of immune 

editing [18], ranging from (a) distinct properties of immune cells in the TME to carry out tumor 

killing, leading to (b) an equilibrium between promotion of tumor cell proliferation and tumor 

killing by immune cells, and finally to a critical phase of (c) tumor escape, whereby an 

immunosuppressive environment in the TME has arisen. This immunosuppressive environment 

potentially stimulates growth and deactivation of immune cells, and regulates the tumor cell 

intrinsic ligand interaction by checkpoint receptors on immune cells. As previously described 

[19], these acts of immunosurveillance by key immune cell phenotypes infiltrated into the 

TME can allow tumors to exploit normal immune checkpoints that normally prevent aberrant T 

cell responses. The aforementioned checkpoint PD-1 receptor is expressed on activated T cells, 

where it functions as an antagonist to T cell receptor signaling after binding the PD-L1 or PD-

L2 ligand. Activation of the PD-1 immune checkpoint limits auto-immunity during 

inflammatory responses [20]. Evidence that PD-1 activation prevents T cell-mediated killing of 

tumor cells began with the observation that while normal human tissue lacks PD-L1 expression, 

PD-L1 is abundantly expressed in many tumors [21]. These and many similar observations 



motivated a therapeutic effort to activate an adaptive immune response against tumors, by 

blocking the checkpoint interaction using monoclonal antibodies targeted against PD-1 or the 

PD-L1 ligand [22, 23]. Targeting the immune checkpoint blockade in the TME has produced 

durable responses in patients with advanced melanoma, renal cancer, and non-small-cell lung 

cancer [23], supporting the importance of this pathway in linking cancer progression to tumor 

immune editing. 

The presence of tumor infiltrating lymphocytes (TILs) in the TME of melanomas is strongly 

associated with expression of PD-L1 [24]. A study in 46 patients with metastatic melanoma 

found that response to the PD-1 inhibitor pembrolizumab was associated with the pre-treatment 

presence of PD-L1 expressing immune cell infiltrates in the TME, not exclusively at the tumor 

margin [25]. A recent phase I trial using the anti-PD-L1 antibody MPDL3280A in 277 patients 

found that elevated PD-L1 expression in infiltrating immune cells, but not in tumor cells, was 

associated with elevated objective response rates [26]. The most consistent result so far has 

been that patients lacking tumor immune cell infiltrates do not benefit from checkpoint 

inhibitor therapy[19]. However, much remains to be determined about which patients will 

benefit from these approaches [19]. 

The need for bioinformatics tools to predict immune cells from the TME 

It is now well established that clinical outcome and therapeutic response is governed by the 

dynamic presence of immune cells in the TME [27]. Our improved understanding of the impact 

of immune cell infiltration into the TME leads us ever more toward the design of effective 

combination immunotherapy strategies [28, 29]. The basis for this has been established through 

numerous studies using conventional laboratory assays [30, 31], and more recently, with whole 

transcriptomics approaches [31-33]. Notably, Galon et al. were among the first to report that 

the type, density and spatial location of infiltrating CD8+ T cells in human epithelial tumors 



were features associated with positive clinical outcome in colorectal cancer [5]. These and 

other similar recent observations [34] have inspired the momentum toward creating a 

formalized diagnostic test called the ImmunoScore [28, 35] that is now being investigated in a 

series of clinical studies [6]. For example in the case of colorectal cancer, the Immunoscore 

staging proved to be an effective predictor of disease recurrence, beyond that of the convention 

microsatellite instability [34]. 

Despite these recent advancements in the field, significant challenges need to be overcome for 

accurate and comprehensive profiling of the immune landscape of the TME for biomarker and 

therapeutic discoveries. It is laborious, time consuming, expensive, and difficult to 

automatically and thoroughly scrutinize the presence of multiple immune cells in tumors with 

fidelity by laboratory techniques such as immunohistochemistry. Computational methods are 

therefore desired to not only predict the network landscape of general immune cell types (e.g., 

CD4 vs. CD8), but also identify and precisely define immune cell states at higher resolution 

(various stages of differentiation or activation), as opposed to general classifications of immune 

cells such as "pro-tumor" and "antitumor". It is becoming increasingly clear that in order to 

achieve such optimal automated procedures, systems biology [36-38] and bioinformatics [39] 

approaches can assist by making predictions of the immune cell component from –omics data 

to guide this discovery process. 

