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Abstract. 

Buoyancy-driven convection in a differentially heated, 

sloping porous layer is studied theoretically. For small tilt 

angles, a linear analysis determines the critical Rayleigh number 

for an infinite layer. It is shown that the preferred mode of 

disturbance is stationary, being longitudinal rolls with axes 

aligned in the direction of the basic flow. A necessary condition 

for instability at arbitrary tilt angles is also derived. Applying 

the non-linear analysis in [11] to the longitudinal roll regime, 

the result for the Nusselt number is found to agree well with 

experiment. For a vertical model of finite extent, a boundary­

layer analysis is performed. Satisfactory agreement with experi­

ment is obtained for the interior temperature di8tribution and 

the Nusselt number. The applied method also includes some effects 

of a variable viscosity . This is shown to introduce asymmetry 

into the solutions. 
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Nomenclature. 

L, thickness of model; 

H, height of model; 

d, characteristic grain diameter; 

k, permeability of porous medium; 

g, acceleration of gravity; 

cp, specific heat at constant temperature; 

x*,y*,z*' Cartesian coordinates; 

t*' time; 
+ 
v*(= u*,v*,w*)' velocity vector; 

boT, 

w, 
w, 
l,m, 

c, 

a, 

s,q, 

Re, 

Pr, 

Ra, 

* * * 
Ra '· Ro ,Ros' 

Nu, 

pressure; 

temperature; 

dimensional temperature difference between lower 
and upper plane; 

dimensionless basic flow velocity; 

defined by (3.3); 

dimensionless wave numbers in the y*/L- and z*/1-
directions, respectively; 

defined by (3.4); 

dimensionless wave speed; 

dimensionless temperature in the core; 

defined by (8.9); 

defined by (8.20) and (8.21), respectively; 

Laplacian operator; 

Reynolds number 

Prandt 1 number \) IK . 
r m' 

Rayleigh number kgyb.TL/Kmvr; 

defined by (3.3), (4.2) and (4.3), respectively; 

Nusselt number; 

defined by (8.34) and (8.35), respectively. 
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y, 
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e:, 

n, 
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>.., 
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Greek letters. 

dimensionless overall wave number; 

dimensionless temperature gradient; 

coefficient of volume expansion; 

defined by (6.6); 

defined by (4.2); 

defined by (8.1); 

O.imensionless temperatures; 

thermal diffusivity; 

vertical unit vector; 

defined by (8.11); 

kinematic viscosity; 

reference viscosity; 

viscosities at the hot and cold wall, respectively; 

defined by (8.18) 

density; 

reference density; 

dimensionless amplification factor of disturbance; 

tilt angle with respect to the horizontal; 

stream function; 

dimensionless stream function in the core; 

de fined by (5o 3) o 



* , 
f, 

m, 

A, 

A , 
, 

+ - , 

r, 

i, 
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Subscripts. 

dimensional quantities; 

fluid; 

solid-fluid mixture; 

average values; 

Superscripts. 

perturbation quantities; 

derivation with respect to z*/H ; 

denotes left- and right-hand boundary layer, respectively; 

real part; 

imaginary part. 
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1. Introduction. 

This paper is concerned with free, thermal convection in a 

porous layer being tilted with respect to the horizontal. The 

layer is bounded by two impermeable perfectly conducting planes 

maintained at different temperatures, and laterally by rigid, 

insulating wallsw 

Owing to the many geophysical and technical aspects of this 

type of flow, convection in a horizontal layer uniformly heated from 

below has been studied extensively for several years. Concerning 

sloping porous layers, however, published works are not numerous. 

Most recently Bories and Combarnous [1] have studied this problem. 

For a vertical porous layer, we further mention the works of 

Schneider [2], Gill [3], Chan, Ivey and Barry [4] and Klarsfeld [5]. 

Due to the similarity between convection in a fluid with infinite 

Prandtl number and porous convection, qualitative comparisons can 

be made with studies on inclined and vertical fluid layers, 

especially those by Elder [ 6], Gill [ 7], Liang. and Acri vos [ 8] and 

Hart [ 9]. 

