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Abstract (strict 250 word limit) 

Two decades of research into the ligand-dependent modulation of the activity of the peroxisome 

proliferator-activated receptor γ (PPARγ) have produced a large body of structural data from 

single-crystal X-ray diffraction studies of PPARγ in complex with a diverse set of ligands – 

among them several drugs in clinical use. The heterogeneous modes of action observed among 

PPARγ ligands in terms of their interaction surfaces in the ligand-binding pocket, their binding 

stoichiometry and their utilization of allosteric stabilization mechanisms, complicate an 

explanation of their transcriptional effects. Consequently, a collective analysis of the PPARγ X-

ray structures available in the public domain, focusing on ligand-induced structural trends, is in 

demand. Herein, principal component analyses of the atomic (Cartesian) coordinates (cPCA) and 

dihedral angles (dPCA) are applied to this ensemble of structures. In the cPCA, projections of 

the structures along the extracted principal components (PCs) demonstrated a moderate 

correlation between the cPC1 and structural parameters that are central to the transcriptional 

regulation by PPARγ, such as the stabilization of helix 12. Thus, the mapping of the PPARγ-

ligand complexes from the cPCA may be applied in drug discovery programs seeking to avoid 

stabilization of helix 12 in their development of new partial- and non-agonistic PPARγ ligands. 

The dPCA provided an intriguing separation of the PPARγ structures into distinct clusters, 

improving upon the separation observed along cPC2. While the clusters identified key regions of 

dihedral fluctuation in the ensemble, they could not be differentiated according to the same 

structural parameters as the cPC1 distribution.  
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Introduction 

The peroxisome proliferator-activated receptor γ (PPARγ) is a transcription factor regulating the 

expression of genes involved in lipid storage and glucose expenditure,
1
 but also in kidney 

function,
2
 bone metabolism

3
 and neuronal development.

4
 It is the most well-studied member of 

the PPAR family of nuclear receptors and both ligand-dependent and ligand-independent modes 

of modulation of its activity have been established. Among these, the ligand-dependent 

modulation of PPARγ activity has been a major focus in commercial and academic drug 

discovery programs seeking new treatments for human metabolic diseases, such as type II 

diabetes mellitus and metabolic syndrome.
1
 More recently, the role of PPARγ in 

neurodegenerative disease has received increased attention.
4,5

  

Research efforts from the past two decades have produced an array of small-molecular 

modulators of PPARγ, whose beneficial effects on e.g. insulin sensitivity, have allowed the 

application of members of the thiazolidinedione (TZD) family of PPARγ agonists in a clinical 

setting. In parallel, however, a body of evidence has grown, describing class-wide side effects of 

the TZDs, such as fluid accumulation (edema),
2
 increased risk of heart failure

6
 and decreased 

bone density.
7
 The origin of these side effects was recontextualized by the discovery of a ligand-

sensitive, post-translational modification (PTM) of the PPARγ ligand-binding domain (LBD) 

(Figure 1). In 2010, Choi et al. demonstrated that the ligand-dependent inhibition of a 

phosphorylation of Ser273 (Ser245 in PPARγ1 numbering, which is used throughout this text) by 

cyclin-dependent kinase 5 (Cdk5), led to the regularization of the expression levels of a set of 

genes known to be dysregulated in obesity (including adipsin and adiponectin). Importantly, it 

was shown that this gene set was only a subset of the genes whose expression was regulated by 

the treatment of PPARγ with the TZD rosiglitazone (1) (Figure 2). Furthermore, the ligand 
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MRL24 (2) inhibited phosphorylation of Ser245 (Ser273) as efficiently as rosiglitazone (1), even 

though 2 is a weak agonist compared to 1, in assays measuring the transcription of chimeric 

PPARγ reporters or classical, adipogenesis-related PPARγ target genes.
5
 By X-ray 

crystallographic analysis, hydrogen-deuterium exchange coupled to mass spectrometry (HDX-

MS) and nuclear magnetic resonance (NMR) spectroscopy, MRL24 (2) has been shown to 

preferentially bind to a different site in the PPARγ ligand-binding pocket (LBP) from both its 

regioisomer, the potent agonist MRL20 (3) and rosiglitazone (1). In its binding mode, MRL24 

(2) did not stabilize the PPARγ C-terminal helix 12 (shown in orange, Figure 1).
5,8,9

 This helix is 

central to the nuclear receptor activation function 2 (AF2) and to the formation of a surface 

binding groove for transcriptional coactivator proteins.
10

 The LBP interaction patterns observed 

for MRL24 (2) versus MRL20 (3), which does stabilize helix 12, were thus coherent with the 

lower transcriptional activation observed upon treatment of PPARγ with 2. Conversely, MRL24 