Spurred by the increased availability of –omics technologies, we have currently entered an era 

of digital cancer medicine; whereby diverse and global molecular profiling may guide 

therapeutic discovery to predict response to immunotherapy [40-42]. Here, we will outline how 

bioinformatics deconvolution strategies used to analyze transcriptome data have the potential to 

provide a cell-subset centered view of the immune system’s role in the TME. 



Diversity of immune cells in the TME and their impact on immunotherapeutic discovery 

One of the major hurdles to overcome in understanding the role of the TME and how 

immunotherapeutic modulation can be better exploited in personalized medicine, is to uncover 

the precise the mechanisms of how therapy may affect distinct populations of immune cells 

within the TME [17]. This is especially important when mapping out the detailed landscape of 

diverse immune cell types in the TME prior to, during and after therapy [43, 44]. It has been 

shown [45] for many tumor types that the presence of a lymphocytic infiltrate, across a range 

of cancers types, may be a positive predictor of clinical outcome [44].  The immune cell 

landscape in the TME includes a broad range of cell types, many of which have revealed 

transcriptome predictive signatures detected from bulk tumor tissue (see Figure 1). These 

transcriptome gene signatures correspond to cell types such as natural killer (NK) CD56dim 

cells, CD4+ T helper cells, CD4+ T regulatory cells, memory T cells (CD8+CD45RO+ cells), 

CD8+ T cells, myeloid derived suppressor cells (MDSCs), macrophages, and B cells [31, 46]. 

The effect that diverse infiltrated immune cells have on prognosis and response to therapy has 

often been described as being paradoxical, and very much dependent on the tumor stage and 

tumor type [47]. This is especially true of the members of the adaptive immune response and 

their roles during tumor progression [48]. Both CD8+ cytotoxic T cells (CTL) and NK cells 

harbor anti-tumorigenic properties and are among the main regulators of tumor immune 

surveillance [31,41], and T helper 1 cells also contribute to tumor cell clearance, by favoring 

the differentiation of M1-polarized macrophages, which may have tumoricidal properties [42]. 

In contrast, while B cells contribute to anti-tumor immunity in the acute phase of a malignancy; 

chronic inflammatory B cell signaling can be pro-tumorigenic [49, 50]. Indeed, Th2-driven B 

cell differentiation exerts pro-tumorigenic activities through the recruitment of MDSCs, 

including monocytes and mast cells, and the polarization of macrophages to an M2 phenotype 

[15,43]. The combination of high levels of tumor-associated macrophages (TAMs), robust Th2 



responses and low CTL/NK cell infiltration have been used to create an immune cell signature 

in breast cancer to predict patient survival [45] (reviewed in [44]). Further, it has been recently 

shown that chemotherapy stimulates macrophage differentiation and the subsequent cross talk 

between macrophages and cytotoxic T cells in the tumor may contribute to response to 

chemotherapy [45,46]. TAMs are heterogeneous cell populations in their own right, with 

specific localization in the tumors and gene expression signatures [37].  

The accurate prediction of high-resolution biomarkers from the TME will no doubt have 

valuable impacts in areas of personalized medicine related to prognosis, patient stratification, 

patient monitoring, and drug safety and efficacy studies. Dedicated bioinformatics pipelines 

will be critical in the regard [5], especially those which have undergone a degree of validation 

and those which integrate multiple high-throughput platforms in the same workflow, taking 

advantage of the technologies which analyze bulk complex tissue and single cell technologies 

in the same setting [51]. 

Additionally, the spatial temporal context of infiltrating immune cells can have a clinical 

impact [47]. It has been shown that not only the presence, but also the type, density, and spatial 

location of the lymphocytic infiltrate may be of prognostic significance [31]. However, such 

features may be difficult to capture from transcriptome analysis of a single biopsy. Recently the 

spatiotemporal features between distinct immune cell types were demonstrated to be predictive 

of patient survival in colorectal cancer [31]. This was achieved by integrating bulk tumor 

transcriptomics data and immune gene expression signatures with tissue microarrays to capture 

some dynamic features of the immune landscape over time.  It is clear however, that in order to 

achieve spatiotemporal profiling at levels of high resolution (various stages of activation, 

differentiation and function in a patient’s repertoire), we will need to perform high-throughput 

transcriptome profiling at the single cell level [51], while simultaneously preserving the spatial 

location of distinct immune cells in the bulk tumor tissue [52].  This will come with an added 



layer of challenges giving rise to the next generation of bioinformatics tools to profile TME 

beyond those described in this review.  

