A Stable Non-interleaving Early Operational Semantics for the
Pi-calculus (author version)*

Thomas Hildebrandt!, Christian Johansen?**, and Hakon Normann!

! IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark.
2 Dept. Informatics, University of Oslo, P.O.Box 1080 Blindern, 0316 Oslo, Norway.

Abstract. We give the first non-interleaving early operational semantics for the pi-calculus which generalizes
the standard interleaving semantics and unfolds to the stable model of prime event structures. Our starting
point is the non-interleaving semantics given for CCS by Mukund and Nielsen, where the so-called structural
(prefixing or subject) causality and events are defined from a notion of locations derived from the syntactic
structure of the process terms. The semantics is conservatively extended with a notion of extruder histories,
from which we infer the so-called link (name or object) causality and events introduced by the dynamic com-
munication topology of the pi-calculus. We prove that the semantics generalises both the standard interleaving
early semantics for the pi-calculus and the the non-interleaving semantics for CCS. In particular, it gives rise
to a labelled asynchronous transition system unfolding to prime event structures.

1 Introduction

The pi-calculus [16] is the seminal model for concurrent mobile processes, representing mobility by the fresh creation
and communication of channel names. The standard operational semantics adopt an interleaving approach to
concurrency, that represent concurrent execution of actions as their arbitrary sequential interleaving and employ
basic transition systems or automata as semantic models. However, the ability to distinguish concurrency from
interleaving has several practical applications, including dealing with state-space explosion in model-checking [g],
supporting action refinement [25] and reversibility (e.g. [24114]).

To give a non-interleaving semantics one needs to identify the underlying events and their concurrency and
causality relationships, and from that define a notion of non-interleaving observations, e.g. in terms of a bisimulation
or testing equivalence [21125] or employ a non-interleaving model (e.g. [T926/TI2315]), in which the concurrency can
be represented explicitly. The dynamic communication topology of the pi-calculus makes it non-trivial to identify
what accounts for causality, and indeed several possible approaches have been proposed. As described in [3], the
source of the complexity is that the causal dependencies fall in two categories: The structural (prefixing or subject)
dependencies, coming from the static process structure, i.e. action prefixing and parallel composition, and the link
(name or object) dependencies, which come from the dynamic creation of communication links by scope extrusion
of local names.

There has been quite some work on providing non-interleaving semantics for pi-calculus [IT7UT3IBIZ2TI7IOITTITO]
and process algebras in general (e.g. [4l6]).

Among the most recent work, a stable operational semantics for reversible, deterministic and finite pi-calculus
processes is provided in [IT]. Stability means that every event depends on a unique history of past events, which
supports reversibility of computations. A denotational semantics for the pi-calculus is provided in [9] as extended
event structures. The semantics discards the property of stability to avoid the complexity and increase in number of
events arising from achieving unique dependency histories. Both papers consider the late style pi-calculus semantics,
where names received from the environment are kept abstract and thus distinct from any previously extruded names.
We found no prior work providing a stable, non-interleaving, early style structural operational semantics generalising
the standard early operational semantics of the pi-calculus. In the early style semantics, names received from the
environment are concrete, and thus may be identical to a previously extruded name. Consequently, the choice
between late and early style semantics influences the link causality.

Our key contribution is to provide the first stable, non-interleaving operational early semantics for the pi-calculus
that generalises the standard, non-interleaving early operational semantics for the pi-calculus [22]. Our starting
point is the work of Mukund and Nielsen [I8], which defines a structural operational non-interleaving semantics for

* IThis is an author’s produced version, and not the final one published by Springer, which can be found at
http://dx.doi.org/10.1007/978-3-319-53733-7_3

** The second author (with previous name Cristian Prisacariu) was partially supported by the project IoTSec/— Security in IoT

for Smart Grids, with number 248113/070 part of the IKTPLUSS| program funded by the Norwegian Research Council.

http://dx.doi.org/10.1007/978-3-319-53733-7_3
https://www.iotsec.no/
http://www.forskningsradet.no/prognett-iktpluss/Home_page/1254002053513
http://www.forskningsradet.no

2 T. Hildebrandt, C. Johansen, H. Normann

Milner’s CCS [15] as (labelled) asynchronous transition systems using locations to identify the structural causality,
which is the only type of causality in CCS. We generalize the approach of [I8] to the pi-calculus by, in additon to the
structural locations, employing a notion of extruder histories, recording the location of both name extrusions and
name inputs. Together, the locations and extruder histories allow to identify the underlying events of transitions
and both their structural and link causal dependencies.