(2) stabilized the β-sheet region in the Ω-pocket (shown in yellow, Figure 1), which in turn 

stabilized the external loop containing Ser245, making it less available for Cdk5-mediated 

phosphorylation.
5,8,11

  Recently, it was shown that a second molecule of MRL20 (3) can bind to 

the Ω-pocket, simultaneously with the AF2-pocket being occupied by 3 or blocked by covalent 

antagonists, targeting Cys285. Both double occupancy of the LBP, as well as binding to the Ω-

pocket alone were demonstrated to allosterically influence transcriptional regulation by PPARγ.
9
  

Among the reported PPARγ modulators that display weak transcriptional induction, is 

also the ligand SR1664 (4) (Figure 2). Intriguingly, its R-enantiomer SR1663 (5) is a potent 

PPARγ agonist. While 4 and 5 can display nearly identical binding modes, in which both interact 

with the β-sheet region through their carboxylate groups, but stretch around helix 3 and into the 

Ω-pocket, where they differ in their interaction with Phe282 (PDB ID: 4r2u and 4r6s).
12

 In the 
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case of SR1664 (4), this interaction near completely attenuates the transcriptional induction by 

PPARγ, likely through a destabilization of helix 12.
12,13

 A later crystallographic study revealed 

that SR1664 (4) can also assume an alternative binding mode in which it no longer occupies the 

AF2-pocket. In this structure, 4 is located in the Ω-pocket where it interacts with helix 3 and the 

Ω-loop (PDB ID: 5dwl). 

The above presented examples of structurally related ligands with highly divergent 

transcriptional effects demonstrate the diverse nature of ligand binding in the PPARγ LBP, in 

which multiple binding sites, ligand stoichiometry and allosteric communication between 

subpockets must be taken into account. The second example also demonstrates how ligand 

presence in the AF2-pocket is not necessarily conducive to transcriptional activation, if the 

ligand, directly or indirectly, causes a perturbation of helix 12. 
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Figure 1. The overall structure of apo-PPARγ with numbered helices and loops. In the left view, 

the pocket regions neighbouring the β-sheets (yellow) and helix 12 (orange), are marked as the 

Ω-pocket and the AF2-pocket, respectively. The LBP surface was generated with HOLLOW
14

 

and the apo-PPARγ structure (PDB ID: 2zk0, chain A) was visualized with PyMOL.
15
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Figure 2. Chemical structures of the PPARγ agonists rosiglitazone (1), MRL20 (3) and SR1663 

(5), as well as the partial- and non-agonists MRL24 (2) and SR1664 (4). The structures are 

drawn in 2D-orientations reminiscent of their 3D-poses in PPARγ, when viewed as depicted in 

Figure 1 (left). 
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Examples of other ligands that display binding to the Ω-pocket in the PPARγ LBP, include fatty 

acids of certain lengths, fatty acid metabolites, serotonin metabolites, phenolic natural products, 

as well as various synthetic partial agonists, including several non-steroidal anti-inflammatory 

drugs (NSAIDs).
11,16–21

 The data describing the binding modes of these ligands, as well as those 

of classical agonists, largely stem from X-ray crystallographic studies. Collectively, these data 

demonstrate the ability of PPARγ to bind ligands in diverse poses and ligand stoichiometries 

(Table S1 in the Supporting Information for examples). On the other hand, the impacts on the 

dynamics of the PPARγ LBD resulting from the binding of these classes of ligands, have been 

studied with techniques such as HDX-MS, NMR spectroscopy and molecular dynamics (MD) 

simulations.
8,9,11,22–24

 Together, these investigations have provided insights into the differential 

stabilization of specific regions of the PPARγ LBD in response to the binding of these ligands, 

e.g. helix 3, the β-sheet region, and the P- and Ω-loops (Figure 1). They have also established 

that ligands binding to the Ω-pocket may allosterically stabilize helix 12 through residue 

networks e.g. in the Ω-loop and on helix 3.
9,12,16,25,26

 Finally, for several of the ligands, FRET-

based measurements of the affinity of the PPARγ-ligand complexes for fluorescently labelled 

peptides derived from transcriptional coregulator proteins, offer ligand-specific coregulator 

interaction profiles.
9,27–29

 Such profiles create bridges between the structural realm and the 

ligand-dependent variations observed in the transcription of PPARγ target genes. 