Transcriptomics enabled determination of cell states from the TME 

In the methods reviewed here some form of gene expression data in the form of gene 

expression arrays or RNAseq is required for in silico immune cell profiling. Reference profiles 

can be obtained from studies that measure gene expression in specific isolated and purified 

specific immune cell populations. Very often the expression pattern of genes across immune 

cells can also reflect the phylogeny of the immune cell lineage [53], making it informative for 

elucidating a general immune cell phenotype but more challenging to distinguish between 

similar immune cell subsets. Transcriptome profiling of immune cell lineages provides 

opportunities for identifying the wide range of gene signatures that define diverse subsets and 

functional states during the immune response, above and beyond cluster of differentiation (CD) 

antigens which are the usual molecular markers used experimentally for immune cell subsets. 

The number of immune cell types assayed and the number of non-immune cell types used to 

compare these patterns complicates direct use of these differential expression based signatures. 

Careful selection of both the methods and the type of datasets compared are needed to allow 

for the capture of expression differences which are truly distinct to immune cell subsets, as 

opposed to those expressed widely across the many cell types partaking in general cellular 

functions. Corrections for external effects, such as differences between and within 

experimental platforms and protocols used by different labs and experimental setups must also 

be considered in these workflows. Several groups have tried to reduce these confounding 

effects by using methods to intelligently combine expression data from multiple studies or by 

carrying out large scale studies of immune cell lineages to reveal patterns of genes expression 

that recapitulate the lineages and immune cell differentiation processes [54, 55]. Such 

approaches have been used to characterize the immune cell expression signatures in peripheral 



blood, identifying key transcriptions factors responsible for lineage commitment of immune 

cell subsets [56]. 

One of the largest initiatives for profiling the immune cell lineage is the work being done by 

The Immunological Genome Consortium (ImmGen), to profile approximately 270 different 

immune cells subsets in mice [57].  ImmGen is a joint effort between immunologists and 

computational biologists to transcriptomically profile the murine immune system using 

carefully controlled methods of sample collection and data analysis. The result is an immune 

transcriptome data collection platform where careful standardized operating procedures have 

been applied to result in a high quality dataset that appears relatively complete. The resources 

from this project offer data that pertain to the activation, development, heterogeneity, and 

function of the immune cell lineages and their distinct subsets. However, the direct translation 

of findings from mouse to human, and comprehensive assessment of the accuracy in validated 

studies of these resources remains a challenge and a barrier to application in cancer 

immunotherapy trials. One analytical strategy that is emerging approaches this problem by 

looking at regulatory network modules of genes instead of one-dimensional large gene lists, by 

identifying co-regulated gene modules [55]. Such a modular (a group of interconnected 

signaling molecules) approach to characterizing immune cell repertoires in patients represents 

one new paradigm for the systems level characterization of immune cell subsets. Other gene 

selection strategies are have emerged, whereby text mining the medical literature combined 

with protein interaction network analysis is used to capture signatures genes of distinct immune 

cell phenotypes and applied to make clinically relevant predictions from the TME [58]. 

The selection of gene signatures for immune phenotypes has often relied on differential gene 

expression [59, 60], tissue-specific expression of genes [31, 33, 60], applying cutoffs to 

expression levels in cellular states [61], or inferring network modules of co-expressed genes 

[32, 62]. Typically, immune cell specific genes have been identified on the basis of higher gene 



expression across all immune cells compared to a selection of non-immune tissues [54]. In 

general, these approaches can be considered as being primarily centered on the principle that 

higher expression in an immune cell type is likely to define a cell's distinct properties[2]. 

However, this feature is only one of many features that may be used to identify immune genes 

in complex tissue [54]. Methods that computationally dissect the immune cell component of 

the TME through reliance on gene expression module prediction alone have proved useful. 

However, more sophisticated tools are needed to accurately differentiate between highly 

similar immune cell subsets in complex tissue [63, 64].  

