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Abstract

The advent of satelitte observations revolutionalized Oceanography, an it has unveiled a turbulent ocean
circulation dominated by mesoscale eddies (10-100km). Eddies represent an important aspect of the flow,
and understanding them is essential to advance our perception of numerous ocean processes. Gaining
knowledge of eddies generation mechanisms, evolution and impacts has been at the heart oceanographic
research during the last decades. In this study we aim to investigate the characteristics of eddies in
the Subarctic seas, and also to examine one of their generations mechanisms, baroclinic instability.
Baroclinic instability has greatly aided our knowlegde of atmospheric eddies, and is also believed to the
key advocator for eddies in the Ocean. We put forth the hypothesis that it can be held resposible for the
large eddy acticity in th Subartctic Seas. To adress this issue we perform a linear stability analysis, that
provide characteristics of the most unstable wave growing at the expense of an unstable background
flow. The unstable wave’s spatial and time scales are compared to the estimates of a simpler model
(Eady) of baroclinic instability. An eddy census is conducted from a ten year model simulation. Coherent
vortices are extracted from the flow and tracked in time. Characteristics such as size, vorticity, lifetimes
are recorded and analyzed. The scales of the linear waves and nonlinearly evolving eddies from the
detection scheme are then compared. We do not anticipate that local baroclinic instability can account for
all aspects of a fully turbulent field, but to what a degree it appears to be active in the initial stages of the
eddies, is still possible to be traced.
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Chapter 1

Introduction

“ The ocean is literally a sea full of eddies ”
Robinson, 1984

1.1 Macroturbulence in the ocean

Our current understanding of the ocean has de-
veloped immensely during the last decades1. The
emergence of satellite altimetry in the early 1990s
marked the onset of a revolution in oceanography
(Le Traon, 2013). Technical advances now provided
the means of retrieving highly accurate large scale
ocean observations from space. Global maps of
sea surface height measurements yielded several
new discoveries. It was revealed that the ocean
circulation was infested by mesoscale variability.
An abundance of mesoscale features, on the scale
of 10-100 km, was observed throughout the world’s
ocean. This served to confirm similar, scattered
findings from regional field programs in the 1970s
(Chelton et al., 2011).

In 1909, Helland and Hansen described ’some puz-
zling waves’ observed in hydrography from the
Norwegian Sea. On the basis of their findings, they
stated that: "The knowledge of the exact nature
and causes of these ’waves’ and their movement
would, in our opinion, be of signal importance to
Oceanography, and as far as we can see, it is one
of its greatest problems that most urgently calls for
a solution." It was not until 50 years later, ocean

observational analysis gave proof that large parts
of the ocean was populated by such waves, or ed-
dies. Up until the early 1960s the general ocean
circulation was perceived to be relatively steady,
dominated by mean currents that are subject to
little variability. Except for the known changes in
surface currents brought by the variations in wind
forcing, the deeper layers were believed to entail
slow, and sluggish movements. This perception was
later disproved (Crease, 1962). Knowledge about
atmospheric weather systems, was well established
at the time. However, the idea that the ocean pos-
sessed dynamically equivalent features, had still
not surfaced. Just like the atmosphere, the ocean
was later found to be filled with cyclones, anticy-
clones (low and high pressure systems) and fronts.
Weather occurs in the ocean as well, and it should
prove to be an essential ingredient in energy and
tracer budgets. In fact, mesoscale eddies account
for the peak of the oceanic kinetic energy spectrum
(Chelton et al., 2007). Thus, eddies impacts the
general circulation fundamentally.

The abundance of eddies in the ocean, brings with it
a splendor of consequences on both large and small

1This introductory section is influenced by chapter 4 in Barton (1997)



scales. The ocean acts according to equilibrium
balances, and the eddies contribute to uphold these
balances through the supply of essential dynamical
and material fluxes (Mcwilliams, 2008). The ed-
dies transport momentum, and also large bodies of
water, and consequently assist in the distribution of
watermass characteristics (Gent et al., 1995). Fluid
can get trapped inside the rotating core of the eddy.
It may then be carried far from its generation region,
and supply distant ambient waters with other char-
acteristics (Wunsch, 1999). A considerable amount
of heat and salt fluxes arise as consequences of
eddies, making them carriers of so called active
tracers(tracers that can affect the ocean’s density).
Additionally, eddies impact distributions of passive
tracers, such as nutrients and vorticity (Griffies,
2004). Generally, the eddies aid in stirring these
scalars properties (Griffies, 2004), but they also
act to mix them. The latter, acts to reduce spatial
gradients. Rather than a reversible transport, the
mixing irreversibly homogenize tracer distributions.

Studying ocean eddies is a challenging task for sev-
eral reasons. The largest limiting factor in the ob-
servational sampling of the eddy field. Though dy-
namically analogous, the atmospheric and oceanic
weather systems are comprised by eddies of in-
compatible characteristics. The length scale of
atmospheric eddies occurs at what is called the syn-
optic scale, which is on the order of 100-1000km
in the atmosphere (Røed 2012). On the other hand,
oceanic eddies occur on the order of 10-100 km.
From a dynamical perspective, this could rightfully
have been referred to as the ocean’s synoptic scale
(Røed 2012), in that it signifies motions governed by
a low Rossby number2 However, the storms in the
ocean have rather been given the term mesoscale
eddies, reflecting their spatial scales (Robinson
et al., 1988).

Consequently, a prerequisite for investigating
oceanic eddies is high resolution spatial data. Addi-
tionally, ocean eddies have substantially longer life-
times than their atmospheric counterparts. The at-
mospheric storms have timescales of days to a week,

while oceanic storms may evolve on timescales of
weeks to months or to the most extreme, even
years. So, ocean eddies are easier to capture from
a timescale perspective, however, this relies on the
capacity of the available observational technology.

Figure 1.1: An illustration of two dynamical coun-
terparts of vastly different spatial scales. An at-
mospheric low-pressure system is located west of
Ireland, and the ’zoomed-in’ area depict an oceanic
cyclonic(counter-clockwise rotating) eddy, detected
by a satelitte image of ocean temperature (Barton,
1997).

Such datase ts have not been attainable until re-
cent years. Prior to the 50s and 60s, it had been
nearly impossible to assemble a sufficient amount
of measurements at the ocean surface, yet alone
getting qualitative measurements below the surface.
Through observations gathered by newly invented
floats (John Swallow), deep currents were unveiled
which possessed velocities comparable to moderate
surface-currents. Following these findings, new
regional investigations were conducted at the be-

2The Rossby number, U/fL, compares the flow’s acceleration with the Coriolis force, and represents the ratio between
the Earth’s rotation time, 1/f , and the flow’s advective time scale L/U . It is a measure of the validity of the geostrophic
approximation (Holton, 1973).
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ginning of the 1970s and onward, amongst them
the Mid Ocean Dynamics Experiment (MODE;
1971-1974), POLYGON (1970), and the Marginal
Ice Zone Experiment (MIZEX; 1980s). A new
era of exploration began, and the 70s have often
been accredited as the "decade of the mecoscale"
(LaTraon 2013). These investigations started to
uncover the truth about the smaller scale ocean, and
its turbulent nature.

In both the atmosphere and ocean, the large scales
are strongly affected by the earth’s rotation and a
stable stratification. A balanced mean state in the
horizontal is maintained between the earth’s rota-
tion and horizontal pressure gradients (geostrophic
balance). Additionally, the vertical pressure gradi-
ent is balanced by the gravitational force (hydro-
static balance). These balances combined yield
a thermal wind flow, which express the vertical
shear of geostrophic currents. These motions are
to a large degree confined to the horizontal plane,
with much weaker vertical velocities. Thereby, the
’turbulence’ at these scales is not isotropic as in 3D
turbulence, but rather quasi-two dimensional. This
kind of turbulence has been called geostrophic tur-
bulence, due to the flow’s near geostrophic balance,
and macroturbulence signifying the large spatial
extent of the flow (Vallis, 2006).

The slowly-varying large-scale ocean currents are
often called the background ocean circulation. This
background flow is often unstable to perturbations,
and when instability occurs, smaller scale features
spontaneously appear. At first, these features might
initially evolve linearly in isolation, but as they
grow, nonlinear effects facilitate interactions on a
large range of scales (Vallis, 2006). Fluid parcels

are merged, stretched, strained and rotated. From
the chaotic and unpredictable nature of turbulence,
one then might anticipate a disorganized flow field
with no structure. However, an essential charac-
teristic of this so-called ’macroturbulence’ is the
presence of rotating coherent vortices (Mcwilliams
1990). Studies have found such features, sponta-
neously emerging in all environments dominated by
rotating, advective dynamics (Mcwilliams, 1990;
Venaille et al., 2011). The distribution of vortic-
ity(rotation) and strain in such flows is not arbitrary.
Subtly, the flow organizes into coherent vortices
with concentrated vorticity and energy, enclosed
by regions of strain. In an early study of coherent
vorticies McWilliams (1990) expresses: "One can
marvel at this manifestation of ’order within dis-
order’ and be fascinated both by the beauty of the
patterns and by the challenge such a phenomenon
presents to dynamical theory." Since the vortices
make up an essential part of the flow, it is highly
desirable to characterize their properties, and in
some ways predict their generation mechanisms,
evolution and impacts. A characterization of eddies
is truly a demanding and challenging task. Gaining
knowledge of eddies’ life cycles and impacts has
been at the heart oceanographic research during the
last decades. Still, there is no theory accounting
for their structure and statistics that is universally
accepted (Venaille et al., 2011). Some of the ques-
tions that are still subject to intense research, and
important to answer is: What advocates the exis-
tence of these features? What characteristics do the
eddies take on as they evolve in time? What sets
their equilibrated length scales, magnitudes and
structures?

1.2 Baroclinic instability

Baroclinic instability represent a fundamental pro-
cess in nature that applies for fluid motions affected
by the earth’s rotation. Horizontal density gradients
act to set up a vertically sheared flow supported
by tilted density surfaces (isopycnals). The na-
ture’s respond to these gradients is to attempt to
reduce them. Via baroclinic instability, some of

the potential energy stored in the tilted isopycnals
is extracted, and converted it into kinetic energy
which further feeds the process (Vallis 2006). The
most familiar example of this process is probably
the atmospheric jetstreams, highly susceptible to
this kind of instability. Heating at low latitudes,
and cooling at high latitudes, make isotherms slant
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upwards toward the poles. This temperature dif-
ference induce a vertically sheared zonal flow, in
thermal wind balance, which is the source for the
jetstream. Eddies arise from the instability of the
mean flow, and by transpoting heat poleward, they
serve to diminish the equator-to-pole temperature
gradients which otherwise would be very steep.

The theory of baroclinic instability has been in-
dispensable for our understanding of eddies in the
atmosphere and has also been suggested by many
to be the primary underlying process for the pro-
duction of the oceanic eddies (Gill et al., 1974;
Pedlosky, 1982). This assumption is related to
the amount of available kinetic energy compared
to available potential energy. Gill et al. (1974)
observed that locations of high eddy activity often
occured where there were steep isopycnal slopes.
Based on an energy analysis, they showed that the
amount of available potential energy (APE) stored
in the tilted isopycnals, exceeds the amount of ki-
netic energy available in the large-scale circulation
by about a factor of 1000. They thereby argued that
most oceanic eddies likely originate from baroclinic
instability.

A common approach for investigating this claim
is to compare characteristic space and time scales
of baroclinic instability with actual observations or
from model ’observations’ (Smith, 2007; Tulloch
et al., 2011). A way to obtain these properties is
through linear baroclinic instability theory. If the
properties from the linear predictions are found
comparable to the observations, they can be used
to characterize the observed field. GGS also com-
puted growth rates from idealized linear stability
analysis, and found them crudely close to the actual
observed rates. Other studies have found a correla-
tion between turbulent timescales, and growthrates
provided by linear theory (Wunsch and Stammer,
1997; Chelton et al., 2007). A similar relationship
between length scales of a fully nonlinear field and
linear predictions have not been as successful.

Figure 1.2: Global distribution of the Rossby
deformation radius. Reproduced by Chelton’s
data from 1998 (data available at http://www-
po.coas.oregonstate.edu/research/po/research/rossby_radius/).

Idealized models of baroclinic instability predict
eddy length scales near the Rossby deformation
radius,Ld. In the simplest model, known as the
Eady model (Eady, 1949), Ld is the lengthscale of
the fastest growing unstable wave. Hence, this is
perceived as the canonical horizontal lengthscale
for mesoscale features. This lengthscale signifies
the competing effects of stratification and rotation,
and is the scale where these two forces become
commensurable (Thorpe, 2005). It varies consider-
ably with latitude, and also is highly dependent on
the fluid depth. Figure 1.2 show the Ld computed
from a global climatological atlas, provided by
(Chelton et al., 1998).

Assessing the relationship between observed eddy
scales and Ld has been a focus of numerous studies
(Wunsch and Stammer, 1997; Stammer et al., 2002;
Le Traon et al., 1990; Le Traon and Minster, 1993).
LaTraon et al. (1990) and Stammer and Boning
(1992), reported strong geographical variations in
eddy spatial scales from satelitte observations, and
tied this to the variations in the Ld. They suggested
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a linear relationship between the two lengthscales.
Stammer(1997) found that zonally averaged eddy
scales were larger than the Ld, but still linearly
related. Prior to this, LaTraon (1993) had observed
that eddy scales dropped by a factor of two, and Ld
by a factor of 4, toward higher latitudes.

It is not obvious that the predictions from linear
theory should be correlated with the length scales
characterizing the nonlinear eddy field. Several
studies have been inconclusive about the issue (Ve-
naille et al., 2011, Vollmer and Eden 2013), and
observations often deviate substantially from the
linear predictions. As the turbulent interactions start
to occur, the field evolves and the initial characteris-
tics are modified. Eddy sizes seem most often to be
larger than Ld, and the linear relationship is found
by zonal averages, which neglects the details in the
geographical distribution.

An important issue is the question of how the sys-
tem’s inherent energy is transferred across different
length-scales3. The spectrum of sizes is bounded
between two extremes. The flow will experience
forcing at some larger scale, which sets the up-
per bound. In the ocean, the dominant large-scale
forcing is supported by the sun and wind injecting
heat and motion respectively into the upper layers,
and by tides affecting entire water columns. Con-
sequently, the system is continuously replenished
with energy. The lower end of the size-spectrum, is
set by the scales where molecular viscosity eventu-
ally kicks in to dissipate the energy into heat.

If one assume that energy is perpetually introduced
at large scales, how then is an equilibrium attained?
Kolmogorov showed that in 3D turbulence, there
is a continous energy flux from larger to smaller
scales. The general picture granted by 3D tur-
bulence is a largescale flow which is unstable to
smaller scale eddies. The eddies grow, and breaks
up into succesively smaller eddies. The kinetic
energy is thereby carried downscale, up until the
eddies get affected by viscocity and dissipate into
heat (Vallis 2006).

Processes on these scales are not effected by rota-
tion, and thereby do not entail the balanced states
exhibited on much larger scales (McWilliams 2008).
2D turbulence theory has also served as a platform
for studying the evolution of energyflux, due to its
analogue to geostrophic turbulence.
Figure 1.3 illustrates the classical view of energy
transfer in 2D, similar in geostrophic turbulence
(Vallis 2006)

Figure 1.3: The ’dual’ cacade of energy in
geostrophical turbulence.

In figure 1.3, baroclinic energy is assumed supplied
by large scale forcings (solar heating, tidal motions,
winds), and energy transverses down toward Ld
(denoted in the figure as the invers wavenumber,
λ−1). At scales of about Ld, energy is transferred
into the barotropic mode by eddies, and from there
it cascades upscale, aided by nonlinear interactions
occuring across scales. Nonlinearity becomes im-
portant as soon as the wave grows to an amplitude
which cannot be considered minor relative to the
mean flow (Hoskins and Simmons, 1978). The
nonlinear terms neglected in linear predictions then
becomes significant. The eddies undergo a so-
called barotropization, and the energy is eventually
taken out by large-scale dissipation such as bottom
friction (Held and Larichev, 1996). We see that
most of the energy joins in this inverse cascade,
albeit some of the energy also goes to smaller scales.

Estimated eddy length scales from observations
have promoted the possibility of an inverse cascade

3The rest of this section is strongly influenced by Chapter 8 and 9 in Vallis (2006)
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in the ocean (Scott and Wang, 2005). Observed
eddy scales are, as previously noted, typically found
to be larger than the scale at which they initially
emerge, presumably around Ld (Smith 2007; Tul-
loch et al. 2011). The source of this gap between the
predictions from linear theory and observations is
commonly attributed to a turbulent inverse cascade
(Smith 2007). Scott and Wang (2005) presented,
for the first time, observational evidence for such a
cascade in the ocean from satelitte retrievals. Their
findings challenges the classical view of the inverse
cascade, by suggesting that it occurs mainly in the
baroclinic mode. Nonetheless, an energy cascade
toward larger scales provide an explanation for the
discrepancies between linear thoery and observa-
tions. Studies that incorporate non-linear effects
in baroclinic growth have implied the existence of
such a cascade, yield much greater scales than lin-
ear growth. Smith (2007) states that, "...a nonlinear
cascade of energy seems necessary to explain the
observed eddy statistics."

k0 in figure 1.3 denote the wave number at which
the inverse cascade reaches. This upper limit, where

the cascade is referred to as ’arrested’, is a an un-
clear issue. Scott and Wang (2005) describe the
arrest as mysterious. We will not venture into
this topic, but merely reinforce that a comparison
between linear predictions and a statistical fully
nonlinear field is not anticipated to be trivial. Kosza-
lka et al. (2009) remarked that "One question that
remains open is the limits and range of applicabil-
ity of the results obtained with simpler 2-D and
QG models of ocean mesoscale turbulence." Our
main incentive in this study will be look into this
question. Initially, we will approach this question
by the means of a linear stability analysis, yielding
unstable wave properties. Thenceforth, we examine
the comparability between these properties and
eddy characteristics from the fully turbulent field,
by implementing an eddy detection algorithm.

Prior to our analysis, it is apt to take a look at
the main elements of the circulation in our study
domain. In the following section, we thereby re-
vise the mean circulation, and mention some of
the mesoscale variability observed in the different
regions.

1.3 Ocean circulation and eddies at high northern latitudes

The area of the Arctic Ocean and it’s surround-
ing Seas amount to a small fraction of the Earth’s
area. The significance of these regions in regards
to the global climate is however huge. The inter-
change of watermasses between them is claimed to
be the "most dramatic water mass conversions in the
world’s oceans" (Beszczynska-Moller et al., 2012).
The polar and subpolar regions thus serve as impor-
tant moderators of our climate. Relatively warm
water, saline originating in the North Atlantic (and
North Pacific) are brougth up to higher latitudes. At-
lantic Water is carried through the Nordic Seas into
the Barents Sea and the Arctic Ocean. Simultane-
ously, colder, fresher surface-water runs southward
out of the Arctic, along the Greenland coast. At
depth, an overflow of dense deepwater is present,
and another overflow also occurs on the east side
of Iceland, both destined equatorward. This export
contains a large portion of the Arctic Ocean’s fresh-
water supply from precipitation and river runoff,
as well as transformed AW. Upon leaving the high

latitudes, the Atlantic Watermass has been subject
to a tremendous transformation (McCartney and
Mauritzen, 2001). During the transformation, both
the fresh, cold shallow waters and ice are produced,
as well as dense, saline deep waters (Beszczynska-
Moller et al., 2012). Consequently, the area we are
studying here is of huge importance to the ocean’s
density-driven circulation. The earlier perception
that watermass transformations took place merely
at a few particular locations, i.e. in the Greenland
and Labrador Sea, is now claimed to also happen
along the inflowing branches of warm waters (Isach-
sen et al., 2007). Eddies are believed to be present
along all the segments and participate actively in
several of the transformation processes. (Lilly et al.,
2003).
We will now look into the key features of the cir-
culation in our study area. Figure depict the main
Seas, basins and ridges, and figure 1.5 entails the
major elements of the circulation.
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Figure 1.4: Arctic ocean and neighboring seas. Blue colors represent the bottom-depth, darker colors
deote deeper waters. We note the shallow straits, Barents Sea, the shelf seas in contrast to the steep
declines basinward. Topography exerts a major control on the circulation in this domain.

Temperate, saline Atlantic Water (AW) enters the
Subarctic Seas mainly through three branches (Mc-
Cartney and Mauritzen, 2001). A large branch of
the North Atlantic Current, formerly constituting
the Gulf Stream, splits up as it flows over the mid-
Atlantic Ridge. It is largely introduced to the Nordic
Seas via the Faroe Channels inflow. It finds its way
polewards on each side of the Faroe Islands, be-
tween Iceland and Scotland, and on the west side of
Iceland (Beszczynska-Moller et al. (2012). Having
passed the Greenland.Scotland Ridge, the NAC is
deemed the Norwegian Atlantic Current.

The AW is carried northward along the Norwegian
coast in several branches, tens of kilometer wide
(Rodinov 2003). The NwAC has a two-branch
structure that follow the topography (Poulain et al.,
1996). The part furthest west is an extension of
the Faroe Current, which follows the 2000m iso-
bath, and becomes particularly evident as it flows
along the Vøring Plateau. Most of this water flows

northwest into the Greenland Basin, while some
continues to follow the isobath, and turns northeast
into the Lofoten Basin (Rodionov et al.,2003).

The AW flowing along the slope between Faroe and
Shetland continues north along the Norwegian con-
tinental slope. Paralell to the two NwAC branches is
a third northbound current, the Norwegian Coastal
Current (NCC). The NCC is buoyancy-driven, and
contains Norwegian Coastal waters formed by
freshwater runoff and the Baltic (Orvik et al., 2001).
Mixing between the saline Atlantic Water, the low-
saline coastal water and the North Sea watermass
occurs, which act to reduce the AW signature.

These currents supplement two major frontal zones,
the North Polar Frontal Zone(NPZF) situated at the
Mohn Ridge and the Norwegian Coastal Current
frontal zone (Rodionov et al., 2003). The former
seperates the colder, fresher waters residing on the
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west side of the Nordic Seas, and the warm inflow
of AW on the east side. The latter seperates the
fresher coastal waters from the saline AW. These
fronts frequently depart from their mean positions,
and exhibit large meanders. The potential energy
associated with the frontal zones is a strong advo-
cator for mesoscale eddies (Poulain et al., 1996).
Between the NwAC branches, there is a wide belt
of highly variable flow, has been called ’the zone
of intermittence’, often heavily populated by eddy
structures (Rodionov et al.,2003). Some of the
eddies originating along the coast are advected with
the mean flow, but a considerable amount is also

believed to escape the current and propagate sea-
ward. A large,persistent anticyclone in the Lofoten
basin show up in decadal-long mean fields. Several
studies have concluded that its climatic nature is
due to smaller anticyclonic eddies departing from
the NCC, merging with it, and recurrently providing
new energy for its survival (Sø iland and Rossby,
2013) The seaward destined eddies are suspected
to be responsible for a lot of the cross-shelf heat-
exchange (Straneo 2015). They thereby supply
the colder waters offshore with heat, and warmer
shelf-waters with cold, nutrition-rich water.

Figure 1.5: The general circulation in the study domain. The dark and ligth blue colors denote a minimum
and a maximum sea-ice cover, repsectively. The color of the arrows denote cold (blue) and warm (red)
currents.

