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3. AIMS OF STUDY 
 

Malignant melanoma is one of the most increasing forms of cancer, in addition to being 

notoriously resistant to therapy once it has reached an advanced stage. New treatment 

alternatives have emerged in recent years and have led to improved overall survival for some 

patients, however all are associated with adverse effects and development of resistance. The 

search for new treatment strategies is thus still of importance. 

 

The aims of this thesis were to: 

 

I. Study the anti-tumour effect of the synthetic retinoid, CD437, in melanoma cell 

lines, and to evaluate possibilities for combinational treatment. 

 

II. Examine the expression of the cell cycle regulatory protein, Wee1, in melanoma 

specimens, and analyze its relationship to clinicopathological parameters and 

patient survival. 

 

III. Investigate the potential of Wee1 as a target for therapy in melanoma, alone or in 

combination with the cell cycle regulatory proteins Chk1/2. 
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4. INTRODUCTION 
 

4.1 Cancer 

 

Over time, normal cells can transform into cancerous by acquiring a series of mutations which 

includes activation of oncogenes (“a gene that, when activated by mutation, increases the 

selective growth advantage of the cell in which it resides”), inactivation of tumour suppressor 

genes (“a gene that, when inactivated by mutation (or alterations such as methylations), 

increases the selective growth advantage of the cell in which it resides”) and malfunction of 

DNA-repair genes [1,2]. Although the average human tumour cell harbours many mutations, 

the majority of cancers are caused by only two to eight ‘driver mutations’ that are usually 

acquired sequentially over time [2]. Tumourigenesis, the step-wise process in which a normal 

cell is transformed, allows it to undergo uncontrolled cell division that leads to the formation 

of a malignant mass that can ultimately spread to other parts of the body. For this process to 

occur, the cell has to acquire certain traits that includes the ability to sustain proliferative 

signalling, evade growth suppressors, avoid immune destruction, enable replicative 

immortality, activate invasion and metastasis, induce angiogenesis, resist cell death and 

deregulate cellular energetic. Additionally, tumour promoting inflammations, as well as 

genetic instability, are enabling characteristics suggested to underlie the mentioned hallmarks 

and drive tumour progression (Figure 1) [3]. The tumour microenvironment has also been 

found to contribute to the hallmark capabilities and thereby the formation of cancer [4]. The 

tumourigenic process leads to genetic heterogeneity among the cells within a tumour, which 

can impact the therapeutic response. As a disease, cancer is only seconded by cardiovascular 

disease as the leading cause of death in the developed world [5].  
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Figure 1. Hallmarks of cancer (modified and reprinted with the permission of Elsevier [3]). 

 
 

4.2 Malignant melanoma 

 

Malignant melanoma is a cancer form that arises from melanocytes, a cell type found in the 

basal layer of epidermis, hair bulbs, eyes, ears and meninges (membranes surrounding the 

central nervous system). The melanocytes comprise approximately 5-10% of all cells found in 

the basal layer of epidermis, and will through a process of melanogenesis produce melanin, 

the main pigment giving rise to the colour of our skin and hair. Melanin is transported to 

nearby keratinocytes, where it forms a cap on top of the nucleus of mitotically active cells and 

protects them from damaging effects of ultraviolet (UV) radiation [6].   

 

 

4.2.1 Epidemiology and risk factors 
 

The incidence rate of melanoma is steadily rising for both genders, and is thought to be 

attributable to both increased awareness, as well as augmented exposure to the sun [5,7]. 
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Norway is among the European countries with the highest incidence rates, a rate which has 

increased nearly 10 times over the past 60 years (~2/100.000 (1953-1957) to ~19.6/100.000 

(2008-2012)) [8].  

 

Several risk factors have been found to increase the likelihood of developing melanoma.  

Exposure to ultraviolet radiation (UV): Sunburns, primarily caused by UVB exposure 

(290-320nm), has been implicated as a potential contributing factor to the pathogenesis of 

melanoma. Animal studies have, however, demonstrated that UVA irradiation (320-400nm) 

can also trigger melanomagenesis [9,10]. The correlation between sun exposure and 

melanoma is supported by both epidemiologic evidence, as well as biological findings linking 

exposure to UV-radiation to occurrence of DNA damage [11,12].  

Pigmentation: People with a fair complexion and red hair, who tan poorly, freckle and easily 

get sunburns, have increased risk of developing melanoma. In line with this, melanoma occurs 

more commonly in Caucasians, compared to people of other ethnic origins [13].  

High number of melanocytic nevi: Presence of a high number of melanocytic nevi, 

dysplastic nevi and atypical mole syndrome (AMS) have been shown to augment the risk of 

developing melanoma [14]. 

Genetics: Two high-penetrance genes have been associated with hereditary melanoma; 

CDKN2A and CDK4 [15]. A previous- or family history of melanoma has been found to 

increase the risk of developing melanoma, even though exact predisposing genes have not 

been identified in all cases [12].  Approximately 5-12% of all cutaneous melanomas are due 

to hereditary factors [16]. 

Age: The incidence of melanoma rises with increasing age [12]. 

Gender: While the incident rate is higher in women until the age of 40, melanoma in general 

is more common in men [12]. The sites of the body where melanoma arises have been shown 

to differ between the genders, and are thought to be related to different trends in carcinogenic 

exposures (UV-radiation) [17]. 

 

 

4.2.2 Melanoma stages 
 

It is of great importance to identify a melanoma at an early stage in order to prevent it from 

metastasising. The ABCDE criteria are a much used tool to assist both health care providers 

and patients in evaluating potential melanomas. The mnemonic ABCDE considers different 
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aspects of the nevi; Asymmetry, Border irregularities, Colour variation, Diameter and 

Evolution (nevi that changes over time). Suspicious pigmented lesions should be biopsied 

[18]. 

 

The American Joint Committee on Cancer (AJCC) has recommended using the ‘Tumour-

Node-Metastases (TNM) grading system when dealing with melanomas. Tumours graded by 

this system are evaluated for thickness and ulceration (T), amount of metastatic lymph nodes 

(N) and sites of distant metastasis and level of serum Lactic Dehydrogenase (M) [19]. The 

Clark model and Breslow’s depth are used to grade melanomas according to the TNM criteria. 

The Clark model depicts the stepwise transformation from melanocytes to melanoma [20] and 

Breslow’s depth describes how deeply tumour cells have invaded the skin [21]. 

 

 

 
Figure 2. Progression of melanoma. The Clark model depicts the stepwise progression of a 

melanocyte to a mole and subsequently to melanoma. However, it has been shown that only 

26% of melanomas arise from nevi, suggesting alternative pathways that can bypass the nevi 

as an intermediate step [22].  