For a tilted porous layer, the main experimental results are 

as follows. At small Rayleigh numbers the motion is unicellular, 

constituting a basic flow. When the Rayleigh number, or the tilt 

angle, are sufficiently increased, instability occurs as two­

dimensional disturbances with axes aligned in the direction of the 

basic flow (longitudinal rolls). When the tilt angle approaches 

90°, the disturbances tend to zero. At sufficiently high Rayleigh 

numbers, the basic flow in a vertical layer exhibits boundary 

layer character. Distinct thermal boundary layers develop along 
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the vertical walls, while the core-region is characterized by a 

positive vertical temperature gradient. 

In the present paper we study both the longitudinal roll 

regime in a tilted layer and the boundary-layer flow in a vertical 

model. The method applied in the latter investigation is similar 

to that developed by Gill [7] for the analogous fluid problem. 

In the present study the method is extended to include some effects 

of a variable kinematic viscosity. This is motivated by the fact 

that v in practice may vary considerably due to the large values 

of ~T often involved in this type of flow. 

2. Governing equations. 

Consider natural three-dimensional convection in an enclosed 

porous medium with rectangular, impermeable boundaries. The layer 

is tilted an angle Q with respect to the horizontal, and L and 

H are the thickness and the height, respectively, of the model 

(figure 1). The width, in the y*-direction, is infinite. The lower 

and upper planes are taken to be perfect heat conductors and main­

tained at the temperatures ~T/2 and -~T/2, respectively, while 

the lateral boundaries are insulating. 

Making the Bousinesq approximation, the equations of motion, 

heat and continuity can be stated as follows, respectively, 

( 2. 1) 

(2.2) 

= 0 .(2.3) 
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+ 
where A = (cos <P , 0 ,sin <.p ) is the vertical unit vector. 

In this part of the analysis we take the kinematic viscosity 

to be constant, v = Vr· Dimensionless variables may then be 

introduced by choosing 

as units of length, time, velocity, temperature and pressure, 

respectively. The governing equations can now be written 

+ 
\lp + v 

aT + at + v•VT 

+ 
RaT A = 0 

+ 
\Jov = 0 

where unmarked quantities are non-dimensional. 

(2.4) 

(2.5) 

As shown in [1] this system permits a particular steady solution 

when the effect of the lateral end-walls can be neglected, i.e. 

when L/H ~ 0. Taking 

a/at = a lay = a/az = u = v = 0 

(2.6) 
w = vl(x), T = 0(x) 

where ec!!> = + ! ' 
it is easily found from (2.5) that 

W(x) = - Ra sin tp x 
(2.7) 

e(x) = - x 

Perturbating this solution with respect to arbitrary disturbances 

(denoted by carets), the resulting velocity and temperature fields 

may be written 
A A A 

u,v,w = (u,v,W(x) + w) 
(2.8) 

" T = e(x) + a 
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Introducing this into (2.5), and eliminating the pressure , we 

finally obtain 

(2.10) 

(2.11) 

where V1 2 = a2/ay 2 + a2/3z 2 , and the carets have been dropped. 

The boundary conditions are u = a = 0 for x = ± ~ 

3. Linear stability analysis for an infinite layer. 

Consider infinitesimal disturbances. Then the non-linear 

term in (2.11) can be neglected. Let 

u,v,w,e = {u(x),v(x),w(x),e(x)}exp(i(ly+mz) +at) ( 3.1) 

where 1 and m are real wave numbers in the y- and z-direction, 

respectively, and cr the complex growth rate. By eliminating u 

between (2.10) and (2.11), we finally obtain 

to be solved subject to e = D2e = 0 for x = ± ~ 

d * a2 12+rn2 D = dx ' 
Ra = Ra cos <P ' = Here 

(3.3) 
and w = w /Rasimp = -x 

When <P is small, this system can be solved by expanding the 

variables after tg<P as a small parameter. However, equation (3.2) 

is nearly similar to that treated by Weber [10] (equation 3.10), 
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except for a different sign in the last term and one additional 

term proportional to the square of the small parameter. 

Accordingly the results for the present stability problem 

can be derived from the analysis in [10]. For the tilted porous 

layer problem we then obtain, (i) the principle of exchange 

of stabilities is valid when ~ is small, (ii) the ~ritical 

Rayleigh number can be written 

where 

Here the subscript o refers to the first term in a series 

expansion after tg~. For a purely two-dimensional disturbance 

(3.4) 

with axis normal to the basic flow (a transverse roll) 1 = o, 
0 

while for a longitudinal roll m0 = o. Accordingly longitudinal 

rolls minimize the Rayleigh number, and will therefore constitute 

the preferred mode. This result is analogous to that of Liang 

and Acrivos [8] for a tilted fluid layer. The occurrence of 

longitudinal rolls with wave number rr, and a critical Rayleigh 

number given by Ra cos ~ = 4rr 2 have been confirmed experimentally 

by Bories and Combarnous [1]. They also showed that longitudinal 

rolls constituted a possible stationary solution of the linearized 

problem. 

