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ABSTRACT  

Background: Even relatively low serum bilirubin concentrations can cause 

neurodevelopmental impairment in extremely low birth weight (EBWL) in-

fants, while sequelae from hyperbilirubinemia in late preterm and term in-

fants are rare and occur only at very high serum bilirubin levels. Photo-

therapy is the current treatment of choice.  

Objective: To present an update on the most important issues involved in 

phototherapy for jaundiced infants. 

Results: Light absorption by bilirubin in the skin transforms the native Z,Z-

bilirubin to conformational photoisomers Z,E-bilirubin and E,Z-bilirubin and 

structural photoisomers E,Z-lumirubin and E,E-lumirubin. Formation and 

excretion of Z,E-bilirubin and E,Z-lumirubin are both important routes of 

elimination of bilirubin through bile and urine, although the precise contri-

butions of the various photoisomers to the overall elimination of bilirubin 

are unknown.  It appears that the photoisomers of bilirubin are predomi-

nantly formed in the plasma, and the rate of formation is affected by the 

hemoglobin concentration. Phototherapy lights with an emission spectrum 

of 460-490 nm provide the most efficient bilirubin-reducing light. LEDs 

should replace fluorescent tubes and halogen spotlights as the preferred 

light sources. Recent data raise concerns that sick ELBW infants under 

prolonged phototherapy may have an increased risk of death, though sur-
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vivors may benefit from reduced rates of neurodevelopmental impairment. 

Comparison of the efficacy of cycled vs. continuous phototherapy has giv-

en divergent results. Changing the infant’s position does not increase the 

efficacy of phototherapy.  

Conclusion: During the last decade we have made progress in our under-

standing of how and where phototherapy works and in its practical applica-

tions. 

 

  

Abbreviations: 

 PT: phototherapy; ELBW: extremely low birth weight; TSB: total serum bil-

irubin: LEDs: light emission diodes 
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INTRODUCTION 

Jaundice occurs in more than 80% of late preterm and term infants [1,2].  

Although in these infants it is generally harmless, on rare occasions the 

presence of significant hyperbilirubinemia can lead to acute bilirubin en-

cephalopathy.  With extreme elevations of total serum bilirubin (TSB), dep-

osition of unconjugated bilirubin in the central nervous system can cause 

chronic bilirubin encephalopathy (kernicterus) [3]. Conversely, in extremely 

low birth weight (ELBW) infants, chronic bilirubin encephalopathy can be 

seen even at low and modestly elevated TSB [4-8]. Phototherapy (PT) is 

the current treatment of choice due to its efficacy and apparent safety, alt-

hough recent reports of an increase in mortality in  sick ELBW infants  ex-

posed to prolonged PT have raised questions about its safety [6,7]. Ex-

change transfusions are rarely needed. 

     The efficacy of phototherapy depends on the irradiance and spectrum 

of the light, the exposed body surface area, and the TSB level [9]. Other 

things being equal, the efficacy is also inversely related to birth weight, as 

with increasing weight the ratio of body surface area to weight decreases 

[10]. 

  

OBJECTIVE 
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We aim to provide an update on the most important issues involving photo-

therapy for jaundiced neonates.  

 

FORMATION OF PHOTOISOMERS OF BILIRUBIN 

Light absorption by bilirubin in the skin transforms the native toxic non-

polar Z,Z-bilirubin to more polar and water soluble photoisomers of biliru-

bin: the configurational bilirubin isomers Z,E-bilirubin and E,Z-bilirubin, and 

the structural bilirubin isomers E,Z-lumirubin and E,E-lumirubin. The pho-

toisomers of bilirubin can be excreted in bile and urine without conjugation. 

     Formation and excretion of both Z,E-bilirubin and E,Z-lumirubin are im-

portant routes for elimination of bilirubin in neonates [11] and thus account 

for the therapeutic effect of PT measured as a decline in TSB, although the 

precise contributions of the various photoisomers to the overall elimination 

of bilirubin are unknown.  

     Lumirubin formation is irreversible [12], the plasma half-life of E,Z-

lumirubin is relatively short (about 2 h), and lumirubins have limited accu-

mulation in the plasma [13]. The concentrations of lumirubins in bile and 

urine are far higher than the concentrations of configurational isomers [14]. 