Given the diverse set of ligands with which PPARγ has been cocrystallized, an evaluation 

of the sampled conformational space using PCA could potentially provide novel insight into 

collective structural differences between the PPARγ complexes with the partial- and non-

agonistic ligands, and those with classical agonists. A relative classification of these complexes 

could add to our understanding of the different modes of ligand-dependent PPARγ activation. 



9 

 

While in a dynamical sense, these ligands may be envisioned to contribute to populational shifts 

between PPARγ conformational ensembles, possibly already present in the apo-state,
22,30–32

 the 

degree to which these influences are present in the crystal phase is less well understood. Aiming 

to shed light on these questions, we evaluated the correlations between the distributions of the 

structures projected on to the principal component axes, and PPARγ structural parameters or 

ligand functional attributes. 

 

Theoretical Basis. Principal component analysis (PCA) is a ubiquitously applied technique for 

extracting the principal directions and magnitudes of the variance in a dataset. PCA involves a 

transformation of a given dataset into a new coordinate system, in which the direction of largest 

variance in the dataset becomes the axis of the first principal component, PC1.  The direction of 

the second largest variance becomes the axis of the second principal component, PC2, etc. The 

resulting axes, PCn, are necessarily orthogonal. The new coordinate system is thus unique to each 

dataset, as the dataset variances define its axes.
33

 An expressed limitation of classical PCA when 

it comes to the biophysical relevance of the patterns of variance it can extract, concerns the 

projection of the dataset variance onto linear, orthogonal axes. The variances produced by 

protein functional dynamics may not be optimally captured in terms of linear correlations.
34,35

 

Notwithstanding this, the application of PCA to biological structural data, also known as 

essential dynamics analysis (EDA),
35

 has been used to extract key modes of protein motion. The 

results of these analyses have been coherent with data from other analytical techniques, and have 

thus contributed to the elucidation of the functional mechanics of the studied proteins.
36–42
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Classically, in PCA of protein structural data, the variances of the Cartesian coordinates of a 

macromolecular system are analyzed (hereafter referred to as cPCA).
36–38

 Other bases of data, 

such as the fluctuations of the dihedral angles of the protein backbone may also be transformed 

with PCA. This transformation is less straightforward due to the circular nature of dihedral 

angles, in which e.g. angles of -179º and 179º, that are similar in physical space, produce an 

arithmetic mean of 0º, instead of ±180º. Nevertheless, through the representation of each dihedral 

angle as sine/cosine pairs, dihedral angle principal component analysis (dPCA) as introduced by 

Stock et al., has demonstrated that it can capture the potential energy surfaces visited in peptide 

folding simulations with intriguing detail.
39–42

 The challenges inherent to the use of dihedral 

angles in PCA have also been tackled in an alternative approach, employing principal component 

geodesics, named GeoPCA.
43

 

 

Materials & Methods 

LBP Surface Generation. The LBP surface shown in Figure 1 was generated with HOLLOW,
14

 

which traces the interior surface of the LBP by filling it with spheres on a 0.5 Å grid. The 

resulting surface and the PPARγ structure (PDB ID: 2zk0, chain A) were visualized with 

PyMOL.
15

  

Dataset Characteristics. The PPARγ structural data was obtained from the PDB_REDO 

databank.
44,45

 which contains optimized and consistently refined entries from the RCSB Protein 

Data Bank.
46

 The X-ray crystallographic data of PPARγ available in the public domain, per 

January 2017, comprise 155 entries, of which 134 were deemed suitable for the initial analyses, 

excluding point mutants, structures whose data were recorded at temperatures other than 100±10 
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K and structures without deposited structure factors. The latter exclusion criterion arose from the 

choice to obtain the X-ray crystallographic data from the PDB_REDO server.
44,45

 In the suitable 

structures the asymmetric units contain PPARγ as a dimer, either with another PPARγ protein or 

with RXRα. There are also examples of PPARγ tetramers and monomers. Some of the structures 

also include oligopeptides derived from the nuclear receptor-binding motifs of coactivator 

proteins (typically from SRC-1). 

Utilized Software and Data Treatment. The PDB-files were parsed with the functions 

implemented in the Python software package ProDy (ver. 1.6.1),
47

 which was used for the cPCA 

calculations. ProDy was also used for producing a PDB-file of the reference structure (apo-

PPARγ, PDB ID: 2zk0, chain A) accompanied by an ordered pseudo-trajectory of the structural 

ensemble in DCD-format. The Visual Molecular Dynamics (VMD) software (ver. 1.9.1)
48

 was 

used to parameterize the protein topology (CHARMM36 version, July 2012)
49

 in the reference 

structure PDB-file and to output this structure in PSF-format. The PSF- and DCD-files were then 

used as inputs for the software Carma (ver. 1.4),
50,51

 which performed the dPCA. The numerical 

results were read back into Python and plotted using standard Python plotting functions 

(matplotlib, ver. 1.3.1). An in-house program written in Python was used to coordinate the 

efforts of the above mentioned softwares (Python, ver. 2.7.6).
52

 This code is available from the 

corresponding author upon request. 