For a nearly vertical layer, observations show that the basic 

solution is stable. This can also be demonstrated analytically. 

Multiplying (3.2) by the complex conjugate of e, and integrating 

from x = - ~ to x = ~, we obtain from the real and imaginary 
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parts, respectively, that 

Here the brackets denote integration from x = -! to x = +!. 

For a disturbance to grow, or-- .in (3.5) must be positive. 

Hence we obtain as a necessary condition for instability that 

Ra cos tr. > o (3.7) 

For ~ = 90° then,the basic flow is stable,as shown by Gill [3]. 

This will also be the case for )0° ~ ~ ~ 180° (heating from above). 

The stability of flow in a vertical porous layer is attributed to 

the lack of inertial terms in the equation of motion (thereby 

inhibiting shear-instability). 

From (3.6) we note that an unstable longitudinal roll always 

is stationary. For a transverse roll the wave speed c is given 
i by c = cr /m. From (3.6) we then obtain the result that 

lei < ~ Ra sin~ = Wmax 

When sin ~ = o, we observe that the principle of exchange of 

stabilities is valid (which of course is well known). 

4. Non-linear analysis of longitudinal rolls. 

(3.8) 

As confirmed experimentally in [1], the longitudinal roll 

solution exhibits no z-dependence for moderate values of the Rayleigh 

number and the tilt angle. Accordingly we may take a/az = 0 and 
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and look for a stationary solution of the non-linear system 

(2.10) - (2.11). The equations reduce to 

( 4.1) 

= 0 

This system is identical to that governing two-dimensional 

convection in a horizontal porous layer, except that the accelera-

tion of gravity is diminished by the factor cos ~. Hence the 

analysis of Palm, Weber and Kvernvold [11] can be applied directly 

to this problem, substituting g cos (P for g. Only the result 

for the Nusselt number will be given here. 

where 

order 

Here 

Defining 

* * * E 2 = ( Ra - R 0 ) IRa 

* * Ra = Ra cos ~ and Ro 

may be written 

Nu = 1 + 
R* 

2( ~s)E2 + 2 
Ro 

* * R R 
+ 2 ~s(1 17 OS 12-.-

Ro Ro 

* R*/(1-E 2s) Ros = and 
0 ' 

= 47T2 
' 

the Nusselt number to 

* * R R 
~s(1 17 OS) 4 

24 -.- E 
Ro Ro 

* R 
+ 191(~)2) 6 

268 * E R 
0 

in this approximation, s ·- 3. 

(4.2) 

sixth 

(4.3) 

In figure 2 this result is compared with the experiments and the 

theoretical analysis by Bories and Combarnous [1]. We emphasize 
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that (4.3) is valid for Ra and ~ such that effects due to 

the end-walls can be neglected. For the experiments in [1] 

where L/H = 0.075, this is shown to hold when ~ < 50° and ,.., 

Ra < 250. 

Actually hexagones were observed in [1] for tilt angles less 

than about 15°, while longitudinal rolls took over for tp> 15°. ,.., 

The preference of hexagones in a nearly horizontal layer, however, 

may be attributed to non-linear effects such as variation of v 

and Km with temperature (Palm [12], Busse [13])or time dependent 

boundary conditions (Krishnarnurti [14]). 

5. Vertical layer or finite extent. 

For larger values of Ra and ~ the end-walls can no longer 

be neglected. Due to their presence, a stable vertical temperature 

gradient will develop in the interior of the layer. Consider a 

vertical layer. According to the remarks above, we now 

assume a solution of the form 

W = W(x) 

T = e(x) + Sz 

where 13>0. Here,asbefore, e(!i)=+i. Further,the 

conservation of mass leads to 

+i J W(x)dx = 0 

( 5.1) 

(5.2) 



From (2.5) we then obtain 

Ra sinh (nx) 
w = - 2 sinh (n/2) 

- 13 -

T = - ~ sinh ( nx) + 13 sinh (n/2) z 

where 11 2 = BRa. 