 

 

The staging system is used to sum up how far the cancer has spread, where the TNM values 

are combined to give an overall stage (0-VI). Patients with lower stages of melanoma have a 

better outlook for curative treatment or long-term survival.  
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4.2.3 Melanoma subtypes  
 

Cutaneous melanoma (related to the skin) can based on clinical findings and pathologic 

growth patterns be classified into four subgroups; superficial spreading (70%), nodular (15%), 

acral lentiginous melanoma (10%) and lentigo maligna (5%) [23].   

In addition to cutaneous melanoma, melanoma can also arise in the eye (uveal/ocular 

melanoma) and mucosal membranes of the body (mucosal melanoma). Current efforts are 

being made to more accurately classify melanoma according to their molecular profile; 

however these findings need to be further validated in larger cohorts [24,25]. 

 

 

4.2.4 Molecular alterations commonly found in melanoma 
 

A large number of genes have been found to be mutated or altered in melanoma, these are 

often subtype-specific and some occur more frequently than others. The majority of the 

commonly found mutations affect two signalling pathways that regulate proliferation and 

survival, the Mitogen-activated protein kinase/Extracellular regulated signalling kinase 

(MAPK/ERK) and Phosphoinositide 3 kinase/V-Akt murine thymoma viral oncogene 

homolog (PI3K/Akt) pathways (Figure 3).  

  

v-raf murine sarcoma viral oncogenes homolog B1 (B-RAF); is a central protein in the 

MAPK/ERK pathway, a signal transduction pathway involved in cellular proliferation, gene 

expression, differentiation, mitosis, cell survival and apoptosis. Activating mutations in the B-

RAF gene have been found in as much as 40-60% of cutaneous melanoma, most frequently in 

the V600E locus of the gene (80-90%) [26]. B-RAF mutations are also commonly found in 

nevi (80%), and are believed to be critical step in the initiation of melanoma tumourigenesis, 

although insufficient on its own [27].  

Neuroblastoma RAS viral oncogenes homolog (N-RAS); is another protein involved in the 

MAPK/ERK- , but also in the PI3K/Akt signalling pathway. Activating mutations in the N-

RAS gene have been found in approximately 20% of melanoma [28,29]. Mutations in B-RAF 

and N-RAS are almost always mutually exclusive [28]. 

c-KIT; is a receptor tyrosine kinase (RTK) necessary for melanocyte survival. Activating 

mutations of the encoding gene can lead to increased stimulation of a range of different 

signalling pathways, including MAPK/ERK- and PI3K/Akt [30]. In general, activating 
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mutations and/or gene amplifications of the c-KIT gene are relatively rare in melanomas, but 

can be found at a higher frequency in some of the smaller sub-groups (uveal (78%), mucosal 

(39%), acral (36%) melanoma, and melanoma arising in chronically sun-damaged skin (28%)) 

[31,32].  

V-Akt murine thymoma viral oncogene homolog (Akt) and Phoshoinositide 3 kinase 

(PI3K); are among the key proteins involved in the PI3K/Akt pathway, a signal transduction 

pathway known to regulate a number of cellular processes, including growth, proliferation, 

apoptosis and cell migration [33]. Amplifications of the Akt3 gene have been found in 25% of 

melanoma [34], while point mutations in the gene encoding PI3K have been reported in 2-6% 

[35]. 

Phosphatase and tensin homologue deleted on chromosome 10 (PTEN); is a tumour 

suppressor gene that’s protein is known to negatively regulate the PI3K/Akt pathway. Loss or 

reduction in PTEN protein expression has been shown in approximately 20% of melanoma 

[28]. 

Guanine nucleotide binding protein (G protein), q polypeptide (GNAQ) and guanine 

nucleotide binding protein (G protein), alpha 11 (GNA11); Activating mutations in either 

of these genes have been shown to increase MAPK/ERK signalling [36]. Studies have shown 

that 83% of all uveal melanomas harbour mutations in either of these genes [37,38]. 

Mutations in GNAQ and GNA11 are rare in cutaneous melanoma. 

 

Cyclin-Dependent Kinase Inhibitor 2A (CDKN2A); is a tumour suppressor gene that 

encodes two proteins involved in cell cycle inhibition, p14ARF (p14) and p16INK4a (p16). 

CDKN2A is the main gene involved in predisposition and melanoma pathogenesis [39].  

Alterations to the CDKN2A locus (deletions and mutations) are found in approximately 20-

50% of the cases of familial melanoma [40,41]. Somatic mutations and genetic alterations 

have also been observed in sporadic melanomas [42,43].  

Cyclin Dependent Kinase 4 (CDK4); is a protein-serine kinase that is involved in the G1 

phase of the human cell cycle. Activating mutations [44] and allelic amplifications [45] in the 

CDK4 gene, as well as over-expression of the protein [46], have been found in sporadic 

melanoma, leading to unrestricted kinase activity and aberrant cell cycle entry and 

uncontrolled cell proliferation [41]. Furthermore, CDK4 is considered a melanoma 

susceptibility gene and germline mutations have been detected in 3 kindred worldwide [47].  

The CDK4 pathway (p16-cyclin D-CDK4/6-retinoblastoma protein (RB1)) is associated with 

activating genomic alterations in more than 90% of cases of melanoma [43,48].  
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Microphthalmia-associated transcription factor (MITF); is a regulator of melanocyte 

differentiation and survival. Amplification of MITF has been observed in 10% of primary 

cutaneous- and 21% metastatic melanomas [49]. The exact role of MITF in melanoma has yet 

to be determined [30]. 

Glutamate receptor, ionotropic, N-methyl D-aspartate 2A (GRIN2A); is a protein 

encoded by a gene that was newly discovered to be mutated in 33% of melanomas. The gene 

was identified after comprehensive exome sequencing and suggests involvement of glutamate 

signalling [50].  

 

  

 
Figure 3. Common deregulated signalling pathways in melanoma. Squares with a green 

glow indicate proteins that are druggable targets. Adapted from [51]. 

 

 

4.2.5 Current treatment alternatives  
 

Early-stage melanomas can, in most cases, effectively be treated by surgery alone. Additional 

treatment alternatives are, however, required for more advanced cancers.  

For the treatment of patients with advanced disease, six drugs have been approved by the US 

Food and Drug Administration (FDA); Dacarbazine (1975), Ipilimumab (2011), Vemurafenib 

(2011), Dabrafenib (2013), Trametinib (2013) and Pembrolizumab (Keytruda) (2014) [52]. 
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Each of the listed drugs exerts particular mechanisms of action, and is associated with drug 

specific side-effects.  

Even though targeted treatment and immunotherapy have in many cases led to promising anti-

tumour effect, development of resistance and adverse effects are a major problem [52].  

 

 

Traditional chemotherapy 

 

Dacarbazine has for years been first line treatment for melanomas. It has an unclear 

mechanism of action, but has been proposed to inhibit DNA synthesis and lead to alkylation 

of DNA bases, by so preventing tumour proliferation and growth [53]. Tumour responses 

have been seen in 10-15% of the patients; however these responses have not been reported to 

prolong median disease-free- or overall survival [54].  