Analyzed Residue Selection. For the principal component analyses, the heavy atoms of the 

protein backbone (N, Cα, C, O) of the PPARγ LBD (residues 207 – 477) were used. The 

mobilities of parts of the P-loop (residues 239 - 244), most of the Ω-loop (residues 259 – 275) 

and the three C-terminal residues (475 - 477) are high and only resolved in part of the dataset. 

The residue selection was thus limited to the residues resolved in most of the structures, in order 
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to achieve consistent occupancies in the analyzed datasets. The minimum occupancies of the 

residue selections used in the described PCAs were: 76.4% for the calculations of Figures 3A 

and 3B, 95.3% for the calculations in Figures 3C and 3D and 95.4% for all calculations on the 

final dataset (PPARγ:PPARγ homodimers, vide infra).  

Plotting and Structure Mapping. The plots of the distributions obtained from PCA display the 

analyzed structures projected along PC1 - 2. In these plots, each structure (datapoint) is coloured 

according to structural parameters or parameters relating to their bound ligand(s), as explained in 

the legend of each plot. Herein, only the first two principal components (PC1-2) from the 

analyses are shown and discussed, as these represent the largest variances in the dataset and since 

trends similar to those observed along PC1-2 (vide infra) were not found among the higher PCs. 

dPC1-2 were also the only dPCs that displayed multipeak distributions. Finally, aiming to 

provide a useful reference for other workers, the distributions along PC1/PC2, from the cPCA 

and dPCA of the final dataset, are presented with numbered datapoints in Figure S1 in the 

Supporting Information. The PDB IDs corresponding to these numbers are listed in Table S2. 

 

Results & Discussion 

Initial Analyses of the Dataset.  Initially, the entire dataset was analyzed (237 PPARγ structures 

from 134 entries). As can be seen in Figure 3A, a projection of these structures onto the first two 

principal components of the cPCA (cPC1 and cPC2), distinguishes two large clusters. These two 

clusters correspond to the two general conformers of PPARγ, commonly observed by X-ray 

crystallographic analysis. The most pronounced structural difference between these conformers, 

often referred to as type A and type B chains, lies in the observed position of helix 12. In the type 
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A chains (Figure 3A, left cluster), helix 12 is located in the canonical active position,
53

 covering 

one of the entrances to the LBP and positioned roughly orthogonally to helix 3 (Figure 1). In the 

type B chains (Figure 3A, right cluster), helix 12 is retracted towards the groove between helix 3 

and helix 11, to a position that is roughly parallel to helix 3 (Figure S2 in the Supporting 

Information). cPC1 and cPC2 explain 75.9% and 5.2% of the dataset variance, respectively 

(cPC1 - 5, 87.2%). The dPCA provides less distinction between these two types of chains (Figure 

3B), a result which likely reflects the large numerical magnitude of the variance between type A 

and type B chains in the positional data (Cartesian coordinates), compared to that in the dihedral 

angle data. 

The two homodimeric structures of apo-PPARγ (PDB IDs: 1prg and 2zk0) included in 

this analysis both present type A and type B chains. The origin of the type B chains, which are 

frequently more poorly resolved in the crystals than the type A chains, have received little 

detailed treatment in the literature of the published X-ray structures, and their relative position of 

helix 12 has earned them a status as “inactive”. In this context, a solution NMR study of apo-

PPARγ by Johnson et al. observed two distinct amide N-H chemical shifts for Tyr473.
22

 Several 

NMR studies have found that a large number of crosspeaks missing from the spectra of apo-