This is of course only an exact solution of the problem 

(5.3) 

if 
+ , 

T = - ~ + {3z at the two vertical boundaries. However, it is 

assumed that (5.3) is a good approximation to what actually occurs 

in the central part of the layer when L/H is small. For a fluid 

slot, this assumption has been confirmed experimentally ([6],[9]). 

The value of 13 will vary with Ra. Introducing a dimensional 

temperature gradient e. by 

it is shown for a vertical fluid slot that 13* assumes an 

asymptotic value of roughly 6T/2H. 

From (5.3) the Nusselt number may be written 

Nu = - (De) _ , = ~ n coth(n/2) 
X--~ 

When n is sufficiently large, this reduces to 

Nu - , ("\ - 2 ~6 • 

Taking 13 = const x L/H, we obtain from ( 5. 6) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

where C is a dimensionless constant. A similar formula is given in 

[5]. (5.7) may also be derived by a simple order of magnitude 

analysis. 
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To determine analytically the temperature distribution in the 

interior of the layer, a two-dimensional analysis must be performed. 

This is done in the next section in the limit of large Rayleigh 

numbers. 

6. Boundary-layer analysis for a vertical layer. 

As confirmed experimentally in [1] and [5], thermal boundary 

layers develop along the vertical walls, when Ra is large. 

Accordingly V~e may perform a boundary-layer analysis of the problem. 

For two-dimensional flow we obtain from (2.1) and (2.2) 

a a aT* 
ax.<vw.) - az.(vu*) = kgy ax. ( 6.1) 

(6.2) 

where we have allowed for a variable viscosity in (6.1). This is 

relevant, since in practice the viscosity may vary rapidly with 

temperature. 

The continuity equation now implies the existence of a 

stream function 1P. such that 

ol~J* aw. 
(6.3) u* = - az. ' w. = ax* 

Accordingly the boundary conditions may be stated as 

on 

(6.4) 

w. = 0 ' = 0 on 



- 15 -

The thickness of the boundary layers on the vertical walls 

is taken to be of order o. We assume that o is small compared 

to both L and H, so the boundary layers on the two walls are 

distinct and separated by a core region. The vertical length 

scale is assumed to be of order H. Since the temperature variation 

over the vertical boundary layers must be of order ~T, balance 

between convection and conduction in the heat equation requires 

that 

(6.5) 

where ~ means of the order of. 

From (5·1) a balance between buoyancy and vorticity yields 

(6.6) 

where vr is a reference viscosity. 

We now introduce non-dimensional quantities by taking 
1 

o = (Hv K /kgy~T) 2 as horizontal length scale and defining new 
r m 

variables by 

(6.7) 

and 

Here the plus and minus sigmin the definition of the horizontal 

coordinate correspond to the left- and right-hand boundary layers, 

respectively (this sign convention will be adopted for the rest of 

the analysis, if nothing else is stated). 
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The approximate forms of (6.1) - (6.3) valid in the boundary 

layers may then be written 

where 

u = - ~ ' z 

= T XX 

w = ±~ X 

(6.8) 

(6.9) 

(6.10) 

In (6.8)-(6.10) a ±superscript should be understood in the x-coordi­

nate, but it is not stated for the reason of simplicity. By the 

definitions (6.7), is always positive, belonging to the interval 

[O,~>, while - ~ < z < + ~. 

On the vertical walls we have ~ = 0 and T = ± ~. When 

z ~ ± ~ the solutions must match solutions valid in the corners, 

and when x ~ ~ the solutions must match a solution valid in the 

core. 

7. The core solution. 

Consider the solutions in the core. We assume that the scales 

of the stream function, temperature and vertical distance are the 

same as those in the boundary layers, while the characteristic hori­

zontal length is taken to be L. In (6.1) the vorticity terms are 

respectively of order 6/L and oL/H 2 compared with the buoyancy 

term. These orders of magnitude are both small compared with unity 

provided 

o << L (7.1) 
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As required earlier, o << L and o << H to assure distinct boundary 

layers. (7.1) is clearly satisfied then~ if H ~ L, which is the 

case of interest in this problem. Utilizing (7.1), equation (6.1) 

in the core reduces to 

T = 0 (7.2) 
X 

as a first approximation. Hence 

in the core. 