Overview of paper: In Sec. 2 we generalise the structural operational early semantics for the pi-calculus with
locations for transitions, extrusion histories and link dependencies. In Sec. Bl we show that the semantics yields
a standard labelled asynchronous transitions system, which is known to unfold to labelled prime event structures
[26]. We conclude and comment on future work in Sec. @l Proof details can be found in the companion technical

report [20] A

2 Causal Early Operational Semantics

In this section we give an early operational semantics of the pi-calculus recording both the structural and link causal
dependencies between events.
We first recall the syntax for the pi-calculus with guarded choice.

Definition 2.1. The set of pi-calculus processes Proc, ranged over by P,Q, are defined using an infinite set of
names N, ranged over by m,m, by the grammar:

Pu=XYoiBi| (wn)P | PllQ [P [0, pu=an)|an)

For a process P we denote by n(P) the set of all names appearing in P, by bn(P) the bound names, i.e. those n
that are restricted by (vn) or by the input action a(n), and by fn(P) = n(P)\bn(P) the free names. We assume all
bound names are unique in a process and identify processes up to a-conversion.

In Fig. M we give the causal early semantics for pi-processes with transitions of the form (H,H) + P =
u

(F/, H')F P'. Following the approach in [I8] we have added location labels u under the transitions, identifying the
location of the prefixes in the term contributing to a transition and allowing to infer structural (CCS-like) events
and causalities. To capture the finer notion of events and link causalities of the pi-calculus, we enrich the semantics
with extrusion histories (H, H) to the left of the turnstile, which record the location in the parallel process of the
prefixes extruding respectively receiving some name.

Formally, we define the set of prefix locations as follows.

Definition 2.2. Let £ = {0,1}* x Proc x Proc be the set of prefix locations and write s[P][P'] for elements in
L.

The location labels u of transitions in Fig. [l are then of the following forms:

1. s[P][P'] € L, if a is an input or output action,
2. s(0so[Po][BY], Ls1[P1][P1]), for sis;[P][P{] € £ and i € {0,1}, if a = 7.

In words, a prefix location s[P][P’] provides a path s € {0,1}* to an input/output prefixed subterm P through
the abstract syntax tree, with 0 and 1 referring to the left respectively right branch of a parallel composition, and P’
being the residual sub-term after the transition. The location labels of the second form provide two prefix locations,
sisi[B][P!] € L for i € {0, 1}, identifying the output and input prefix in a communication.

Note that to keep locations of action prefixes fixed, we cannot assume the usual structural congruence making
parallel composition commutative. Therefore we must use two rules (PAR;), i € {0, 1} for parallel composition and
two rules (coMm;), @ € {0, 1} for communication.

From the locations we define our first notion of structural events and independence, which correspond to the
events and independence defined for CCS in [I8]. We will later show how to take into account the additional link
causal relationships of the pi-calculus.

Definition 2.3. Let Bv = {(a,u) | (H,H) - P = (ﬁl,ﬂ') F P’} be the structural events. For e = (o, u) € Ev
define Loc(e) C{0,1}*, the locations where e occurs, by

Loo(e) = {{s} if u=s[P][P]
{ss0,ss1} if u = s(so[Po][Fg], s1[P1][P]).-

3 The report employs a slightly different and more complex, but equivalent exposition of the semantic rules.

A Stable Non-interleaving Early Operational Semantics for the Pi-calculus (author version) 3

u = [a(m).P][P'] P’ = P[m:=n]

(1N)
(H, H) Fa(m).P 22 (H, H U {(n,u)}) P’
u=[a(n).P][P]

(ouT)
(7, H) Fa(n).P = (T, H) FP

(ﬁ7H)%P—>(H H)+P n#a
(OPEN)

(H,H) (vn)P % (H U {(n,u)},H') -P'

(H,H)FP % (H ,H') P b n(w)

(SCOPE)

(H,)}—P||'P—> (H H)FP'
(REP)

H,H) }—!P—>(H,£)}—P’