Overview of computational tools to profile immune cells from the TME 

Efforts to quantify rare cell types from bulk heterogeneous cell admixtures of transcriptomes 

began as early as 2001 [65] . The majority of methods which succeed the framework first 

proposed by Venet et al. are based on the linearity assumption that the expression of each gene 

in a mixture of cell types is a weighted average of the expression values that would exist for 

pure populations of those cell types. Some of these early efforts were first developed in model 

organisms [66]. As with most of the current deconvolution strategies, these early methods were 

easily applicable to any transcriptomics dataset including studies in cancer [67]. The main 

drawback to these linear based deconvolution methods is that they can only give relative 

estimates of composition and thus require a priori knowledge of cell type composition. While 

the accuracy and robustness of these methods have improved since the effort by Venet et al. 

these challenges still remain. 

Another problem that deconvolution methods, and all other TME profiling methods, must 

overcome is the lack of well-defined strategies and gold standards to benchmark accuracy. 

Successful methods must produce results that can be applied to and replicated across multiple 

platforms and technologies. Special care must be taken to examine the performance across 



methods that give high resolution pictures of the immune cell landscape, as it is not possible 

using current tools to accurately carry out a high resolution analysis, going deep into the 

immune cell lineage at different stages of activation, effector function, and differentiation for 

immune cells in a patients repertoire. 

Five main categories of bioinformatics tools to extract cell type specific information from 

tissue derived -omics have been outlined recently in a comprehensive overview [63]. Broadly, 

these classifications can be simplified into two groups depending on the input they require: 

tools that start with gene expression matrices of cell types or immune marker gene lists, and 

those that start only with proportions in the expression data they hope to analyze. Here, we’ve 

focused primarily on the former and further abstract the potential application of these tools into 

two main categories defined according to their utility to profile the TME.  The first category 

consists of tools used to solely predict tumor purity through the profiling of the tumor, immune, 

and stromal component that stop short of a full cell type resolution. The second category 

consists of tools designed to predict fractions of more distinct immune cell types from complex 

tissue. Both have usefulness in aiding to define the immune cell component of the TME to 

guiding our understanding of the immune-modulatory role of TME in therapy response.  

Bioinformatics profiling tumor purity: broad capture of immune and stromal component 

in the TME 

Heterogeneity in the TME presents significant consequences for transcriptomic analyses in 

cancer biology, leading to increased risk of incorrect or misleading inferences of the 

immune/stromal composition. Some of the applications to measure and extract signatures of 

tumor purity have been developed with the focused intent of predicting the non-tumor 

expression profiles and proportions from a tumor transcriptome. The tools most often used to 

calculate tumor purity and determine the immune or stromal fraction from a bulk tumor 



transcriptome are summarized in Table 1 and Figure 2.  Some of these approaches have already 

been used to find potential therapeutic and prognostic biomarkers [59, 68, 69]. The 

ESTIMATE method [59] in particular, has been integrated into the The Cancer Genome 

Atlas’s (TCGA) standard pipelines and has been applied to predict the general fractions of 

immune and stromal components of the tumor, as well as the tumor purity in a sample. The 

ESTIMATE method integrates publicly available datasets such as the TCGA in its application 

to the tumor purity prediction, to derive stromal and immune gene signatures, which are then 

applied to calculate enrichment in tumor samples. The cancer related applications of the tools 

outlined in Table 1 have proved quite effective in quantifying the stromal and general 

leukocyte fractions in bulk tumor transcriptomes and relating this information to clinical 

outcome [70]. ESTIMATE, for example, was recently effectively used to characterize immune 

subtype signatures among four distinct molecular subtypes of colorectal cancer  (microsatellite 

instability immune, hypermutated, microsatellite unstable, and strong immune activation) [71].  

DeMix predicts the proportion of tumor and stromal cell samples using a linear mixture model 

[72], accounting for the transcripts contributed separately by the stromal component and the 

epithelial component of a tumor sample. Unlike other traditional deconvolution methods, 

DeMix does not require advanced stromal and epithelial profiles, but requires at least one gene 

with expression specific to either cell type. DeMix was applied recently in multi-platform 

analysis of estimating tumor purity in 333 primary prostate carcinomas, in an analysis that 

characterized the heterogeneity among primary prostate cancers leading to the identification 

potentially therapeutic molecular targets. [73]. PurBayes, a Bayesian mixture modeling 

approach that estimates tumor purity and sub-clonality, was one of the first of these approaches 

that was modeled specifically for RNAseq data [74]. 