PPARγ, are partially to fully restored upon addition of a ligand.
8,22,23,54

 These findings attest to 

apo-PPARγ being a highly mobile structure in solution, whose conformational population is 

focused upon ligand binding. Both the larger conformational freedom of helix 12 in apo-PPARγ, 

as well as its two main conformers were recently been reproduced by MD simulations.
32
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86 of the 110 structures containing PPARγ homodimers display type B chains, which 

could suggest that the observation of a type B chain in the crystal phase stems from  the presence 

of type B chain-like structures in the conformational ensemble of PPARγ in complex with a 

given ligand.
55

 However, as suggested by Johnson et al., the observation of two distinct 

conformations of helix 12 in the crystal phase, may also owe to a specific stabilization of these 

two conformers by the crystal packing.
22

 Which is the dominant of these effects is unclear, 

particularly as helix 12 itself is involved as a lattice contact in the crystal packing of the PPARγ 

homodimeric structures. Interestingly, in these structures, helix 12 of the type B chains is 

positioned roughly in the coactivator groove of the type A chains. In summary, a more complete 

understanding of the role of PPARγ conformers similar to the type B chains requires further 

study. This, in combination with the inconsistent ligand occupancy of the type B chains, 

encouraged us to focus our analyses on the type A chains. 
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  (A)                (B) 

      

  (C)                (D) 

Figure 3. Top: cPCA (A) and dPCA (B) of all PPARγ structures in the dataset coloured 

according to their eventual dimeric partners or cocrystallized peptides. Bottom: cPCA (C) and 

dPCA (D) of all type A chains in the dataset coloured according to their crystallographic space 

groups. 
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The crystal environment, may exert a significant influence on the structural data, that in turn may 

skew a comparative analysis of the same protein across crystals.
56–58

 Factors related to the 

crystallization conditions, including the presence of salts, surfactants or other additives in the 

crystallization buffers, endogenous ligands from protein expression systems, as well as the often 

recombinant nature of the PPARγ LBD itself, all influence the crystal packing. Aiming to 

evaluate the dependence of the structural data on these parameters, the structures of the PPARγ 

type A chains were projected onto their first two principal components and coloured according to 

their crystallographic space groups. As can be seen in Figures 3C and 3D, the crystal packing 

impacts on the structural data and the tightest cluster observed along cPC1 and cPC2 is 

reasonably well explained by its members having crystallized in the C 1 2 1 space group. cPC1 

also provides some separation of the structures in the space groups P 1 21 1 and P 21 21 21. cPC1 

and cPC2 explain 21.1% and 12.3% of the dataset variance, respectively (cPC1 - 5, 53.5%). The 

dPCA also expresses correlations between the distributions of the structures and their 

crystallographic space groups, but provides less separation, except in the case of the structures in 

the C 1 2 1 space group. On the other hand, the tendency for a protein-ligand complex towards a 

given crystal packing and -symmetry is also influenced by the stabilization of the protein by the 

ligand. Consequently, the correlation between the observed distributions of the holo-PPARγ 

structures and their respective crystallographic space groups, may not be void of information 

regarding the effects of their bound ligands. Nonetheless, due to the general heterogeneity of the 

dataset with regards to their crystallographic space groups, dimeric partners and the presence of 

coactivator peptides, the remaining analyses focus on the type A chains of the PPARγ 

homodimeric structures (86/149 structures with type A chains), nearly all of which crystallized in 

the C 1 2 1 space group. This dataset had an average resolution of 2.32 Å (1.77 – 2.90 Å).  
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Analyses of a Focused Dataset. With this dataset, the distribution along dPC1 – 2 provided a 

clearer separation of the structures than that along cPC1 - 2. By colouring the three main clusters 

seen in Figure 4B and transferring these colours back to the distribution along cPC1 – 2 (Figure 

4A), it becomes apparent that cPC2 indeed differentiates the structures in a manner similar to 

dPC1, although less distinctively. While only the distributions along dPC1 – 2 display obvious 

multipeak behaviour, the distributions along cPC1, cPC2, dPC1 and dPC2 are all non-normal, 

indicating that they are not likely to have been drawn from random populations. This, in turn, 

supports the notion that they contain relevant structural information (Figure S3 in the Supporting 

Information for more details on normality testing).
59,60

 cPC1 and cPC2 explain 20.2% and 14.2% 

of the dataset variance, respectively (cPC1 - 5, 52.8%). 

Structurally, cPC1 describes a correlated lifting motion of the end of helix 11 and of helix 

12. Motions of smaller magnitudes that are anti-correlated to this lifting motion are seen in end 

of helix 6 and beginning of helix 7, as well as in helix 2’ (Supporting Movies 1 - 3). cPC2, on the 

other hand, describes flipping and stretching motions in the end of helix 11 and of the loop 

preceding helix 12, as well as in the loop between helix 6 and helix 7. It also describes a wagging 

motion of helix 2’ that is orthogonal to the motion described by cPC1 (Supporting Movies 4 – 6). 