Cyclonic large-scale gyres that are tied to the local
topography exist in 4 regions of the Nordic Seas
(Poulain et al., 1996a). The gyres are centrally
located in the Greenland, Norwegian and Lofoten
Basins, and near the Icelandic Plateau. They all
entail a mean circulation, that mainly follows the
topography (Nø st and Isachsen, 2003)

North of the Lofoten Basin, one part of the NwAC
is steered toward the Fram Strait by the curve
of the shelf-edge, as the West-Spitsbergen Cur-
rent (Beszczynska-Moller et al., 2012). The other
branch continues its path along the coast, parallell
to the NCC, and enters the Barents Sea as the North
Cape Current.
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The Barents Sea is a shallow sea with a partial
sea-ice extent, and devoid extensive river run-offs
supplying fresher waters. There are periods of
salinity-changes still, provided by ice-melting sup-
plementing the Sea with fresh water, while occur-
rences of freezing makes the waters more saline. A
large portion of the northernmost NwAC ventures
into the Barents Sea, bringing temperate and saline
AW. The Polar Front here, seperats the southern
warm,salty waters from the cold, fresh Polar Water.
The AW is further modified by commodious cool-
ing from air-sea interactions, and thereby aquires
a higher density. As AW departs the Barents Sea,
primarily through the St.Anna through, it has been
cooled to about 0◦ (Beszczynska-Moller et al.,
2012). It does therefore not contribute much to heat
to the Arctic Ocean.

The AW’s major gateway and exit region to the Arc-
tic is however the Fram Strait (Mauritzen, 2012).
At the inflow the AW dives under the ice-cover as
it ventures into the Arctic Ocean. The waters have
not been cooled as much as in the Barents Sea, and
is still relatively warm upon its arrival. Some of
this AW recirulates, and again, sinks beneath the
lighter Polar Water(PW) at the surface, and joins
the East Greenland Current (EGC) south. A former
perception was that both these sinking episodes oc-
curred smoothly, but it seems rather to be a pumping
phenomena realized by baroclinic eddies (Isachsen
(2015)). Eddies shed from the WSC, translating
westward in the Fram Strait are found in several
studies (Johannessen et al., 1987). This suggests
that a large fraction of the recirculating Atlantic
water is comprised of eddies.

The part of the AW continuing into the Arctic
Ocean, then constitutes a rim current, the Arctic
Ocean Boundary Current(AOBC). Initially it flows
cyclonically along the boundary of the deep Eurasia
Basin (denoted as EB in fig.). The current separates
into two major parts as it reaches the Lomonosov
Ridge (Woodgate, R. A., K. Aagaard, R. D. Muench,
J. Gunn, G. Bjork, B. Rudels, A. T. Roach and
Schauer, 2001). One branch follows the ridge to-
ward the Fram Strait again, and the other further
continues its journey deep into the Arctic Ocean
by entering the Marakov Basin. As observations

are limited, the rest of the AW’s circulation is a
bit more uncertain. However, it is believed to flow
around the Chucki cap and flow cyclonically along
the rim of the Canada Basin. The upper layers in the
Arctic there are characterized by the fresher Pacific
Water (PW). PW enters through the Bering Strait,
and is carried into the Arctic by several processes
happening in the Chucki Shelf Sea. It takes part in
the large anticyclonic Beaufort gyre, and is carried
to its final destination, by the transpolar drift cut-
ting across the Arctic Ocean. Some of the PW also
exits through the Canadian Archipelago. Eddies
have frequently been observed in the Canada Basin
(Timmermans, Timmermans). Some believe these
eddies originate mostly from the Chucki Seas, and
from there propagate basinward.
A large volume of both PW and AW then exits
the Arctic Ocean via the Fram Strait. A lot of this
outflow joins the southward flowing EGC. An ice-
cover resides along the coast throughout the year,
and the border between the edge of ice-covered
water and the open water is called the Marginal
Ice Zone (MIZ hereafter) (Horn, 1987). The MIZ
thereby consists of a transition from open ocean to
pack ice. Eddies are often observed near the MIZ
here, and interactions commonly occur between
eddies and the ice-edge (Horn, 1987). Eddies might
advect, melt or break up sea-ice, and generally
make Arctic water and AW converge (Ikeda et al.,
1989). The EGC enters the Irminger Sea which
covers a transition zone between warm, saline AW
and cold, fresh PW. The current carry the warmer
waters from the south, most of the western branch
turns cyclonically at 65◦ and merges with the EGC
along the coast of Greenland (Cuny et al., 2002).
The EGC then enters the Labrador Sea, which
lies between Canada and the south-western part
of Greenland (Lilly et al., 2003), and becomes the
West Greenland Current (WGC). The WGC is a
part of the strong cyclonic boundary-current sys-
tem encirculating the basin (Lavender, 2000). The
WGC merges with the Labrador Current when it
reaches the Canadian coast.

This basin is responsible for an essential component
of the North Atlantic overturning circulation, i.e.
the formation of upper North-Atlantic deep-water
(Lilly et al. 2003). Winter-convection homogenize
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a large patch of water which can get over 2 km
deep. This allows the sinking of cold, fresh water
(Marshall and Schott, 1999) that is distributed out
at middepth. The Labrador Sea hosts three par-
ticular types of eddies distinguished according to
their characteristics, the Irminger Rings or Irminger
Current Anticyclones, Irminger Current Cyclones

and convectively formed anticyclones (Lilly 2003).
The convective eddies (CEs) are believed play a
major role in the restratification process after the
convection (Femke de Jong,Furey, Heather H., M.
Valdes, James R.Bower, 2013).

1.4 This study’s contribution

This study aims to contribute to the present knowl-
edge of eddies in the SubArctic Seas, and to in-
vestigate a potentially dominant eddy-generating
mechanism, namely baroclinic instability. Many
studies have focused on particular regions of this
domain, but it is to the author’s knowlegde no eddy
census study encompassing the entire domain.

Our goals are to test the hypothesis that baroclinic
instability accounts for most of the eddy activity in
the study region. We relate the eddy length and time
scales provided by linear predictions with statistics
of the fully-developed macroturbulent field. Ini-
tially we perform a linear stability analysis on mean
fields from a 10 year model simulation. The normal
mode computation is done following the procedure
of Smith (2007). The analysis yield characteristics
of baroclinically unstable waves. The most unstable
mode will be the wave emerging first in an unstable
mean state, and is believed to continue to dominate
with time. We will discuss the growth rates and
associated length scales of fastest growing waves.
Furthermore the most pronounced growth regions
are identified and we see whether simple Eady dy-
namics can act account for the growth we see, or if
more complexs dynamics is needed to be invoked.
The linear theory is valid only in the initial stages
of growth when the perturbed amplitudes are small.
As the waves grow, nonlinear processes take over
the evolution. The statistics of the fully turbulent
field is obtained by implementing an eddy detection
procedure, and recording the characteristics of the
identified eddies.

The quasigeostrophic setting is utilized in the lin-
ear analysis, which is valid for length scales near
Ld and a low Rossby number. Since the ocean

models utilize the full (hydrostatic) primitive equa-
tions, there exists a gap between the idealized
quasigeostrophic predictions and the numerical
simulations. Observations and model simulations
indicate that the equilibrated scales differ substan-
tially from Ld, being larger at high latitudes and
smaller at low latitudes. It is beneficial to further
examine this issue, and look for potential discrep-
ancies or resemblances between the these two scale
estimates.

Many parameterization schemes of eddy transport
in climate models, builds on the notion that eddies
originate via baroclinic instability. Specifically, the
parameterizations rely on the characteristics of the
most unstable wave in the simplest model of this
process, the Eady model. The Eady model does
not take into account the influence of topography or
changes in the Coriolis force, β. Still, it is a com-
mon to use since it is easy to implement numerically
with a low computational cost. Mesoscale eddy
scales vary strongly with latitude, reaching 200km
at the equator plunging to 5-10km in the polar- and
subpolar regions. Hence, this put a constraint on
the horizontal grid-spacing in a model in order to
represent them. Any deficienies in coarse model
parameterizations is thereby most alarming at high
latitudes, and it is likely that instabilities in these
regions are more dependent on topography than β
(Isachsen et al., 2003; Nøst and Isachsen, 2003). By
comparing the Eady growthrate with the growthrate
from a full linear stability analysis, we can point
to possible shortcomings in the Eady model. The
Eady model has been reported to produce reason-
able rates (Smith 2007), however, it does neglect
important dynamical aspects. It is highly desireable
to not only get corrects values, but to attain them
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for the right reasons. We therefore inspect the linear
stability analysis at some locations in detail, to see
whether the results there resemble an "Eady-type"
instability.

There are ambigious issues related to the pre-
processing of raw altimetry data. Chelton (2011)
remark that the smoothing applied when gridding
the data, leaves out features which are smaller
than roughly 40 km. As a result, the amplitude of
smaller-scaled eddies is strongly reduced (Jong et
al., 2013). This is especially a concern for stud-
ies at high latitudes. Jong et al (2013) compared
observations of eddies in the Labrador sea from
mooring measurements, with the maps of SLA used
in Chelton et al. (2011). On only one occasion, did
an eddy-track in the altimetry dataset approximately
match the location of the mooring. However, this
track was found 16 km away form the mooring, and
the timing did not agree with any of the 33 eddies
observed at the mooring. Neither did the proper-

ties of this eddy have typical values, with a radius
of 60km, an amplitude of 5 cm, and a rotational
velocity of 10 cm/s. Jong et al. (2013) report that
the estimated eddy-characteristics in the Labrador
Sea made by Chelton et al.(2011), do not compare
well to what is inferred by observational studies. A
similar comparison was made by (Prater, 2002). In
this study data from unfiltered along-track altimetry,
with a resolution of 7 km, and estimates of SLA
from floats were juxtaposed. Again, only one eddy
in the satelitte observations had a corresponding
track as the eddies tracked by floats. These results
imply that altimetry data is not apt for studies in
Polar regions.

The basis for utilizing a model simulation in this
study, instead of for instance satelitte data, is
grounded in several reasons. The model provides
closely gridded datapoints, and complete spatial
and temporal coverage. Utilizing model thus meets
the need for data with a relative high resolution.
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Chapter 2

Our model ’data’

2.1 The ROMS model

In this study we analyze data from a Regional Ocean
Modeling System (ROMS; (Haidvogel and Beck-
mann, 1999; Shchepetkin and McWilliams, 2005)

hindcast run. Figure 2.1 depict the model domain.
Shown the depth averaged 10 year mean velocity
field (the magnitude).

Figure 2.1: Study domain with superimposed 10 year mean, depth averaged velocities.

ROMS is a 3D, free-surface, state-of-the-art ocean
model. The ROMS-code is open-source code. The
model relies mainly on Fortan90-code for the com-

putation. A terrain-following σ-coordinate is used



in the vertical, expressed as

σ =
z − η
H + η

, −1 ≤ σ ≤ 0,

where the depth at the bottom is denoted by z=-
H(x,y), and η(x, y). Some of the merits with this co-
ordinate is that it smoothly overlays the bathymetry
and can be stretched to attain better resolution in

areas needed.
The governing equations for the ocean dynam-
ics and thermodynamics are non-linear differen-
tial equations1. There are 7 unknown parameters
needed to be solved for in order to have a closed
system. The model solves a set of mean field primi-
tive equations under a Boussinesq approximation.
The horizontal momentum equations take the form:

∂tu + u · 5hu + fk× u = − 1

ρ0
5h p−

1

ρ0

∂τ

∂z
−5h ·Fh, (2.1)

where u, are the horizontal velocity components,
and 5h = (∂x, ∂y). The first term signifies ac-
celeration of velocities in the horizontal directions.
fk× v is the vertical component of Coriolis force,
which arise from the Earth rotating around its own
axis. f = 2ω sin Φ, where ω is the Earth’s rotation
rate, and Φ the latitude. τ signifies the vertical mix-
ing of momentum, and Fh denotes the horizontal
mixing of momentum.
Furthermore, the model is based on the assumption
of a hydrostatic balance in the vertical. Assuming
that there exist a dominant balance between the
pressure gradient and buoyancy reduces the vertical
momentum equation to

∂p

∂z
= −ρg. (2.2)

This approximation is valid for a state where the
horizontal scales of the motion are a lot larger than
the vertical scales, and is typically utilized in ocean
models not aiming to resolve convection or small-
scale turbulence.

The density is determined in the empirically devel-
oped equation of state expressed as,

ρ = ρ(p0, θ, S), (2.3)

where ρ is potential density, θ is potential temper-
ature, S salinity and p0 is a reference pressure. A
new equation of state was provided by McDougall
in 2010, the socalled thermodynamical seawater
state, (TEOS10). It is now implemented in most
ROMS-models. In our simulation the equation of

state from 1985 (EOS85) was used.

The Boussinesq approximation entails a constant
reference density in all products, except when mul-
tiplied with the Earth’s gravitational constant (see
appendix for details about how the set of equations
is attained). A justification for this is that the oceans
density’s fluctuations are merely of a few percent
from the reference value. The major consequence of
such an approximation is reflected in the continuity
equation

∂tρ+5 · vρ = 0, (2.4)

which by setting ρ = ρ0 amounts to

5 · v = 0. (2.5)

A Bousinessq ocean is thereby not conserving mass,
but volume.

Finally, a tracer conservation equations for solving,
e.g salinity concentrations and potential tempera-
ture is expressed as follow

∂tCi 5 ·Civ = −5h ·F + Si, (2.6)

Si denote the i’th source-term, Ci tracer concentra-
tion, and F both vertical and horizontal fluxes due
to turbulent mixing.

The variables are computed on an Arakawa C-grid
(Arakawa.A, 1977), staggered in the vertical and
horizontal, as shown in figures 2.1 and 2.2. The
vertical and horizontal location of variables on the
grid is depicted in figures 2.1 and 2.2, respectively.

1The following theory is based on Lecture Notes by Rø ed (2014)
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The staggering is a normal procedure to limit the
degrees freedom and the number of prescribed inte-
gration constants (initial/boundary values).

Griffies(2004) argues that "the choice of vertical
coordinate represents the most fundamental choice
that can be made when designing an ocean model".
The best choice for a vertical coordinate in oceans
model is not an obvious one. There are three general
classes of ocean models distinguished by their type
of vertical coordinate, z-coordinate models (the
earliest ones) based on the ocean depth, isopycnal-,
utilizing layers of constant density, and sigma- or
terrain following coordinates. The benefits of each
choice is inevitably at the expense of other aspects
of the numerical scheme. The Arctic4 model relics
both the benefits and drawbacks of being a sigma-
coordinate model.

A wellknown problem in sigma-coordinate models
is the representation of the horizontal pressure gra-
dient force. We compute the pressure gradient in
the transformed sigma-coordinate system, (Griffies
2004) using the expression

1

ρ0
5z p =

1

ρ0
(−5s +∂z · 5s)p. (2.7)

Pressure gradient errors (PGEs) arise due to errors
related to the discretization, the non-orthogonality
of the coordinate system, and complicated by
the vertical stretching schemes frequently applied
(Shchepeting and McWilliams, 2005).

Another limitation to the σ-coordinate is a so-called
spurious diapycnal mixing associated with steep
vertical coordinate slopes (Marchesiello 2010).
Most part of the mixing of (both material and dy-
namical) tracers, happens laterally, i.e. along the
isopycnals. However, when using upwind schemes
in σ-coordinates, artificial mixing of tracers can
occur across the isopycnals (Marchesiello 2010).

Figure 2.2: The vertical placement of variables,
here depicted on an A-grid for simplicity.

Figure 2.3: The horizontal placements of variables
on the Arakawa C-grid.

2.2 The Arctic hindcast

The simulation is run for 17 years, and the first 6
years are considered a spin-up period, hence data
from those years are discarded. The last 10 years
of the simulation, when the system is believed to
have reached a steady-state with a representable
circulation and dynamics, is used. The model
domain encompasses the Artic Ocean and it’s sur-
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rounding Seas, with the exception of the Bering
Sea. The forcing data applied to the simulation was
ERA-Interim atmospheric reanalyzes, and at the
open lateral boundaries, operational ocean analyzes
FOAM. River runoff was supplied from monthly
climatologies (Isachsen (2015)).

The model-run used in this analysis contains 35
stretched vertical levels, with depths ranging from
the order of 1m near the surface, to the order of
100m in the bottom-most cells. The resolution is
increased near the sea surface, and allows for a
well represented pycnocline profile. The horizontal
gridspacing is 4 km.

A third-ordered upwind scheme for horizontal tracer
and momentum advection was employed here, and
a fourth-ordered centered scheme was used for
vertical advection (Isachsen 2015).

The details of the model run is summarized in the
table below:

The Arctic4 modelrun
MODEL σ-coordinate (ROMS)
DOMAIN minlat- max lat osv
RESOLUTION 4× 4[km]
VERTICAL LAYERS 35 #
HORIZONTAL ADVECTION 3rd ordered upwind
VERTICAL ADVECTION 4th ordered centred
ATMOSPHERIC FORCING ERA Interim
LATERAL BOUNDARIES FOAM

2.3 Comparison with observations

How does the model fields compare to observa-
tions? We present a comparison of the hydrography
in the model with the Arctic Regional Climatol-
ogy(hereafter ARC). The climatology is based on
the World Ocean Dataset (WOD) with data up until
2011 (downloadable at

http://www.nodc.noaa.gov/OC5/regional_climate/arctic/).
The model extends down to 45◦ in the North At-
lantic, but since the climatology only covers the
region from 60◦ − 90◦ N we compare the area
north of 60◦ N. The ARC has a horiontal resolution
of 0.25◦, and is based on 87 levels in the vertical
extending down to 4000m (more details can be
found in Seidov et al., 2014). The climatology’s
annual dataset is comprised of all available data
sampled through decades (Seidov et al., 2014). The
Arctic4’s ten-year averaged fields are interpolated
onto the annually averaged ARC fields.

Figure 2.3 shows some discrepancies between the
data. Overall, the model’s temperature fields com-
pare well with the ARC. We can clearly see the
North Polar Front cutting through the Nordic seas,
and extending into the Barents Sea. The sharp
frontal zones west and east of Iceland are also cor-
rectly depicted, and the Polar Water exported from
the Arctic is captured. The cold southward flowing
Polar Water is met by the inflowing warm AW, re-
sulting in the large temperature shift depicted along
the Greenland-Scotland Ridge and Denmark Strait.
Faroe However, in the Arctic Ocean the model de-
picts a nearly homogenous temperature field, while
the ARC temperatures show some more structure,
with warmer locations along the rim of the Arc-
tic Ocean. The Kara Sea, and the northernmost
part of the Larbrador Sea are also some degrees
warmer in the ARC. We find the comparison satis-
factory, as the deviations between the two fields is
not occuring where the temperature is dynamically
most important, but in the colder regions. Some of
the difference we see may occur if the seasons in
the climatological annual data are unevenly repre-
sented. There might be more available data during
the warmer summer months, as many types of in-
situ measurements are easier to obtain in more ice-
free conditions, while the the model’s seasons are
weigthed the same. In a review of the ARC, Seidov
et al. (2014) states that "Because of the scarcity of
winter observations, the possibility of seasonal bias
in the high latitudes is always an issue".
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CLIMATOLOGY MODEL

Figure 2.4: Annual temperature and salinity fields
from the Arctic Regional Dataset (ARC), and the
Arctic4 model.

The model’s salinity fields within the Arctic Ocean
deviates substantially from the ARC. There is a
tongue of fresh water extending from the Laptev
Sea into the Nansen Basin in the model, with in-
creasing salinities westward toward the Canada
Basin. The observations tend to an opposite dis-
tribution. In the Barents and Nordic Seas, is the
distribution of model-salinity in close agreement
with the climatology. The North Polar Front is
exhibited in the salinity-field as well. The outflow

from the Fram Strait and the onset of the EGS is
substantially fresher in the observations.

A closer look into the vertical stratification showed
that, as most Arctic models, this model seems to
have trouble getting the halocline correctly simu-
lated in the Arctic Ocean. The halocline, which
is the (sharp) transition layer between the fresh
surface-waters and saltier Atlantic water below, is
an essential ingredient in the Arctic Ocean circu-
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lation. At low temperatures, seawater density is
nearly fully dependent on the salinity, through the
equation of state. Another essential role the halo-
cline plays, is to isolate the ice from the warmer
waters below, as mixing across highly stratified wa-
ters requires a lot of work. The salinity is therefore
of uttermost importance to simulate correctly at
high latitudes, as it is a dynamically controlling
factor. The Kara Sea is notably fresher and warmer
in the climatological data, both these factors con-
tribute to making the water less dense, therefore the
Kara Sea in the model will be unrealistically dense.
This is also the case for the western Arctic basin.

Discrepancies in temperature and salinity may have
an impact on the dynamics represented in the model.
An appropriate concern for this present study is how
this may affect the eddy field. As noted, the Rossby
deformation radius is believed to represent the
length scales which eddies that will dominate in the
eddy field take on, and a key parameter to represent
correctly. Subsequently, ocean models strive to
resolve this horizontal scale, and the measure may
serve as an indication to the degree of mesoscale
activity explicitly present in a model.

The Rossby deformation radius depends highly
on stratification, and is the solution to a lin-
earized eigenvalue problem, attained from the quasi-
geostrophic setting (see section 3.1-3.2). The so-
lution yield eigenvectors, denoting vertical normal
mode structures, and Ld is attained by the squared
inverse of the eigenvalues (Vallis 2006). Moreover,
for a constant stratification, Ld can be calculated us-
ing the WKB approximation (Chelton et al. 1998),
which takes the form

Ld =

∫ 0
−H Ndz

fπ
(2.8)

where N is the squareroot of the bouyancy fre-
quency, N = ( gρ0

∂ρ
∂z )(1/2), and ρ is potential tem-

perature. Here we see that the Rossby radius de-
pends on the stratification, the local earth’s rotation
rate and the total water depth. Ld is expected to
take on larger values in areas of great depth, that is
in the basins, but vary also with the degree of local
stratification.

We compared calculations of the model field’s
Rossby deformation radius, by using the WKB
approximation, to other calculations in recent stud-
ies, and noted some differences. In one study,
Nurser and Bacon (2013) based their calculations
on model-data, and in another, Zhao et al. (2014)
utilized high-resolution ice-tethered profilers in
conjunction with climatology data to account for
the layers beneath 750m.

In the Arctic Ocean, the Canada basin and the
Nansen basin are of similar depths, but differ in
terms of stratification. In the Beaufort gyre encom-
passed by the Canada basin, the upper ocean is a
lot fresher and somewhat colder, which makes the
surface layers stongly stratified. The Nansen basin
is more saline and the density therefore varies less
with depth. In this regARC, we might expect to
see a variation of the Ld of increasing values from
east to west in the Arctic Ocean (Nurser and Bacon,
2013).

This is indeed what is seen in the observational
studies, where the maximum scales are found in the
Canada basin. The recomputed Ld from the clima-
tology is higly comparable to what was attained in
the mentioned studies (see figure 5a in Nurser and
Bacon 2013; figure 4b in Zhao et al. 2014). As we
can see, in the model Ld is largest in the Nansen
basin rather than peaking in the Canada basin. Still,
the model captures the values and spatial pattern
well at most locations. The Nordic-, Barents- and
Labrador Sea show a very good agreement with the
observations. Since the Ld is expected to shear a
link with eddy lengthscales and the spatial scale
of the most unstable wave, we find this correspon-
dance reassuring for the further analysis. Due to
the model-data differences in the Arctic Ocean, we
have chosen to focus on the surrounding Seas and
will, at times, merely comment on that area.
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Figure 2.5: Rossby radius of deformation as calcu-
lated from observations (ARC) 0.25◦ ≈ 30km, and
the Arctic4 model, 4× 4km
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Chapter 3

Linear stability analysis

3.1 Baroclinic instability explained

We make the assumtion that baroclinic instability
can be regarded as the dominant process initiating
the high degree of eddy activity observed in the
Subarctic Seas. To examine this hypothesis, a local
linear stability analysis is performed. This grants us
characteristic properties of the instability process,
which is useful for later comparison with eddy
properties identified in the model field.