 

 

Targeted therapy 

 

Vemurafenib and Dabrafenib are inhibitors of V600E mutant BRAF that limit the activity of 

the MAPK/ERK signalling pathway. Treatment with Vemurafenib has resulted in complete or 

partial tumour regression in the majority of melanoma patients carrying B-RAF V600E 

mutations, with a medium overall survival of 15.9 months [55,56].  Likewise, a median 

overall survival of 13.1 months has been reported in patients treated with Dabrafenib [57]. 

Trametinib is an inhibitor against MEK1 and MEK2 that has been approved as a single agent 

treatment of B-RAF V600E or V600K mutation-positive unresectable- or metastatic 

melanoma. A clinical study showed that melanoma patients (B-RAFmut) treated with 

Trametinib had an improved overall survival (81% after 6 months), as compared to 

chemotherapy (Dacarbazine/Paclitaxel, 67% after 6 months) [58]. 

Clinical phase III trials have demonstrated increased median relapse-free survival of patients 

treated with a combination of Dabrafenib and Trametinib, as compared to single-agent 

treatment, and have led to FDA-approval of combined administration of the drugs (2014) 

[59].  Despite initial response, resistance to B-RAF and MEK inhibitors develops at a median 

time of 6 months after treatment initiation, and have been associated with reactivation of the 

MAPK signalling pathway, or activation of compensatory pathways such as the PI3K network 

[51,60,61] . 



 
 
 

15 
 

Immunotherapy 

 

Ipilimumab is a monoclonal antibody that targets CTLA-4, thereby blocking the latter’s 

ability to inhibit T-cell activation and proliferation. Treatment with Ipilimumab thus enhances 

the immune response against melanoma. In an earlier study, the median overall survival of 

patients treated with Ipilimumab was reported as 10.1months [62]. In another study, 4-year 

survival rates have been reported in as much as 37.7% to 49.5% of treatment-naïve patients 

receiving Ipilimumab [63]. 

Pembrolizumab is a monoclonal antibody against PD-1 receptors; the latter are negative 

regulators of T-cell effector mechanisms that limit immune responses against cancer. 

Treatment with Pembrolizumab has resulted in a high rate of sustained tumour regression in 

patients, including those previously treated with Ipilimumab [64]. 

 

 

4.2.6 Emerging therapeutic targets 
 

Targeted therapy of melanoma is currently focused primarily on attenuating the MAPK/ERK- 

and PI3K/Akt signaling pathways, and improving the durability of the response by developing 

personalized combination strategies and better dosing schedules [65]. Several clinical trials 

are ongoing for patients with B-RAF mutations where B-RAF/MEK inhibitors are combined 

with each other or inhibitors of for instance Heath Shock Protein 90 (HSP-90), PI3K, Akt and 

CDK4/6 (ClinicalTrials.gov).  

The therapeutic alternatives for patients with N-RAS mutations have so far been limited, since 

designing drugs that directly target N-RAS has been a challenge. Likewise, finding eligible 

strategies to treat melanomas that are B-RAF/N-RAS wild type have proven even more elusive 

[65]. Clinical trials are assessing the treatment potential of MEK inhibitors in these patient 

groups; however the responses appear to be sub-optimal. Aiming to improve the response, 

combined inhibition of MEK and PI3K, Akt, cyclin D/CDK4 and cyclin D3/CDK6, are 

currently being investigated (ClinicalTrials.gov). 

The recent years advances in the field of immunotherapy have led to treatment alternatives 

that have improved survival and durability of response in patients [66]. Several clinical trials 

with immunotherapeutic agents are currently ongoing or underway. New immunotherapies are 

also being tested, both alone and in combination, including agents that are directed at T-cell 
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regulatory pathways which could enhance anti-tumor activities, such as lymphocyte activation 

gene 3 (LAG3) and T-cell membrane protein 3 (Tim3) [66]. 

Immunotherapeutic agents are also being investigated in combinations of targeted therapy, 

such as B-RAF inhibitors (ClinicalTrials.gov).  

 

 

4.3 The cell cycle 

 

The cell cycle is the orderly set of events leading to cell division, and consists of four distinct 

phases; Gap 1 (G1), DNA Synthesis (S), Gap 2 (G2) and Mitosis (M) (Figure 4). During the 

gap phases, the cell increases in size and ensures that everything is ready for the following 

phase. DNA replication occurs between the two gap phases and results in chromosome 

duplication. During the mitotic phase the cell physically divides itself in two. Under 

favourable conditions cells may commit to a new division by passing a point of no return in 

G1 termed ‘Restriction point’. Most cells in the adult, human body are non-dividing, and 

reside either in a resting state called G0 (quiescence) where they remain dormant until 

stimulated to re-enter the cell cycle, or alternatively a permanent state (senescence) from 

which they are unable to return [67].  
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Figure 4. Overview of the cell cycle and its checkpoints. The cell monitors internal and 

external conditions, as indicated under the respective checkpoints, and may halt the cell cycle 

under unfavourable circumstances. The red stars signify DNA damage checkpoints, and the 

blue stars are checkpoints where the cell monitors external or internal conditions (as indicated 

in the figure). Overview of the cyclin/CDK complexes present in different stages of the cell 

cycle (inner circle). 

  

 

Cell cycle Regulation 

 

Progression through the different phases of the cell cycle is directional and tightly regulated. 

Transition to the next phase only occurs with the correct assembly and activation of cyclin 

and Cyclin Dependent Kinase (CDKs) complexes. The CDKs form the catalytic subunit of the 

complex, and are stably expressed throughout the cell cycle. Cyclins, on the other hand, are 

expressed in a phase-specific manner, and function as the regulatory subunit of the 

hetrodimer. The oscillating expressions of the different cyclins are achieved by their timely 

synthesis and ubiquitin-mediated proteolysis, resulting in phase specific cyclin/CDK 

combinations (Figure 4). In order to become fully active, the assembled cyclin/CDK complex 

needs to be phosphorylated by a CDK-Activating Kinase (CAK) [68].  

In response to extracellular signals (such as growth factors) cyclin D is produced in the early 

stages of the G1 phase [69]. Cyclin D binds to CDK4 and CDK6, forming active cyclin/CDK 

complexes that in turn phosphorylate the retinoblastoma susceptibility protein (Rb). Upon 

phosphorylation, Rb dissociates from its binding partner E2F, thereby activating the latter 
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transcription factor [70]. Activated E2F can then transcribe various genes encoding proteins 

that are necessary for the transition to S-phase; these include cyclin E, cyclin A and DNA 

polymerases [71]. Activation of the cyclin E/CDK2 complex leads the cell from G1 to S-

phase. Cyclin E is slowly degraded during S-phase, and its partner CDK2 now binds to cyclin 

A which allows the cell cycle to progress to late S phase. CDK1 is then activated by A-type 

cyclins at the later stages of S phase, which contributes to driving the cell towards mitosis 

[72]. At the onset of mitosis, CDK1 forms a complex with cyclin B which drives the cell 

through the final stages of the cell cycle. 