In summary, cPC1 – 2 appear to capture differences between the analyzed structures that involve 

regions of PPARγ known to be important for its transcriptional regulation. 
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(A)                             (B) 

Figure 4. cPCA (A) and dPCA (B) of type A chain PPARγ homodimeric structures coloured 

according to the clusters observed in the dPCA (B). 

  



19 

 

While the variances defining the principal components derived from atomic (Cartesian) 

coordinates may be projected back onto the structure for visualization, the sine/cosine 

transformations of the dPCA preclude this approach. To investigate the angular basis for the 

clustering observed in dPCA of the final dataset, the angular dispersion of each phi/psi-angle of 

the backbone was calculated (Figure S4 in the Supporting Information). The six dihedral angles 

displaying highest angular dispersion (Figure S5) form three pairs of coupled dihedral motion; 

φLys358/ψLys358 located in the loop between helices 6 and 7, φSer394/ψGly395 located in the loop 

between helices 8 and 9 and φTyr473/ψLys474 located in helix 12. Of these, φLys358/ψLys358 separates 

Cluster 1 from Clusters 2 and 3, by a near 180° flip of the carbonyl group of Lys358. This in turn 

impacts on the orientation of its alkylamine side chain, but not that of its neighbour, Arg357 (as 

is discussed below). Furthermore, it appears to significantly shift the position of the pyrrolidine 

ring of Pro359 and to have a minor effect on the position of the phenyl ring of Phe360 (Figures 

S6 and S7). φTyr473/ψLys474 separates Clusters 1 and 2 from Cluster 3 by a flip of the Tyr473 

carbonyl. Most notably this leads to a reorientation of the end of helix 12, observed in the 

distinct positions of the Lys474 carbonyls of the members of Cluster 3, compared to Clusters 1 

and 2. The orientations of the Lys474 carbonyl groups also vary more between the members of 

Cluster 3, than among the members of Clusters 1 and 2. This, in turn, appears to change the 

protrusion of the aminoalkyl side chain of Lys474. Such apparent effects were not observed with 

respect to Ile472 or Glu471, the latter of which is involved in the binding of coactivator 

peptides
10,61,62

 (Figures S8 and S9). Finally, φSer394/ψGly395 separates out a subcluster (Cluster 4) 

from Cluster 3, which with respect to the two previous described dihedral pairs, is part of Cluster 

3. The dihedral pair φSer394/ψGly395 is located in close proximity to the heterodimer interface and 

may thus influence the interaction of PPARγ with RXR. The neighbouring residue Asp396 
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shows two distinct orientations and appears to form an ionic bond to Arg443 on helix 10 in one 

of these. With respect to the cluster defined by φSer394/ψGly395, the most prominent orientations of 

Asp396/Arg443 among its members breaks this contact, and allows Arg443 to point in the 

direction of the C-terminal end of helix 12 (Figures S10 and S11). In summary, the dPCA 

clusters observed in the final dataset describe structural changes in areas that are plausibly 

related to PPARγ transcriptional regulation. 

The dihedral pair containing the angle showing the largest angular dispersion, ψLys358, 

merits further discussion. Lys358 is flanked by Arg357, Pro359 and Phe360. Of these, Arg357 

can form an ionic bridge to Glu460, located near the end of helix 11. This ionic network also 

involves Glu276 on helix 3. This interaction pattern is present in many of the type A chains, but 

not in the type B chains (e.g. in apo-PPARγ, see Figure S12 in the Supporting Information). 

Furthermore, the stabilization of the end of helix 11 is observed  to vary markedly between apo-

PPARγ and complexes with partial agonists and full agonists.
11,63

 These observations led us to 

hypothesize that the strength of the ionic interaction between Arg357 and Glu460 could correlate 

with the stability of helix 12. Indeed others have found that this ionic network is critical to the 

low transactivation capacity of the human PPARγ mutant Phe360Leu, found in persons suffering 

from familial partial lipodystrophy.
64

 Therefore, the correlation of the distances between Arg357 

and Glu460, and the distributions along PC1 – 2 was evaluated. For this, the Cα-carbons were 

preferred over the O- and N-atoms that directly take part in the ionic interaction, as the former 

are more likely to reflect the effects on the PPARγ backbone and on the overall compactness of 

this part of the PPARy structure. In this context it is interesting to note that the opening of the 