—

(H,H)Fo;.P, % (H ,H')FP'
“ (sum)

(H,H) FSicr . = (H ,H') FP'

H' ={(n,u) | o =a(n),n € dom([j]H), P, =P

V0,13 < du: ()¢ HUH} j=1-"
(W[H, [(H) -P; = (H;, H}) -P; bnn(p) =0
- (PAR;)

(H,H)FPo|| Py (H\GH) Ui(H; UH"), (H\[{|H) UH}) Py || Pf

H" ={(n,v) |
3(n,l) € ['](FUH)'Z|{01}<U} bnn(P) =0, j=1-i

(G, ()t PP 22 (L 1) BRI, 1) Py 22 (5, 1Y) P
(coMy)

(H,H) =R || P —1>> (H,HUjH") -(vb)(P5 || PY)

Fig. 1. Early operational semantics enriched with action labels o ::= 7 | @(n) | a(x), locations u (under the arrows) and
extruder histories (H,H) (to the left of the turnstile). We identify processes up-to a-equivalence, assume unique bound
names and that for all rules, if (H,H) - P = (H',H') + P’ is the conclusion, we require dom(H U H) N bn(P) = 0. For

rules (coM;) and (PAR;), consider ¢ € {0, 1}, and let b = dom(H;)\dom([i|H) and allow writing (v§)P and (v{n})P for P
and (vn)P respectively. The blue text shows what is added to the standard semantics.

4 T. Hildebrandt, C. Johansen, H. Normann

Define an independence relation on locations I; € {0,1}* x {0,1}* by
(s0,81) € L iff s; = sis),

where i € {0,1} and s, so, s1, 8y, s € {0,1}*. Define the structural independence relation on events Iy C Ev X Ev

by:
(e,e') € Iy iff Vs € Loc(e),Vs" € Loc(e') : (s,s") € I.

As the following example shows, I, misses the link dependencies.

Ezample 2.4. Consider the process (vn)(a(n)||n(x)). According to Iy the two events e = (a(n),0[a(n)][0]) and
em = (n(m), 1[n(x)][0]) are independent, for any m # n, but the semantics does not allow the input event to happen
until after the name n has been extruded, i.e. there is an objective dependency between the extruding output and
the input.

The next example illustrates that both names in an input action m(n) may have been previously extruded,
giving rise to a conjunctive causality.

Ezample 2.5. Consider the process P = (vn)(vm)(@(n) || (b(m) || m(x))). From (§,0) - P we can have two extruding
outputs on channels a and b of the names n respectively m, after which the output history would contain two pairs
H = {(n,0[a(n)][0]), (m, 10[b(m)][0])}. We now may have an input action with label m(n) that depends on both
extruders.

The final example shows that a name may have several parallel extruders, giving rise to a disjunctive causality.

Ezample 2.6. Consider the process (vn)(@(n) || (b(n) || n(x))), which has two parallel extruders a(n) and b(n). We
have the three events e, = (@(n),0[a(n)][0]), e; = (b(n), 10[b(n)][0]), and e,, = (n(m), 11[n(x)][0]). The event e,, for
the input action is independent of both output events, but it cannot happen before at least one has happened.

The extrusion histories to the left of the turnstile helps us take into account the link causalites.

Definition 2.7. A history H C H = N x L is a relation between names and prefiz locations, and an extrusion
history (H, H) is a pair of histories, referred to as the output history and input history respectively. For a history
H and i € {0,1} let iH denote the history {(n,iu)|(n,u) € H}. Let [i|]H = {(n,u) | (n,iv) € H} and [i|H =
{(n,iu) | (n,iu) € H} and [§]H = H. Finally, let dom(H) ={n | (n,u) € H}, i.e. the set of names recorded in the
history.

Based on the examples above, we refine our transitions and events to also capture link dependencies by enriching
the transitions with (deterministic) histories D recording the link dependencies for each non-output name in «; i.e.
the past extruding events it depends on, if it was extruded in the past.

Definition 2.8. Define the causal early semantics as the transitions (H, H) - P —D> (H I,ﬂ') - P if (H H) -
P (@, H)F P and

u

1. DCH,
2. (n,) (n I') € D implies | = '
3. dom(D) = dom(H) N no(a),

where no(a) is the non output names of «, defined by no(m(m)) = {n}\{m}, no(n(m)) = {n,m} and no(r) = 0.