CDK activity is also regulated by two families of CDK inhibitors (CDKIs): Inhibitor of kinase 

4 (INK4) proteins (p16INK4a (p16), p15INK4b (p15), p18INK4c (p18) and p19INK4d (p19)) and the 

CDK interacting protein/kinase inhibitory protein (Cip/Kip) family (p21Cip1/WAF (p21), p27Kip1 

(p27) and p57Kip2 (p27)). Additionally, activity of CDK1 and CDK2 may be restricted by 

inhibitory phosphorylation on the tyr15 and tyr14 residues mediated by Myt1 and Wee1. The 

latter inactivating phosphorylations can again be removed by the CDC25s. 

 

 

Cell cycle checkpoints 

 

Cell cycle checkpoints are regulatory pathways that control the order and timing of transitions 

and may stop cell cycle progression under unfavourable conditions. These signal transduction 

pathways may respond to both extrinsic and intrinsic factors, and malfunctions of such 

checkpoints have been implicated in tumourigenesis [73]. Four major checkpoints are found; 

G1/S, Intra-S, G2/M and the spindle assembly checkpoint (Figure 4).    

 

 

4.4 Cell death 

 

Under certain circumstances and upon receiving appropriate signals, a cell can activate a 

controlled process of self-destruction.  Based on morphological appearance, this process of 

cell death can be defined as apoptotic, necrotic, autophagic or associated with mitosis [74]. 

The apoptotic cell death is highly controlled and has been linked to morphological alterations 

such as cell shrinkage, membrane blebbing, chromatin condensation, decreased cytoplasm and 

formation of apoptotic bodies [75]. Morphological alterations usually found in necrotic cells, 
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on the other hand, include cytoplasmic swelling, rupture of the plasma membrane and 

chromatin condensation [74]. This type of cell death can be either controlled or random, and 

leads to intracellular content being spilled into the nearby tissue which potentially causes an 

inflammatory response. Autophagic cell death is a process where proteins and organelles are 

degraded by lysosomal proteases. This type of cell death occurs without chromatin 

condensation, and is associated with formation  cytoplasmic vacuoles (double-membrane 

subcellular compartments containing degenerating organelles or cytosol)[76]. Mitotic 

catastrophe is associated with aberrant mitosis, and is morphologically distinct from other 

forms of cell death by the presence of micronuclei (containing chromosomes or chromosome 

fragments) and presence of two or more nuclei that can be of different size. 

 

   

Apoptosis 

 

Apoptosis is a highly regulated form of cell death, which can be initiated by intracellular 

stress signals and/or extracellular ligands (Figure 5).  

Intracellular stress signals include withdrawal of growth factors, DNA damage, loss of cell 

anchorage, oxidative stress or oncogene activation, and may trigger the ‘intrinsic pathway of 

apoptosis’. This pathway initiates apoptosis through mitochondrial outer membrane 

permeabilization (MOMP), a process that is carefully regulated by the Bcl-2 family. The Bcl-

2 proteins consist of both pro- (e.g. Bim, Bad, Bid) and anti-apoptotic members (Bcl-2, Bcl-

xl, Mcl-1), and a shift in their balance may lead the cell towards apoptosis [77]. It has been 

proposed that pro-apoptotic Bcl-2 proteins then activate Bak and Bax, which after several 

conformational changes and oligomerization can form pores in the mitochondria [78]. The 

following drop in mitochondrial membrane potential leads to the release of pro-apoptotic 

proteins such as cytochrome c, SMAC/DIABLO, AIF and EndoG. Upon its cytoplasmic 

release, cytochrome c forms a complex (Apoptosome) with Apaf-1 and pro-caspase 9, and 

this leads to an activating cleavage of the latter protein [79]. Caspase 9 is an initiator caspase 

that can activate effector caspases (such as caspase 3) that are important in executing 

apoptotic changes in the cell which includes cleavage of DFF40/45 (leading to DNA 

fragmentation [80]) and –PARP-1 (leading to its inactivation, and thus inhibiting its functions 

in DNA repair that given the circumstances could otherwise drain the cell of ATP [81]). The 

cytoplasmic release of SMAC/DIABLO, on the other hand, leads to inhibition of IAPs 

(Survivin, Livin and XIAP) which are anti-apoptotic proteins that can bind to effector 
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caspases and thereby prevent their actions [82]. Following their mitochondrial release, AIF 

and EndoG are translocated to the nucleus where they exert their apoptotic function. The latter 

proteins have also been implicated in caspase independent apoptosis [83]. 

 

The extrinsic pathway is activated through binding of ligands (such as TRAIL, Fas and 

TNFα) to death receptors on the cell surface. This leads to clustering of death receptors and 

intracellular recruitment of adaptor proteins (e.g. FADD and TRADD) and pro-caspase 8 or 

10, thereby giving rise to the Death Inducing Signaling Complex (DISC) and subsequent 

activation of the latter caspases [84]. Caspase 8/10 can then activate effector caspase 3, as 

well as the intrinsic pathway though cleavage of Bid [85].   

 

 

 
Figure 5. Simplified overview of apoptosis. Initiation of apoptosis can occur through the 

binding of an extracellular ligand to death receptors (extrinsic pathway), or through 

mitochondrial permeabilization (intrinsic pathway) as a response to DNA damage or 

intracellular stress, and lead to activation of initiator- and executioner caspases.  
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4.5 DNA damage response 

 

DNA damage occurs both as a consequence of stress from endogenous (for instance reactive 

oxygen species which arise from normal cellular metabolism) - and exogenous sources (such 

as UV light or chemicals in the environment). Over the course of time, the cell has developed 

mechanisms to guard itself against potentially harmful DNA damage that can lead to 

mutations that facilitates tumourigenesis. These systems, collectively called DNA damage 

response (DDR), are designed to prevent DNA damage from being passed on in dividing 

cells, and include cell cycle regulation, DNA repair and apoptosis [56]. 

 

  

 

Figure 6. Activation of DNA damage response pathways (adapted from [86]). 