Overall, the application of such immune and stromal prediction tools applied to tumor 

transcriptomes may allow us to interrogate the state-of-the-art molecular classification 



paradigms, and move more systematically toward routine profiling of the TME [75]. The use of 

tumor purity prediction tools outlined in Table 1 has helped to demonstrate that the stromal and 

immune composition of tumors is complex and highly dynamic. However, they arguably offer 

a limited perspective on the profiles of distinct and clearly defined immune cell phenotypes 

potentially present in the TME. In addition, it is important to note that a direct comparison of 

the performance of these tools is yet subject to an interrogation using the same benchmarked 

dataset, under control conditions and where the identical raw data processing and 

bioinformatics pipelines are applied, before the deconvolution step. A summary of the most 

common bioinformatics approaches capable of quantifying tumor, immune, and stromal 

proportions are summarized in Table 1. 

Tools designed to predict distinct immune cell types from the TME 

The prediction of precise signatures of clearly defined immune cell populations in tumors is 

one of even greater complexity compared to that of normal solid tissues, due to the dynamic 

presence of clonal and hierarchical subclonal populations. Furthermore, as the TME 

background composition of normal and tumor cells will vary significantly, the intrinsic 

heterogeneity of the immune cells themselves adds to the considerable consequences of 

incorrect or misleading downstream inferences and biological assumptions made in the 

analyses [76]. Despite the many limitations described above, it is now becoming increasingly 

possible to computationally predict the proportion of different cell populations from complex 

tissue admixtures. There are several bioinformatics tools that have emerged in recent years [63, 

77] attempting to tackle these problems [64]. As with all TME profiling methods these require 

some degree of prior knowledge: defined cell phenotypes, the known proportion of the defined 

cell types in the tumor, or cell type specific reference genes with or without their expression 

profile (see Table 2 and Figure 2). Several approaches, summarized comprehensively in recent 

review articles [63, 77] and summarized with methodological categories in Table 2, estimate 



relative fractions of individual cell types within a sample using gene expression profiles that 

are characteristic for each cell type. Although most of the bioinformatics tools for 

deconvolution require known cell type proportions or marker gene expression profiles, current 

efforts are seeking to minimize the necessity of prior knowledge [72], by focusing on the 

identification of distinct immune cell marker genes using data mining approaches [58, 78]. 

Popular bioinformatics approaches which capitalized on such recent improvements were 

Dsection [79] and csSAM [80]. Dsection adopts a probabilistic approach, and csSAM uses 

linear regression.  Many approaches in Table 1 may not be optimal when the reference immune 

cell expression profiles are not representative of the primary populations of cells in a very 

heterogeneous sample. This is a problem particularly prominent for deconvolution strategies 

applied in the TME [81].  PERT was a method developed to address this by perturbing all input 

reference profiles, while the model predicts proportions of the reference populations in a 

heterogeneous sample [81]. Another recent advancement is the development of semi-

supervised machine learning applications to the deconvolution challenges. Nanodissection [82], 

for example, starts with a small set of marker genes of varying quality and large pre-assembled 

expression compendia, and utilizes support vector machines within an iterative framework to 

identify a set of cell type specific transcripts [82]. Cell type specific transcripts identified using 

this method were successfully used to assay the presence of B cells, cytotoxic T-lymphocytes, 

T-helper 1, and T-helper 2 cells in breast tissue yielding insights into TP53 mutation driven 

infiltration differences [83], and lymphocyte invasion in IC10/basal-like breast tumors is 

associated with wild type TP53]. CIBERSORT, a deconvolution method, also uses a 

supervised machine-learning framework, in this instance to solve a linear equation for the cell 

types composing the mixture [64]. CIBERSORT relies on a precisely defined signature gene 

matrix of immune cell types based on differential gene expression analysis as input, before 

deconvolving the mixture using a robust implementation of a support vector regression 



algorithm. When applied to quantify immune cell subsets in complex transcriptome mixtures, 

including solid tumors, it claimed to outperform six [79, 81, 84-87] of the total of 11 other 

methods outlined in Table 2, with respect to noise and other cell lines during in silico 

simulations [64].  CIBERSORT has recently been used in a clinical setting to identify 

prognostic genes and leukocyte subsets within and across 25 cancer histologies from the TCGA 

database [83].   