The link dependencies D allow us to define our final notion of events and independence relation for the causal
semantics.

Definition 2.9. Let the set of events Ev be defined by:

Ev = {((a,u),D) € B x # | (H,H) - P = (H H')F P’}

u7

Two events e; = (e}, D;) € Ev for e} = (ai,u;) and i € {0,1} are independent, written egley, iff

eolse) A In:Di(n) =u1_; foric{0,1}.

A Stable Non-interleaving Early Operational Semantics for the Pi-calculus (author version) 5

Returning to Ex. [Z6] the event e, = (n(m),11[n(x)][0]) will be split in two events (e, (rn,0[@(n)][0])) and
(en, (n,10[b(n)][0])) corresponding to transitions between the same two states.

We now briefly explain the rules in Fig. [l

The (IN) rule is the standard early input rule, substituting a received name n for the parameter m in P, yielding
P’ = P[m := n], and enriched by recording the prefix location u = [a(m).P][P’] on the transition. Moreover, the
rule takes care to add the name n to the input history H.

The (ouT) rule is the standard output rule, except the prefix location u = [@(n).P][P’] is added to the transition.

The (OPEN) is the standard open rule, except the prefix location is recorded for the extruded name n in the
output history and not in the label, as is custom for the standard pi-semantics. Avoiding name extrusions in the
labels ensures unique labels for events in Sec. [, and only one (com) rule.

The (SCOPE), (REP) and (SUM) rules are the standard rules, just extended to retain locations and histories.

If we do not consider the locations and histories, the (PAR;) rules, for ¢ € {0,1} are the standard left and right
parallel rules, except that we extract a possibly extruded name from the histories by the set b = dom(ﬁi—)\dom([{]ﬁ)
and not from the action label «. In the location, we record in which branch of the parallel composition the action
happened by prefixing with ¢ € {0,1}. The extruders recorded in the set T in the rules (PAR); captures exactly
the parallel extrusion illustrated in Ex. Specifically, an output prefix is added to the output extruder history, if
the name has been extruded in the other parallel component and not previously extruded (recorded in the output
history) nor received (recorded in the input history) by the current component. We illustrate the use of the input
history in the example below.

Ezample 2.10. Consider the process P = (vn)(a(n) || b(x).¢(n)). Starting with empty histories, we have the two
transitions

After the first transition we may both be receiving n or a name m # n:

({(n, 0fa(m)][O])},0) F P, — 22—,

M (. 0fa(m)) 0]} {(n. 1)) (O] ()

_ b(m) _ _
({(n, 00D} 0) - Py s ({(m, 0fa(m] 0} {(m, D] (0 2(m))
In the first case, a subsequent output of n on channel ¢ will not be an extrusion, since it happens after the input of
n from the environment. In the second case it will, since this output is independent of the extrusion in transition 1.

Finally, if we again ignore histories and locations, the (COM;) rules are the usual communication rules combined
with the close rule, closing a scope previously opened by an (OPEN) rule. We combine the communication and close
rules by abuse of notation, writing (v)) P for P in the (coM;) rules, thereby combining the standard (CLOSE) rule
for communication of a bound name with that of communication of a free name. The location label is made into a
pair, recording the two prefixes taking part in the communication. Looking at the histories, we discard any changes
to histories formed in each component and only forwards input histories from the sender to the receiver via the set
H”.

We end by stating the result that the standard interleaving, early operational semantics can be obtained from
the rules in Fig.] by ignoring the locations and extract only the scope extrusion from the histories.

Proposition 2.11. For a pi-process P, the transition system reachable from P wusing the standard interleaving,
early operational semantics is bisimilar to the transition system (Procp, (0,0) = P, A, —), where

— Procp = {(H,H) P | (0,0) = P —* (H,H) + P'}, and —* is the transitive closure of the transition relation
in Fig. [

— X € A is defined by the grammar X ::= (vn)m(n) | m(n) | m(n) | 7

- (H,H)- P a—/>7, (Fl,ﬂ’) FPif(HH) P> (F/,ﬂl) + P’ for some H, H, H, H, u, and o/ = (vn)a if
dom(ﬁl)\dom(ﬁ) ={n} and o/ = « otherwise.