This chapter is organized as follows: First we de-
scribe process of baroclinic instability, secondly
we work through the theory and procedure of the
conducted linear stability analysis. We note the lim-
itations therein, and lastly comment on the results.

3.1.1 The basic mechanism

We start this discussion by asking: What is the
agenda behind baroclinic instability? This type of
instability is both the atmosphere and ocean’s re-
sponse to differential heating, or horizontal density
gradients.
The ocean, as well as the atmosphere, are conti-
nously working towards a state of minimum poten-
tial energy, with the centre of gravity at its lowest.
Where there exists horizontal density gradients,
surfaces of constant density (isopycnals) are slanted
and thereby store available potential energy (APE).
APE is the amount of potential energy that can
be transferred into kinetic energy (Vallis 2006).
In a non-rotating setting, a state of lowest energy
entails flat isopycnals that are parallell to surfaces

of constant pressure (isobars). An initial density
disturbance would adjust in a way such that light
fluid spreads uniformly on top of heavy fluid. The
declination of the isopynals reduce pressure gradi-
ents, and eventually slow down the flow (Pedlosky,
1987). So, the flow equilibrates at a state of rest.
However, when rotation is included, there exist
an steady state where the isobars and isopycnals
are not aligned, and the isopycnals are inclined.
Through hydrostatic and geostrophic balance this
steady state induces a vertically sheared flow called
the thermal wind, by which horizontal density dif-
ferences are balanced by velocity shear. This is
expressed as f∂zU = g

ρ0
k×5ρ (attained by taking

the vertical difference of the geostrophic relations,
in combination with the hydrostatic balance).

Is this state stable to pertubations? Due to the slop-
ing isopycnals, it is not a state of minimum potential
energy as nature desires it to be. The slope of the
isopycnals represent a pool of available potential
energy, the steeper the slope is the more energy is
available for conversion into kinetic energy. Small
perturbations will frequently arise and grow at the
expense of the system’s APE, aided by baroclinic
instability. In the beginning, these disturbances
have a wavelike appearance, but they can quickly
develop into swirling eddies. Furthermore, the ed-
dies are, as remarked, efficient advecters of tracers,
including heat.

We may further ask if the growth of initial perturba-



tions occur under any circumstances then?
Potential energy increases if lighter fluid sinks and
denser fluid rises. This would raise the centre of
mass, achieved by work done in the lifting mass
against gravity. Conversely, when denser fluid
moves down and lighter fluid is brougth up to re-
place it, potential energy is released.
The change in potential energy is expressed as

∆PE = g∆ρ∆z,

which relates the vertical displacement of parcels
with change in densities (Vallis 2006). An instabil-
ity may act to amplify the displacement. We realize
this by considering the situation sketched in figure
3.1 that illustrates water parcel excursions. This
state has a horizontal density gradient, the dotted
lines depict the sloping isopycnals, and U is the
induced thermal wind flowing with lighter waters
to the right. The coloured circles represent fluid
parcels in different exchange-scenarios. We can
readily see that if the red and pink fluid parcels
were vertically exchanged, a denser(red) fluid par-
cel with a lighter(pink) is exchanged. Restoring
forces,respectively gravity and buoyancy, will act
on them. Hence, in this stable scenario, and the
parcels are forced back to their initial positions. On
the other hand, if the blue and red fluid parcels are
exchanged, in a slantwise manner, there is no restor-
ing force acting on them. This is because ligth fluid
is placed in a denser environment and dense fluid
in a lighter environment. Hence, they would shoot
past these positions, and their original motion gets
amplified. The exchange between those parcels are
unstable. The exchange path is not arbitrary how-
ever. The grey wedged area signify the possible
range of path-angles for an unstable exchange. For
an exchange path b and an isopycnal slope a, the
angle of the path thus needs to be between

0 < b < a.

A purely horizontal exchange, at an angle of zero
degrees, is a neutral exchange with no restoring
forces. It can be shown that the maximum conver-
sion to kinetic energy occurs at an angle a/2 (see
Vallis 2006). The release can cause vigorous eddy
velocities (Thorpe 2005).

Figure 3.1: The colored circles represent fluid
parcels. If the path of the red and blue parcels
lie between the horizontal plane, and the isopycnal
slope a, an exchange is unstable. Based on a figure
from Tulloch (2009)

In the rest of this chapter, we will be concerned
with the selection of waves that grows most rapidly
in an unstable background flow. The fastest grow-
ing wave will extract the maximum APE present in
the system, presumeably near a/2. Naturally, there
are often constraints to this. We can easily see that
by adding a topographic slope where the exchange
occurs in figure 3.1.

Figure 3.2: The grey line signify a topographic
slope. Possible fluid-paths within the shaded area
are reduced when topography is added.
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The area of instability is reduced in this configura-
tion. Several studies show that adding a topographic
slope, will tend make the system more stable (Ped-
losky, 1964). However, others have shown that this
can destabilize the system (Orlanski 1969). For
instance, consider a scenario where the angle of the
bottom slope is a/2. If a horizontal motion onto a
bottom slope induce a vertical motion proportional
steepness of the slope, then perturbed waves will

have a maximum unstable plane. We can easily see
that if the topographic slope becomes as steep as a,
or exceeds a, the shaded area dissappears and the
system is stablilized.

We have started this discussion in a conceptual man-
ner, but we will now move on to review the theory
underlying our numerical analysis.

3.2 The linearized problem

The foundation of eddy dynamics has its core nearly
exclusively in the theory of quasi-geostrophy(QG
hereafter) (Vallis 2006). The QG framework is a
reduced set of equations, and is commonly utilized
to model motions of small Rossby numbers, in both
the ocean and atmosphere. Vallis (2006) claims that
no other set of equations are used more than this
in theoretical studies. Studies based upon the QG
equations have been able to succesfully account for
"wave and vortex propagation, long-lived coherent
vortices, geostrophic turbulence with its forward
and inverse cascade, eddy generation (from baro-
clinic or barotropic instabilities), eddy fluxes and
surface frontogenesis" (Mcwilliams,2008).

The evolution of eddies is predominantly non-linear,
and the analytical treatment of such a problem is not
attainable (Pedlosky, 1987). A way to work around
the complexity caused by the nonlinearity, is to
consider a linearized QG setting. A linear stability
analysis(LSA hereafter) can uncover regions of
instability, and has provided consistent predictions
of the preferred length-scales and growth rates of
oceanic mesoscale variability.(Smith 2007, Tulloch
et al., 2011, Isachsen 2015). The major limitation
inherent in the linear pertubation theory, is naturally
that it is linear, and, as we noted, the evolution of
mature eddies is highly nonlinear(Pedlosky, 1987).
Hence, the LSA can merely yield the commence-
ment of instability, and is not able to account for
any further developements in the amplification of
the unstable waves. Still, the most unstable mode is
believed to emerge first from a background state of
small perturbations, and commonly regarded to be
the dominant one as the growth persists. Thereby,

despite the non-linear evolution that most certainly
occur at some a later stage, the LSA can render
a "general character of the original profile" (Man-
ley and Hunkins, 1985). Fundamental quantities
to draw from a stability analysis are the rate at
which the unstable pertubation grows, the dominat-
ing length-scales and the geographical distribution
these. The growth rate signifies the time from the
pertubation arises until it is a fully developed turbu-
lent motion.

The LSA procedure can be summarized in three
main points:
1. The quasi-geostrophic potential vorticity(QGPV)
equation, and equations valid at the boundaries are
linearized about a mean state.
2. An eigenvalue problem is formulated by in-
serting a plane-wave solution into the linearized
equations, and then discretizing them.
3. Stability coefficients, eigenvalues with their asso-
ciated eigenvectors, are extracted from the solution
of the eigenvalue problem. These yield growth rates
and lengthscales of the prominent growing wave.

Next we will look at the equations creating the foun-
dation for the LSA, and then we explain the LSA
procedure.

3.3 Theory
For flow in the interior, away from forcing and dis-
sipation, the QGPV-equation is expressed as

Dgq

dt
:= (∂t + ug · 5)q = 0, −H < z < 0,

(3.1)
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where q is the potential vorticity, and ug =
ugi + vgj (subscript omitted hereafter) is the
geostrophic horizontal velocity vector, and (i, j)
are the unit vectors in the horizontal plane. Further-
more, 5 = ∂

∂x i + ∂
∂y j is the horizontal gradient

operator.

With the aid of a streamfunction,ψ, and the hydro-
static balance, the horizontal momentum equations
have been compressed into one equation with only
one unknown, ψ. By definition ψ = p

ρ0f0
, which

under geostrophy gives u = −∂ψ
∂y and v = ∂ψ

∂y . The
relative vorticity expressed in terms of the stream-
function is ζ = ∂xv − ∂yu = 52ψ.

q = 52ψ + βy +
∂

∂z

f2
0

N2

∂ψ

∂z
, (3.2)

The first term in q is the relative vorticity, the sec-
ond term denotes the planetary vorticity, and the last
term is the socalled stretching term accompanying
vertical changes in density (Lacasce 2013). The
evolution equation reveals that for a parcel of water
following the geostrophic flow, potential vorticity is
conserved (Lacasce 2013). This means that as the
flow evolves, q is not changed but merely relocated.

The flow in the interior typically couples with
buoyancy-conditions at the boundaries. The buoy-
ancy is defined as b = g

ρ0
∂ρ
∂z , and from hydrostatic

balance, b = f0
∂ψ
∂z . The equation valid at the bound-

aries, at the top z = 0 and the bottom z = −H , is
the buoyancy equation(Vallis 2006).

(∂t + u · 5)b = 0, z = 0 (3.3)

(∂t + u · 5)b+N2 5 h = 0, z = −H (3.4)

where topography is included at the lower boundary.

The equations we now have at hand encompass pro-
cesses on both long and short timescales. We are
interested in the part of the flow which is associated
with processes occuring on a short timescale. To
separate the slow mean state and the quicker (eddy-
ing)state, we then divide the stream-function into a
mean part and a fluctuating part, ψ = Ψ + ψ′. This

results in the mean and eddying terms

q = Q+ q′, where (3.5)

Q = 52Ψ + βy +
∂

∂z

f2
0

N2

∂Ψ

∂z
, (3.6)

q′ = 52ψ′ +
∂

∂z

f2
0

N2

∂ψ′

∂z
. (3.7)

We also use b = B+b′,h = H+h′ and u = U+u′.

The local mean horizontal flow and stratification
are assumed to be slowly-varying in the horizontal,
and only have a depth-dependence.

U = U(z)i + V (z)j (3.8)

N2 = N2(z) =
g

ρ0

dρ̄

dz
(3.9)

The assumption of a horizontally slowly-varying
background state allows for periodic horizontal
boundary conditions, in both the x- and y-direction.
This means that each location where the equations
are solved is considered a ’box’ with doubly peri-
odic boundaries, here with a 4 by 4 km area. The
flow entering on one side, is considered the same
when exiting at the other side. This is referred to as
the local approximation, and Tulloch et al. (2009)
remarks that it obviously is not suitable universally,
and that it ignores several dynamical possibilities.
We need to keep in mind the limitations of this
approach, as we proceed with the analysis. The
assumption of a steady, mean current neglects that
eddies might impact the background flow (Flierl
and Pedlosky, 2007), and does not incorporate any
advection of eddies that certainly do occur in the
full state. In our study domain, there are also narrow
jets and horizontal gradients occuring in tight bands,
often on the order of the internal deformation radii
(?). By this, we reckognize that the flow may be
subject to substantial change even within a small
area such as 4km, and violate the homogenous
assumption. Venaille et al., 2011 comment on this
issue, and argue that: This shows the limitation
of locality hypothesis: in regions characterized by
strong spatial variations of the mean shear (i.e.,
close to western boundary currents or to regions
where topographic steering is important), eddy
properties at one point may be due to instabilities
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occurring in the same area but at a different place
(at a nearby location).

We further linearize the QGPV-eqations, valid in
the interior, and the bouancy equation, valid at the
boundaries, around the vertically dependent mean
state. In order to linearize, we need to make the
assumptions that u′ << U, and that product of
pertubation terms vanish, i.e. u′u′ ≈ 0. This as-
sumption highlights another significant limitation
of the linear approach. We have to keep in mind
that even though the pertubations might be small
initially, they do not necessarily stay small in the
preceding evolution of the flow. The pertubation
could in fact grow stronger than the background
flow, as non-linear effects start to take precedence.

The linearization leaves us with

(∂t + U · 5)q + u · 5Q = 0, −H <z < 0

(∂t + U · 5)b+ u · 5B = 0, z = 0

(∂t + U · 5)b+ u · (5B +N2 5 h) = 0, z = −H

By the horizontally homogeneous(local) approxima-
tion of the background flow, we have also ignored
the mean relative vorticity 52Ψ. The gradient of
the mean PV becomes

5Q = i∂xQ+ j∂yQ

= (∂z
f2

N2
∂zV )i + (β − ∂z

f2

N2
∂zU)j

where we have taken advantage of V = ∂xΨ̄ and
V = −∂yΨ̄. To lighten the algebraic burden in
the further analysis we set the vertical stretching
operator to ∂z f

2

N2∂z = Γ, yielding

5Q = ΓV i + (β − ΓU)j = βj− f∂zs.

This follows the nomenclature of Smith (2007).

3.3.1 The eigenvalue problem

The pertubations we are seeking have wavelike ap-
pearances. Since the linearized equations have con-
stant coefficients, we can search for normal-mode
solutions expressed as

ψ = Re{ψ̂(z)ei(kx+ly−iωt)}. (3.10)

Here ψ̂ is the vertical structure of the pertuba-
tion, and ω the wave frequency, which both might
take on complex values. k, l are the horizon-
tal wavenumbers, and the argument signify the
wave’s translation in space and time. Re denotes
taking the real part of the product of the ampli-
tude and ei(kx+ly−iωt). Since the equations are lin-
earized, we can consider the solution for each set of
wavenumbers as valid on its own. The substitution
into the interior-eqations gives (after dealianiting
the common factors i and ei(kx+ly−iωt))

(K ·U− ω)(Γ− κ2)ψ̂ + [k(β − ΓU)− lΓV ]ψ̂ = 0

ω(Γ− κ2)ψ̂ = [(kQy − lQx) + K ·U(Γ− κ2)]ψ̂

where Γ is the vertical stretching operator
∂
∂z ( f

2

N2
∂
∂z ) and K is the wavenumber modulus√

k2 + l2.
We furthermore make the substitution in the bound-
ary equations. The upper and lower boundary con-
dition, at z = 0 and z = −H respectively, then
takes the forms

(κ ·U− ω)∂zψ̂ = k∂zU + l∂zV

(κ ·U− ω)∂zψ̂ = [kΩx + lΩy]ψ̂

where Ωx = ∂zU − N2

f ∂yh, and Ωy = ∂zV +
N2

f ∂xh).

Upon the discretizing the vetical stretching
operator,Γ, the analysis amounts to solving a gener-
alized eigenvalue problem, on the discrete form

ωBijψ̂j = Aijψ̂j. (3.11)

where

Bij = Γij −K2δij, (3.12)

Aij = (kQy,m − lQx,m)δijm + (kUm + lVmδinmBnj)
(3.13)

The δ-symbols represent Kronecker tensors,

δ =

{
0, i 6= j 6= k

1, i = j = k
(3.14)
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equal to one for the diagonal elements, and other-
wise zero.

Hence the tensor products with δijm,δinm in the com-
putation of Aij, yield matrices with the vectors
(kQy,m − lQx,m) and (kUi + lVi) remaining on the
respective diagonals. The first term is thus an
i× j-matrix, as well as the last term resulting from
i × n · n × j matrix-product. Both Aij and Bij

becomes tri-diagonal matrices, which simplifies the
discretization. In the idealized cases with constant
stratification and equidistant layer depths, these ma-
trices will be symmetric. This symmetry is broken
in the full case we are considering. The eigenvalue
problem we have presented so far is thus comprised
of real, non-symmetric matrices. However, we will
add some friction to deal with high growthrates at
very small spatial scales. This is done in the form
of a scale-selective horizontal, isotropic diffusion
operator, Ah52 ψ, and becomes a part of matrix B.
By adding this element, the B becomes a complex
matrix.

The discretized problem is solved on a grid with
N levels. The matrices therefore have the sizes
N × N , and the solution renders N eigenvectors
and their associate eigenvalues. The eigenvectors
signify the normal modes ψ̂(z), and yield the ver-
tical structure of the instabilities. The eigenvalues
are the frequencies, ω = ωr + iωi, that may attain
a nonzero complex value(Smith 2007). Whenever
the frequency has a positive imaginary part, there
arises a term, eωit which amplifies the amplitude ψ̂
exponentially in time, t. From 3.13, and replacing
ω = ωi + ωr we consider

ψ(x, y, z, t) = Re{ψ(z)eωitei(kx+ly−ωrt)},

and realize that the unstable modes will grow at
a rate ωi. In the case of instability, the vertical
structure of the amplitude, ψ(z), is complex. The
structure is retrieved from

ψ(z) = |ψ(z)|eθ(z) (3.15)

|ψ(z)| denotes the amplitude, and θ(z) the phase.

We pause here for a brief moment, to make an im-
portant remark concerning a prerquisite for instabil-
ity and allow the disturbance to extract energy from

the state. Interestingly, we will realize shortly that
a vertical tilt, ∂zθ 6= 0, of the phase is needed. In
addition, it also needs to be in a special relationship
with the vertical velocity shear, for an instability to
occur.
To examine this we follow Wright (1987).

From figure 3.1 we realize that the process of lev-
eling out the inclined isopycnals entails a down-
gradient bouyancy flux. The flux occurs horizon-
tally across the sloping isopycnals when the water
parcels are exchanged. A horizontal bouyancy flux
can be expressed as − g

ρ0
u′ρ′, where u′ is the hor-

izontal vector of the perturbed velocity, and ρ′ a
density anomaly. We consider for simplicity, an
exchange occuring in a positive y-direction and
thereby only utilize the associated velocity com-
ponent, v’. Under the geostrophic and hydrostatic
assumption, and by inserting the wave solution
(A(z, t)eiΦ(x,y,z,t) where Φ = kx+ ly−ωt+ θ(z),
the horizontal buoyancy flux can be expressed as

− g

ρ0
u′ρ′ = (

A2k

2ρ2
0

∂zθ

f0
). (3.16)

We take note here that if ∂zθ is zero, there will be
no horizontal buoyancy flux, and the wave cannot
grow. In figure 3.1 again, it is evident that for there
to be a release of potential energy at some depth, the
product of this flux and the mean isopycnal slope
need to be positive. The mean isopycnal slope,sz
can through thermal wind balance be expressed as

f0∂zU =
g

ρ0
5 ρ, (3.17)

with N2 =
g

ρ0

∂ρ

∂z
,we get (3.18)

sz =
5ρ
∂zρ

= − f0

N2
∂zU. (3.19)

The product then takes the form, (for exchange in
the y-direction)

− g

ρ0
v′ρ′ · sz =

1

2
(
Ak

ρ0N
)2−∂zθ∂zU

f0k
< 0 (3.20)

By reckognizing that (and recalling that Φ = kx+
ly − t+ θ(z))

−∂zθ
k

= −∂zΦ
∂xΦ

=
∂x

∂z
|Φ=constant,
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we discover that the lines of constant phase need
and the velocity shear need to tilt in the opposite
direction for .. to be valid, and allow release of APE.
Wright makes the remark that it is not necessary for
this criteria to hold at every depth level. LeBlond
and Mysak (1978) showed that an adequate require-
ment is for the integral of 3.22, over the extent(in
the y and z direction) of the disturbance, to fulfill
the criteria.

3.3.2 Generalized QGPV

We will now look into a neat way to handle the
boundary conditions, and later see how they are
invoked in the discrete problem on the model grid.
Bretherton (1966) presented a sophisticated way
of generalizing the potential vorticity approach, to
encorporate the boundary conditions into the equa-
tions valid for the interior. Bretherton considered
baroclinic instability in fluids, and showed that any
flow with horizontal temperature gradients over a
rigid plane boundary, could be regarded identical to
a flow with homogeneous temperature distribution
over that plane, if one considers a concentration of
PV adjacent to the boundary (Lappa 2005). The con-
cept behind this is to add surface contributions to the
interior PV, where isotherms intersecting the bound-
aries are imagined to progress along the boundary
in an infinitesimally thin layer. The temperature gra-
dient next to the boundary, and thereby the PV, is
infinitely large. Consequently, the evolution of PV
can be attained merely by the prognostic equation

Dq̂

dt
= 0,

where q̂ includes the addition of Dirac delta-
functions at the top and bottom boundaries, of
which intensities reflect the boundary temperature
gradient.(Lappa 2005)

Consider the integration of q over a very thin layer,
from the bottom −H to a distance ε above.∫ −H+ε

−H
qdz =

∫ −H+ε

−H

(
f +52ψ

)
dz +

f2

N2

∂ψ

∂z

∣∣∣∣−H+ε

−H

In the continous limit as ε goes to zero, the inte-
gration equals zero. However by implementing a

constant temperature at the boundary, i.e. setting
the term ∂ψ

∂z −H to zero there, we get∫ −H+ε

−H
qdz =

f2

N2

∂ψ

∂z

∣∣∣∣−H+ε

= qb

Here we recognize that when applying a homoge-
nous boundary condition, the sheet close to the
boundary act as dirac-delta sheet, where the bottom
vorticity goes to zero as it approaches the bottom.
The same is valid for the upper limit. This allows
us to express the QGPV equation in a generalized
form

Dq

dt
=
D

dt

[
q + qbδ(z −H) + qtδ(z)

]
(3.21)

3.3.3 Neccesary conditions for instability

Even1 though we know that most flows atmospheric
and oceanic flows are ubiquitously unstable to insta-
bilities, we do not generally know the stability of a
flow. Since we simply cannot infer the stability of a
particular flow regime, we need to make a stability-
assessment. The stability of different scenarios in
baroclinic flows has been under numerous inves-
tigations, that for the most part have relied upon
the work of three pioneers, Charney (1947), Eady
(1949) PHILLIPS (1954). They developed simpli-
fied, idealized models of baroclinic instability, that
managed to capture essential aspects of the process.
?CH64) and Pedlosky (1964) rendered conditions
that needed to be fulfilled in order for a perturbation
to grow, for these frameworks. This has later been
referred to as the Charney-Stern-Pedlosky(CSP)
criteria. By multiplying the eigenvalue problem
by the complex conjugate, ψ∗, and integrating
over the domain, they found that if there exist a
non-zero imaginary eigenvalue, the vertical mean
PV gradient in a combination with the boundary
velocity-shear needs to change sign for the integral
to become zero (see Vallis 2006 for more details).

The conditions for instability are simplest in the ide-
alized case where the perturbations do not vary in
the y-direction, and the mean flow is aligned in the
x-direction, between to horizontal boundaries. This
is the case we will consider here. We furthermore

1This subsection bases much upon an unpublished compendium(lecture notes) of Lacasce (2013)

33



need to consider the structure of ∂yQ, and sign of
the velocity shears(or the horizontal density distri-
bution through the thermal wind balance) at the top
and bottom boundaries. The possibilities for fulfill-
ing the conditions can easily be demonstrated in a
condensed form provided by the generalized con-
text recently discussed. The delta-sheets of PV at
the boundaries are included in the mean PV-gradient
to give

∂yQ = ∂yQ+ ΓU topδ(z)− ΓU botδ(z −H)

For an instability to occur, this expression need to
become zero, i.e change sign somewhere in the ver-
tical. Figure 3.3 gives an overview of the necessary
CSP-conditions for the idealized case with a purely
zonal flow (V = 0).