In (6.2) the conduction terms are respectively of order 

o/L and oL/H 2 compared with the convection terms. If now (7.1) 

is satisfied, the heat equation in the core reduces to 

. T' = 0 
ljJX 0 

where we have utilized that . T = 0 
X 

(7.4) 

from (7.2), and the prime 

denotes derivation with respect to z. Since by experimental 

evidence, T~ ~ 0 in the central part of the layer, (7.4) implies 

that 

1/J = 1/J (z) 
0 

(7.5) 

in the core. Accordingly, to this approximation,the vertical 

velocity in the core is zero. Further T,•1• must tend to T ,,, 
'~" o'"'o 

as X + oo • 
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8. Approximate solution of the boundary-layer equations. 

Utilizing (7.3) and (7.5), we define 

T = T0 (z) + e(x,z) 
(8.1) 

where e and n satisfy 

e,n + o as X + co (8.2) 

Equation (6.8) may be integrated directly. By the aid of (8.1), 

the system of equations is written 

w = ±n X 

(8.3) 

(8.4) 

(8.5) 

where, as adopted, the plus and minus signs correspond to the left-

and right-hand boundary layers, respectively. 

Analogous to Gill [7], the nonlinear system (8.3) - (8.5) will 

be solved by a modified Oseen technique. Since u and Tz in 

(8.4) at each level z = const. varies across the boundary layers 

from zero on the vertical walls to u0 (z) and T~(z) in the core, 

they may as an approximation be replaced at each level by average 

values uA(z) and TA(z) which must be the same in both boundary 

layers. Also f in (8.3) will be replaced at each level by an 

average value fA = f(T A). With these assumptions, the vorticity 

and heat equations may be written 
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(8.6) 

± uAax + wT' = a A XX ' (8.7) 

or, by eliminating w from (8.7) 

(8.8) 

Here the coefficients are independent of x. Accordingly the 

solution may be written 

a a: a(z)e-A(z)x (8.9) 

where A is given by 

(8.10) 

As mentioned before, experiments show that the temperature gradient 

in the core is positive. Hence we concentrate about the case where 

TA > o. This means from (8.10) that A is always real. Further 

A must be positive to satisfy the requirement that a + 0 as x + oo, 

Hence, from (8.10) 

(8.11) 

APPlying the boundary conditions at x = 0, we obtain from (8.1) 

and ( 8. 9) that a( z) = ± ~ - T0 • The temperature and the vertical 

velocity in the boundary layers may then be written 

a = T -T = (± ~- T )e-AX 
0 0 

(8.12) 

(8.13) 
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To relate and TA to the core values we apply integral 

conditions obtained by integrating the continuity and heat equations, 

(8.5) and (8.4),across each boundary layer. This leads to 

QO 

J w dx = ± ljJ 0 

0 

' QO 

L J w e dx ± T 'l)J dz o o 
0 

(8.14) 

(8.15) 

Momentum is ~onserved automatically since (8.3) is satisfied exactly. 

Inserting from (8.12) and (8.13) into these equations, we finally 

obtain 
±!-T 

0 

±~-T 
0 

where A is given by (8.11~ 

(8.16) 

(8.17) 

To solve (8.16) - (8.17) we must assume a relation between the 

temperature and the viscosity. When the temperature varies con-

siderably, it is not possible to derive any simple general relation­

ship between T* and v. To retain some general effects of a 

variable viscosity, and still have a tractable mathematical problem, 

we have to make some simplifying assumptions. Accordingly we take 

the viscosity to vary linearly over the boundary layers, and to be 

independent of height. If v 1 and v 2 are the viscosities at the 

hot and cold wall, resepctively, and vr = (v 1 +v 2 )/2 is the mean 

viscosity, we obtain 
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f+ + 
= vA/vr = 1 - ~ A 

f~ = vjJvr = 1 + ~ 

where 

~ = ~ 'V2-'Vl 
v2+vl 

For most liquids ~ is positive, while for most gases it is 

negative. 