The half-life in plasma of E,Z-lumirubin is inversely, but weakly, correlated 

with gestational age [15].  
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     Conversely, formation of configurational photoisomers of bilirubin is re-

versible [12]. Z,E-bilirubin is excreted slowly, its plasma half-life is about 14 

hours and it accumulates in plasma [16]. If there is sufficient irradiance, the 

formation of Z,E-bilirubin is rapid and within about 4 h of the initiation of 

phototherapy an equilibrium is reached between Z,E and Z,Z-bilirubin [17-

19], at which time Z,E bilirubin constitutes about 25% of TSB [18,19]. It has 

been speculated that this early accumulation of Z,E photobilirubins (before 

there is a measurable decline in the TSB) may be “brain protective”, but 

this attractive hypothesis needs verification [18,19]. 

     Isolated photobilirubins formed in vitro may be biologically inert and 

non-toxic to neuroblastoma cells [20]. This finding is consistent with chem-

ical and biological arguments, which posit that photoisomers of bilirubin 

must be less toxic than the predominant native Z,Z-bilirubin. In addition to 

their lack of cellular toxicity, their more polar characteristics make them 

less prone to cross biological membranes. However, as recently reviewed 

by Hansen [21], the sum of extant evidence at this time is still equivocal 

and in vivo experimental proof is lacking. 

 

CHANGING THE POSITION OF THE INFANT, AND WHERE PHOTO-

THERAPY ACTS 
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Phototherapy in newborns was described as a result of Sister Ward’s initial 

observation that jaundiced skin blanched when exposed to light [22], and   

changing the infant’s position every second to third hour during PT has 

been a routine in many neonatal departments [23,24]. By turning the infant 

from supine to prone and vice versa, jaundiced skin that has not been ex-

posed to light will now receive such exposure.  

     Recently, in a randomized controlled trial, Donneborg et al. [24] demon-

strated that intensive phototherapy (a) reduced the transcutaneous biliru-

bin level (i.e. the bilirubin in the skin and subcutaneous tissues) by 65% in 

2.5 hours and (b) reduced the TSB by 50% in 24 hours. But rotating the 

infant from prone to supine or supine to prone (thus exposing unblanched 

skin to the light) had no effect on the rate at which the bilirubin level was 

lowered.  These observations confirm the data from 3 studies (25-27) all of 

which demonstrated that turning the infant does not improve the efficacy  

of  phototherapy. Thus, while phototherapy certainly decreases the biliru-

bin in the skin and subcutaneous tissues, this effect cannot be responsible 

for the ability of phototherapy to decrease the bilirubin in the plasma. 

     Furthermore, Mreihil et al. [18,19] have shown that photoisomers are 

detectable in the blood within 15 minutes after starting phototherapy, too 

soon to be accounted for by isomerization in the skin. All of this evidence 
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strongly suggests that the primary site responsible for the bilirubin-lowering 

effect of phototherapy is the blood in the superficial capillaries in the skin. 

 

CYCLED (INTERMITTENT) PHOTOTHERAPY  

 

   Studies of cycled (intermittent) versus continuous phototherapy, expos-

ing the same body surface to light, have produced conflicting results [28-

36], although the majority of these studies show no benefit (or harm) of cy-

cling [32-35]. Most recently, in preliminary studies of ELBW infants, cycled 

and continuous phototherapy were equally effective in preventing elevation 

of TSB levels [37].  

      The questions regarding the difference in TSB reduction related to 

turning the infant, or using phototherapy in a cycled fashion, are not identi-

cal. Turning the infant has to do with alternately exposing jaundiced (un-

bleached) skin to phototherapy, while cycled phototherapy simply has to 

do with the intermittent (as opposed to continuous) use in an on-off se-

quence. 

  

INFLUENCE OF THE HEMOGLOBIN CONCENTRATION ON THE EF-

FECT OF PHOTOTHERAPY 
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As the transformation of Z,Z-bilirubin predominantly takes place intravas-

cularly, hemoglobin will compete with bilirubin for the absorption of light 

[38,39].  An increase in hemoglobin concentration decreased the percent-

age of Z,E-bilirubin in plasma in the first hour of PT but this effect disap-

peared  later [19]. Theoretically, the hemoglobin concentration should have 

an effect on the percentage of Z,E-bilirubin until an equilibrium between 

Z,E-bilirubin and Z,Z-bilirubin is achieved [19]. The formation of lumirubins 

might be influenced by the hemoglobin concentration throughout the light 

exposure period, as an equilibrium between E,Z-lumirubin, Z,Z-bilirubin, 

and E,Z-bilirubin does not occur.  