Figure 3.3: Different possibilities for instability in idealized scenarioes, depending on the top and bottom
contibution to the mean PV-gradient and to the structure it.

This demonstrates different scenarios which may
allow for an instability to occur. We should take
note that all of these criteria are necessary for insta-
bility, but do not guarantee it however. These ideal-
ized cases yields three general types of instabilities
(Smith 2007). Even for more complex cases with
a lot more possibilities for instabilities, the insta-
bilities are often referred to as Eady-type, Charney-
type, and Phillips-type (Vollmer and Eden 2013,
Smith 2007) based on their characteristics.

Scenario 1) and 2): The first two scenarios repre-
sents the problem of Charney (1947), with an un-
bounded boundary at the top or bottom. He studied
the interaction between a thermal gradient and a
non-zero interior PV-gradient, i.e an interplay be-
tween an edge wave and an interior PV-wave. β
is included, which serve as the key ingredient in
this model, and the velocity shear is constant. If
∂yQ in the interior has the same sign as the shear at
the bottom, (nr.eq.) will potentially become zero.
The next possibility, is when the shear at the top,
and the interior ∂yQ have the opposite sign. The
latter is more suited an oceanic setting where high
velocity shears often occur in the surface layers.

Charney-instabilities, in this case, then represent
surface-trapped(surface-intensified) waves. The for-
mer is more realistic for an atmospheric setting.

Scenario 3):The third scenario represent the well-
known investigation by Eady(1949). He considered
flow between two rigid, flat boundaries. The back-
ground state in this model has constant stratification
(N2 = constant), and hence a constant velocity
shear, furthermore β is neglected. This amounts in a
zero mean interior PV-gradient. Hence, the velocity
shears at the top and bottom need to be of same
signs. Eady instabilities clearly depend fully on the
boundary conditions. The instability arises from
the interaction of edge-waves(or shears/density gra-
dients) at the surface and bottom(Smith 2007). The
amplitude of these waves decay exponentially from
the surfaces, and the shorter waves are not able to
interact(JL2013). If too small, the waves merely
propagate on their seperate boundaries, unaffected
by eachother(JL2013). This creates a short-wave
cut-off scale for instability. However, larger waves
are able to ’feel’ the effect of eachother conse-
quently may interact under the right conditions.
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The last state was studied initially by Philips (1954)
in a two-layered model. He let ∂yQ change sign in
the interior, and neglected any shear at the bound-
aries. The model has been extended to include more
layers in later years. The mathematical formulation
becomes very complex. The addiotion of more lay-
ers, allows the PV-gradient to change signs more
than once with depth, which commonly tend to oc-
cur in the ocean. Philips’ model supports possible
interactions beween two PV-waves in the interior.
In the extended version, several waves can interact.

3.3.4 Stability in the N-layered case

How does this relate to our present study? First of
all, we seek a numerical solution instead of these
aforementioned cases which need to be very ide-
alized to attain an analytical solution. We include
both the horizontal velocity components, β, and we
consider variations in the ocean’s bathymetry. By
rotating into a reference frame where U is directed
along the direction of the most unstable wave, η,
and thereby V ≈ 0, we can analyze the properties
of the eigenfunctions in the CSP-framework. How-
ever, keeping in mind that there is not necessarily
obvious exclusions of the different types of instabil-
ity. The instability at play, may be share aspects of
more than one general type.
We recall that

∂yQ = β − f∂zs,

where U = −Ucos(η)i + V sin(η)j, and V =
Ucos(η)i + V sin(η)j. Here the slope denote a
vector pointed along the Utw.
Furthermore by adding topography to the bottom
boundary condition, it takes the form

∂yQb = Γ∂zU− f∂yh (3.22)

Therefore, the collection of factors that are liable
to affect the stability, is β, the vertical difference in
horizontal layer thickness, and a bottom slope. In
the simple Eady case, instability is possible merely
with sheared velocites at the boundaries. If then β
is included, as in the Charney problem, the shears
need to exceed a certain limit resulting from the
non-zero mean PV-gradient. By modifying the con-
stant stratification, we get a depth-varying isopycnal

slope, f2

N2∂zU = ∂zs as well. We remark that the
value of β is on the order of 10−12 at these high
latitudes, and plays a much smaller role than the
other terms.
The slopes ∂yh (Isachsen 2003; Isachsen and Nøst
2003) and ∂zs are more significant here. The type
of stability can therefore be analyzed crudely by
examining the configuration of these slopes. For in-
stance, for a Phillips type instability, the isopycnal
slopes have to reverse their tilt for ∂yQ to change
sign with depth. A more thorough classification
can be done by examining the vertical structure
of the unstable wave-amplitude. This is given by
the eigenvector |ψ|. Eady instabilities will have
maxima amplitudes at the two boundaries. The am-
plitude of Charney instabilties have a maxima at
either boundary, that diminish quite immediately
toward mid-depths. Phillips type instabilities en-
tail larger amplitudes at the upper boundary, and a
slower decay away from the boundary.

3.3.5 Eady growthrate and lengthscale

The Eady model encorporates the primary processes
taking place in the development of a baroclinically
unstable wave. Despite its simplicity, it is able to
describe how perturbations spontaneously can be
generated and grow at the expense of the APE. It
also gives an account of how a certain structure will
related to the mode unstable wave (Vallis 2006).
The model is very popular due to its virtues of an
easy numerical implementation, a low computa-
tional cost, and its simple, but still rich explanation
of the process.

We recall that the assumptions taken are that β = 0,
∂zU=constant,N2 =constant and a rigid lid is spec-
ified at the lower and upper surface. The interior
mean PV-gradient is zero, and the flow evolution
is set by conditions at the boundaries. The veloc-
ityshear at the top and bottom, indicates, through
the thermal wind relation, density gradients across
the direction of the flow. The characteristics of
the fastest growing mode in the Eady model, are
attainable analytically. The analytical solution ren-
ders expressions for the growthrate and the length-
scale in terms of the mean stratification and velocity
shear. Pedlosky (1987) shows that the maximum
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growthrate is found to be approximately

ωi,eady = 0.31 ∗ Utw
Ld

, (3.23)

(3.24)

that occurs at the wavenumber

keady =
π

1.6
kd, and l = 0, (3.25)

where kd = 1
Ld

. With the WKB-approximation
for Ld = NH

fπ , we see that the lengthscale for the
fastest growing Eady-wave is ≈ 2Ld.

The conditions for growth mentioned above, will
change when topography is added. An augmented
Eady model which accounts for a linear topographic
slope was studied by Blumsack and Gierasch(1972).
Their findings show that a relation, δ, between the
sense the topography and the isopycnals are tilted,
in an important factor. To see the effects of this, we
compute the Eady problem for different values of
δ. Figure 3.4 below depict the growthrates’ depen-
dency on δ for different configurations of the bottom
slope, and growthrate curves for three distinct sce-
narios (as also shown in Blumsack and Gierasch,
1972; Isachsen (2011); 2015).

Figure 3.4: Top: Growthrates for different values
of δ = ∂yh/∂zs (for wavenumbers l=0), and non-
dimensionalized wavenumbers k ·Ld. Negative val-
ues signify that the topographic slope is oppositely
oriented the isopycnals slope. Bottom: Growth rate
curves for the cases δ = 0.5,δ = 0 and δ = −0.5,
and δ = 1.

From the top illustation, we realize that maximum
growth (nondimensionalized by Ld/Utw) occurs
when the topographic slope lies near half of the
isopycnal slope. In this scenario, the bottom slope
and the isopycnals slope the same way, like the sce-
nario we discussed in fig 3.2. Th maximum growth
near 0.5 suit the expectation of maximum growth
for a particle path of half the isopycnal steepness.
The maximum growth occurs at slightly larger wave-
lengths than for the typical δ = 0, and at a larger
rate of 0.35. This is evident from the growthrate
curves in the following figure. We notice that the
growth rate curve for δ = 1, does not appear on
the plot. When the slopes are oriented the same
way and of equal magnitude, it acts to stabilize
completely, as we can clearly picture in figure 3.2.
Moreover, when δ < 0 the growth will be shifted
toward smaller and smaller wavelengths, and into a
succesively narrower band. These coinsiderations
will be beneficial to keep in mind in the coming
analysis, as it is interesting to compare the more
realistic case to the predictions of these simple con-
figurations. We need to stress however, that these
are highly idealized situations, and we do expect to
find discrepancies in the more complex setting.

36



3.3.6 Energy transfer

An relevant aspect to look into is what contribution
the waves make to the energy conversion between
APE and EKE. Gill, Green and Simmons (1974,
GGS hereafter) investigated the production of mid-
ocean eddies by energy considerations. They made
estimates of the transfer rate from APE to EKE,
from the energy budget equation. The expression
for this is attained by multiplying of the QGPV
equation by −ρ0ψ, and integrating over the domain
(Smith 2007). The energy conversion term is com-
prised by the advection of the eddy PV by the mean
shear (Smith 2007). Inserting a wavesolution to this,
and integrating horizontally yields (See Smith 2007
or Gill et al., 1974 for details):

R(z) =
Veρ0

2

f2
0

N2

dθ

dz
(
|ψ̂|
| ˆψmax|

)2 κ

κ2

dU

dz
, (3.26)

where Ve is a velocity, θ the phase of the wave,
|ψ|, |ψmax|, the amplitude and it’s maximum value.
Integrating,

∫ 0
−H(R(z)dz, gives an estimate of the

transfer, inWm−2. The LSA provide all the needed
variables but one. We need to make an assumption
regarding the velocity Ve. GGS determined this
term by considering scenarios where the rate of
energy removed by the eddies equalled the rate

of energy supplied by the wind. The latter input
was estimated to be around 10−3Wm−2. GGS had
found that the eddies were able to efficienly remove
the energy-input by the wind, at a comparable pace.
The maximum velocity, 0.08 ms−2, were obtained
by large-scale eddies. Smith et al. (2007) imple-
mented this method for the purpose of filtering out
less energetically important wave-selections in their
global LSA. They set Ve = 0.1m/s, which was
also our choice.

We recall than ∂zθ and ∂zU need to be tilted op-
positely in an unstable wave. We then realize that
R(z) > 0 for an energy transfer from APE to EKE.
The magnitude is anticipated to be on the order of
the crude estimate of the wind input, 10−3Wm−2.

3.4 Discretization and numerics

3.4.1 Discretizating

We will not go into detail on how the matrices Aij
and Bij are discretized, but we will show the dis-
cretized stretching operator. This serves to demon-
strate the discrete implementation of the boundary
delta sheets discussed in the last sections. The op-
erator ∂z f

2

N2∂zψ is computed using centered differ-
ences, and takes the form

Γnmψm = f2
0


1
δb1

( ψ2−ψ1

N2
2 δ2−N2

1 δ1
), n = 1

1
δbn

( ψn−1−ψn

N2
nδn−N2

n−1δn−1
− ψn+ψn+1

N2
n+1δn+1−N2

nδn
), n = 2...N − 1

1
δbN

(
ψN−1−ψN

N2
N−1δN−N2

1 δN−1
), n = N

(3.27)

Here δb is the vertical distance between levels where
buoyancy, f∂zψ are located, and δ is the distance
between ψ-points. We refer back to figure 2.1 in
section 2.1, where the bouyancy points and vertical
differences will be collocated with w-points, and ψ
lie at ρ-points.

We aquired the boundary conditions in the follow-
ing procedure. The QGPV equation is attained by
the combination of the vorticity and the buoyancy
equation, respectively

Dζ

dt
= f

∂w

∂z
, and

Dhb

dt
= −N2w

Realizing that w = − 1
N2

Db
dt the combination at the

lower boundary yields,

Dζ

dt

∣∣∣∣
N

= f
∂w

∂z

∣∣∣∣
N

= −f
[ ∂
∂z

( 1

N2

Db

dt

)]∣∣∣∣
N

Furthermore, we invoke a homogenous boundary

condition at the lowest layer, 1
N2

Db
dt

∣∣∣∣
N

= 0. In the
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discretized form this gives us

Dζ

dt

∣∣∣∣
N

= −f D
dt

[ 1

δzbN

( bN−1

N2
N−1

− bN
N2
N

)]
= −D

dt

( f

δzbN

bN−1

N2
N−1

)
Finally we arrive at the simple prognostic equation

D

dt

(
ζN +

f

δzbN

bN−1

N2
N−1

)
= 0 (3.28)

Inserting b = f ∂ψ∂z and ζ = 52
hψ results in

D

dt

[
52
h ψ +

f2

δzbN

(ψN−1 − ψN
N2
NδzN

)]
= 0 (3.29)

The vertical spacing δzN is the thickness of the bot-
tom layer. In the continous case of the delta-sheet
approximation, this is layer is infinitesimally thin.
However, in its discrete form, this layer needs to
be finite and represent the lowest layer on our grid.
Consequently, the discretization entails an error of
the order of this thickness of the lowest layer(Smith
2007).

3.4.2 Numerics

Due to the problem’s relatively large computational
cost, the algorithm was written in FORTRAN (the
code is available from the author). To optimize the
speed, the code was paralellized, and run on the
University of Oslo’s supercomputer, Abel. The job
was still time-consuming after the parallellization,
but the cluster machine offers yet another measure
to speed up computations, namely an arrayrun. An
arrayrun splits the computation into a prescribed
number of smaller jobs, and makes it possible to
run all these parallellized jobs simultaneously. The
code was finally run in parallell split into 16 jobs.
This was highly effective, and shortened the CPU-
time of the run with about a tenthfold.

The library of eigenvalue solvers, LAPACK, was
used to attain the eigenvalues and eigenvectors.
LAPACK is the underlying library used when the
Matlab command ’eig’ is called, in which the ap-
propriate solver is automatically chosen. However,
when used in FORTRAN, the type of solver needs
to be specified. We chose ZGGEV, able to handle
complex, tridiagonal input-matrices Anderson et al.
(1992).

The eigensolver algorithm ZGGEV2 solves
complex generalized eigenvalue problems for non-
symmetric matrices of size N ×N . It calculates the
eigenvalues, and on request also the generalized left
and rigth eigenvectors, using the QZ-algorithm. We
specified that the solver return all eigenvalues with
their corresponding rigth eigenvectors. The QZ al-
gorithm does not invert B, in case the B-matrix is
singular. In the problem at hand, this will never oc-
cur, so formally it is equivalent to solving the com-
mon eigenvalue problem Cx = λx, where in this
case C = B−1A. The generalized eigenvalue prob-
lem solves the characteristic polynomial |A− λB|,
instead of the usual A − λI . The eigenvalues are
attainable if the former determinant equals zero The
procedure is carried out in four steps containing
various matrix reductions. In the third step, the
eigenvalues are retrieved. The eigenvalues are the
ratio of the diagonal elements of the now triangular
matrices A and B. The ZGGEV does not output the
ratio, but the elements as two N × 1 vectors, α and
β, such that

ωj = αj/βj , j = 1, 2, . . . , N

are the attained eigenvalues once out of the solver.
The eigenvectors are obtained form the triangular
matrices in the final forth step, and then transformed
back to the initial coordinate system.()

3.5 Results from the linear stability analysis

The linear stability analysis is conducted at each
gridpoint in the domain of 1602 × 1202 horizon-
tal points, and 35 vertical levels. The eigenvalue-

problem is furthermore solved on a grid of
wavenumbers, and the spectral domain is divided
into 61×31 values of the wavenumber-components

2Information about the eigenvaluesolver in this section is obtained from ’LAPACK Users’ guide’ (Anderson et al., 1992)

38



in the x- and y-direction, respectively. We take the
advantage of conjugate symmetry inherent in the
equations, where the following apply

ψ̂ei(kx+ly−ωt) = ψ̂∗ei(−kx−ly−ωt).

Here, ψ̂∗ denote the complex conjugate of ψ̂.
The symmetry yields an identical solution for a
180◦ rotation in wavenumber space, and allows
us to only solve for the upper spectral plane. The
wavenumbers are specified to lie in the intervals
−10L−1

d < k < 10L−1
d and 0 < l < 10L−1

d ,
scaled by wavenumber of the local Rossby defor-
mation radius at each point.

3.5.1 Growth rates of the most unstable
wave

We start by inspecting the growthrates extracted
from the LSA. At each point, we make a selection
of the largest, positive imaginary frequency, ωi, and
we record the associated wavenumbers. At each
location, and for each wavenumber pair, (k,l), there
can be several growing waves.

Figure 3. depict a map of the distribution of the
maximum growth rates attained at each location.
Overall, the pattern depicted is that most ’action’
occurs in regions near boundary currents and along
frontal zones. This suits the notion that baroclinic
instability developes in regions of sloping isopyc-
nals and vertical velocity shears (Gill et al. 1974).
Along the coastal boundaries, the isopycnal slopes
are steep and outcrops at the surface. This is due to
the division between ligth coastal waters and denser
basin waters. This gives rise to a horizontal density
gradient, and furthermore currents in thermal wind
balance translating with light waters to the right. As
revealed here, these currents are susceptible to baro-
clinic instability. As expected the interiors appear
more quiescent. On the long term, the isopycnals
are generally more leveled out in the open ocean,
and there is not much work to do for baroclinic
instability. Thus in these areas, the most rapidly
growing waves appear to be weaker. In the Bar-
ents Sea, however, regions of high growth rates are
widespread.

The broad patches of very high growthrates found
nearest shore, are areas with depths below 100 m,
and below the 50m-isobath in the Chucki Sea. At
these shallow depths, the QG approximation will
most likely fail, due to dominating ageostrophic
effects present there. Wind stresses at the surface
(when icefree), as well as friction at the bottom,
will break geostrophy. The entire, shallow water-
column may be impacted. We therefore disregard
the shallowest regions in our further analysis.

In the western part of the Arctic Ocean there is rapid
growth along the Alaskan coast. This includes the
well-documented region around Barrow Canyon,
where eddy generations frequently have been ob-
served (Pickart 2004, 2005; Wanatabe 2010). The
Alaskan Coastal Current flows along the coast there,
which has been deemed both barotropically and
baroclinically unstable(Pickart and Appen 2012,
Spall 2005). The western part of the Beaufort gyre,
also believed to spawn shelf-break eddies into the
Arctic Ocean interior(Wanatabe 2010), show high
rates.

As highly unstable waves are commonly related to
the boundary currents, and the currents are strongly
confined to flow along the topography (Rossby et
al., 200; Nøst and Isachsen 2003), high growth
rates mainly coincide with regions of topographic
slopes. It is interesting to note that intense wave de-
velopement largely concur with steep topographic
slopes. We see elevated values at several places
where the topographic contour lines converge. This
is particularly evident along the steep slopes east
in the Lofoten basin. From eq. 3.22 we saw that
topography modifies the bottom contribution to
the mean PV gradient, and hence influences the
necessary condition for instability. It can prevent
the gradient from changing sign or aid in a sign-
change, surpressing or enhancing the instability,
respectively. Seeing that topography can strongly
influence the potential for instability, this implies
that a flat bottom case, such as the Eady model,
may be neglecting important features and not be dy-
namically adequate model. As noted, an augmented
Eady model which accounts for a linear topographic
slope was studied by Blumsack and Gierasch(1972).
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Their findings showed that a relation, δ, between the
sense the topography and the isopycnals are tilted,
in an important factor. In studies focusing on the
Lofoten basin, Isachsen (2011, 2015) noted that for
the typical configurations of δ along the region of
rapid growth, this theory predicts inhibited growth.
He further remarks that the fact that merely adding
bottom topography to the Eady model, will not
yield a sufficient explanation for unstable growth at
certain locations. Interior mean PV gradients need
to be taken into account (Isachsen 2015).

3.5.2 Lengthscales of the most unstable
wave

What length-scales are associated with the gravest
modes? Figure 3.3 show the inverse wavenumber
modulus, 1/κ =

√
k2
max + l2max, of the fastest

growing mode.

The map of spatial scales has a more noisy structure
than the map of growth rates. Despite the noisiness
in the field, some patterns stand out. The inflowing
branches of the NAC depict larger lengthscales,
of about 15km and higher. Thin bands of larger
scales are also found along the westernmost branch
of the NwAC, the EGC, and along the slope off
the west coast of Greenland. In the entire Barents
Sea, the spatial scales are small, of about 2-5 km.
This is likely reflecting the shallow depths there,
and the shallow waters on the continental margins
also exhibit shorter scales than found in the basins.
The Arctic roughly has larger scales in the Nansen
basin, decreasing toward the west. Some parts
of the boundary currents showing rapid growth,
depict smaller horizontal scales. We refer here to
the eastern flank of the NwAC, flowing along the
Norwegian continental shelf, as well as the EGC
as it tranlates around the tip of Greenland, and the
Labrador current.

The source for the patchy appearance is likely
linked to our unfiltered selection of the most unsta-
ble wave. Local maxima of growthrates can occur
for several wavenumber pairs,k and l in wavenum-
berspace. The different maxima may arise due to
distinct structures of the unstable modes (Tulloch et
al.,2011). This will become evident in the next sec-
tion where we examine the wave properties in more
detail at specific locations. High growth rates found
at very high wavenumbers, might signify surface
intensified modes that do not play a large role the
conversion of APE to EKE. Noise at high wavenum-
bers is also related to several zero-crossings in the
mean PV-gradient induced by the noise in calcu-
lating the gradient. These disturbances are not
baroclinic modes, but small-scale perturbations
(Vollmer and Eden 2013). We are therefore not
guaranteed the most energetically important pertur-
bation by simply choosing the wave corresponding
to the absolute maximum in wavenumberspace. A
possible way to secure a better selection, is a filter-
ing measure implemented by Smith (2007), which
is based on the GGS energy transfer rate mentioned
in section 3.3. The filtering act to leave out waves
that do not contribute significantly to the energy
converion. We employed this method, but did not
get a large difference in the selected wavenumbers.

To filter out the small scale perturbations, we have
chosen to use a scale-selective horizontal, isotropic
diffusion operator, Ah 52 q. This is, as noted
in 3.3.1, added to the LHS of the interior QGPV
equation. This operator act on the very highest
wavenumbers, so that most of these uninteresting
features are left out. We are then more liable to
select a larger and deeper mode, by avoiding most
of these small features. This is apt because we
desire to consider perturbations on the mesoscale.
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Figure 3.5: Maximum growthrates, ωi, in days−1

Figure 3.6: The associated lengthscale of the maximum unstable wave, 1/
√
k2
max + l2max, in km.
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3.5.3 Comparison with the Eady predic-
tion

How does the Eady model compare to our more
complex case? As noted, this simplified model of
baroclinic instability is utilized in several studies
to acquire the characteristics of unstable, growing
modes. The model has demonstrated reasonable
success in predicting properties associated with
this type of turbulence(). Nonetheless, we point
out again that the model does not represent a very
realistic oceanic setting. Rather than having a con-
stant velocity shear, the ocean typically experience
high shears near the surface. An exponential profile
decreasing rapidly with depth is therefore more
realistic than the linear vertical velocity and density
profile profile. The topography may also act to en-
hance or surpress instability. While the Eady model
has a zero mean PV gradient allowing only for a
coupling between two boundary-trapped waves,
observed oceanic eddies might be governed by a
completely different dynamics. It is therefore of
interest to examine the Eady wave characteristics
in ligth of a setting that includes a potential for all
types of instabilities to occur.

We will in this section analyze the differences found
in the properties of the most unstable waves in these
two settings. The spatial pattern in two seperate
maps(not shown) of the geographical distribution
of the growth rates are strikingly similar. Regions
of maximum growthrates are in agreement, and the
Eady model seems to represent the fuller state quite
well. This could lead us to anticipate a rather linear
scaling relationship. It is more informative to exam-
ine maps of the scaling of the complex case versus
the Eady model. In this way, we get an indication
of over- or under-represented areas in terms of
magnitude. We also look for discrepancies between
the length scales associated with each scenario. We
recall that the Eady length-scale is found near the
Rossby deformation radius, at Ld/1.6. We thereby
inspect the LSA lengthscales,Lbci in comparison

with Leady.