Relation (8.11) can be stated explicitly as 

Suitable new variables may be introduced by taking 

Equations (8.16), (8.17) then yield 

l/Jo = 
~ - T 

0 

~ + Tc 
-A -(f+~) 

~(A+) = 
2(A+) 3 (1-~) - 2- T 

0 

~(A-) = 
20,-) 3 (1+~) 

dz l+T 
2 0 

(8.18) 

(8.19) 

(8.22) 

(8.23) 

(8.24) 

(8.25) 
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From (8.22) and (8.23) we readily obtain 

T = 0 

w = 0 

1. q+~ 
2 1+~q 

1 

while (8.24) and (8.25) reduce to 

ds s dz = 2s q(1+~q) 

(8.26) 

(8.27) 

(8.28) 

(8.29) 

By eliminating dz, the relation between s and q can be inte­

grated immediately, giving 

s = 1 (8.30) 
c 1 ( 1-q 2) 

where C1 is a constant. Hence, from (8.27) 

(8.31) 

Now, combining (8.28) and (8.30), we obtain a relationship between 

q and z. It is 

~2 = t[r 
1 

1 
- 2 (8.32) 

The constants c 
1 

and C 
2 

should have been determined by matching 

with the solutions valid in the horizontal boundary layers. However, 

effects due to their presence are neglected in this analysis. 

Analogous to Gill [7] we then take the inner solution to be valid 

at the horizontal end-walls, i.e. 
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0 

on 
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z = ± l (8.33) 

From (8.31) this implies that q(z=± !) = ± 1, and hence from 

(8.32) 

(8.34) 

(8.35) 

When ~ tends to zero, it easily is shown that the relations above 

reduce to 

where (8.36) 

In this case the temperature gradient in the middle is given 

by 

S = (T~)z=O = 2/3 (8.37) 

Combining (8.20), (8.21) and (8.30) we finally obtain A as 

a function of q, being 

Hence all quantities in the expressions for the vertical velocity 

and the temperature, (8.12), (8.13), now are determined as functions 

of q (and thereby z, via (8.32)). The results will be discussed 

in the next section. 

Finally it should be noted that the solutions have singulari­

ties in the corners (-~1,-~H) and (~L,~H). This is analogous to 

the result in [7]. 
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9. Results and discussion. 

In figures 3-6 T0 , w0 etc. are shown as functions of z. 

For constant viscosity, ~ = o, (solid lines) the solutions exhibit 

centro-symmetrical properties. This is in accordance with the 

system of equations and boundary conditions for that particular 

case, and has been used explicitly by Gill [7] in his method of 

solution. The broken lines in figures 3-6 correspond to ~ = 0•25, 

which means that the viscosity increases by a factor 3 from the 

hot to the cold wall. The figures clearly show that a variable v 

introduces asymmetry into the solutions, as suggested by Gill. 

From figure 3 we observe that the interior temperature distri-

bution is close to a straight line in the central part of the layer. 

The plotted points are experimental values taken from Klarsfeld 

[5] using chlorobenzene as saturating fluid. The variation of v 

is not significant in his experiment, being less than ten per cent 

over the layer. It is seen that the theoretical curve corresponding 

to constant viscosity agrees well with the experiments. For the 

temperature gradient S in the middle of the layer, we get the 

value 0•67 from (8.37). The experiments plotted in figure 3 gives 

approximately S = 0•69. For comparison we mention that Hart [9] 

has measured a gradient of 0•62 for the similar problem in a fluid 

layer. 

The value of the stream function w0 in the core is plotted 

in figure 4. Introducing the horizontal core velocity u - - w' , 0 0 

we see that most of the mass flux across the core takes place near 

the upper and lower boundaries. This is in accordance with the 

observations in [5]. At the horizontal boundaries u0 tends to 

infinity, and so does also the temperature gradient (figure 3). 

This occures because we have neglected the effect of boundary layers 
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at the horizontal end-walls. Taking these into account, the 

velocity and temperature gradient will be modified. 

In figure 5 the vertical velocities + w and w at the 

left- and right-hand walls respectively, are plotted as functions 

of z. In figure 6 a similar plot is done for the bounda~y­

layer thicknesses 1/:\.+ and 1/:\.-. We observet;tQt a variable 

viscosity results in a higher velocity and a·thinner boundary 

layer at the hot wall, and vice versa at the cold wall. This 

conforms to the observations by Elder [6] in a fluid slot. In 

figure 7 we have displayed the temperature variation in the left-

hand boundary layer as a function of x for four different values 

of z. The three upper curves can only qualitatively be compared 

with the experimental resutls in [1] (figure 9 c), since the left­

hand wall was not isothermal in this experiment. 