Choosing the optimal deconvolution strategy from those outlined in Tables 1 and 2 requires 

basic understanding of the assumptions of the underlying models, the input required, and the 

type of output desired. The field at present has primarily concentrated on deconvolution 

challenges from complex tissue using transcriptomics data. Future interesting developments in 

the field may offer improved success by offering the integration of other –omics (proteomics, 

miRNAs ,etc) molecular profiles to improve the prediction power of the deconvolution tools .If 

only a general estimate of tumor purity is desired, one can choose from the any of available 

methods. When more specific cell type estimates are needed, one must weigh the pros and cons 

of the input and models, as well as the desired context of the output. The current state-of-the-

art TME deconvolution tools to do not cater for detailed predictions on the specific 

pharmacologically relevant secreted agents (lipids, cytokines, growth factors, etc), nor do they 

predict their capacity to secrete functionally important extracellular vesibles loaded with 

important pharmacological relevant agents (such as mRNA and miRNA, etc). Indeed, 

deconvolution the pharmacologically relevant signaling systems from the TME remains and 

critical challenge for future bioinformatics studies in this field [19]. However, this review may 

be used as a starting point for understanding the basics needed to apply deconvolution to the 

TME and define these challenges more precisely.  



Conclusions 

The current state-of the-art computational predictions of distinct immune cells from the TME 

can be performed within a certain degree of precision. The results are for the most part 

constrained by the inputs, a priori estimates of the proportional representation of immune cell 

types in each sample or known marker genes with cell type specificity. Accuracy is limited by 

the quality of this prior knowledge. The general deconvolution task brings with it algorithmic, 

computational and experimental validation challenges which current research is actively 

overcoming to achieve the accurate in silico prediction of clearly defined cell types from the 

TME. Many of these tools have been developed and tested to date on peripheral blood, the 

primary source of samples in human immunology studies. The tools appear to generalize well 

to other tissue and data types, with good performance. The recent emergence of single-cell –

omics experimental technologies hold great potential to offer deconvolution at the resolution of 

the high-resolution immune cells repertoires of patients, with applicability to deconvolution to 

the TME, wherever the single cells can be obtained. Although the current approaches outlined 

here provide predictions at a tissue-level resolution, a combination of single cell and current 

tissue level technologies will generate a powerful synergy through the accurate prediction of 

immune cells at high resolution in the TME without disrupting the important tissue level 

context of the TME admixture [77].  

We now have entered an era in TME biology where we can begin to computationally predict 

for the presence of distinct immune cell types in the complex heterogeneous tissues of tumors, 

guiding us toward diagnostic and therapeutic discovery. Methods which attempt the prediction 

of the network landscape of immune cells in the tumor microenvironment [58, 88-90], may 

improve our understanding of therapy-responsive and therapy-resistant phenotypes [36, 91, 92]. 

Moving forward, it will be of great benefit to systematically profile for not only patterns of one 



immune cell population, but to capture immune cell networks in tumors with higher resolution; 

to facilitate therapeutic discovery of immune-modulatory drugs 
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Table 1: Deconvolution methods applicable to profile tumor purity  

Bioinformatics 
Tool 

Algorithm class Input data type Output Availability Reference 

UNDO Linear latent 
variable model  

Expression 
profiles 
(optional 
matched normal) 

Tumor-stroma 
mixed gene 
expressions  

R package [93] 

contamDE Linear equations  Expression 
profile (matched 
and unmatched 
normal sample) 

Proportion 
estimation and 
differential 
expression of 
tumor purity 

R package  [68] 

ISOpureR Linear equations 
and statistical 
model  

Expression 
profile (matched 
and unmatched 
normal sample) 

Proportion 
estimation and 
differential 
expression of 
tumor purity 

R & MATLAB 
implementations 

[69] 

ISOLATE Precursor to 
ISOpureR 
(generative 
statistical models) 

Expression 
profile (matched 
and unmatched 
normal sample) 