Figures 3.4-3.5 depicts the ratio of the maximum-
growthrates found here, to that of the Eady pre-
diction. The following picture shows how the
LSA-lengthscales relate to the Ld. Both fractions
are shown on a logarithmic scale.The white areas
signify a scaling relationship of 1, and the red and
blue values up to ten times larger or smaller values,
respectively.

At first glance, the discordances are somewhat hard
to systematize, as the distribution on the maps
appear to be somewhat random. Still, the length-
scales are primarily found to be smaller than Ld. In
the Barents Sea and large parts of the continental
shelves in the other Subarctic Seas, Lbci is found
closer in accordance with the Eady conjecture. This
is also true for flow along the frontal zones on either
side of Iceland, and the inflowing branches of NAC.

On the other hand the growthrates exhibit more re-
gions either of larger values, or in coherence with
the Eady model. Very generalized, we find that
large portions of the deeper waters have growthrates
exceeding the Eady model. Curiously, when follow-
ing the rim-current along the entire domain, most
parts have lower values in comparison with the Eady
growthrate. The EGC stand out as a clear example
of this. What could be causing this tendency? Well,
since these areas align with steeper topography than
elsewhere, we might suspect that the topography
may be a relevant factor. Smith (2007) notes that
the vertical integration in the Eady-growth calcu-
lation smooths over smaller-scale instabilities, and
may serve to partial explanation. Also, we revisit
the comment on the modified Eady model, with
added topography in the lower layer. For scenarios
where the isopynals and the topography slopes in
opposite directions, denoted by a negative δ and a
common setting along the rim, an increasingly nar-
rower band toward higher wavenumbers can give
rise to instability.
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Figure 3.7: Maximum growthrates from the LSA scaled by the Eady growthrate.

Figure 3.8: Lengthscales for the most unstable mode, scaled by the deformation radius.
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Baroclinic energy transfer

We computed the energy conversion rate mentioned
in section, shown in figure 3.6. We birefly comment

on this here as we will come back to this later in
the text. We takt note here tha the largest transfers
happen aligned with the areas of greatest isopycnal
slopes.
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3.5.4 A closer look at the eigenvectors

In this section we look more closely into the de-
tailed information the LSA renders at each locations.
The incentive here is to attempt to classify the type
of instabilities we find, and to look for indications if
the assumption of Eady dynamics seem admissible.
As noted, Eady instabilities are assumed in many
parameterization schemes of eddy transport, while
it is not certain that this is a dynamically valid
assumption. Again, the setting in the Eady model is
not very realistic for the ocean with amplitudes sym-
mertric about the mid-depth. Since the stratification
and velocity shears are typically intensified near the
surface, the expected typical vertical profile have
amplitudes more confined to the upper part, while
noting that there can also occur bottom intensified
instabilities. Tulloch (2011) puts forth a claim that
the greater share of baroclinic instabilities can be
classified as the Philips-types. We recall that this
entails a sign-change with depth of the mean PV-
gradient.

In our analysis, we investigated a multitude of loca-
tions within every part of the domain. Here we will
present the results at two locations which serves to
point out some of the typical findings. We can make
a general statement about the broader picture we at-
tained. On the basis of the locations we looked into,
say that Eady-type instabilities are not a common
feature. Our findings rather advocates that Philips-
and Charney-type instabilities are more common.

The figures presented below show growthrates,ωi,
as a function of wavenumber. These were com-
puted for the upper spectral plane of 201 × 101
wavenumbers, and then rotated to obtain the lower
part. The dottet line signify the orientation of the
thermal wind shear. The following plots depict char-
acteristics for the most unstable wave, the vertical
structure of the amplitude and the depth dependent
wave-phase. The mean PV-gradient and the back-
ground velocities are shown, both rotated into the
direction of the most unstable wave. This is done
so that we can attempt to assess what we see by
the necessary conditions for instability. Lastly, a
vertical profile of the topography,temperature and
isopycnals is shown.

The first column of plot belong to a point located
in the Barents Sea, at 25.74◦E, 71.31◦N . This
location has approximately no topographic slope
(or a slightly one), and can be considered a ’flat-
bottomed’-case. The largest growthrates occur at
k/kd ≈ 2.5. Furthermore is the fastest growing
wave aligned with the thermal wind shear. This
is what one would expect for an Eady instability,
which indicates that the fastest growing wave here
is goverened by Eady dynamics. The mean PV-
gradient also implies this. The top and bottom
contribution to the gradient is shown as the two
short bars at the top and bottom. In this ’flat’ case,
the contributions essentially signify the top and
bottom velocity shears. These need to be of the
same sign to endorse an interacting Eady edge
waves. We see that this criteria is fulfilled. More-
over is the amplitude is minimum at mid depths,
and increasing toward the boundaries. The veloc-
ity profile is as in idealized settings more or less
linearly increasing toward the surface. As antici-
pated for an unstable wave, the phase leads at the
surface for an easterly sheared flow. The phase
difference here is π/2, which is the phase shift
that yields maximum growth in the Eady model.
Despite having previously stated that an obvious
classification of the modes as a specific type of
instability, the wave characteristics at this location
overwhelmingly points to an Eady type. All of the
factors fits well with that Eady model. This result
does not represent what typically has been found.
However, we included it here since it was such a
remarkable fit, and the constrast to the following
steep-bottom case will serve us a point.
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Figure 3.9: Top: Growth rates as a function of nondimensionalized wavenumbers (k, l) · Ld. The dashed
line is the orientation of the top-to-bottom thermal wind flow. Middle: Characteristics of the most unstable
wave. The velocity in c) is rotated to be aligned with the most unstable wave, the dashed line in c) denotes
V ≈ 0. Bottom: A cross-flow slice of bottom topography, temperature and isopycnals. The dashed line
indicate location of the selected point.
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The next location was selected along the steep-
est topographic features north of the Fram Strait.
The growthrate occurs also here at large scales,
and is comparable to the last case, hence on the
horizontal scale of the fastest growing Eady-type
instability. The gravest mode is also here aligned
with the thermal wind shear. This could again lead
to the assumption that Eady dynamics might be
able to explain what causes the instability. Nev-
ertheless, when looking closer at the details, we
realize that such an assumption will not be justifi-
able. The cyan-colored bars denoting the bottom-
and top-contributions to the mean PV-gradient
is of the opposite sign. This alone tells us that
an Eady-like disturbance is not permitted by the
charney-Stern-Pedlosky criteria. The negative top
contribution, δtop < 0 simply reflects the negative
velocity shear. The velocity-shear is the same at the
bottom, however the contribution is positive there.
In δbottom = f2

N2∂zU−f∂yh > 0, the bottom slope
thereby makes a large contribution. Without includ-
ing the term ∂yh < 0, the contributions would be
of the same sign allowing for potential edgewaves
to interact. This illustrates how a bottom-slope can
change the instability criteria.

Without the possible interaction of edge-waves,
other interactions can however occur. The mean
PV-gradient is positive in parts of the upper wa-
ter column, and in conjunction with the negative

top-contribution a Charney-type instability is pos-
sible. Additionally, the mean PV-gradient changes
sign several times with depth, and a Philips-type
instability is also relevant to consider. It is here
instructive to examine the vertical structure of the
wave’s amplitude, as these two possiblities have dif-
ferent manifestations in with depth. The amplitude
has its maximum at the surfas, falls off rapidly the
top upper hundred meters, and then levels off to
a monotonic decrease down to 1000m depth. The
amplitude goes to zero at about the same depth as
the isopycnals start to align with the approaching
bottom slope. The slope of the topography and
the bottom most isopycnal are of the same orienta-
tion, and appear to scale to approximately one. A
stabilization for such a scaling is constistent with
the modified Eady-model, where no instability is
present for the slope-parameter of magnitude 1.

In a Charney-type instability the amplitude de-
creases exponentially from the surface maxima,
this is an effect of implementing only one bound-
ary. A condition is set that when the depth goes
to ’infinity’, i.e. toward larger depths here, the
amplitude has to become zero. The characteristic
amplitude of the Philips-type is also a somewhat
rapid decrease with depth, albeit the modes are
typically more deep-reaching. With this in mind,
we might conclude that this mode resembles more
the latter type.
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Chapter 4

Statistics of the fully turbulent field

We start this section by a brief examination of the
distribution of the full eddy kinetic energy (EKE)
field in the model. This may serve as a first pointer
to where we might expect to find high eddy activity.
On the other hand, we note that EKE reflect all fluc-
tuating motions deviating from a mean state. The
mean state is predefined, and taken over a certain pe-
riod in time or a limited spatial area. The EKE may
therefore incorporate several types of motions de-
pending on the way it is defined. High EKE-values
may often just as well arise from fluctuations in cur-
rents speed or direction and as represent mesoscale
eddies (Maslowski et al., 2008). In the following
analysis, it could therefore be apt to compare the
total amount of EKE in the domain versus the EKE
associated with the detected eddies only. In this
way we might be able to reckognize how much the
coherent vortices contributes to the fluctuating part
of kinetic energy.

By removing a temporal mean from the instanta-
nous velocities, we are left with the eddying mo-
tions of the flow. The vertical component of the flow
is commonly regarded as substantially weaker than
the horizontal components. We thereby only con-
sider the horizontal velocity components, assuming
that: v ≈ u, we make the subtraction

u′ = ū− u, (4.1)

where baru is the mean flow, and u is the model’s
daily output velocities. EKE per volume is then
naturally obtained by 0.5u′2. The overbar repre-
sents a mean over the same time period as applied
to define the mean flow. Deciding on a suitable
period for the time average is not trivial, but a rea-
sonable estimate is motions occuring between a day
to six months (Isachsen 2015). We have used a
three-month average to filter out ’background’ mo-
tions.



Figure 4.1: The Arctic4-model’s 10 year mean, depth-averaged eddy kinetic energy field.

In figure 4.1 depthaveraged EKE values are shown.
There is evidently an uneven geographical distribu-
tion of EKE within our domain. The central basins
in the Nordic Seas together with the Arctic Ocean,
appear to be subject to less variability than in most
other locations. The inflow North Atlantic current
(NAC), the easternmost branch in particualar, and
the Iceland Faroe frontal zone, stand out as highly
variable. The boundary currents along Norway and
Greenland also show levels of high EKE. The EKE
on the west side of Greenland is spread out into

Labrador Sea. This region is known for its dense
population of eddies. In fact, eddies have, from
observational data, been reported in all the regions
depicting elevated EKE. At the same time, these
regions are also comprised of slender currents that
frequently experience heavy meandering, that could
also render this signs of variability. How large a
portion of the EKE that can be attributed to coherent
vortices, is one of the motivations for the following
vortex analysis.

4.1 Autmatized eddy detection

Since the 1980s, several observational campaigns have focused on automatized eddy detection (J. Isern-
Fontanet, 2003). In some of the early attempts, eddies were identified from changes in proxy ocean
variables using infrared imagery. These proxies could be the color of the ocean, or temperatures at
the sea surface (J. Isern-Fontanet, 2003). This is somewhat problematic, since these procedures rely
upon changes in variables that are not directly linked to the eddies, but rather advected by the eddies.
Several different processes impact such variables, and it may be hard to single out the changes that can be
attributed to eddies.

Sea surface height (SSH) provided by altimetric data is however closely tied to ocean dynamical pro-
cesses, and liably better suited for eddy identification. In the recent advances in satellite-measurements,
increasingly detailed maps of the ocean surface have become available. Datasets from different satellites
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Figure 4.2: An algal bloom off the Norwegian coast. Satellite images
offers coherent, synoptic maps of ocean variability. This image demon-
strates how algal-blooms can reveal mesoscale ocean features. The picture
show a vibrant eddy-activity, evident in the swirls which serve to both
trap and mix these passive tracers.
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4.2 Previous studies

The techniques can mainly be separated into two
groups. They are either based on geometric or phys-
ical flow conditions. A physically based procedure,
require detection parameters to exceed a prescribed
threshold, whereas a geometrical conditioning en-
tail an analysis of the pattern or curvature of sequen-
tial streamlines (Nencioli et al., 2010).

4.2.1 Physically based methods

Vorticity method

Mcwilliams (1990) conducted one of the earliest
automated eddy detection investigations. He de-
veloped an algorithm to identify coherent vorticies
in decaying two-dimensional turbulence at large
Reynolds number. In a similar study, Thompson
and University of California (2006) implemented a
version of this method in combination with the OW
technique. The census is realized by considering the
vorticity field from a numerical solution. Defining
vorticies by the means of vorticity alone does not
guarantee the extraction of only vorticies. Other
flow features also consist of high levels of vorticity.
Subsequently, some regions satisfying the selection
criteria may lack an eddy core. Hence (Mcwilliams
1990) refined earlier algorithms by a more stringent
selection. Primarily two criterias identifies vortex-
candidates from the structures that conform to a
vortex. The first part entails what Mcwilliams call
a ’pattern recognition or feature eduction’, which
detects connected regions of vorticity consisting of
a single vorticity extremum. The local extremum
is required to exceed value, specified to be 5% of
the global maxima of vorticity within the domain.
Secondly, the vortices are assumed to attain ax-
isymmetrical shapes around this extremum. This
idealized vortex-structure has frequently been ob-
served in solutions of inviscid 2D turbulence. Such
settings host isotropic horizontal flow fields, while
a realistic setting in the ocean will consist of large
scale shear and latitudinal variations in the Earth’s
rotation rate, which introduce anisotropy. Thereby,
the characteristic axisymmetrical shape occuring
for vortexes in 2D turbulence, may be a too strict
criteria when applied to the ocean.

Okubo Weiss

The Okubo Weiss parameter is one of the most com-
monly used tools for identifying coherent structures.
It has been employed in a number of observational
and model studies in different parts of the World
Ocean, as well as in global studies (Penven et al.,
2005; ?; Chelton et al., 2007). The Okubo-Weiss
parameter(OW) originates from turbulence studies
(Okubo, 1970; Weiss, 1991) and has commonly
been utilized in two-dimensional turbulence stud-
ies((?)). It aims to localize regions dominated by ro-
tation relative to deformation. It separates the flow
field into locations subject to high rates of strain,
and coherent rotating flow, associated with high vor-
ticity of either sign. By a combination of strain and
vorticity, the parameter takes the the form:

OW = S2
n + S2

s − ζ2
z (4.2)

where u and v are the horizontal velocity compo-
nents, in the x- and y-direction respectively. The
normal strain, Sn = (∂u∂x −

∂v
∂y

), and the tangential

stretching Ss = (∂v∂x + ∂u
∂y

), together represent the
total deformation of the flow,. The last term repre-
sent the vertical component of the relative vorticity,
ζz = ∂xv + ∂yu.

When OW is negative, relative vorticity dominates.
This parameter is thus helpful to identify eddy
boundaries, since an eddy core is likely to have
negative OW values and regions around the core
are often strongly deformed. The OW parameter is
thus an illustration of the turbulent character of the
flow, and eddies can be detected by the patches of
negatively valued- encircled by positively valued
OW (Penven 2005).
Despite the parameter’s ability to systematize the
flowfield, eddy detecting based on OW entails some
deficiencies (Chelton et al. 2011, Nencioli et al.
2010, Williams et al. 2011). Firstly, an upper
treshhold of the OW needs to be specified, for grid
points belonging to an eddy-interior. This intro-
duces an issue of deciding an admissable upper
limit. A well-suited assumption is not obvious, as
a single value might not be representable across
regions (Nencioli et al. 2010). The issue of a
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global threshold has been noted with concern in the
studies utilizing OW as means for eddy detection.
Global studies suffer the most in this regard. Polar
regions are also especially problematic, due to the
potentially small OW parameters associated with
the small eddy-sizes. A typical choice of treshold
has been OW = −0.2σow (?Petersen et al., 2013).
σow is the standard deviation of the Okubo Weiss
parameter for entire domain. If this cut-off value
is too high, the detection procedure will miss ed-
dies of small scales. Additionally, if it is too low,
large areas possibly including several eddies, may
be characterized as one eddy. This results in false
negative or positive detections (Chelton et al, 2011).

Secondly, the parameter is sensitive to noise re-
lated with its velocity inputs. In several studies,
SSH anomalies are employed to estimate velocity
components. These fields commonly contain a sub-
stantial amount of noise. Geostrophic velocities are
computed through the relations

u = − g
f

∂h

∂y
, (4.3)

v =
g

f

∂h

∂x
, (4.4)

is the Coriolis parameter. The calculation of OW,
thus contains products of second order derivatives
of SSH. The differentiation magnifies the noise ini-
tially present in these fields. Furthermore, a numer-
ical solution will consist of finite difference forms,
which also acts to amplifies the noise. A way to
deal with the noisy fields has been to apply filters
to the data, which are scale-dependent and thereby
remove certain aspects of the flow (See app. Chel-
ton).
We take note that whilst the OW is the traditional
method based on physical criteria, other methods
have been developed alongside it(). We shortly
point out some of the other options, such as the 2D
Wavelet method applied by Doglioli et al. 2007,
and the somewhat rarer Winding Angle Method(
Sadarjoen and Post, 2000, Chaigneau et al.,2008).
The former, as in McWilliams studies, is based on
the vorticity field (Doglioli 2007). The latter is
based on the notion that eddy cores will be enclosed
by circular or spiral streamlines(Robinson 1991,
Necioli 2010). Studies which have compared the

performance of OW up against these two methods,
report that the two latter produce more accurate
results. However, the applications are computation-
ally costly. Since they also require velocity input,
the same sensitivity mentioned present in the OW,
will affect their performance as well.

4.2.2 Geometrically based method

Geometrically based methods have showed to be
less problematic compared to the OW technique
(Halo et al., 2014), and therefore in recent years
been more preferred(Halo, 2012; Chelton et al.,
2011; Souza et al., 2011). Nencioli et al.(2010)
developed an eddy detection scheme based on the
geometry of the velocity vectors. This was applied
to a high resolution(1km) model product, and has
further been utilized in a number of model studies.
The method was validated against manual detec-
tion, and showed a high performance. 4 constraints
are put on the configuration of the velocity vectors,
and eddy centres are identified as all the locations
which fulfill these criteria. The two initial crite-
ria require that the velocity components in the x-
and y-directions, need to reverse in a tranverse di-
rection across the eddy centre, as well as decrease
outward from the centre. Thirdly, eddy centres need
to be the local minimum velocity point, and lastly
a condition is put on the vectors sense of rotation.
Due to the method’s requirement of strongly accu-
rate computations of rotational flow, its utility is
restricted to highly resolved data. It has thence not
been applicable to satelitte data with typically 0.25◦

resolution().

Contour based methods

Chelton et al(2011) concluded that, when SSH
fields are required to attain velocities, detecting
eddies merely by OW, does not yield satisfactory
results. Their study rather advocates the use of an
contour-based procedure. They analyze a global
dataset of SSH fields, spanning 16 years. The aim
of the study was to map and track mesoscale vari-
ability on a global scale. The data was attained
from two merged altimeters (Le Traon et al., 2003),
that rendered higher resolution data than used in
previous studies (Chelton et al., 2007).
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A procedure based on the SSH field has been ap-
plied in several studies(Chelton et al.,2007;Fang
and Morrow,2003;Chaigneau and Pizzaro,2005).
Such algorithms seek out peripheral closed SSH-
contours. The justification for this lies in the as-
sumption that the flow encapsulating eddies, is
geostrophic and marks out streamlines which ap-
proximately collocates with closed SSH contours.
An analysis built exclusively in terms of SSH, still
demand a threshold to extract eddies,i.e. a lowest
permittable deviation in SSH. Hence, the difficul-
ties in arriving at an optimal limit remains. Chelton
et al.(2011) developed an algorithm that avoids the
requirement of setting any cut-off limits. Instead,

a consequtive search at 1cm intervals is performed
through sea level heights from -100cm to 100cm.
Further conditions is set to filter out features which
do not share the expected structures of an eddy.
Restrictions are put on parameters such as the am-
plitude, size, and distance between any points in-
side the SSH contour. Chelton et al. claim that
this outperforms the OW method, with being more
resilient to noise and excess eddy detections. How-
ever, it has some struggles with seperating several
connected eddies of the same polarity, in addition to
the aformetioned issue with the handling of AVISO
data.

4.3 A hybrid eddy detection method

For our statistical analysis, we chose to use a so-
called hybrid method. It shares the major compo-
nents of the one employed by Chelton et al. (2011),
relying on both finding closed SSH-contours and the
OW criterion. The code is based on a Matlab tool-
box by Pierrick Penven (Penven 2005), freely avail-
able at http://www.simocean.org.za/tooleddy.php.
It has been utilized in several other studies (Halo
2014, Raj et al. (2015)).

Syntaxwise, the code was rewritten to only depend
on the internal matlab language. Other modifica-
tions to the code will be justified as we further work
through the algorithm.

An overview of the algorithm can be listed in 4 main
points:

1. The Okubo Weiss parameter is calculated from
depth-averaged horizontal velocities aquired from
the model. By using the model-velocities, and
not geostrophic velocities computed from second-
order derivatives of the SSH, some noise is avoided.
A hanning-filter is however applied twice on the
Okubo Weiss parameter in order to smooth out
some grid scale noise. Eddy kinetic energy is
also computed point-wise for the entire grid, by
substracting a seasonal mean from the daily data,
leaving us with the fluctuating(eddy) part of the
motion.

2. The model provides daily values of the variable
zeta, which represents the sea surface height. The
surface-height field is extracted every 5th day, and
local extremal points on the surface are detected.
Anticyclones, associated with a minima in SSH,
and cyclones, associated with a maxima in SSH,
are evaluated seperately. In the original code, the
verification of a minima- or maxima point requires
that all 8 neighboring points, has a higher or lower
value, respectively. The original algorithm by Pen-
ven however, is intended to compare results from
a numerical model with the results from AVISO
products, with a 0.25◦ horizontal resolution. For
our purposes, a model field with 4 km resolution
could then provide local extremal points seperated
by only 4 km. As noted, the model simply will not
be able to produce eddies of that size and seperation
distance. Thus, the search is extended to the neigh-
boring 24 points, yielding a shortest distance of 8
km between potential minima or maxima points.
Furthermore, for every local extreme, we construct
a surrounding subdomain. Starting at the centre,
we then search for the largest closed SSH-contour
around that point. This is achieved by looping
through the contours, successively, with an incre-
ment of 1cm. The code originally uses 2cm, due to
the limitation of altimetry precision.

3. Once a closed SSH-contour is found, we then
search for a negative OW parameter within this sub-
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domain. If no point inherits any negative OW points,
the search is finalized and that eddy-candidate dis-
carded. Otherwise, if there do exist gridpoints with
a negative OW-parameter within the SSH-contour,
the next step is to find the largest closed contour
OW. The edge of the eddy is defined to be zero-
contour of the OW-parameter.

4. Next, when an eddy is detected, properties such
as area, eddy kinetic energy, vorticity, radius and
amplitude are computed. The area is the sum
of all area-elements which lies within the eddy-
boundaries, expresses as:

ds = dx · dy (4.5)

Area =

∫
ds (4.6)

The eddies EKE is computed by summing the EKE
of all points within the eddy boundary, and weigth-
ing this over the eddy’s area.

eke = 0.5
√
u′2 + v′2EKE =

1

Area

∫
eke ds

(4.7)

The eddies relative vorticity is attained by:

ds = dx · dy (4.8)

Area =

∫
ωds (4.9)

The amplitude is calculated by subtracting the max-
imum and the minimum SSH-contour within the
eddy-boundaries (see figure below). Expressed as:

Amplitude = ζ(max)− ζ(min) (4.10)

Despite being a threshold-free algorithm, an aspect
of the code is a collection of parameters set prior
to the detection. A maximum allowable detected
radius is set to 300 km (Chelton and Penven used
500km) to prevent an entire ocean gyre to be de-
tected as an eddy. There is also a need to specify a
minimum eddy radius, since the model is not fully
resolving the eddy-field. The minimum radius was
set to a value of 10km. The aforementioned SSH
contour interval is set to 1cm, and lastly the number
of times the Hanning filter is applied is set to 2.