6 T. Hildebrandt, C. Johansen, H. Normann
3 A stable non-interleaving early operational semantics

In this section we show that the operational semantics, events and independence relation given for the pi-calculus in
the previous section yields a labelled asynchronoud] transition system (LATS) as defined in [TI23I26/T2] and recalled
in the following definition.

Definition 3.1. A labelled asynchronous transition system (LATS) is a tuple (S,i, E,I,T,lab, A) such that

— (S,i,E,T) is a transition system with S the set of states and i an initial state, E a set of events, and
T C S x E xS the transition relation;
— lab : E — A is a labelling map from the set of events to the action set A;
— I C FE x FE is an irreflexive, symmetric independence relation, satisfying:
1. eeE = 3s,5'eS: (s,e,8)eT;
2. (s,e,8)ET A (s,e,8"eT = s =5";
3. erlea AN{(s,e1,51),(s,€2,82)} CT = Tsg: {(s1,e2,53),(s2,€1,53)} CT;
4. erlea N{(s,e1,81),(81,€2,83)} CT = Fsa: {(s,e2,52),(s2,e1,83)} CT.

LATS are known to satisfy the stability property, that is, every event depends on a unique set of events, and
unfold to standard labelled prime event structures [26, Ch.7].

Recalling the standard semantics derived in Prop. .11l we define the non-interleaving semantics as a labelled
asynchronous transition system.

Definition 3.2. The semantic rules for the pi-calculus that we gave in Fig. 0 generate a labelled asynchronous
transition system TS (P)= (Procp,(0,0) - P,Evp,I,T,lab, A) for a pi-process P where

(H. L)+ Pe,(H H)FP)eT iff (HH P (H, L)+ P ande=((a,u),D) € Ev,
— Evp={e|(g,e,q) €T}

lab((a,u),D) =q,

a € A is the set of labels generated by the grammar « =:=a(n) | a(n) | T

Theorem 3.3. The transition system given in Definition [T is a labelled asynchronous transition system.

That the semantics in B2 satisfy the first property of Def. Bl follows trivially from the definition. The following
lemma states that the transition system is event deterministic, i.e. that it satisfies property 2. of Def. 3.1l

Lemma 3.4. For any two transitions (H,H) + P —>aD (ﬁ/,ﬂ/) P and (H,H) - P —>aD (F”,ﬂ”) F P then
(H,H')=(H",H") and P' = P".

To prove that the transition system given in Def. satisfies the last two (diamond) properties of a labelled
asynchronous transition system we need some intermediate results, following the approach in [1§].

The following partial function makes precise how a sequence s € {0,1}* identifies a subprocess, called the
component, in a process.

Definition 3.5 (components). Define inductively the partial function
Comp : {0,1}* x Proc — Proc
1. Comp(e, P) = P, when P #!Py and P # (vn)Py (and € is the empty string) 2. Comp(0s, Py || P1) = Comp(s, Po)
3. Comp(1s, Py|| P1) = Comp(s, Py)
4. Comp(s, (vn)P) = Comp(s, P) 5. Comp(s,!P) = Comp(s, P||!P)

Corollary 3.6. For anys,s’ € {0,1}* and any process P, whenever Comp is defined, we have Comp(s, Comp(s’, P)) =
Comp(s's, P).
From any transition we can recover the transition in the immediate component.

4 asynchronous here refers to non-interleaving, not the style of communication.

A Stable Non-interleaving Early Operational Semantics for the Pi-calculus (author version) 7

Lemma 3.7. For s € {¢,0,1} and s’ € {£,0,1}* we have (H,H)+ P —2— (H ,H') - P’ if

ss’ue

(§]H, [5|H) - Comp(s, P) <~ (", H") - Comp(s, P,
where u. is either [P"][P"'] or (0sos([Po][PY], 1s181[P1][P]]), and depending on the case we have the following extra
properties:

1. when s =0 we have o =« and bn(a) € fn(Comp(1, P));

2. when s =1 we have @ = «a and bn(a) € fn(Comp(0, P));

3. when s = € and P = (vi)Py and Py # (vm)P2 for i and m non-empty, we either have (i N n(a) = 0 and
o =a)or(Fben:a=ad) and o/ =a(b) with a ¢ n);

4. when s =€ and P =!P; we have o/ = .