  

 OPTIMAL EMISSION SPECTRUM OF THE LIGHT 

Blue light with an emission spectrum matching the absorption spectrum of 

serum bilirubin with a peak emission around 460 nm is used worldwide, as 

it is considered to be the most effective [40]. Based on a skin optical mod-

el, Agati et al. [41] suggested that the greatest bilirubin reducing effect in 

neonates would be turquoise light in the spectral range 495±10 nm. There-

fore, Ebbesen et al. [42] compared the bilirubin reducing effect in preterm 

infants of turquoise vs. blue fluorescent light with equal irradiance and with 

peak emissions at 490 nm and 452 nm, respectively.  The turquoise light 

was more effective than the blue light indicated by the decrease of TSB. 
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As fluorescent tubes now are being replaced by narrow-spectrum light 

emitting diodes (LEDs), Ebbesen et al. [43] compared turquoise LED light 

centered at 497 nm vs. blue LED light centered at 459 nm, also with equal 

irradiance at the infant’s body surface in late preterm and term infants. The 

two light sources were equally effective in reducing TSB. Using a skin opti-

cal model, Lamola et al. [38] recently predicted that LED light centered at 

475-480 nm should be most effective in the treatment of neonates. These 

data suggest that the most effective light source will have an emission 

spectrum centered in the wavelength range of 475-490 nm [43], although 

clinical proof of this assumption is needed. 

  

LIGHT SOURCES 

 In a multidirectional set up with blue fluorescent light Tan [44] appeared to 

find a “saturation point” at approximately 30 µW/cm2/nm, above which 

there was no further decrease of TSB with increasing irradiance. But if lu-

mirubins are the isomers responsible for the bilirubin-lowering effect of 

phototherapy, it is doubtful that such a “saturation point” exists. The con-

version of Z,Z-bilirubin to lumirubins is irreversible and follows first order 

kinetics, and lumirubins are rapidly cleared in urine and bile [13,15]. Thus, 

neither an equilibrium nor a “saturation point” is ever reached, as has been 

demonstrated by Vandborg et al. [10]  
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     The American Academy of Pediatrics defined intensive phototherapy as 

a light source in the spectrum range of 430-490 nm with an irradiance of at 

least 30 µW/cm2/nm, exposing as much of the infant’s surface area as 

possible (i.e. maximizing spectral power (irradiance x body surface area)) 

[40]. 

     LEDs are replacing fluorescent tubes and halogen spotlights as light 

sources. LEDs have several advantages: a) their emission spectrum is 

narrower, i.e. they emit less unnecessary (and potentially harmful) wave-

lengths, b) they produce less heat so that the distance from the device to 

the infant can be reduced and the irradiance increased, c) their irradiance 

decreases very slowly over time, providing an extended lifetime of the light 

source and d) they do not cause significant transepidermal water loss, be-

cause they emit less infrared radiation [45]. In two meta-analyses it was 

concluded that LEDs and non-LED lights are equally effective in reducing 

TSB [46,47]. Late preterm and term infants have been exposed to LED 

blue light from above with irradiances as high as 120 µW/cm2/nm [48]. The 

overhead PT can be combined with PT from below in the form of fiberoptic 

blankets, and several studies have shown that such double PT is more ef-

fective in reducing TSB than a single light [49,50]. Using blue LED light 

from above, Vandborg et al. [10] found a linear relationship between in-
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creasing light irradiances from 20- to 55 µW/cm2 /nm and a decrease in 

TSB.  

     Because high intensity treatment with LEDs is now being used world-

wide in treatment of late preterm and term infants with very high TSB, rap-

idly increasing TSB, or signs of acute bilirubin encephalopathy, it is in-

creasingly important to remain alert to the possibilities of unidentified short- 

and long- term adverse effects.  