Experiments with different sets of parameters
showed little sensitivity to the results, as also found
by Penven et al.2005. The decrease of 2 cm to 1 cm,
brought the number of detected eddies up slightly,
but did not change the statistical values.

Eddy tracking

A tracking algorithm was utilized, developedby Pen-
ven et al. 2005. Eddies across timeframes are linked
through a similarity condition. Two eddies detected
in two subsequent frames, are considered the same
if the generalized distance is minimal

Xe1,e2 =

√
δX

X0

2

+
δR

R0

2

+
δζ

ζ0

2

. (4.11)

The first term denotes the fraction of the spatial dis-
tance seperating the two eddies to a characteristic
length scale specified by the user. In the following
terms δR represents the difference in radius, and δζ
the difference in vorticity, over reasonable reference
values. The reference values were set to

X0 = 25km (4.12)

R0 = 20km (4.13)

ζ0 = 10−5 (4.14)

Xe1,e2 is set to infinite if the two eddies are of dif-
ferent polarity, to inhibit a change in the vorticity
signature(Halo2013). The track gets obsolete also if
the propagation distance between two timeframes is
too long. A limit is thereby put on the eddy’s transla-
tion velocity,0.3ms , preventing unrealistic distances
to occur.

Eddy temperature and salinity

Computations of the eddy core temperature and
salinity anomalies were added to the utilized code.
A typical year is created, comprised by daily means
acquired from the 10 year model simulation. The
anomalies are thereby attained by subtracting the
mean values from the temperature and salinity of
the eddy centre. This serves as an indication of
whether a detected eddy is more bouyant or denser
than its surroundings. Such information is of great
importance, as it can highlight the potential role
played by eddies in fluxing heat-, salinity either
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onto the shelfs or basinward.

Snap shots of relative vortivity and Okubu
Weiss

The figures presented below illustrate two of the pa-
rameters that take part in the eddy detection scheme;
the relative vorticity field and the OW parameter.
The fields are snap shots from 1st of January, 2000.
We can reckognize most of the spatial pattern we
saw in the EKE fields introduces at the beginning of
this chapter. Most regions of high and low activity
are located at the same places. Take note the resem-
blance of these two fields also. As it is with the EKE
field, these parameters also ’picks up’ other flow
features than merely rotating structures (-encircled
by strain when regarding the OW). An example of
this is at the southern tip of Greenland. The vortic-
ity here depict neighboring, elongated filaments of
negative and positive vorticity. This is a reflection
of the strong current hugging the coast there. The
negative vorticity nearest the coast illustrate that the
velocity is decreasing toward the coastal boundary,
from the currents core-maximum further out. The
water then attains an anticyclonic(clockwise) rota-
tion, i.e a negative sign in vorticity. The opposite
is true basinward from the currents core maximum.
A decreasing velocity from right to left induces
a cyclonic rotation, and hence a positive vorticity.
This feature is also prominent particularly along

the Labrador Current and the NwAC, but it also
occurs along the entire rim current and elsewhere.
We take note that the vorticity-sign of the currents
meander will impact the characteristics of the ed-
dies’ cores, as they wrap around fluid when they are
generated. Light waters are located near the coast,
and becomes denser toward the basins. Assuming
a current meander results in an eddy, then if the
meander occures clockwise, i.e toward the shore,
an anticyclone will wrap around buoyant waters.
Oppositely, if the meander occurs cyclonically, then
a cyclone appears and wraps around denser waters.

The OW parameter does not have the same widep-
spread feature, as it is more liable to identify co-
herent vortices. However, we do see, also here,
the tendency of elongated filaments at the tip of
Greenland. The boxed regions on the maps are
zoomed in, and shown at the lower rigth corners.
Here, we see an example of how the OW param-
eter detects circular, negatively valued features,
which are the regions dominated by rotation. Also,
the positive(red) values denote the strain, and is
wrapping around many of the negtive(blue) areas.
We can clearly indentify three large structures that
stand out. These are likely eddies. Furthermore, in
the vorticity map, the two northernmost eddies can
be characterized as anticyclones with the negative
vorticity, and the last eddy as a cyclone due to its
positive vorticity.

56



Figure 4.3: Top: Vorticity field. Bottom: Okubo Weiss parameter field. Both attained from depthaveraged
10 year mean velocities.
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4.4 Results

In this section, we will present the results from the
eddy detection. We have chosen to focus on the
eddy characteristics for all the detected lifespans,
and not a selected timeframe as done in a number of
other studies(Chelton et al. 2007; 2011). The basis
for this is that the shorter lived eddies, migth be
developed or developing eddies, before the detec-
tion algorithm is able to identify them. In addition,
we recognize that the tracking-algorithm might
have shortcomings, and thence do not necessarily
’hold on’ to the all of the eddies during their entire
lifetime.

We treat eddy characteristics from the detection pro-
cedure in a Eulerian manner, where we consider
eddy characteristics received from each timeframe
with a 5 day interval. Inferred eddy properties
and densities are aggregated on an regular grid of
20 × 20km. All eddies occuring within each box
are then collected, and the average value of the re-
spective characteristic represent that area.

4.4.1 Geographical eddy density

We will start by considering the geographical distri-
bution of the detected eddies. Previous studies, uti-
lizing observations and simulations, have confirmed
the presence of eddies in all parts of our study do-
main(Rodionov 2004). In the proximity of frontal
zones and boundary currents, regions of high eddy
activity have been exihibited (Rossby et al., 2009).
In addition, the Lofoten basin and the Labrador Sea
off the westcoast of Greenland, are known to host
maximum eddy activity in the Subarctic Seas. We
therefore do not anticipate a homogenous map of
eddy counts in the Subarctic Seas, but rather that
eddy densities differs regionally. Expected findings
in the Arctic Mediterrenean are more uncertain, as
it is a particularly problematic area in terms of cor-
rect model simulations. As stated by Timmermans
et al. (2008), there is generally a lack of long-term
measurements taken in the Arctic Ocean, which are
invaluable for our understanding of the eddy field
there, and important for discerning the fidelity of
model simulations.
Observational studies and high-resolution regional

models have found several parts of the Arctic rich
with eddies(Timmermans et al. 2008, Manley hunk-
ins 1985, Hansen and Meincke (1979), Zhao et al.,
2014, D’Asaro (1988)). Manley and Hunkins(1985)
participated in the first mesoscale eddy survey in
the Arctic Ocean (AIDEX), and reported finding
127 eddies during a 14 month time period. They
suggested that, at any time, 25% of the surface
area in the Canada basin is occupied by eddies. A
common perception is that the south part of the
Canada Basin is host 100-200 small-scale eddies
(Newton et al. (1974); Manley and Hunkins, 1985;
Spall et al. (2008)) supplied by the Chukchi Sea.

Figure 4.4 depict a map over eddy densities, which
simply are the count of eddies within 20 × 20km
boxes. White areas signify regions where no ed-
dies were identified during the ten years simulation.
Most notably, very few eddy occurences are seen
in the central Arctic Ocean away from the shelf
seas. We suspect that the model is not capable of
resolving the small eddies present in the upper lay-
ers, of diameters around 10km (Timmermans 2008,
Manley and Hunkins, 1985). Larger eddies with
scales of 25 km have been observed deeper down
in the water column, at the depths of the core of
the Atlantic water, 800m (Timmermans (Timmer-
mans)). A concern is also that these eddies might
not produce a surface signal and then not letting the
detection-routine discern them.
Apart from the Arctic Ocean, we find an overall
sparse distribution of eddies in the central Nor-
wegian, Iceland and Greenland basins, and higher
counts in the enclosing areas. Some broad eddy rich
areas are evident the Irminger Sea, the Labrador
Sea off the westcoast of Greenland, and around the
Lofoten basin. The southern part of the domain,
depicting the inflow from the North-Atlantic, con-
tain a significant amount of eddies as well. The
branches of inflowing AW, possibly advect some
eddies with origins in the NA. It is likely that some
of these stem from the NAC, and are advected into
the domain.

Other areas appear to have more concentrated dis-
tributions of high eddy population, such as the
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Iceland-Faroe frontal zone and the Polar Front in
the Barents Sea. This is also exhibited close to the
NwAC offshore the coast of Norway.
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Figure 4.4: Eddy counts within 20× 20 km boxed areas.

4.4.2 Eddy kinetic energy

We continue by comparing the map over the de-
tected eddies kinetic energy shown in figure 4.5,
with the total EKE figure 4.1. The strong con-
sistency between these two maps implies that the
eddies largely account for the total EKE. We take
note that the EKE is not uniformly distributed. Con-
centrated bands of high EKE emerges mostly in
association with boundary currents or frontal zones,
and the areas of low EKE are more widespread.
There is a strong coherence between the spatial
patterns on the two maps. Still, figure 4.5 gener-
ally depict larger values of EKE, than for the total
amount of EKE in figure 4.1. The Labrador Current,
the flow out of the St Anna through, the WSC and
along the Norwegian coast are found much more
energetic when only considering the eddies’ EKE.
When averaging over the kinetic energy that encom-

passes all eddying motions, less energetic features
are also included. In comparison, the averaged
EKE associated with the eddies only, likely include
more intense features. This may serve as a possible
explanation for the higher values found in 4.5.

The Arctic Ocean, the central Norwegian- and
Greenland basins and the Icelandic plateau, are the
regions of lowest total EKE. These locations are
collocated with the most pronounced white areas in
4.5, also reflected in figure 4.4. If the total EKE is
associated with eddy activity, a coherence between
regions of low EKE, and few eddy counts is indeed
expected. Furthermore, the eastern-most flank of
the NAC is higher in EKE than the other two inflow-
ing branches. The central Labrador basin, as well
as the Iceland-Faroe frontal zone and the Denmark
Strait, are eddy active regions. The zone of elevated
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EKE is broadened there.

The reasons causing the broad, high EKE at these
locations are thought to differ. The currents sur-
rounding the central Labrador basin exhibit large
gradients of eddy fluxes, and this may indicate that
eddies are primarily advected into the area(Lilly and
Rhines, 2002; Prater 2002). At the Iceland-Faroe
Frontal zone, advection of eddies is not perceived as
the main cause for the raised EKE levels, but rather
that eddies are generated there locally(Jakobsen
2003). The Denmark Strait is also believed to form
eddies locally.

The Barents Sea appears to host a sustantial amount
of eddy activity, evident in both figures. Energetic
eddies are found along the pathway exiting the Sea
through the St. Anna trough. This is not as clearly
displayed in the total EKE. Neither is the energetic
eddies, found near the West Spitsbergen, mirrored
in the total EKE. Along the coast of northernmost
part of Norway, and also of the Kara Sea, eddies
and the EKE fields are intense. Additionally, the
entire path of the NwAC has high EKE. This is,
of course, consistent with it being baroclinically
unstable as seen in the previous chapter.

There is broadly a good accordance between the
distribution of the EKE and growthrates. The most
unstable growthrates however comes out as a more
grainy field than the smooth EKE field. Venaille
et al. (2011) remark that "These regions of fast
growth mostly reflect the fine-grained structures of
the mean flow and the localized regions of insta-

bility." They further suggest that these differences
are likely caused by advective effects. The linear
stability analysis(LSA) only localized the initial po-
sistions of instability and growth, but eddies can
propagate or be advected away from their source
regions. This is captured better in the EKE field,
and it seems that this act to smooth out the highly
localized regions yielded in the LSA.
We also anticipate that the maps over the distribu-
tion of eddy kinetic energy and eddy density show
similarities. When comparing the spatial patterns
with eddy density, we both find some agreement
and disparities between the distributions. One clear
difference is evident in the Irminger Sea, where the
eddy count is high, whereas the EKE is not. The
heightened EKE found around the southern coast
of Greenland do not show up in the density distribu-
tion. Quite contrary, this area as well as a band in
the western Labrador Sea, is mainly void of eddies.
It is plausible that the EKE at these locations, is
linked to fluctuations of the local energetic bound-
ary currents. We recall that in the linear stability
analysis, we found high growth rates at both these
places, but length scales down to 2 km. It could
be that the instabilities occurring are to small for
the model to resolve. On the other hand, when in-
vestigating the SSH-contours in these ’white’ areas,
we see no closed contours in these regions, only
steep gradients toward the coast. This coincides
with the elongated features we saw in the vortic-
ity, and partly the OW-field. If there are eddies
advected, for instance along with the EGC around
the tip of Greenland, appearantly very few eddies
survive these high rates of strain.
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Figure 4.5: Eddy kinetic energy of the detected eddies.

4.4.3 Eddy radius

The top figure in figure 4.6 shows the effective

radius of the detected eddies, R =
√

A
π , as defined

in section 4.3. We notice that the branches of in-
flowing AW systematically contain bigger eddies,
at about 25-35 km. Similar sizes are detected spo-
radically in patches elsewhere. The spatial pattern
otherwise typically correspond to smaller eddies
along the coasts and larger toward the basins. We
take note that the smallest scales are restricted to 8
km.

How do the eddy radius inferred from the fully
nonlinear eddyfield compare with the linear length-
scale predictions? Before presenting the results, we
take a brief look at what we might expect to find
in the light of some earlier studies. The studies
only provide implications, seeing that most global
studies only extend up to 60◦N. From AVISO data,
Scott and Wang (2005) and Tulloch et al.(2011)
examined the energy injection- and equilibrated
eddy length scales, as well as kinetic energy spec-
tral fluxes between them. They assigned the length

scales related to the peak of the energy spectrum
to the equilibrated eddies. Both studies revealed
an appearant tendency for the for all three length
scales to be larger than the deformation radius at
high latitudes, and lower at low latitudes. Lbci from
a global LSA, was found to be within a factor of 2
of the observed spatial scales at all latitudes, and
both varied less with latitude than Ld.

Another study (Stammer 1997) found that zon-
ally averaged eddy scales, derived from sattelite
altimetry, were larger than Ld, but that the latitu-
dinal change of the two, was linearly related. La
Traon(1993) had previously noted that the observed
eddy sizes varies latitudinally by a factor of 2, while
the Ld varies by a twice as much. A study in the
North Atlantic, utilizing drifter data, also found the
linear relationship(Smith 2000).

The middle figure of 4.6 display the Rossby radius
of deformation, and the following plot the radius of
the detected eddies scaled by the Rossby deforma-
tion radius. It is evident that the ’observed’ radius is
universally larger than Ld, in agreement with other
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studies(Stammer 1997, Smith 2007, Tulloch 2011).
Away from the coasts, eddy sizes scale to a factor
of 2-4 larger than the Ld. The largest contrast is
seen in the Barents Sea, and certain areas along the
the coast where the detection results are more than
10 times larger. One possible explanation could be
that these differences are exhibited in shallow areas,

and we recall that the Ld =
∫ 0
−H Ndz

f0π
, is strongly

a function of depth. In shallow regions, even for
very stratified waters, Ld will take on substantially
smaller values than at larger depths.

The spatial scales from the LSA agrees well in the
Barents Sea, and elsewhere were mainly smaller
than Ld or Leady. The scales of the fully developed
eddyfield is thereby also universally larger than
the scales of maximum instability. This is a strong
indication of that linear analysis do not provide
well-estimated predictions of eddy lengthscales.
Other studies (Chelton et al., 2007; Stammer 1997;
Smith 2007) find globally that observed eddy-scales
are uniformly larger than the lengthscales of linearly

unstable waves. Smith mentions alternative reasons
for the dissimilarities. One concern lies in the se-
lection process of the most unstable mode in the
LSA. Besides the quickly growing large, often deep
instabilities, there are also small surface-intesified
instabilities rapidly growing. These may occur at
the same point of evaluation. The larger instabilities
are generally believed to be larger contributors to
the energy transfer, but we may fail to capture them
at each location. Another compelling explanation
which is consistent with these findings, is connected
to the nonlinear stage of the eddy evolution. The no-
tion is that energy is cascaded toward larger scales
by nonlinear interactions, which may create this gap
between the initial and final sizes. Scott and Wang
(2005) has provided observational evidence for a
strong inverse cascade in the ocean. On the basis of
this, and the findings of a nonlinear baroclinic study
(Smith and Vallis 2002), Smith et al. (2007) claims
that a nonlinear energy cascade seems imperative
to account for the observed spatial scales.
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Figure 4.6: Top: Radius of the detected eddies averaged in 20×20km boxes. Middle: Rossby deformation
radius,Ld, computed by the WKB approximation. Bottom: Eddy radius relative to Ld.
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4.4.4 Cyclones versus anticyclones

Next we examine the eddy properties with respect
to their sense of rotation. Are there any distinctions
in the properties related to eddies of different polar-
ity? As it is, assymmetries are indeed found in their
spatial distribution and characteristics. These are
often finite Rossby number effects. We start by an
inspection of the asymmetries of the cyclonic and
anticyclonic eddies’ geographical distribution.

Of the total number of eddies detected, 54% are
cyclones and 46% anticyclones. Figure 4.7 reveal
a peculiar pattern in the partition of anticyclonic
and cyclonic eddies in the domain. The maps show

the fraction of eddies of either polarity, the number
of eddies relative to the number of total detections.
In some parts, high fractions of anticyclones and
cyclones appear in vacillating bands. This is es-
pecially noticeable within the Norwegian Frontal
Zone. Also, solely anticyclones inhabit the shallow
part of the Icelandic Ridge with adjacent bands of a
cyclones. On closer inspection, we can readily see
that the cyclones generally have a larger tendency
to occur near the boundary currents throughout the
domain.
The plots imply that at some locations a larger
amount of anticyclones find their way into the basin.
Less cyclones escape the boundary currents, and are
probably rather advected along the coast or trapped.

Figure 4.7: The number of cyclones over the total amount of eddies.

Property histograms

The histograms in figure 4.8 a)-d) depict density
distributions of different eddy characteristics result-
ing from the eddy detection run. The red colored
bars represent values associated with anticyclones,
and the blue bars represent cyclones.

In figure a), the sizes of all detected eddies is shown.
The anticyclones are found to attain a slightly larger
radius on average than the cylcones. The mean
radius for each polarity, represents all identified
eddies, regardless of location. Anticyclones retain
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a mean radius of 17.7km, and the cyclones one of
16.2km. The larger attained eddy-sizes are more
frequently attributed to anticyclones, and the lower
distribution is dominated by a greater number of
cyclones. The positive skewness of the distribution
imply that a larger amount of smaller than average
eddysizes are likely to occur.

The histogram over eddy vorticity, tend to the same
shape as the radius distribution, in that high ex-
treme values occur less frequently. The intensity
of anticylones versus cyclones do not significantly
differ. There is however a tendency for cyclones to
attain slightly higher vorticities.

The Rossby number ζ/f serve as an indicatica-
tion of how well the geotrophic approximation
apply to the eddies. Mesoscale eddies are usually
assumed geostrophically balanced (McWilliams,
2008). However, at high latitudes where the eddies
are smaller, some on the verge of entering the sub-
mesoscale regime, this assumption may not be fully
adequate. Toward smaller scales, the Coriolis force
start to become less important, and an advective
(centrifugal) term is needed to balance pressure
gradient term. the validity of the geostrophic ap-
proximation relies on the condition that ζ/f << 1.
We find that 90% of the eddies we register, have

a Rosby number lower than 0.2, and we can con-
clude that a geostrophic assumption is largely valid
within an error of 20%. Even so, centrifugal and
ageostrophic effects might have an impact their
evolution (Chaigneau and Pizarro, 2005).

The ability for eddies to trap fluid in their cores,
can be measured by a nonlinearity parameter U/c
(Chelton et al. 2011). U denote the maximum
rotional speed of the eddy, and c is their propa-
gation speed. We attain the rotational speed by

1
2πA

∫
Area V orticitydA. The propagation speed is

computed simply by the distance between each po-
sition along the eddy track, divided by the time be-
tween each recorded position (here 1 day). U/c > 1
indicates that fluid is trapped within the eddies,
since the rotational velocity exceeds the transla-
tion rate (Chelton 2011). This means that the fluid
will be carried by the eddy along its propagation.
The parameter is also usefull to distinguish eddy
features from linear waves, seeing that the latter
cannot trap fluid. From figure d), we can see that
most of the identified eddies have a nonlinearity
parameter greater than 1. This is consistent with
the findings of Chelton et al. (2011) who found that
practically all of the eddies they detected outside
the tropical regions were nonlinear.
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Figure 4.8: Blue bars denote cyclones and red bars anticyclones. a) Histogram of the radius of the
eddies, in km. b) Relative voicity c) Relative vorticity scaled by the Coriolis parameter, f d) Nonlinearity
parameter U/c.
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Figure 4.9: Top: Temperature anomalies for anticyclones. Bottom:Temperature anomalies for cyclones.

Eddy temperature anomalies

The eddies play essential roles in heat and salt bal-
ances. For instance, the deep water formation in the

Greenland Sea requires a transport of salt supplied
by the AW transported across the NPF (Walcowski
2014). The supply of AW toward the Greenland Sea
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gyre is also needed to close heat and freshwater bud-
get there (Lilly 2003). During the years 2005 and
2006, observations were made of anomalous large
anticyclones propagating north-west across the NPF
toward the Fram Strait (Walcowski 2014). These
eddies carried large amounts of heat, and questions
arose as to whether such eddies reach the Arctic
Ocean. Investigations shows that this is possible,
and that at least one of the observed ’giant’-eddies
arrived intact at the Fram Strait. Polyakov et al.
(2005) raises the concern that similar eddies might
greatly impact the Artic Ocean hydrography. The
substantial heat loss in the Lofoten basin and the
labrador Sea also require the heatflux supplied by
warm eddies to maintain a heatbalance. The ICA
in the Labrador Sea have been crudely estimated
to provide between 25%-100% of the heat required
to balance the heat loss occuring during the winter
months (Lilly 2003).

In this context it is interesting to note the tempera-
tures of the detected eddies relative to typical am-
bient conditions. A potential discrepancy in eddy
polarity here is also noteworthy. We expect to find
predominantly bouyant anticyclones, and dense cy-
clones.
Figure 4.9 show the anomalous temperatures of de-
tected anticyclones and cyclones, respectively. The
temperature signature is overwhelmingly clear. The
anticyclones are predominantly warmer, and the
cyclones colder than the surroundings. However,
the reverse temperature signature is seen in regions
hosting Polar Waters. Owing to the fact that poten-
tial density of seawater is controlled by temperature
and salinity, this is not surprising. The notion that
anticyclonic eddies are bouyant and cyclonic eddies
are dense, is still in accordance with these results.
In warm waters, temperature primarily set the den-
sity stratification, but in colder waters such as the
Polar Waters, salinity serve as a proxy for density.
Hence, anticyclonic cores may comprise of cold
Polar water, and still be buoyant, due to the low
salinity effect.
To verify the trend we see in the maps, we exam-
ine how temperature and polarity relate at a couple
locations. The top scatterplot in figure 4.10 from
the boxed region covering the Iceland-Faroe Frontal
Zone and the Faroe Shetland Channel is presented,

and the lower plot represents the boxed region off
Lofoten. The blue colors represent cyclonic eddies
and the red anticyclonic eddies. We can readily see
that the cyclonic eddies of positive relative vorticity
are mainly colder than the environment, and the
opposite is seen for the anticyclones.
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Figure 4.10: Top: The two boxes are the areas con-
sidered. Middle: The temperature anomalies of
detected eddies in a region embedding the Iceland-
Faroe Frontal Zone. Bottom: The temperature
anomalies of detected eddies in a region off Lofoten.
The percentages in the two lower plots denote the
fraction of eddies showing the opposite of the major
trend.