The heat transfer across the layer may be expressed by the 

Nusselt number 

aT* 
-( -) , dz ax X - L * * *--"2" 

(9.1) 

which is the ratio of the total heat transport to the heat 

transferred by pure conduction. Taking ~ = o, the integration yields 

(9.2) 

which is similar to (5.7) with Bories and Combarnous 

[1] report an empirical formula for the Nusselt number in a vertical 

layer involving L/H (in our notation) and Ra to the powers of 

0•397 and 0•625, respectively, including all their experiments. 
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However, only for their last run (Ra = 520) the flow exhibited 

boundary-layer character. Accordingly the proposed formula can 

not be valid in the limit of large Ra. It seems plausible then, 

as the Rayleigh number increases, that both exponents should tend 

to 0•5 as a limit. 

10. Summary and concluding remarks. 

According to the results presented above, instability in an 

infinite porous layer, being slightly tilted with respect to the 

horizontal, occurs when Ra cos ~= 4~ 2 • The preferred mode of 

disturbance will be stationary, longitudinal rolls having axes 

aligned in the directed of the basic flow. The critical dimensional 

wave length is given by 2L. For the basic solution to become 

unstable, we obtain as a necessary condition that Ra cos ~ > 0. 

Hence the motion is stable when 90° ~ ~ ~ 180°. Concerning 

longitudinal rolls, it is shown that the computations in [11] may 

be applied directly to the present problem. The result so obtained 

for the Nusselt number fits well with experiment. 

For a vertical layer, the effect of the horizontal end-walls 

are taken into account. A boundary-layer analysis is performed 

using a method developed by Gill [7] for the analogous problem 

in a fluid slot. In the present paper this method has been extended 

to include some effects of a variable viscosity. This is shown to 

introduce asymmetry into the solutions. For the interior tempera­

ture distribution and the Nusselt number, satisfactory agreement has 

been obtained with the experimental results in [5] and [1]. 
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Finally it should be noted that for a boundary-layer analysis 

to be valid in a porous vertical layer, more conditions must be 

imposed than for the similar fluid flow problem. For both problems 

the magnitude a of the boundary layers must be much smaller than 

the horizontal and vertical extent of the model. For a porous 

layer, this leads to 

since we concentrate about H > L. 

To use Darcy's law in the boundary layers, we also must 

require that the Reynolds number defined with respect to the charac-

teristic grain diameter~ d, not exceeds unity. Defining a Reynolds 

number by 

(10.2) 

and substituting the value for z* = o, i.e. w* = Km H/2o 2 , the 

above requirement implies 

d < 2 Pr Ra- 1 
L (10.3) 

Further, to use porous media considerations in the boundary 

layers, the grain diameter must be smaller than the boundary-layer 

thickness, i.e. d < a. This leads to 

For given geometry and Rayleigh number, then, the value of Pr 

decides which condition (10.3), (10.4) will be the most restrictive. 
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Figure legends 

Figure 1. The porous model. The y*-axis is normal to the plane 
of the paper. 

Figure 2. Values of Nu vs. Ra cos ~ for longitudinal rolls; ---, 

the result (4.3) obtained from Palm,Weber and Kvernvold 

[11]; -•-•, limiting curves for the ex~Ilt~ental data0 
by Bories and Combarnous [1] for vario~ngles (0-60 ); 

----, result from the theoretical analysis in [1]. 

Figure 3. The temperature T0 (z) in the core. The solid line 

corresponds to constant viscosity, ~ = 0, while the 

broken line is for ~ = Qo25 i.e. v 2 = 3v 1 • 

The experimental points are from Klarsfeld [5] (figure 

11 (E10) where Ra = 1298 and H/1 = 2•25). Here the 

variation of v is not significant (less than 10 percent)~ 

Figure 4. The stream function ~0 (z) for the core. Solid and 

broken lines correspond to ~ = 0 and ~ = 0•25, 

respectively. 

Figure 5. Vertical velocities at (a) the left~and and (b) the right­

hand boundaries. Solid and broken lines correspond to 

Figure 6. 

~ = 0 and ~ = Oo25, respectively. 

Boundary layer 

the right-hand 

to ~ = 0 and 

thicknesses at (a) the left-hand and (b) 

walls. Solid and broken lines correspond 

~ = 0•25, respectively. 

Figure 7. Variation with x of the temperature in the left-hand 

boundary layer at four different levels of height. 
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