Proportion 
estimation and 
differential 
expression of 
tumor purity 

Precursor to 
ISOpureR 
implementation 

[94] 

ESTIMATE Gene set 
enrichment analysis  

Expression 
profiles of 
tumor, stroma 
and immune 
signature genes 
(optional 
matched normal) 

Tumor purity 
scores 

R implementation [59] 

DeMix Statistical 
(maximum 
likelihood) 

Expression 
profiles of 
tumor, stroma 
and immune 
signature genes 
(optional 
matched normal) 

Proportion 
estimation and 
differential 
expression of 
tumor purity 

R implementation [72] 

PurBayes Bayesian statistics Expression 
profiles of 
tumor, stroma 
and matched 
normal signature 
genes 

Tumor purity 
scores 

R implementation [74] 

 



Table 2: Deconvolution methods also applicable to the identification of distinct immune 

cell subsets  

Bioinformatics 
Tool 

Algorithm class Input data 
type 

Output Availability Reference 

DeconRNASeq Linear Equations  Reference 

expression 

profiles 

(RNASeq) 

Cell 

proportions 

R- package [85] 

PSEA Linear regression Marker genes Cell 

proportions  

R- package [95] 

csSAM Linear Regression Known cell 

proportions 

Cell-specific 

expression 

profiles 

R- package [80] 

NMF Unsupervised NMF 

+ Information 

theory 

Reference 

expression 

profiles,  

Prior 

information on 

cell 

proportions 

Cell 

proportions, 

Cell-specific 

expression 

profiles 

Matlab [96] 

DSA Linear equations Marker genes 

(RNASeq) 

Cell 

proportions, 

Cell-specific 

expression 

profiles 

R-package [87] 

MMAD Linear model Reference 

expression 

profiles 

Prior 

information on 

cell 

proportions 

Cell 

proportions, 

Cell-specific 

expression 

profiles 

MATLAB [86] 

PERT Probabilistic Non-

negative maximum 

likelihood model, 

on linear models 

Reference 

expression 

profiles 

Cell 

proportions 

Octave [81] 



LLSR Linear least 

squares regression 

Reference 

expression 

profiles 

Cell 

proportions 

R  [84] 

CIBERSORT Support regression 

machines 

Reference 

expression 

profiles 

Cell 

proportions 

Java, R and 

online tool 

[64] 

Nanodissection Support vector 

machines 

Reference 

expression 

profiles 

(training data) 

Cell/Tissue 

specific 

gene 

expression  

Online tool,  

C++ 

implementation 

[82] 

Dsection Probabilistic 

method 

Bayesian 

framework 

Reference 

expression 

profiles,  

Estimated info 

on cell 

proportions 

Cell 

proportions, 

Cell-specific 

expression 

profiles 

Online tool [79] 



Figure 1: Functions of the microenvironment in tumor development. A beneficial 
microenvironment is dominated by IFNg, TNFalpha, and IL12 signaling, infiltrating CD4+ T 
cells, and tumor eliminating CD8+ T cells, NK, and M1 macrophages. In a tumor-promoting 
environment TGFbeta, IL10, IL13, and PDL1 signaling increase recruitment of regulatory T 
cells, which block the infiltration of cytotoxic NK and CD8+ T cells, increasing tumor cell 
proliferation. 

Figure 2: General workflow of bioinformatics deconvolutions strategies from complex 
heterogeneous tumor tissue: the many classes of tools categorized in Table 1 may be further 
simplified into two main application categories. (1) Bioinformatics strategies to capture general 
signatures of tumor purity relative to general immune component and stromal purity. Generally 
the input into these tools requires expression profiles of the tumor, immune or stromal 
components being analyzed. (2) There is wide array of tools which address deconvolution of 
complex tissue with the goal of predicting the faction of distinct cellular phenotypes, or clearly 
defined immune cell types such as T Cells, macrophages, B Cells, and Natural Killer cells, etc. 
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Heterogneous tumor tissue
Stromal or immune 

transcriptome signatures

Tumor transcriptome

Transcriptomes of distinct 
immune-cell phenotypes

Table 2: Deconvoluting proportions of 
distinct immune-cells

Table 1: Deconvoluting tumor and general 
stromal or immune cells 

Tumor % 

Stroma/
Immune % 

Distinct immune-cell % 

(1) (2)
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