4.4.5 Eddy lifetimes

An eddy lifetime is commonly defined as the timepe-
riod from the eddy originates up until mixing and
frictional dissipation destroys its identity. The evo-
lution and consequent duration of an eddy varies
greatly, and depend on complex, nonlinear phenom-
ena. If the spin-down processes are known, the
eddylifetimes can be crudely estimated. Sea ice
can act to dampen the eddy’s intensity. Lateral and
vertical velocity shear associated with the eddy and
ambient flow may also play this part (Timmermann
2008). Radial velocities can foster convergences
or divergences in the horizontal flow field with a
resulting vertical flow. This then, can allow for
mixing to occur across the eddy boundary, and
weaken the distinctive eddy core characteristics

and velocitites. Despite that there exists several
more spin-down mechanisms, some of the eddies
keep intact for long time. Ripa (2000) adressed
the stability of ocean vortices and noted that "The
longeviety of some vortices is remarkable, given the
turbulent environment in which they a embedded.
Others, though, do not last long."

The lifespan of the eddies we were able to track
range from 1 day to a maximum of 11

2 years (539
days), with a mean of 26.8 days. The mean is
calculated for all eddies tracked for more than a
day. The majority of the eddies lasted for less than
one month, only 22% had lifetimes exceeding this.
Petersen et al. (2013) conducted a eddy census
globally, and report that merely 25% of their identi-
fied eddies lived for longer than 28 days. We bear in
mind that this was a global, three-dimensional study.
The coherence here may imply that there exist a
large number of shorter-lived vortices, or it may be
that the tracking routines need improvements, or
the models have a too coarse gridresolution.

The eddy-lifetimes relative to the percentage of ed-
dies tracked for more 30 days is shown in figure
4.11.

Figure 4.11: Lifetimes of detected eddies tracked for longer than 30 days. The red line denote anticyclones,
and the blue cyclones.

The lifetimes shown are apportioned according to
eddy-polarity. We find an asymmetry in the dis-
tribution. Anticyclones are prevalent for lifetimes
exceeding 60 days, whereas a greater number of
cyclonic eddies occured for shorter lifetimes. All

eddies tracked for longer than 272 days are anticy-
clones, which show that anticyclones might be more
resilient than cyclones. We shall however keep in
mind that some part of the cyclones are of smaller
scales. If they get too small the routine may not

69



be able to identify them. Consequently, an attempt
to keep track of them during their entire lifetime
will not succeed. Setting possible weaknesses of
the tracking routine aside, it is likely that the eddies
tracked over longer periods, play a larger role in
transporting water properties away from their for-
mation site. For this reason, we focus on the eddy
tracks with a longer duration. Additionally, map
showing tracks of all lifetimes are very busy and
hard to decipher.

Under the assumption that the eddytracking results
are liable, we might hypothesize why the anticy-
clones would be more resiliant than the cyclones.
As alluded to, an explanation for an eddy life-cycle
is difficult to conjecture. We have not investigated
the evolution of discrete eddies throughout their
lifetimes, and noted potential dissipation routes.
Our approach is rather here to look for an overall
causation that might serve as part of an explanation.

The notion of longer-lasting anticyclones do con-
cur with earlier observational studies (J.Lilly
pers.comm). Lilly (2000) suggest this is the reason
for the predominance of anticlonic eddies seen in
the central Labrador Sea. A typical generation
location for these eddies is off the west coast of
Greenland. From there, the eddies have to travel
great distances to reach the central part. Cyclonic
eddies are hardly observed there, and may not
make this far if they are shorter-lived. Pedlosky et
al. (2008) also examined eddy generation along
the west coast of Greenland, employing a 3-layer
quasi-geostrophic model. Their study show that an-
ticyclones have longer lifetimes than the cyclones,

and therefore prevails in the basin. They describe a
typical eddy evolution event consisting of the fol-
lowing steps. Initially, a dipolar structure is formed.
The cyclonic disturbance is forced downstream and
is subject to the current’s cyclonic shear which
rapidly, within a day, acts to destroy it. Thus, an
anticyclonic eddy is left in isolation, which even-
tually moves into deeper waters triggered by the
combination of a downstream topographic step and
conservation of vorticity. The quick destruction of
cyclonic eddy, and the persistent anticyclones prop-
agating basinward, is observed to occur frequently.

Petersen et al. (2013) claims that kinematic con-
siderations give reason to expect that eddy size
and lifetime are positive correlated. The basis for
this is that the larger eddies carry more mass and
momentum, and can better resist ambient shear or
impacts of passing over topography which works to
destroy the vortices. They find a clear correlation
between eddy size and lifetime. Our results show
a preference for anticyclones to be larger than cy-
clones, whoes longer lifetimes might be supported
partly by this.

If we further take a glance back at figure 4.7, we re-
call that large fractions of cyclonic eddies are found
along the boundary currents. These cyclones find
themselves more frequently in regions of high shear.
If some extend down to the shelf topography, they
will also be affected by bottom friction. The anti-
cyclones however are more concentrated nearer the
centres, and perhaps often freer to develop undis-
turbed.
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4.4.6 Generation and termination of eddy trajectories
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Figure 4.12: Top: Generation points of eddies lasting longer than a month. Bottom: Termination points
of eddies lasting longer than a month.
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We now examine briefly the initial and final posi-
tions of the detected eddies’ tracks. We are causious
with the terms generation and termination points,
due to the possibility that an eddy might have devel-
oped prior to being identified, as well as terminated
after it is lost track of. With this in mind, the
locations where eddies are initially detected and
eventually lost, might still indicate particularly ac-
tive eddy-generation and -termination spots.

Figure 4.11 depict first and final positions of eddies
lasting for 30 days or longer. A striking conse-
quence of focusing on these more resilient eddies,
is that the Barents Sea and the Arctic Ocean is al-
most entirely devoid of eddies. Additionally, hardly
any eddies are seen along the east coasts of Green-
land and Canada where icecovers exist. Neverthe-
less, the eddies show up on maps plotted for shorter
timeperiods. Smith (2000) mentions the difficulties
of estimating eddy lifetimes in the Polar regions. He
presents a suspicion that in sea-ice covered regions,
lifetimes will be shorter and decayrates higher, due
to the friction applied by the sea-ice. This might
explain why we are not seeing any eddies of longer
lifetimes where there is sea-ice. The Barents Sea
has a partial sea-ice cover, but is a very shallow sea,
where bottom friction might act to bring down the
lifetime.

In the Labrador Sea, an active generation region is
quite evident. A particularly clear location of eddy
origins is seen on the westcoast of Greenland. In the
following plot over the termination points, eddies
that emerged in at one concentrated spot, have been
scattered. Most of these seem to be anticyclones,
which end up in the central basin. This fits well
with the common notion that Irminger Current An-
ticyclones are formed in this region (Lilly 2003).
In the Lofoten basin, the same tendency appears to
occur. There are anticyclones accumulating in the
basin at the end of the eddy lifetimes.

Furthermore, a discrepancy in eddy-polarity be-
comes evident when focusing on eddies with life-
times of 3 months or more. Eddy eddytracks in

the Lofoten Basin and the central Labrador Sea
(not shown) are then exclusively anticyclonic, while
cyclones populate the Irminger Sea. As expected
from our attained eddy lifetimes, anticyclonic ed-
dies strongly dominate the picture.

4.4.7 Energy transfer

Lastly, we will take a look at the energy transfer in
the full model fields. This is not a part of the eddy
detection routine, but serves as a pointer to wether
baroclinic instability can be claimed as the primary
source for the eddies detected in the study domain.
As seen in section 3.2 baroclinic instability leads
to a transfer between APE and EKE. In the en-
ergy budget, which for a bousinessq fluid entail a
coservation of kinetic energy and potential energy,
a transfer term arises, the vertical bouyancy flux.
The eddy part of this term denote the transferal of
available eddy potential energy to EKE. A way to
realize this intuitively follows in line with the dis-
cussions in section 3.1 and 3.2. We saw there that a
horizontal density flux will result from baroclinic
instability, but also a vertical buoyancy flux since
the process entails moving light on top of dense
water. If light water is lifted into a denser environ-
ment, and dense water down, then the sign of this
flux will be positive. Computing this flux will there-
fore map ut locations where this processes is active,
and we will assume that it is most likely baroclinic
instability causing heightened values of this flux.
We keep in mind however, that the full model field
will, as mentioned concerning the EKE, also encor-
porate motions acting to produce the same signal.
We can then again compare the fields to the calcu-
lations we made of how much the most unstable
wave contributed to such an energy transfer. We
compute the term w′b′, where w’ is the perturbation
vertical velocity, and b’ is the perturbed buoyancy.
By removing a 3 month seasonal mean from the
daily values, we get (w’=w-w and b′ = b− b. The
product of this is then averaged over three months
for all the 10 years. We attain an annual field by
then taking the mean of all four seasons. Figure
4.12 shows the vertical density flux(top).
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The spatial patterns here reveal a large consistency with both maps attained from the linear analysis. We
take note that the colorscale for the transfer is slightly different here, but this is to bring out the patterns of
distributions. The magnitudes are of the same order as presented in (Smith 2007), in W/m2. Locations of
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strong baroclinic energy conversion are strikingly coinciding. The largest values occur along the strongest
currents zones. The energy transferral of the gavest modest appear more localized in spaced. There are
high transferrals for instance in the Labrador Sea, which likely mirror that advection of eddies int oThis
is expected as these are regions steep isopycnals slopes, and as we recall, the process utlimately works to
level out the steepness into that region. By the coherence of the two maps, wa can to the least say that
baloclinic instability plays the major role in this. The depth of the maximum conversion is shown in the
lower plots. When leaving out the upper 1-50 m in calculation the depths of these patterns are also very
similar.
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Chapter 5

Summary and discussion

5.1 Summary

This study aimed to gather more knowledge of
eddies in the SubArctic Seas, and to examine if
baroclinic instability could be responsible for the
region’s mesoscale eddy activity. This is to, the
author’s knowlegde, the first comprehensive eddy
census model-study encompassing the entire do-
main.

Through this study we have
1) Tested the hypothesis that baroclinic instability
can accounts for most of the eddy activity in the
study region. We found that it can be regarded as
the primary source for the eddies.
2) We have related the eddy length and time scales

provided by linear predictions with statistics of
the fully-developed macroturbulent field. A linear
stability analysis on mean fields from a 10 year
model simulation was successfully conducted.
3) We discussed the growth rates and associated
length scales of fastest growing waves, and looked
briefly if Eady dynamics could account for the
growth we found. The last point was intended to be
more extensive.
4) We implemented an eddy detection procedure,
and investigated the statistics of the fully turbulent
field in terms of the characteristics of the identified
eddies.

5.2 Our results in light of previous studies

In this chapter we examine the results of this study
in the context of the of earlier studies that have es-
timated eddy characteristics either through a linear
analysis, or direct observations of eddies. Firstly we
compare the predictions from the LSA with previ-
ous studies. Secondly, we take a plunge into the ex-
isting records of eddy characteristics inferred from
observational studies, and look for agreements or
disagreements in what was provided from the eddy
detection procedure. Finally, we juxtapose the char-
acteristics yielded from linear theory and from the
statistics of the nonlinear field. By this, we look to
infer what utility a LSA has in characterizing the
mature eddy field.

5.2.1 Characteristics inferred from linear
stability analysis

We have found few linear stability analysis studies
covering our study domain, and there are no LSA
studies that take more than one particular region
into account. Hence, a full comparison throughout
the domain is not attainable, but we can still exam-
ine specific locations. The most recent studies are
investigations of the NwAC round the Lofoten basin
by Isachsen (2015). He performed a linear stability
analysis based on model output, and focused on the
effects of topography as means for a comparison
with Eady theory. The model data he used is a
subset of the same data utilized in our study. In



Isachsen (2015), maximum growthrates are found
over the steepest topographic slopes along the Nor-
wegian coast. Isachsen(2015) notes that these areas
also host the highest EKE leves, which indicates
that baroclinic instability most likely can be held
accountable for the eddy activity in that region. Our
results are in general accordance with his findings,
both in terms of magnitude and geographical dis-
tribution of growthrates and lengthscales. In both
studies, predictions from the Eady model seemingly
produce saticfactory results when compared quan-
titatively. The basin however consistently appears
to have smaller but faster growing waves than Eady
dynamics predicts. However, even if the model can
yield reasonable growthrate estimates, it is becomes
evident that assuming a zero PV gradient in the
interior neglects important dynamics. In agreement
with Isachsen(2015), at several locations found
here the unstable wave amplitude is forced to dis-
sappear as it approaches a bottom slope. Isachsen
reports that computations with a flat bottom give a
reduction in spatial scales and growth rates, which
was also consistent with the altered Eady model of
Blumsack and Gierasch (1974).

Another recent LSA study of the Labrador Current
between 50◦ − 58◦N, was conducted by Thomsen
et al. (2014). The main core of this current has been
estimated to be postitioned between 55 − 58◦N.
Mean flow and stratification needed in the LSA,
was obtained from both mooring data and model
simulations. The analysis was done in a nonhy-
drostatic ageostrophic setting. They sougth to find
a cause for enhanced EKE levels observed dur-
ing winter months. Their study uncovered three
types of unstable modes that were dominant. The
one relevant for comparison here, is the socalled
balanced,interior mode resulting from baroclinic
instability. This was the mode with the largest spa-
tial scale. It had maximal growth rates of 1 day−1,
and wavelengths of about 30-45 km. The growth
rates from our calculations, are in relatively well
agreement with theirs. A comparison is displayed
in figure 5.1 below (see figure 8a) in Thomsen,
Soren. Eden (2014) the figure presented here is
rotated −90◦).

We notice that the peak growthrates we attain are

larger than theirs, with a maxima of about 1.5 day−1

along the core of the Labrador Current. Even so,
the patterns of high growth are comparable. We
cannot expect a complete agreement, neither com-
pare these results in the smallest details as their
analysis has a different basis, and represent only
growthrates in March while ours is from a 10year
mean. Nevertheless, from a larger perspective, the
spatial patterns and values are of the same order.
In both studies there lingers little doubt that the
Labrador Current is baroclinically unstable.
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Figure 5.1: Top: Growthrates for the unstable
interior mode in the study of Thomsen et al.
2013, shown in figure 8 a) pp.458. This is com-
puted from model data in March. Middle: Pre-
dicted growthrates of the most unstable mode in
our present study, calculated from 10 year mean
datafields. Note the different colorscheme. Bot-
tom: Lengthscales associated with the most unsta-
ble wave in our study, contour-lines denote bottom-
depth showing 250m and 500 m, and then onward
with a contour-interval of 500m.

The associated lengthscales found here divert from
their findings. We find a lot smaller wavelengths of
about 10− 25km related to the most rapidly grow-
ing waves. This difference may be rooted in several
things, related to issues of numerics, differences in
the model runs, the analysis or simply that we have
not captured the largest mode in our selection. We
do however speculate if this could be an effect of an
included topographic slope. Thomsen et al. neglect
topography in their calculations. The basis for this
was that they were focusing on seasonal effects, and
there is no seasonal change in topography. They do
however mention that some studies (Isachsen 2011;
Vollmer and Eden, 2013) point to a stabilization
and surpressed growthrates by including topogra-
phy. We do not find reduced growth rates over the
slopes, the magnitude of the growth rates seem
rather unaffected by this and even exceeding their
flat-bottom calculations. However, the discrepancy
is seen in the lengthscales. As noted in 3.4, along
most of the rim current, though hosting high growth
rates, length scales are systematically shorter over
the steep topographic slopes. It may perhaps seem
unlikely that the waves should reduce to half the
sizes merely due to topography, but appears at least
to contribute in some way. It certainly contributes
to the strucure of the wave. The interior modes
in Thomson et al. were attributed as Eady-type
instabilities, due to their along-flow orientation and
the relation between growthrates and wavenumber.

We remark again that in our analysis, Eady-type
instabilities did not commonly occur, particularly
not over steep topography. The Eady-type has max-
imum amplitudes at the top and bottom, but we

frequently found only a maxima at the top and zero
at the bottom. This serves again as an example of
incidentally comparable growthrates, but with dif-
ferent underlying dynamics. Additionally, as noted
by Isachsen (2011; 2015), a modified Eady model
that includes topography, predicts supressed growth
and wavelengths when the bottom and isopycnals
slope in the opposite direction. This scenario is
commonly found along the coast, where buoyant
water rest on the shelf and denser water is found on
the seaward shelfside. The modified Eady model,
give no explanation to why we are seeing enhanced
growth here. Another aspect to this issue, is that
our analysis relies on quasi-geostrophy, which will
get problematic over steep bottomslopes. In the
derivation of the QG-equation, one of the main re-
quirements invoked, is that the fraction between the
bottomslope and the fluid depth is on the order of
the Rossby number, which should be << 1. Hence,
we need to be careful in our claims concerning
regions of steep topography. It would be benefi-
cial to repeat our present stability analysis using
linearized primitive equations, and look for discrep-
ancies between the solutions. The latter should be
well-behaved also over the steep slopes, and could
give an indication of the degree of sensitivity in the
QG estimates. Still, one would need to consider
closely how to select the unstable modes in each
case, if they are to be compared justly.

We shift our attention back to the Nordic Seas in
the rest of this section. In the LSA we performed,
noticably large growthrates were associated with
both the Norwegian Coastal Current (NCC) and
the eastern branch of the Norwegian Atlantic Cur-
rent (NwAC). The flow following the topography
anticyclonically around the VÃ¶ring Plateau did
also entail elevated growthrates with a timescale of
about 5 days, but these are much weaker than the
intense growth exhibited in the inner branch with a
period of 1 day.

The variability in the NCC is believed to be driven
by local instabilities. Ikeda et al. (1988) utilized sat-
tellite imagery of the NCC and current meter data,
as well as an idealized QG-model in an experiment
they called the Eddy Tracking Experiment. Their
study area is displayed in the pink boxed regions in
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figure 5.1 superimposed on the results of our study.
The western part of the study area is occypied by
incoming (dense) Atlantic Water (AW), carried by
branch of the NwAC deflecting into Skagerak. The
NCC is positioned along the coast, and consist of
fresher coastal waters (?). Satelitte pictures had
revealed the presence of a sequence of eddies of
60-100km wavelengths along the Norwegian coast,
and one question the authors adressed concerned
possible sources for these eddies. They regarded
both barotropic instability and baroclinic instability
as plausible eddy generation-mechanisms. Through
an energy analysis merely 1% of the kinetic energy
was fed to the emerging perturbations, and the wave-
lengths related to this barotropic instability were
extensively larger than what had been observed.
They concluded that baroclinic instability was the
dominant generation mechanism for the eddies they
observed and simulated. A stability analysis from
their QG-simulation yielded a wavelength of 54 km
and a timescale of 2.3 days for the most unstable
wave. Neither the observed nor the modeled spa-
tial scales are consistent with ours at more than the
southwestern area of the domain. Elsewhere, much
smaller length scales of 10-25 km are seen, and the
growth occur at an overall slower rate.
There are many possible sources for the discrep-
ancies. Smaller scale instabilities may be harder
to catch by a manual detection in satelitte imagery.
On the other hand, we could have missed modes
of larger scales in our LSA, and selected some of
smalles scales. Nevertheless, comparable scales
and growth rates are found just south of this region,
and further along the part of the NCC encapsulating
the entire southern coast of Norway (see fig.3.5).
Shi (1998) performed a LSA on the front between
the the saline, dense AW and the fresh, light coastal
water in the NCC. This front is present all along
Norwegian Coast, as the NCC and the NwAC in
tandem are make their way up North. In the linear
stability analysis of Shi (1998), the dominant un-
stables waves were found at 16 km with period of
at 1.25 days. It is suggested that these short waves,
are a product of a frontal instability, in which the
disturbances grow at the expense of the potential
energy stored in the steep isopycnals across the
front. Shi, Xiao Bing, Røed (1999), performed
a linear stability analysis in their study of frontal

insstabilities at upwelling fronts. Their analysis
found a preference for the gravest modes to appear
within two distinct bands. One band occuring at
10-20 km with a timescale of one to two days, is
referred to as the frontal mode, arising from baro-
clinic instability. The other band was at 60-70 km,
referred to as the mixed mode, arising from both
baroclinic and barotropic instabilities. Interestingly,
in figure 3.5 we noted that the NCC, the Labrador
Current and parts of the East Greenland Current
had high growthrates at short length scales. Again,
this coincides with steep bottom slopes, which one
of the potential weaknesses of the present analysis.
Nonetheless, we can remark a possibility that the
mode selected here could be a smaller-scale frontal
mode. The basis for this is that these currents seper-
ate two watermasses, light waters on the shorward
side and denser on the basinward side, which sets
up local frontal zones. The topography can act to
increase the cross-flow density gradient, and aid to
steepen the isopycnal slope and thereby the verti-
cal velocity shear. It was noted by Shi and Røed
(1999) that when the vertical shear was incresed,
the growthrates were increased.
energy Another study, by Mysak and Schott (1977),
found evidence that the NCC, around 63◦N, was
baroclinically unstable. They had observed eddy
features with length scales of 30-60km. and from
mooring measurements of the current strength, the
energy spectra peaked at periods of 2-3 days. Ex-
periments with several idealized barotropic models
were conducted to try to explain the observed vari-
ability. Barotropic instability could not yield the
observed wave frequency, so they carried out a lin-
ear stability analysis to see if baroclinic instability
could produce positive complex frequencies closer
to the observed values. They used two baroclinic
channel-models with two layers and different uni-
form, cross-stream topographic slopes (The second
model was the one of Smith (1976)). Adjusting to
a representable slope, yielded better results. The
fastest growing wave that best matched the observa-
tions, had a period of 2.5 days and a wavelength of
39 km. The growthrate corresponds to 0.4days−1,
and lies within the range of values also we find
along parts of the NCC. However, the peak imagi-
nary frequencies rendered form our study exceed
the values in both the observations and the model
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experiments. The observed spatial scales of 30-60
km were sampled from in-situ data within the black
boxed region in figure 5.1 The figure show the
resulting lengthscales from our LSA. We see that
the span of scales of the most unstable modes is
well-respresented by the observed sizes, however,
when including extremal values, the LSA length-
scales in this region lie within a larger interval of
10-80 km.

Figure 5.2: Growth rates and lengthscales for the
fastest growing wave. The crosses and boxes relate
two thee of the studies we are considering here.

Hanzlick (1983) applied the baroclinic model of
Mysak and Schott (1977) to study baroclinic in-

stability in the West Spitsbergen Current (WSC).
Lengthscales of 30-40 km and periods of 3-4 days
were found. The slightly slower growthrates in
the WSC than in the NCC were proposed to be an
effect of the steeper bottom slopes near Svalbard.
On the contrary, the growthrates in our study do
not seem to decrease toward the steep slopes near
Svalbard, but rather decrease as the slope levels out
past the Lofoten area. The length scales we find
around the position of the WSC are smaller than-
or comparable with what was found by Hanzlick.
Teigen et al. (2010) also found indications that the
easternmost part of the WSC was baroclinically
unstable. A linear stability analysis of data from
current meter moorings, yielded wavelengths of
15-30 km, and periods of 1.5-3 days. These higher
growthrates, and smaller spatial scales fit our results
better than Hanzlick’s.