Applying several times Lemma [B7] we can extend s to be a string of location components: s € {0, 1}*. From any
communication transition we can then recover the transitions in the components identified by the location labels.

Lemma 3.8. For location strings s, so, $1,5(,s; € {0,1}* we have

(H.H)F P T (H ,H')F P’
s(0sgs([Po][Pf],1s1s, [P1][Py{])
if
([$:1]H, [s)]H) = Comp(s0sg, P) ﬁ (Fﬂ,ﬂ”) F Comp(s0so, P")
Solfollo
and

([s;]H, [s,]H) = Comp(slsy, P) ﬁ (Fm,ﬂl”) F Comp(slsy, P)
Syl

where s; = s0sp, sp = sls1, and a(n) = a(n) and a(n) = a(n).
Conversely, we can lift a transition from a component.

Lemma 3.9. For s € {€,0,1} we have that

if (ST SH) - Comp(s. P) ——*—s P{

then

(H,H)+ P —— P' with Comp(s, P') = P|
ss'[Po][P§]

and o defined in terms of «, under the following restrictions:

1. fors=0 if bn(a) € fa(Comp(1, P)) and o/ = «;
2. fors=1 if bn(a) € fn(Comp(0, P)) and o/ = «;
3. fors=¢€ and P = (vn)Py if (n € fn(a) and o/ =) or (o« =a(n) and o/ =a(n) and n # a).

Applying several times Lemma [3.9] when the needed restrictions exist, we can extend s to be a string of location
components: s € {0,1}*.

Lemma 3.10. Whenever we have

(01 [01H) - Comp(0, P) — " (T, Hy) - P
s0[Po][F]
and
(. [{JH) - Comp(1, P) —=" s (7, HY) - P},
s1[P1][P]]
fora ¢ dom(ﬁo\ﬁg), then we have the communication
(H,H)+ P T (H ,H')F P’

(0so[Po][Pg],1s1[P1][P]])

with Comp(0, P') = P and Comp(1, P') = P{'. A symmetric case was elided.

8 T. Hildebrandt, C. Johansen, H. Normann

Lemma 3.11. For any process P and a location string s then
1.4 (H,H)FP ﬁ (H . H')F P’ and (s,s') € I, then Comp(s', P) = Comp(s', P'),
S| 1

N T —

2.4 (H H) - P H . ,H') - P and (sso,s') € I; and (ss1,s') € I, then Comp(s',P) =
7L H) ey,) (s50,) € Iy and (s51,5') € I p(s's P)
Comp(s', P’).

We end by noting that the non-interleaving semantics is a conservative extension of the one for CCS given in
[18]. To this end, consider as equivalent to CCS the sub calculus of the pi-calculus obtained by allowing only input
and output prefixes in which the subject and object are the same, i.e. of the form n(n) and 7(n), referred to as the
CCS subset. In this case it is easy to see that the output histories and link dependencies D are always empty and
thus the independence relation and events coincide with the structural independence and events.

Proposition 3.12. For the CCS subset of the pi-calculus, the non-interleaving semantics of Figl is bisimilar to
the non-interleaving semantics for CCS given in [18).

4 Conclusion and Related work

We provided the first stable, non-interleaving operational semantics for the pi-calculus conservatively generalising
the interleaving early operational semantics. The semantics is given as labelled asynchronous transition systems. We
followed and conservatively generalised the approach for CCS in [I§] by capturing the link causalities introduced in
the pi-calculus processes by employing a notion of extrusion histories.

In the companion technical report [20] we have worked out the generalisation to unguarded choice, which
makes the notion of location more complex, as also described in [6]. We are currently working on a more thorough
comparison with the related work [T7TII3IEBI2TIZIOITTIT0], in particular we aim to explore the differences betwen
early and late style non-interleaving semantics. Finally, we work on extending this work to the psi-calculus [2].

References

[y

. M. A. Bednarczyk. Categories of asynchronous systems. PhD thesis, Univ. Sussex, 1988.

. J. Bengtson, M. Johansson, J. Parrow, and B. Victor. Psi-calculi: a framework for mobile processes with nominal data

and logic. Logical Methods in Computer Science, 7(1), 2011.

M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the pi-calculus. In STACS, pages 243-254, 1995.