In response to DNA double-stranded breaks (DSB) ATM is activated and phosphorylates p53, 

directly or indirectly through Chk2. This leads to accumulation of p53 and subsequent 

activation of its downstream target genes. Transcriptional activation of genes encoding 

proteins, such as Bax and Puma, promotes apoptosis, whilst transcription of p21 leads to cell 

cycle arrest. Following the occurrence of Single-Stranded breaks (SSB), or resection of DSB, 

single-stranded DNA (ssDNA) is coated with Replication Protein A (RPA) which leads to 

recruitment and activation of ATR. The latter can then phosphorylate many intracellular 

substrates including Chk1 and p53. Activated Chk1 promotes cell cycle arrest through adding 

an inhibitory phosphorylation on CDC25, and/or DNA repair by activating proteins such as 

RAD51, FAND2 and FANCE.   
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4.5.1 DNA damage checkpoints 
 

There are three main DNA damage checkpoints in the cell cycle; G1/S, intra-S and G2/M 

(Figure 4 and 7). The cell may arrest in the G1/S and G2/M checkpoints in response to DNA 

damage, whilst progression is slowed down rather than stopped in S-phase. 

 

The G1/S DNA damage checkpoint is primarily activated through the ATM-Chk2-p53-p21 

and  ATM-Chk2-CDC25a pathways [87]. The full activation of the first of these pathways 

involves transcriptional activity which leads to increased expression of proteins such as p21, a 

CKI that is critical for inhibiting S-phase entry, and causes a potentially permanent cell cycle 

arrest [88]. The ATM-Chk2-CDC25a signalling pathway, on the other hand, only requires 

posttranslational modifications, which makes its activation more rapid and transient [89]. 

Chk2 mediated phosphorylation of CDC25a inhibits its activity, marks it for degradation 

and/or promotes its sub-cellular relocation to the cytoplasm [90]. This limits the ability of 

CDC25a to remove the inhibitory phosphorylations (tyr14 and tyr15) on CDK2 in late G1 

phase [91]. The CDK2 activity is further decreased by Wee1, the complimentary counterpart 

of CDC25a, which instead adds inhibitory phosphorylation on CDK2 [92,93]. Although ATR-

Chk1-CDC25a signalling has been reported in late G1, the checkpoint is thought to be mainly 

mediated by the described ATM-dependent signalling pathway [94,95].  

  

The intra-S DNA damage checkpoint is manifested by decreased DNA synthesis rather than 

a full arrest, and can thus be described as a transient phenomenon [96]. The intra-S phase 

checkpoint response is activated by the ATM-Chk2-CDC25a and ATR-Chk1-CDC25a 

signalling pathways that lead to reduced activity of CDK2 [95]. Checkpoint mechanisms are 

triggered by the formation of unusually long stretches of ssDNA that occur at 

stalled/collapsed replication forks, SSB or during resection of DSB. These regions of ssDNA 

attracts RPA, which coats the strand and acts as a landing pad for the recruitment and 

activation of checkpoint signalling proteins, such as ATR [97,98]. The latter kinase then 

activates Chk1, which in a similar manner to Chk2 can inhibit CDC25.  

 

The G2/M DNA damage checkpoint stops cells that have escaped previous arrests, as well as 

those with DNA damage that has occurred in G2 phase. The G2/M cell cycle delay/arrest is 

usually a result of acute mechanisms that operates through post-translational alterations of 

effector proteins; ATR/ATM activates Chk1/Chk2 that subsequently inhibits the CDC25 
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phosphatases; CDC25a, b and c (all of which have been implicated in G2/M checkpoint 

regulation) [99]. It has been proposed that these rapid mechanisms that target CDC25 produce 

a longer cell cycle delay in G2, than in previous phases, in particular when ATR-Chk1 

signalling is involved [100]. A p53-dependent signalling pathway, involving transcription of 

p21, has been described; however its exact role in regulating the G2/M checkpoint remains 

unclear [89].  

 

 

 
Figure 7. A simplified overview of mammalian signal transduction pathways involved in 

cell cycle arrest following Ionizing Radiation (IR). The figure is based/modified from 

[101]. Following DSB in G1, two ATM-dependent checkpoint pathways are activated and 

lead to inhibition of CDK activity; ATM-p53-p21 that requires transcriptional activity, and 

ATM-Chk2-CDC25 that causes a transient arrest through post-translational modifications. In 

response to DNA damage in S-phase, the ATM/ATR-Chk2/Chk1-CDC25 signalling pathways 

are activated and lead to a delay in cell cycle progression, rather than a full arrest. DNA 

damage detected in the G2/M checkpoint causes an immediate arrest through targeting of 

CDC25a, b and c. A p53-dependent arrest has been described in G2/M, and possibly works as 

a back-up to the transient mechanisms.   

 

 

4.5.2 DNA repair 
 

To combat threats posed by DNA damage, the cell needs to detect DNA lesions, signal their 

presence and promote their repair. The cell has evolved multiple distinct DNA repair 
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mechanisms to deal with the variety of DNA lesion that arise (reviewed in [102]). In response 

to DSB, possibly the deadliest form of DNA lesions, mammalian cells have two main 

pathways for repair: Non homologous End Joining (NHEJ) and Homologous Recombination 

(HR).  

 

HR is an error-free repair mechanism where a homologous chromatid serves as a template to 

guide repair of the broken strand [103]. Repair by this pathway can thus only occur during S- 

and G2 phases when a sister chromatid is available.  

NHEJ, on the other hand, can take place in all phases of the cell cycle, and is the major 

pathway for repairing DSBs. The repair pathway is prone for errors since little or no sequence 

homology is used when joining the DNA ends. This makes it “quick and dirty”, as it is 

associated with loss of nucleotides and chromosomal translocations or fusions [104]. 

HR is the preferred repair pathway during S-phase, where it has a central role in repairing 

DSBs that arise at collapsed replications forks. NHEJ dominates repair in G1 and G2 phases, 

although both repair mechanisms are available in the latter cell cycle phase [105]. 

In cases where DNA damage is beyond repair, checkpoint mechanisms will eliminate such 

potentially hazardous cells either by initiating permanent cell cycle arrest or cell death.    

 

 

4.5.3 DNA damage and apoptosis 
 

In response to DNA damage that is too severe to repair, the cell can initiate apoptosis through 

a process that usually involves the p53 network (Figure 5). ATR/ATM are activated following 

DNA damage and can phosphorylate p53, thereby increasing its activity [106]. Further 

phosphorylation mediated by Chk1/Chk2 leads to p53 stabilization [107,108]. Activated p53 

can initiate apoptosis though several mechanisms; transcription of pro-apoptotic proteins (e.g. 

Apaf-1 [109], Puma [110], Noxa [111], Bax [112] and Bid [113]), transrepression of genes 

encoding anti-apoptotic proteins (e.g. Bcl2 [112] and Survivin [114]) and through direct 

interaction with pro- and anti-apoptotic Bcl-2 proteins that results in MOMP [115,116]. 