  

 

AGGRESSIVE VS. CONSERVATIVE PHOTOTHERAPY IN ELBW  

INFANTS 

Neurologic sequelae have been seen in sick ELBW infants exposed to low 

or modestly elevated bilirubin levels [4-8]. In a large, multicenter random-

ized study Morris et al. [6] compared aggressive with conservative PT in 

ELBW neonates. Aggressive therapy was defined as PT starting at a TSB 

>85 µmol/L, while in the conservative group PT was started at TSB >119 

µmol/L. In both groups light irradiances were in the 15-40 µW/cm2/nm 

range and were not by design different between the study groups. Infants 

in the aggressive group were exposed to phototherapy for an average of 

88 ± 48 h and those in the conservative group for 35 ± 31 h. At 18-22 

months, in sick infants of birth weight 500-750 g, there was a 5% reduction 
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in the rate of severe neurodevelopmental impairment (one or more of 

blindness, deafness, moderate or severe cerebral palsy, mental develop-

ment index scores below 70) in the aggressively treated group, but a 5% 

increase in mortality in that group compared with  the conservatively treat-

ed group. A Bayesian analysis of these data showed that among ventilated 

infants of 500-750 g birth weight, there was a 99% posterior probability of 

increased mortality and a similar probability of a decrease in profound neu-

rodevelopmental impairment in those infants who survived [7]. 

     The increased neurodevelopment impairment of the conservatively 

treated (vs. the aggressively treated) group could be explained by a direct 

neurotoxic effect of the higher concentrations of unbound bilirubin sus-

tained over time. The higher mortality in the aggressively treated infants 

with birth weight  500-750 g and respiratory failure might be caused by ox-

idative damage due to a lower antioxidant level pursuant to lower bilirubin 

concentrations [51], or by oxidative stress produced by the PT [52-54].  

These tiny, sick infants have thin gelatinous skin and greater body surface 

area in relation to weight (compared with larger infants) and therefore ab-

sorb more energy and heat from the PT. PT is also associated with chang-

es in blood flow [55,56], and it is possible that the more prolonged periods 

of exposure to PT seen in the aggressively treated group exposed those 

infants to greater circulatory variation or instability. The results of this study 
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raise important and, as yet, unanswered questions about how we should 

be delivering PT to these ELBW infants. 

     An unexpected result in this study was a significant increase in the rate 

of bronchopulmonary dysplasia in the conservatively treated group [7]. As 

we have no biological explanation for this outcome, it seems most likely, as 

suggested by the authors, that it is simply a chance occurrence. 

  

ADVERSE EFFECTS 

Short-time adverse effects 

As mentioned above, an increase in mortality has been described in sick, 

ELBW infants (birth weights 500 –750 g) who were receiving “aggressive” 

PT [6,7].  

     PT causes oxidative stress (52] and the total oxidative status in the 

plasma of neonates was increased during phototherapy [53,54]. Further-

more, PT caused changes in the erythrocyte membranes, although their 

mechanical properties were unchanged [57]. 

      PT produced DNA damage in peripheral lymphocytes [53,54,58,59], 

though these changes were transient [58].  

     TNF-α, IL-1β, and IL-8 were increased in the serum of light-exposed 

infants [60], and production of IL-2 and IL-10 was increased while IL-1β 
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decreased in peripheral blood mononuclear cells from light exposed term 

neonates [61].    

     Due to the low heat generation by LEDs, hypothermia has been ob-

served in naked term neonates [62]. On the other hand, hyperthermia has 

been described at very high light irradiances of 60-120 µW/cm2/nm [48]. 

Thus, temperature monitoring is advised in all infants undergoing PT. 

 

Long-time adverse effects 

The potential impact of phototherapy on melanocytic naevus count, a risk 

factor for subsequent development of cutaneus melanoma, has been in-

vestigated with inconsistent results (63), but there is no evidence that neo-

natal phototherapy is a risk factor for skin cancer [64]. 

      Most recently, Wickremasinghe et al. [65] found a small but significant 

association between neonatal phototherapy and the rates of overall can-

cer, myeloid leukemia and kidney cancer during the first year of life. How-

ever, in another study with a longer follow-up period, the same set of au-

thors failed to find a significant association [66]. The different results might 

be due to residual confounding or different length of the follow-up [65]. Alt-

hough these findings represent association and not causation, there are 

several criteria that do satisfy the possibility of causality [67]. While the 

overall results of the epidemiologic studies relating neonatal phototherapy 
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to cancer risk are divergent [66], there remains the possibility that photo-

therapy is not harmless and, as noted by the authors, “avoiding unneces-

sary phototherapy may be prudent.” [66] 

     Finally, Swedish studies have suggested that phototherapy may be as-

sociated with diabetes type 1 [68] and childhood asthma [69].      
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