4. G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. A theory of processes with localities. Formal Asp. Comput.,
6(2):165-200, 1994.

5. N. Busi and R. Gorrieri. A Petri Net Semantics for pi-Calculus. In CONCUR, volume 962 of LNCS, pages 145-159.
Springer, 1995.

6. 1. Castellani. Process algebras with localities. In Handbook of Process Algebra, chapter 15, pages 945-1045. Elsevier,
2001.

7. G. L. Cattani and P. Sewell. Models for Name-Passing Processes: Interleaving and Causal. In LICS, pages 322-333.
IEEE Computer Society, 2000.

8. E. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction using partial order techniques. Int. Journal on
Software Tools for Technology Transfer, 2(3):279-287, 1999.

9. S. Crafa, D. Varacca, and N. Yoshida. Event structure semantics of parallel extrusion in the pi-calculus. In FOSSACS,
volume 7213 of LNCS, pages 225-239. Springer, 2012.

10. I. Cristescu. Operational and denotational semantics for the reversible w- calculus. PhD thesis, Université Paris Diderot
- Paris 7 - Sorbonne Paris Cité, 2015.

11. L. Cristescu, J. Krivine, and D. Varacca. A compositional semantics for the reversible pi-calculus. In ACM/IEEE
Symposium on Logic in Computer Science, LICS, pages 388-397. IEEE Computer Society, 2013.

12. T. T. Hildebrandt. Categorical Models for Concurrency: Independence, Fairness and Dataflow. PhD thesis, University
of Aarhus, Denmark, 1999.

13. L. J. Jagadeesan and R. Jagadeesan. Causality and True Concurrency: A Data-flow Analysis of the Pi-Calculus. In
AMAST, volume 936 of LNCS, pages 277-291. Springer, 1995.

14. I. Lanese, C. A. Mezzina, and J.-B. Stefani. Reversibility in the higher-order pi-calculus. Theoretical Computer Science,
625:25-84, 2016.

15. R. Milner. A Calculus of Communicating Systems, volume 92. Springer-Verlag, 1980.

16. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I-11. Information and Computation, 100(1):1-77,

1992.

[\]

w

17

18.
19.
20.
21.
22.
23.
24.

25.

26.

A Stable Non-interleaving Early Operational Semantics for the Pi-calculus (author version) 9

. U. Montanari and M. Pistore. Concurrent semantics for the pi-calculus. FElectr. Notes Theor. Comput. Sci., 1:411-429,
1995.

M. Mukund and M. Nielsen. CCS, Location and Asynchronous Transition Systems. In FSTTCS, volume 652 of LNCS,
pages 328-341. Springer, 1992.

M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains. In Semantics of Concurrent Compu-
tation, volume 70 of LNCS, pages 266-284. Springer, 1979.

H. Normann, C. Johansen, and T. Hildebrandt. Non-interleaving operational semantics for the pi-calculus (long version).
Technical Report 453, Dept. Info., University of Oslo, 2016. http://heim.ifi.uio.no/~cristi/papers/TR453.pdf.

D. Sangiorgi. Locality and interleaving semantics in calculi for mobile processes. Theor. Comput. Sci., 155(1):39-83,
1996.

D. Sangiorgi and D. Walker. The w-Calculus: a Theory of Mobile Processes. Cambridge Univ. Press, 2001.

M. W. Shields. Concurrent machines. Computer Journal, 28(5):449-465, 1985.

I. Ulidowski, I. Phillips, and S. Yuen. Concurrency and reversibility. In Reversible Computation: 6th International
Conference, RC 2014, Kyoto, Japan, July 10-11, 2014. Proceedings, volume 8507 of LNCS, pages 1-14. Springer, 2014.
R. van Glabbeek and U. Goltz. Refinement of actions and equivalence notions for concurrent systems. Acta Informatica,
37(4/5):229-327, 2001.

G. Winskel and M. Nielsen. Models for concurrency. In S. Abramski, D. Gabbay, and T. Maibaum, editors, Handbook
of Logic in Computer Science, pages 1-148. Oxford, 1995.

http://heim.ifi.uio.no/~cristi/papers/TR453.pdf

	A Stable Non-interleaving Early Operational Semantics for the Pi-calculus (author version)