LBP circumscribed by the start of helix 3, helix 2’, the helix 6 -7 loop and the end of helix 11 has 

been indicated as a possible ligand exit pathway in MD simulations.
65

 Consequently, a short 
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distance between Arg357 and Glu460 may be regarded as corresponding to a tightly bound 

ligand. As seen in Figure 5A, the distribution observed along cPC1 correlated moderately with 

the Arg357 - Glu460 distance, placing the structures with the shortest distances towards the right 

side of the distribution (cPC1 > 0).  In the dPCA, on the other hand, this trend was not observed 

and all three clusters are populated by structures with both long and short Arg357 – Glu460 

distances (Figure 6B). 
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(A)                     (B) 

Figure 5. cPCA (A) and dPCA (B) of type A chain PPARγ homodimeric structures coloured 

according to the distance between the Cα-carbons of Arg357, in the loop between helix 6 and 7, 

and Glu460, near the end of helix 11. The distance measurement from PDB ID: 4xta was 

excluded based on the apparent structural inconsistencies in the modelling of the proline ring of 

Pro359. 
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X-ray crystallographic studies of PPARγ in complex with ligands have been instrumental to the 

rational development of new PPARγ modulators. These studies have identified residues that 

appear to play key roles in the stabilization of the receptor and in particular, of helix 12. To 

further investigate the relationship of the trend in the Arg357 – Glu460 distance, observed in 

along cPC1 (Figure 5A), with a stabilization of helix 12 by the ligand(s) of each structure, we 

evaluated the correlation of the distributions with presence of an interaction between the ligand 

and Tyr473, and the observed B-factors of Tyr473. In the first pair of plots from the cPCA and 

dPCA (Figure 6, A and B), the points are coloured according to whether the ligands display an 

interaction with Tyr473 (defined as an interatomic distance of < 3.5 Å between the nearest heavy 

atoms). In the second pair of plots (Figure 6, C and D), the B-factors of the heavy atoms of 

Tyr473 are used to colour the datapoint belonging to each structure. The combination of an 

interaction with Tyr473, with a lowering of its B-factors, may be interpreted as a stabilizing 

interaction. It is however prudent to consider that a ligand may stabilize helix 12 in a position 

that is not conducive to transcriptional induction. In the cPCA plots (Figure 6, A and C), a 

stabilization of Tyr473 weakly correlates to cPC1, and to some degree with cPC2. This can be 

seen as a higher degree of structures with ligands interacting with Tyr473 towards the lower right 

side of the largest cluster in Figure 6A (cPC1 > 0), and as a decrease in the B-factors of Tyr473 

when moving from the upper left corner (cPC1 < 0, cPC2 > 0) to the lower right corner (cPC1 > 

0, cPC2 < 0) of Figure 6C. Interestingly, as several of the structures that display lower B-factors, 

located towards the lower right side of the largest cluster in Figure 6C, do not contain ligands 

that appear to contact Tyr473, it is possible that the distribution along cPC1 also reflects an 

allosteric stabilization of helix 12. Similar correlations were not evident in the dPCA (Figure 6, 

B and D), although the leftmost cluster in Figure 6D (Cluster 1) appears to contain the highest 
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number of structures in which Tyr473 displays low B-factors. Similar trends with regards to 

ligand interactions with residues in the β-sheet region (residues 247 – 249 and 338 – 349) and 

their observed B-factors, were not observed (Figure S13 in the Supporting Information). It is 

however worthy of note that several of the larger ligands whose head groups bind in the vicinity 

of helix 12, have tail moieties that extend into the Ω-pocket and contact the β-sheet region. This 

double interaction pattern could make the latter analysis described here less tractable. In 

summary, the general similarity of cPCA distribution coloured by the B-factors of Tyr473 with 

that coloured by the Arg357 – Glu460 distance is an indications that the cPCA is capable of 

separating the structures based on parameters related to the stability of helix 12. 
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                                   (A)                       (B)

 

(C)                   (D) 

 

Figure 6. Top: cPCA (A) and dPCA (B) of type A chain PPARγ homodimeric structures 

coloured according to the close contact of their ligands with Tyr473 (3.5 Å cutoff). Bottom: 

cPCA (C) and dPCA (D) of type A chain PPARγ homodimeric structures coloured according to 

the B-factors of Tyr473 in helix 12.  
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To investigate in more detail the distribution of the homodimeric type A chains along PC1 – 2, 

the structures were coloured according to a chemical classification of their ligands. Due to the 

structural diversity of the ligands in the analyzed structures, only 7 classes containing ≥ 3 

structures can be distinguished. In the cPCA (Figure 7A), the location of the glitazones and 

glitazars towards the right of the distribution is coherent with an increasing stability of helix 12 