Moreover, activated p53 can counteract survival signals from the microenvironment, for 

instance through regulating PTEN, which is a negative regulator of the PI3 kinase signaling 

pathway [117]. Whereas low levels of DSB have been proposed to cause a minor increase in 

p53 leading to cell cycle arrest, high levels of DSB is believed to elevate the levels of p53 

over a certain threshold and drive the cell towards apoptosis [118].  



 
 
 

25 
 

4.5.4 DNA damage response and cancer 

 

DDR is central to cancer in many ways; dysfunctions in these systems are associated with 

predisposition to cancer, as well as onset of carcinogenesis since most carcinogens are 

genotoxic. Furthermore, failure of DDR mechanisms facilitates the tumourigenic evolution, as 

this is driven by mutations and chromosomal instability. The DDR system is also relevant for 

the effectiveness of genotoxic cancer therapy that targets proliferative cells. Finally, genetic 

and epigenetic alterations that prevent cell death (e.g. apoptosis) are also central to the 

development of resistance to therapy. 

 
 

DNA damage response and malignant melanoma 

 

Genetic instability, one of the hallmarks of cancer, is closely linked to abnormalities in the 

DDR machinery. There are several classic examples of how defects in specific DNA repair 

mechanisms can predispose individuals to cancer. For instance, individuals with the 

Xeroderma pigmentosum (XP) syndrome have alterations in genes involved in DNA excision 

repair, which makes them especially sensitive to UV-induced DNA damage. Persons with XP 

have a 10.000-fold increased chance of developing skin cancer, including malignant 

melanoma [119].  

Aberrations in G1/S checkpoint components, such as p53, have been found in a vast number 

of human cancers [120]. Although mutational inactivation of p53 is relatively rare in 

melanoma, its function is often abnormal as reflected in its failure to induce cell cycle arrest 

and apoptosis [121-123].  As previously discussed, alterations in the CDKN2A gene, encoding 

p14 and p16, are commonly found in melanoma. Whereas mutational inactivation of p14 

leads to proteosomal degradation of p53 and subsequent accumulation of DNA damage, 

mutations in the p16 protein, on the other hand, renders the cell with impaired capacity to 

inhibit CDK4 and consequently allows unchecked cell cycle progression in G1 phase [124].  

Studies of melanoma gene expression and disease progression have identified 254 genes with 

prognostic implications for metastasis-free survival of patients with primary disease. Many of 

the genes were associated with DDR, and in particular repair of DNA double-strand breaks 

[125,126]. Interestingly, over-expression of specific DNA repair genes (e.g. CHEK1 and 

BRCA1) was associated with a poor prognosis. The current understanding of this 
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phenomenon is that while genetic instability is necessary for the cell to undergo malignant 

transformation, some genetic stabilization is required for the primary tumour cell to be stable 

enough to give rise to distant metastasis [127]. 

 

 

4.6 Characterization of potential targets and treatment 

 

4.6.1 The synthetic retinoid, CD437 
 

Retinoids are a group of compounds that consists of natural and synthetic vitamin A derivates 

and analogues that are implicated in a broad range of biological processes including 

apoptosis, growth and homeostasis [128]. Some of the natural retinoids have shown great 

potential as treatment for cancer, such as ‘All-Trans Retinoic Acid’, which is currently 

included in the treatment of patients with Acute Promyelocytic leukemia (>90% 

remission)[129]. Since natural retinoids have had limited effect in other cancer forms, as well 

as caused adverse effects in patients, synthetic analogues have been developed [130]. While 

the effect of natural retinoids are believed to be mediated mainly through their binding to 

nuclear receptors (retinoic acid (RAR) - and retinoid X receptors (RXR)), the mechanisms of 

action of the synthetic retinoids are less clear.  

6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene Carboxylic Acid (CD437/AHPN) is a 

synthetically developed retinoid (RARγ agonist) that has been reported to induce apoptosis 

and cell cycle arrest in a broad range of cancer cell lines, including melanoma [131,132]. The 

underlying mechanisms appear as cell line dependent and involve a range of different cellular 

organelles, such as the endoplasmatic reticulum [133], lysosomes [134], mitochondria [135] 

and nucleus [136]. For instance, in a previous study, CD437 was shown to induce apoptosis in 

a nucleus-independent manner, thereby indicating that transcriptional activities are not a 

prerequisite for the effect in these cells [135]. In line with this, RAR-independent induction of 

apoptosis by the retinoid has been found in some studies, while a partial dependence on such 

receptors has, on the other hand, been reported in other cell systems [132,136,137]. Cell death 

following treatment with CD437 may occur in a caspase dependent- or independent manner, 

depending on the cell line [138,139]. Moreover, genotoxic stress including double-strand 

breaks in DNA has been found in treated cells, leading to activation of p53 and apoptosis 

[140].   
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4.6.2 TRAIL 
 

Tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a cytokine of the 

TNF superfamily that can induce apoptosis in a tumour-selective manner through its binding 

to DR4 and DR5 death receptors on the cell surface, by so activating the extrinsic pathway of 

apoptosis [141,142]. Additionally, TRAIL can bind to two decoy receptors (DcR1 and DcR2) 

in human cells with the same affinity as to the death receptors, however binding to the decoy 

receptors do not initiate apoptosis [143,144]. A difference in the composition of decoy-and 

death receptors on the cell’s surface between normal and malignant cells was initially 

proposed as a possible rationale behind the tumour-selective apoptosis induced by TRAIL; 

however this hypothesis has been questioned by newer studies [145].  

Recombinant versions- and agonistic antibodies of human TRAIL have been developed for 

the purpose of cancer-therapy, such as Lexatumumab, an agonistic TRAIL receptor-2 (DR5) 

monoclonal antibody. Despite showing promising results in preclinical studies, TRAIL 

signaling does not always result in apoptosis in cancer cells [146]. The mechanisms 

underlying resistance to TRAIL treatment include induction of pro-survival responses, such as 

increased anti-apoptotic Bcl-2 proteins, IAPs, MAPK and Akt, as well as absence or low 

expression of death receptors [147,148]. Combinational therapy represents a potential strategy 

for treating TRAIL resistant cancers. In line with this, Lexatumumab has shown promising 

results in preclinical studies of melanoma, in particular in combination with other agents such 

as Dacarbazine [149] and Anisomycin [150]. Treatment with Lexatumumab is generally well 

tolerated as assessed in a Clinical phase I trial of pediatric patients with solid tumours [151].  
 