An area in connection with the southern parts of the
NCC and the NwAC is referred to, by Rodionov et
al. (2004), as the Iceland-Faroe Frontal Zone (we
adopt their term, IFFZ, here). An early sketch of
these connected regions by Griffiths et al. (1982) is
shown in figure 5.3.

The IFFZ has been found highly unstable. Rapidly
evolving small-scale eddies and frontal meanders on
timescales down to 2 days, and length scales down
to 10km are frequently observed there (Poulain et
al., 1996). The area stand out as highly unstable
in our growth-rate calculations. This suggests that
baroclinic instability may support the observed ele-
vated eddy-activity there. We refer again to figure
3.4 displaying the growthrates over a subdomain
of our analysis. We now focus our attention on the
region west of 0◦-meridian, between 61 − 63◦N.
We remark that timescale of 2 days (0.5days−1)
is observed, but also that the peak growthrates are
even higher. We fing a maxima of 1day−1.
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Figure 5.3: Sketch of currents instabilities along the
Iceland-Faroe Frontal zone, and the NwAC, accord-
ing to Griffiths et al. (1982).
Embedded in the IFFZ is the Faroe-Shetland Cur-
rent, a narrow slope-current which is an important
contributor for the inflow of AW into the Nordic
Seas (Sherwin 2006). According to Hansen and
Østerhus (2000), over half of the heatflux is intro-
duced to the Nordic Seas via this current, and hence
plays a significant role in the ocean’s density-driven
circulation. Eddies observed in this region are be-
lieved to be generated by baroclinically unstable
frontal meanders (Sherwin 2006). The model of
Mysak and Schott (1977) was utilized yet again in
a baroclinic instability analysis by Sherwin (2006).
He studied mesoscale variability in the Faroe Shet-
land Channel, and found that the region has high
eddy activity originating by meanders in the front
separating two watermasses there (AW and modi-
fied AW). Data was sampled from a large multitude
of different in-situ measurement equiptment, and
compared to the stability analysis. The model pro-
duced unstable waves at scales of 49-59 km, and
growth rates of 3-5 days, largely depending on the
strength of the vertical current shear. Sherwin con-
cluded that the eddy generations can, at the initial
growth stages, be explained by baroclinic instability.
The observations that was gathered implied that the
meanders occurred at particular locations, rather
than emerging randomly. In figure 5.2, the two
black crosses indicate the preferred locations. The
unstable wave-characteristics recovered in Sherwin
(2006), lie at the lower range of what we find in this
region.

We have seen both discrepancies and consistency
between the results of ours and previous studies.
Since most of the studies lack a common platform
that suits a detailed examination, we did not an-
ticipate a detailed agreement, and neither is this
our main concern here. Our main aim here was
to map out the general picture we find depicted in
literature on the role of baroclinic instability within
the study region. A recaptulation so far is that we
find supporting evidence for our claim that this type
of instability likely is the main advocator for the
eddies.

5.2.2 ’Observed’ eddy characteristics

We now turn to the part of this study concerning
characteristics of the fully turbulent field. We will
compare the properties of our detected eddies with
what has been derived from mainly observational
studies.

The regions of high eddy activity found by the
eddy detection algorithm (seen in figure 3.4) are
consistent with the findings of several previous
studies (Rossby et al., 2009; Prater et al., 2009)
Observations have displayed a vigorous eddy field
at the Iceland-Faroe frontal zone (Sherwin2006).
The Norwegian coast with its broad multistructured
frontal zone, is frequently infested by eddies (Ro-
dionov 2004, Mysak and Schott 1977, Ikeda et al.
(1989)).

We found few recent studies charting the eddy
field within the Barents Sea. Mesoscale vortices
has however been recorded in most parts of this
sea. Studies report the presence of eddies in the
western region of the Sea, close to the connection
with the Norwegian Sea (Johannessen et al. 1983a),
and in the northwestern part, where subduction of
North Cape Current water under fresher Barents
Sea water occurs(Kosolapov and Lebedev, 1989b,
Lebedev, 1992b). Antiyclonic eddy generation
has been observed in the MIZ in the melt season
(Fedorov and Ginzburg, 1988,1992). The presence
of the NPFZ, which seperates Barents sea- and
Atlantic waters, often exhibiting across temperature
gradients of 2-3◦. Its heavy meandering, is a source
of frequent eddy formation (Rodionov et al. 2002).
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This front is highly evident in the 10year mean
model hydrography in figure 2.3, and snapshots of
the temperature field clearly show an abundace of
mesoscale structures. In figure 4.2 we see there
are high eddy counts occurring around the mean
position of this front.

The distribution of the eddies’ anomalous tempera-
ture, displayed in appear to be quite consistent with
observations. Cold Irminger cyclone s with 5-18
km radius, and larger 15-30 km warm-core eddies
have been found in mooring measurements from
the centre of the Labrador basin (Lilly 2002). In
the Irminger Sea, anticyclones are reported to entail
anomalous saline cores relative to the ambient wa-
ters(Johannesen 2013; Johannessen et al. (1987)).
Observations from satellites and current meters
have revealed cyclonic eddies that are trapped in
the EGC, and do seemingly not escape the current
(Bruce 1995). These eddies’ temperature signal
was colder than the embedding current. The cy-
clones we detected near the EGC mostly also had
a cold signature. However on the shelf where the
fresher(lighter), colder waters reside, and the cy-
clonic eddies show a warmer temperature anomaly.
This is consistent with the expectations that cy-
clones embed denser waters, and also that anticy-
clones are buoyant as they seem to enclose fresh,
cold Polar waters in their cores. We anticipate to
see this wherever the salinity mainly determines
the density, which becomes evident in the tempera-
ture anomaly maps (figures 4.). In fact, we do see
a reversed temperature trend in the regions occu-
pied by fresh, ligth PW. Of the 14 eddies identified
near the Fram Strait during MIZEX ’83-’84, the
cyclones were reported to wrap around warm AW
(Johannessen et al. (1987)), as depicted in figure 5.4
Furthermore in a study of the west coast of Green-
land, warm-core rings were observed off the coast in
both winter and summer, nearly all of anticyclonic
rotation(Zhu et al. 2013). Similarly, anticyclonic
eddies have been found to be predominant off Lo-
foten in the Norwegian Sea.

Consistent with our findings, Richards and Straneo
(2015; early online version), state that the

anticyclones in the Lofoten basin have positive
averaged temperature and salinity anomalies, and

scarcely any close to zero or negative anomalies.
They report of maximum anomalies of 0.3◦C in the
Lofoten basin, which are a lot lower what we find
which can be up to several degrees. They further
note that the anomalies in the Lofoten Basin are
smaller than inferred values of anticyclones from
observations in the Irminger Sea (Fan et al. 2013)
and the Labrador Sea (de Jong et al. 2014). In the
latter study, anticyclones in the Labrador Sea, had
positive temperature anomalies as large as 2− 3◦C,
and in the former reported temperature anomalies
of 0.28◦C. Our estimates in the Irminger Sea are
of the same order, but in the Larbrador Sea the

temperature appear similar as in the Irmingen Sea.

Figure 5.4: An illustration mead based on the dis-
coveried done in and aroung the Fram Strait, ’83-
’84. A cyclonic feature wraps around saline and
warm, but dense, waters (AW).

Cold-cored cyclones were found in an eddy-survey
conducted along the Faroe Channel using drifters
and CTD and XGB casts. The slope current initially
exhibited meanders across the Faroe slope, and the
meanders grew into ’backward breaking’ filaments
wrapping around pools of cold water. The end
result was a series of cold-core cyclonic eddies,
with temperatures 1◦−1.5◦ colder than the ambient
AW. The eddies appeared to be advected along the
background flow, and act to entrain cold water in
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the warmer FSC transporting them. The anomalous
temperatures found in this study is in accordance
with our findings.

Allen et al. (1994) states that the Iceland-Faroe
Front frequently nurture cold-core eddies, of simi-
lar characteristics as those found in the FSC. In a
combined high-resolution (2.5× 2.5km) model and
observational study, also from the IFF, Popova et al.
report finding warm anticyclone developing on the
colder northern boundary, encircled by numerous
cold cyclonic eddies, as well as a cold eddy to the
south of the front.

Jakobsen et al. (2003) states that "The distribution
of the mesoscale variability indicates that eddies
are formed at fronts and shed away into the gyre
centers. Here the eddy kinetic energy is relatively
large compared to the mean energy". Observational
and model studies do show heavy eddy activity as-
sociated with fronts and boundary currents. For the
two archetype regions of eddy shedding in the Sub-
arctic, off Lofoten and the West coast of Greenland,
Jakobsen’s statement has shown in numerous cases
to be highly valid. The reservoir of AW in the Lo-
foten basin is replenished by anticyclones expelled
from the NwAC, believed to occur near the location
where the topography is steepest (Kohl 2007; Spall
2010; Rossby et al. 2009b). The vivid mesoscale
eddy scene in the Lofoten basin is thereby upheld
by eddies originating along the northbound bondary
current, propelling westward into the basin, where
they there follow geostrophic contours(Isachsen
2011,2015; Kohl 2007; Raj et al., 2015). Utilizing
a numerical model, in conjunction with altimetry,
Kohl noted that the spawned anticyclones has a ten-
dency to aggregate at the largest basin depth, and in
this way nurish the quasistationary Lofoten anticy-
clone residing there. We refer back to figure 4.12,
in the Labrador Sea both cyclones and anticyclones
frequently appear to be generated off the coast of
Greenland near 61− 62◦N . The next figure show
that most end up in the basin. This formation site is
wellknown from past studies. Energetic eddies have
been found shed into the central basin from the
boundary current near where the West Greenland-
and the Irminger Current diverge (Prater, 2002;
Lilly et al.,2003; Pedlosky, 2008; Zhu et al.,2013).

In global studies, eddy generation and termina-
tion points are found typical also in open-ocean
regions(Chelton et al., 2011; Petersen et al., 2013).
Basically, eddy origins are found common in what-
ever region eddies propagate in. The authors note
that this agrees with the notion that most part of
the World Ocean is baroclinically unstable (Stam-
mer 1998; Smith 2007). Our illustration of eddy
generation points(fig. ) also indicate widespread
occurences of eddy formations.

When we focused on eddies with lifetimes longer
than 3 months, it was clear that both the Lofoten
basin and the Labrado r basin only show anticy-
clonic tracks. The tendency of longlived anticy-
clonic eddies occur in observational and model
studies as well (Lilly 2003, Pedlosky 2008). In the
QG-regime, there is a sign-symmetry in polarity,
and no way to explain differences between cyclones
and anticyclones. Studies going beyond the QG
regime find that anticyclones have a tendency to be
more stable and coherent than the cyclones (Arai
and Yamagata 1994; Baey and Carton 2002; Steg-
ner and Dritschel 2000; Graves et al. 2006).

Rossby et al. (2009) deployed 22 floats in the
vicinity of either Iceland or the Faroes. They found
that energetic trajectories off the Lofoten Islands
also appeared to be predominantly anticyclonic.
Based on the deepening of basinward isopycnals,
implications have been made that large anticyclones
are shed from the continental margin (Rossby et
al., 2007). Rossby et al. (2009) stated, concerning
their results attained by these 22 floats, that "These
float data, despite the limited numbers, would seem
to support the idea that the basin circulation is pre-
dominantly anticyclonic near the surface, but more
research is clearly needed".

Assesing isolated events observed eddy sizes
against a 10 year statistic, is difficult, both due
to the range of scales they can take on. but also
that one might be comparing a mean value with
the tail of a distribution, which is not representable
for the larger part. We found however one study
where data from 114 satelite surface drifters in con-
junction with a data set comprised of 35 000 buoy
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days were used to investigate statistical properties
of eddies in the Icelandic, Norwegian and Green-
land Seas(Rodionov 2004). Tens of kilometers
long meanders of the fronts were found to occur
everywhere within the NPFZ, and about 400 eddies
detected. Warm vortices are found to appear on the
cold side-, and cold vortices are found to appear on
the warm side of the front, of both rotation types.
Cold-core cyclones are most frequently observed.
The resulting eddy length scales corresponded to
around 3 times the Rossby radius of deformation,
which were in accordance with the length scales
estimated from IR images (Rodionov et el., 2004
and references therein).

The table below show their findings. Other studies
have reported similar scales. If we are to compare

the different regions, we that our findings at least lie
within the span of these sizes. During the MIZEX
’83-’84 program, estimated eddy-sizes were 20-40
km, rotational velocities around 40 cm/s, and life-
times about 30 days. MIZEX’87 was carried out as
a continuating program of the ’83-’84 project. This
study indentified and tracked "ice" vortices, vortex
dipoles and meanders in the MIZ. Typical scales
for the eddy pairs, were found to be 30 km, and the
associated lifetimes to be 3-4 days. (Johannessen et
al, 1994b, MIZEX’87 Group).
Long-lived anticyclonic eddies with a diameter of
about 10 km have also been observed in the Green-
land Sea (Gascard et al., 2002) these eddies have
a large vertical extent (about 2000 m), which is
relevant to the deep-mixing depth.

FRONTAL ZONE AVERAGE RADIUS [km] NUMBER OF VORTICES

Cyclones Anticyclones Radius all # C # AC
East-Greenland 15 16 15.5 20 12
Iceland Coastal 15 15.5 15 17 4
Iceland-Faeroe 14.5 15.5 14.5 16 16
Jan Mayen 17.5 13 17 43 7
Norwegian Current 25 23.5 24.5 28 29
Mohn Ridge 26 19 23 40 10
Norwegian Coastal 16 17 16.5 18 10

5.3 The usefullness of the linear
prediction

The local approximation has been used in several
studies that has accredited eddy formation to lo-
cal baroclinic instability (Gill et al. 1974, ). It
forms the basis for a large fraction of theories for
ocean eddies, and is widely used in ocean model
parameterizations. Despite this, there are several
issues associated with the local approximation we
make in the linear stability analysis.As noted, each
gridcell of our domain is taken as a local patch of
ocean that does not vary horizontally. Eddies that
emerge are presumeably a reponse to an instabil-
ity of the local and steady background field (Vallis
2011). This huge simplification disregards many
dynamical aspects such as advection of eddies. Ed-
dies may, for instance propagate, from regions of

high growthrates and enter regions with lower rates
(Vallis 2011). Furthermore, no eddy-mean interac-
tions are allowed by assuming a steady background
flow (Farrell and Ioannou 1999; Flierl and Pedlosky
2007). Vallis (2011) lists several other limitations of
the theory: "Other dynamics that play a role in eddy
formation include the radiation of instabilities from
boundary currents into the interior (Kamenkovich
and Pedlosky 1996; Hristova et al. 2008), weakly
nonlinear growth of unstable modes (Hart 1981;
Pedlosky 1981), sensitivity to nonzonal flow insta-
bilitiess (Spall 2000; Arbic and Flierl 2004; Smith
2007) nonparallel flow instabilities (Pedlosky 1987),
barotropic (BT) instabilities of horizontally vary-
ing mean flows, and strongly nonlinear turbulent
dynamics" (Held and Larichev 1996).

The dynamics of the turbulent, nonlinear field rep-
resented in the model simulation, is not restricted
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to stay within the QG regime (Vallis 2008). The
final energy of eddies are most probably a product
of nonlinear processes, as are their equilibrated
lengthscales (Vallis 2008). Hence, a linear initial
growthstage compared to a nonlinear evolution of
unstable waves is expected to exhibit somewhat
different properties.

Smith (2007), Tulloch (2011) and Vollmer (2013)
local baroclinic stability analysis globally utilizing
data from climatologies. Spatial scales and growth
rates of the most unstable waves was examined,
and compared to global estimates of the Rossby
deformation radius, Ld, the Eady growthrate and
observed eddy scales. The analysis in the three stud-
ies exended up to about 70◦N, hence most of our
present study is not covered in their analysis. Nev-
ertheless, general remarks can be made about the
utility of linear theory in classifying the macrotur-
bulent field, as well as noting the relation between
the simplest- estimates and a more complex model.

In all three studies, the Eady growthrate, ωe show
near agreement with the maximum growthrate in-
ferred from LSA. This seems to be especially true
for the higher latitudes (Tulloch et al., 2011) On
the contrary, the lengthscales of the most unstable
waves, Li, are not very well-represented by Ld.
Generally, Vollmer (2013) and Tulloch et al. (2011)
find that Li is smaller than Ld at low latitudes, and
larger at high latitudes (poleward from 50◦). This
is based on zonal averages away from boundary
regions, which grants little information on geo-
graphical patterns of the distribution. Global maps
(fig.6 Tulloch et al., 2011) reveal that the source for
this zonal trend is largely caused by discrepancies
in the Antartic Circumpolar current (ACC). The
ACC and locations of intense growth at the same
northern latitudes, such as the Kuroshio, the Gulf
Stream and branches of the North Atlantic Cur-
rent’s (NAC) venturing toward the Nordic Seas are
larger-scale instabilities, with a scaling Li > Ld.
The authors note that the weakly unstable gyres
entail smaller-scale instabilitites.

Quite conversely, Smith (2007) found that Li was
smaller than Ld in the ACC, and at all latitudes
in fact. He implemented a filter to sieve out less

important waves in terms of baroclinic energy con-
version, that are anticipated to be of smaller scales.
Still, the resulting spatial scales of some larger
scales show the same tendency. Figure 5.5 below
show a comparison of the maximum growth, the
observed and the deformation scales. Generally, we
see that the fastest growing waves are well below
Ld, however less so in the high latitudes, a tendency
which concurs with the other two studies recently
mentioned. All the observed scales exceed the
linear predictions greatly near the poles. The eddy
census from satelittes by Chelton (2011) show a
largest gap. We keep in mind, the limited ability
of satelitte retrievals(this far) can provide in rep-
resenting realistic characteristics of the smallscale
mesoscale features at high latitudes.

Figure 5.5: Figure 11) from Smith (2007).

An aspect all the three studies in discussion here
share in common is the agreement that scales from
LSA are smaller than the observed scales. this is
consistent also with our findings. We suggest, as
also proposed in the other studies, that the larger
scales demonstrates an inverse cascade of energy.
This can, as mentioned, not be explained by lin-
ear theory as it mirrors the end-products of highly
nonlinear interactions.

It should be noted that the close agreement with
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the Eady growthrate in Smith (2007) and miximum
growth, was only stated for the filtered growth rates.
The unfiltered rates were found to be much larger
than the Eady estimate in areas where surface insta-
bilities are prevailent. We recall from figure 3.4 that
the growthrates exceeded ωeady at several locations,
e.g in the Lofoten and Canada Basin. Li was also
depicted smaller there (figure 3.5) We calculated
the baroclinic energy conversion rate for the most
unstable modes selected in our analysis, however
we did not employ this as a filter. The reason behind
this was partly due to the lack of a sound physical
basis for choosing an upper treshold that should
segregate the waves contributing to a significant
energy conversion and those who do not. Smith
(2007) set the limit based on GGS’s estimates of the
mean energy-input into the ocean by winds. This
limit did not show to be apt in our analysis, and
these caluculations were left out. Subsequently, as
noted by Smith (2007), the unfiltered growthrates
we find may also correspond to surface intensified
modes several places. As an improvement of our
analysis, an element that would be beneficial to
add, but needs to be considered in more detail, is
a sound technique for selecting more significant
instabilities.
The most unstable lengthscale attained in our study,
is smaller than the Rossby deformation radius at
most locations. This is in crontrast to the zonal
averages presented by Vollmer (2013) and Tulloch
et al. (2011). On the other hand, we do see the
same tendency of scales larger than Ld occuring in
the energetic frontal zones next to Iceland and the
boundary currents in the Nordic seas, the inflow-
ing NAC branches, and the Barents Sea. In these
areas, L/Ld ≈ 2, as one expect from Eady theory.
It is hard to be conclusive about the growthrates
in this matter, as they occur both comparable and
substatially smaller in some of these areas. How-
ever, we recall that the dynamics did not seem to
be represented by an Eady instablility. The last
case considered in 3.5.4 represent better several
of the locations we examined that had a bottom
slope. Surface intensified features was also exhib-
ited frequently, and less so bottom-intensified flow.
However, the bottom-intensified flows did appear
more often than expected, which can be an interest-
ing aspect to look further into at another occasion.

Notably, we looked mostly at areas where the topog-
raphy was sloping, but we recomputed every point
also with a flat bottom. Excluding the bottom slope,
commonly resulted in shifting the growth to slightly
scales. The vertical structure wasMoreover, this
also typically increased the growthrates, at some
occassions 2-5 times overestimated by the flat bot-
tom. The differences arising whenever flat-bottom
slopes were invoked, thus imply that the assumption
of Eady dynamics may tend produce larger scaled,
more intense growth than what the fuller analysis
gives.

Final remarks and outlook 1) We found that
when linear predictions and products of a fully
trubulent field are set side by side, there are, not
surprisingly, differences present. Our findings re-
flect what has been observed in the others studies
attempting to make similar comparisons. Namely,
that this is not a trivial purcuit. As noted by Smith
(2007), the most severe differences are especially
observed in lengthscale of the perturbatons com-
pared. Levels of growthrates are found more
ammendable. As many climate model parame-
terizations of eddy transport depend on an Eady
growthrate, as well as a characteristic lengthscale.
A concern is here if the parameterizations are not
representing the dynamics correctly, and that both
growth and lengthscales might often be overesti-
mated.

2) Despite discrepancies we found in the details
of this issue, and the difficulties present in such
juxtapositions, the broader picture is clearer. We
recall the resemblance in the spatial patterns in
the maps(figure) over baroclinic energy conversion.
This gives leverage to the claim of baroclinic insta-
bility as a dominating generation mechanism, and
we go as far as to say that it indeed can be regarded
as that.

3) The eddy census have yielded estimates of key
eddy characteristic, which was broadly found con-
sistent with observational data. The commencement
of further such studies is needed to verify these find-
ings.

There are some intriguing questions that we have
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not focused on in this study, but which are highly rel-
evant. The most striking gap between eddy observa-
tions and modelled eddies at an ’eddy-permittable’
resolution is perhaps the eddy counts in the high
Arctic Ocean. With the search-criteria utilized here,
we were not able to catch much of the ’action’ that
has been observed there. The ’eddy-void’ in the
Artic Ocean has also been implied in another eddy
census study. Petersen et al. (2013) conducted a
three-dimensional automated eddy census. They
employed a global model simulation, which in-
cludes the Arctic Ocean. The model has a varying
resolution of (10km at low latitudes, down to 3km in
polar regions. Their census also show low eddy ac-
tivity in the central and eastern Arctic Ocean. They
suggested these low eddy counts could arise from a
combination of factors, such as inadequate model-
resolution and difficulties in producing a correct
stratification. We also think that our model is also
subject to these limitations. Eddies in the Arctic typ-
ically have a small lengthscale. Observations have
indicated that numerous of eddies commonly have a

diameter of 10km (Timmermans et al.2008), and re-
side immediately beneath the halocline. This scale
is too small for our model to resolve, and we do not
expect to find eddies of this type here. It would be
interesting to investigate what causes this gap, and
to perform an eddy census in the idpolar regions at
a even higher model resolution. Another looming
question is associated with the vertical extent of the
eddies. Most of the eddy detection algorithms han-
dle 2 dimensional fields, and we are left with some
guesswork as to what structures the eddies possess
in the vertical. Timmermans et al. (2010) have in-
dicated the existence of deeper larger eddies in the
Arctic, residing in the AW layer. The most eddies
observed in the Arctic have been located about the
shallow halocline depth. Why are we not catcing
these? One might wonder, if there are eddies lurk-
ing beneath far beneath the surface that do no not
leave a signal at the surface. Petersen et al. (2013),
find that 97 % of their detected eddies of lifetimes
longer than one month, extended all the way to the
surface. Still, further investigations are need.
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