(cPC > 0). Furthermore, there are distinguishable clusterings of the 2-aryloxy-3-arylpropanoic 

acids, serotonin and its metabolites and the amorfrutins. The fatty acids and their metabolites 

form a slighly more elongated cluster (Figure 7) It is also noteworthy that the covalently bound 

ligands (many of which are oxo-fatty acids) are located fairly close to each other (points with red 

outlines). The last class is made up of ligands that are not structurally related, but that induce a 

higher maximum transcriptional activation of chimeric PPARγ reporter assays than rosiglitazone 

(1, Figure 2). Interestingly, the members of this class are not located further to the right than the 

glitazones/glitazars. This is an indication that the distribution along cPC1 may not linearly reflect 

the transcriptional activation by a given ligand. In the dPCA, the 2-aryloxy-3-arylpropanoic acids 

exclusively occupy the rightmost cluster (Cluster 3), while none of the covalently bound ligands 

nor any of the fatty acids are present in this cluster. The amorfrutins, on the other hand, all reside 

in Cluster 1. The glitazones/glitazars do not display any particular preference for any of the 

clusters. 

In the same vein, the structures were coloured according to the available data on the 

ability of their cocrystallized ligands to inhibit the Cdk5-mediated phosphorylation of Ser245 

(Ser273), denoted “pSer245” in the plots. The ligands reported to inhibit this phosphorylation are 

represented both among classical (full) agonists, as well as among the partial agonists/non-

agonists (Table S1 in the Supporting Information). While the distributions along cPC1 and cPC2 
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did not provide a distinct clustering of the structures with these ligands (Figure 7, B and C), there 

is however a tendency for cPC1 to separate the structures of non-TZD ligands that inhibit Ser245 

(Ser273) phosphorylation (yellow points) from the TZD ligands with the same ability (orange 

points). No such trend was observed in the dPCA (Figure 4B). 

 Having established that the distribution of the structures along cPC1 is to some degree 

related to the stability of helix 12, we evaluated whether cPC1 could reflect the transcriptional 

activation by each ligand compared to rosiglitazone (1). As a measure of this, we used the 

reported percentage of maximal activation by each ligand in chimeric PPARγ reporter assays 

(commonly GAL4-PPARγ hybrid acting on luciferase reporter constructs), including only series 

of ligands assayed in the same report. As seen in Figure 8, several of the ligand series display 

internally coherent increases in transcriptional activation relative to their distribution along 

cPC1, the series with the amorfrutins being a notable exception. It also apparent that the levels of 

transcriptional activation are not comparable between each ligand series. As mentioned above in 

connection with the positions along cPC1 of agonists that are stronger transcriptional activators 

than rosiglitazone (1), this finding supports the notion that cPC1 does not directly reflect the 

capacity of the PPARγ-ligand complexes for transcriptional activation.   
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          (A)                   (B) 

       

              (C)                 (D) 

Figure 7. Top: cPCA (A) and dPCA (B) of type A chain PPARγ homodimeric structures 

coloured according to a chemical classification of their ligands. Bottom: cPCA (C) and dPCA 

(D) of type A chain PPARγ homodimeric structures coloured according to the reported ability of 

the ligands to inhibit phosphorylation of Ser245 (Ser273) (Table S1 in the Supporting 

Information). 
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Figure 8. Evaluation of the correlation between the transcriptional activation of the ligands 

compared to rosiglitazone (1, Figure 2) and their position in the distribution along cPC1.  
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Conclusions 

Principal component analyses of the atomic coordinates and dihedral angles of PPARγ in 

complex with ligands have been demonstrated. The results from the cPCA indicate trends among 

the structures in the final dataset that correlate with a stabilization of helix 12 and with the 

distance between Arg357 and Glu460. In drug discovery programs targeting PPARγ, the focus 

has shifted from of helix 12-stabilizing classical agonists, to partial- and non-agonistic ligands 

with alternative binding modes and more desirable pharmacological properties. Our findings 

should be useful to medicinal- and computational chemists working towards the development of 

new such ligands. In this vein, the structures in which helix 12 is not found to be stabilized by 

the ligand, possibly neither directly nor allosterically, may be used as starting points for virtual 

screening campaigns or MD studies aiming to elucidate structure-activity relationships in the 

PPARγ Ω-pocket. Furthermore, dPCA of type A chains from PPARγ homodimers produces an 

apparent tripart clustering of the holo-PPARγ structures when projected along dPC1 - 2. To 

determine the physical relevance of the observed clustering, in the context of the conformational 

spaces populated by PPARγ in the crystal phase and in solution, the application of dPCA to 

mesoscale datasets of PPARγ structural dynamics, as observed with NMR or MD, would be of 

immediate interest. 
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