4.6.3 Wee1 
 

Wee1-like kinase is an evolutionarily conserved Ser/Thr and Tyr kinase which is prominently 

active during the S- and G2 phases of the cell cycle [93,152,153]. Its activity is regulated 

through increased synthesis during S-and G2 phases, and by inhibitory phosphorylation and 

degradation during mitosis [93]. Wee1 was first described in fission yeast 

(Schizosaccharomyces pombe) and given its name based on the observation that yeast lacking 

the protein had a smaller phenotype [153]. The abnormal size of yeast cells lacking Wee1 is 

related to the consequent dysfunction of the G2/M checkpoint, leading to premature mitotic 

entry. Wee1 negatively regulates cell cycle progression by adding inhibitory phosphorylations 

(tyr15) on CDK1 and CDK2, thereby limiting the activity of the latter kinases [92,93]. The 
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inhibitory phosphorylations of CDKs permit the completion of DNA replication in S-phase 

and a timely onset of mitosis [154]. In single cell organisms, such as yeast, Wee1 depletion 

can be endured, however its absence is associated with embryonic lethality in mice [155]. 

Besides its function in halting the cell cycle in response to DNA damage, Wee1 plays an 

important role in the unperturbed cell division [156]. During S-phase, replication origins are 

fired at an organised and timely manner to duplicate DNA, and this process is dependent on a 

balanced level of CDK2 activity. Depletion of Wee1 has been shown to increase CDK2 

activity and firing of replication origins, which causes a subsequent nucleotide shortage in the 

cell. This presumably leads to reduced replication fork speed and ultimately DSB [157]. 

Besides its role in controlling CDK activity, Wee1 has been proposed to play a direct role in 

regulating Mus81-Eme1 endonuclease activity in  S-phase, possibly by phosphorylation 

[158]. The Mus81-Eme1 enzyme complex is involved in replication recovery and initiation of 

homologous repair [159].   

Additionally, Wee1 was recently suggested as an epigenetic modifier that can phosphorylate 

histone H2B (tyr37) in the nucleosomes and thereby suppress transcription of histones in late-

S phase which is necessary in order to achieve the correct histone-DNA stoichiometry prior to 

mitotic entry [160].  

 

 

Wee1 as a potential anti-cancer target 

 

Genetic instability and increased proliferative index make cancer cells more sensitive to DNA 

damage than normal cells, a trait which has been exploited in cancer treatment for many years 

[3]. Despite initial responses to genotoxic agents, cancer cells often become resistant to 

therapy as they acquire the ability to repair DNA damage and survive. Simultaneous targeting 

of proteins involved in cell cycle regulation and DNA damage response, such as Wee1, has 

therefore been proposed as a possible way to enhance the effect of DNA-damaging agents. In 

line with this hypothesis, Wee1 inhibition has shown promising results in preclinical studies 

in combination with DNA damaging agents such as radiation, gemcitabine, cisplatin and 5-FU 

[158-161]. Preclinical studies have also reported an increased anti-tumor effect from 

combining Wee1 with a broader range of anticancer agents, for instance Heath Shock Protein 

90 and Chk1 inhibitors [162,163]. Interestingly, targeting Wee1 alone has been shown to 

reduce proliferation [164,165] and induce apoptosis [166,167] in several cancer cell lines. 
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4.6.4 Chk1 and Chk2 

 

Checkpoint kinase 1 (Chk1) and checkpoint kinase 2 (Chk2) are serine/threonine-specific 

proteins encoded by the CHEK1/CHEK2 genes, respectively, in humans. The proteins are 

both structurally and functionally distinct, and are activated through different mechanisms. 

Chk1 is activated by ATR in response to formation of lesions of ssDNA, and has essential 

functions in cell cycle regulation and DNA damage response (Figure 6 and 7, and reviewed in 

[161]). During S-phase, Chk1 plays an important role in safeguarding genome integrity by 

stabilizing stalled replication forks [162], controlling replication origin firing and -replication 

fork progression [163], and homologous recombination [164,165]. Furthermore, Chk1 also 

functions in the G2/M transition where it controls mitotic entry in the unperturbed cell cycle 

[166], and stops progression in response to DNA damage [167]. Whereas Chk1 is primarily 

activated in response to DNA SSB, Chk2 on the other hand, is activated mainly in response to 

DSB by ATM. Some crosstalk between ATM and Chk1 has, however,  been reported 

(reviewed in  [168]). The cardinal role of Chk2 is to activate p53 in response to DNA damage 

in G1/S, and thereby initiate cell cycle arrest or apoptosis [169]. 

 

 

Chk1/2 as potential anti-cancer targets 

 

Based on its well-known role in the G2/M checkpoint, small-molecular inhibitors of Chk1 

were originally developed as chemosensitizing agent for DNA-damaging drugs in p53 

mutated cancer cells [177]. Due to dysfunctional G1/S checkpoint in the majority of cancers, 

these cells are more reliant on the G2/M checkpoint to repair DNA damage, a feature that 

should allow for selective targeting of cancer cell while sparing normal cells. The p53 

mutation status is, however, not always a predicator of tumour sensitivity to the combination 

of Chk1 inhibitors and DNA-damaging agents [178]. Recent studies have emphasized the role 

of Chk1 in safeguarding the genome during replication as the mechanistic basis for the 

success of Chk1 (Chk1/Chk2) inhibitors [179].  Combination studies with Chk1 (or 

Chk1/Chk2) inhibitors and cisplatin have shown promising results in some reports, however 

little or no sensitization of cells was observed in other preclinical studies [178,180-182]. In 

the latter years, several Chk1 and Chk1/Chk2 inhibitors have been developed, not only as 

chemopotensiators, but also as single-agent therapies [183]. 
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5. SUMMARY OF PAPERS 
 

Paper I 

Synthetic retinoid CD437 induces apoptosis and acts synergistically with TRAIL receptor-2 

agonist in malignant melanoma.  

Retinoids is a family of molecules consisting of natural- and synthetic derivatives of vitamin 

A that has been shown to have growth- and differentiating suppressive effects in cells. In this 

study, we investigated the anti-tumour effect of a synthetic retinoid, CD437, alone and in 

combination with a TRAIL death receptor-2 agonist, Lexatumumab, in two melanoma cell 

lines (FEMX-1 and WM239). Exposure to CD437 led to decreased viability, cell cycle arrest 

and induction of apoptosis. The particular response, however, varied between the two cell 

lines in terms of caspase-dependence and DNA-fragmentation. Interestingly, an increase of 

death receptor DR5 expression was observed following retinoid treatment. This observation 

spurred us to investigate if the anti-tumour effect of CD437 could be amplified by combined 

administration of Lexatumumab. In agreement with the hypothesis, combined treatment led to 

a synergistic decrease in viability in both cell lines.   

 

Paper II 

High expression of Wee1 is associated with poor disease-free survival in malignant 

melanoma: potential for targeted therapy. 

Wee1 is a kinase that has a major cell cycle regulatory role in S- and G2 phases through 

controlling CDK activity.  The kinase has been implicated in regulation of replication 

initiation in the unperturbed cell cycle, in addition to halting cell cycle progression in 

response to DNA damage in G2/M phase. In this paper we investigated the protein expression 

of Wee1 in a panel of patient-derived  tissues of benign nevi and primary- and metastic 

melanoma,  and found the level to increase in the direction of malignancy. When examining 

Wee1 expression in relation to previously described biomarkers involved in cell cycle 

regulation, we observed that a high level of the kinase was positively correlated  with 

expression of p53, p21, Ki67, cyclin D3 and cyclin A. Likewise, high expression of Wee1 

also correlated with thicker tumour, presence of ulceration and shorter relapse-free survival. 

These findings suggest that high expression of Wee1 in primary melanomas is an unfavorable 

prognostic indicator. 
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To investigate Wee1 as potential target for therapy, we depleted the kinase protein expression 

through siRNA mediated knockdown in three metastatic melanoma cell lines (WM239, 

WM45.1 and LOX). In two out of three cell lines, removal of Wee1 led to DNA damage, cell 

cycle arrest and apoptosis. Surprisingly, the inhibitory phoshorylation on CDK1, mediated by 

Wee1, did not decrease following kinase depletion in the unresponsive cell line (LOX), which 

may explain the divergent overall effect in this cell line. Together our results demonstrate an 

advantagous anti-tumour effect of targeting Wee1 in metastatic melanoma. 

 

Paper III 

Combined inhibition of the cell cycle related proteins Wee1 and Chk1/2 induces synergistic 

anti-cancer effect in melanoma. 

Our previous study (paper II) implicated Wee1 as a potential target for therapy in melanoma. 

To further explore this concept, we investigated if the anti-tumour effect of targeting Wee1, 

by the promising MK1775 inhibitor that is currently undergoing clinical phase II trials, could 

be amplified by co-treatment with a Chk1/2 kinase inhibitor (AZD7762). Chk1 and  Chk2 are 

key regulators of DNA damage surveillance pathways, and critical components of cell cycle 

checkpoint mechanisms. Whereas both inhibitors reduced cell viability as mono-agents, dual-

administration resulted in a synergistic effect in our panel of metastatic melanoma cell lines. 

Likewise, combined targeting had an increased anti-tumour effect in spheroids and xenograft 

models, compared to single agent treatment. The observed anti-tumour effect following co-

treatment was accompanied by premature mitotic entry, accumulation of DNA damage and 

apoptosis. These data demonstrate an eligible effect of simultaneous targeting of cell cycle 

regulatory proteins Wee1 and Chk1/2, and warrants for further investigation of such a 

treatment regimen. 
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6. METHOLOGICAL CONSIDERATIONS 
 

 

6.1 Cell cultures and xenografts as models for testing anti-cancer drugs 

 

In all three papers, metastatic melanoma cell lines have been used as model systems for 

determining the response to siRNA mediated knockdown of proteins and/or anti-cancer drugs. 

Additionally, primary cultures of fibroblasts and melanocytes were included in paper III. Cell 

cultures are an invaluable tool for determining efficacy and mechanism of action of novel 

drugs. The use of tumour cell lines allows researchers to test compounds under highly 

controlled and reproducible conditions. Among the advantages is the unlimited access to 

material (protein, RNA and DNA), worldwide availability of cell material and the opportunity 

for long-term storage of viable cells in liquid nitrogen. In vitro systems will, however, poorly 

reflect tumour heterogeneity, and cells grown ex vivo will lose some of the characteristics of 

the original cells over time. In line with this, a difference in protein expression, growth rate 

and response to stimuli have been observed when comparing cells from low and high passage 

numbers [170]. To minimize these effects, cells are thawed regularly and experiments 

performed on cells at low passage numbers.  

 

Some of the complexity of cell-cell interaction is lost when cells are grown in monolayer 

cultures, and multicellular tumour spheroids have in some studies been shown as better 

models for drug screening [171,172]. In paper III, melanoma cell lines were grown in 3D 

cultures to test drug efficacy. Whereas WM983B cells appeared as tightly packed spheroids, 

WM239 and WM45.1 cells formed looser structures. In this regard, the lack of density in the 

latter cell lines could reflect less cell-cell interaction, absence of a pathophysiological gradient 

(e.g. oxygen, nutrients) and lack of true spherical geometry [173]. Although the spatial 

organization of spheroids is closer to the physiological conditions of a tumour than monolayer 

cultures, neither model can recapitulate the complexity of tumours and their interaction with 

the host. In vitro testing of drugs also fail to consider issues with drug delivery to affected 

tissues and toxicity towards essential parts of the organism, and these aspects are better 

evaluated by the use of animal models.   

Xenograft models of melanoma, as used in paper III, can be established by injecting 

immunodeficient mice with tumour cells. Although, nude mice (foxn1nu) lack thymus, T cell 
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deficiency is not complete and increased NK cell activity are seen in these mice. 

Consequently, the success rate is relatively low and only 20-40% of tumour cell lines are able 

to grow in nude mice [174]. This causes an extra level of selection of tumour cells, in addition 

to what is already posed by long-term culturing of cells. Xenotransplanted mice are relatively 

complex models for drug testing, however normal interaction between tumour cells and the 

microenvironment is not fully recapitulated and the lack of a functional immune system in the 

nude mice make the model deviate from actual tumour conditions. Unfortunately, it is 

generally a poor correlation between results from xenografts and human clinical studies [175].  

Although there are no optimal models for testing novel anti-cancer drugs, the combined use of 

cell cultures and mouse models is likely the best option to predict the response. 

In paper II and III, a cell line called ‘WM45.1’ has been included in many of the experiments. 

This cell line was established at the Wistar Institute in Philadelphia, and originally given the 

name ‘451-Lu’ [176]. Several publications on melanoma cell lines named WM451 and 

WM45.1 can be found on ‘pubmed.gov’, and likewise with the names 451Lu and 451-Lu. We 

have performed cell line authentication to confirm that the WM45.1 cells used in our 

experiments are the same as the 451-Lu cell line. The mix-up of names has most likely 

occurred due to the many Wistar cell lines starting with the abbreviation WM (Wistar 

Memorial). In accordance with paper II and III, the cell line is referred to WM45.1 in this 

thesis. 

 

 

6.2 Tissue material  

 

The patient material used in paper II was selected from a melanoma archive that consists of 

paraffin-embedded biopsies from patients that have undergone surgery at either the 

Norwegian Radium- or regional hospitals since the 1980s. The archive consists of benign nevi 

and primary- and metastatic melanoma samples. Research on this material has been approved 

by the Regional Committee for Medical Research Ethics South of Norway (S-06151), and the 

Social and Health Directorate (06/2733). 
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6.3 SiRNA Transfection and inhibitors 

 

In all three papers, small interfering RNA (siRNA) transfection and/or inhibitors have been 

used to down-regulate the expression or inactivate desired proteins in order to study the anti-

tumour effect in their absence. SiRNA transfection is a method to transiently down-regulate 

the expression of desired proteins by using short dsRNA molecules (20-24bp) that bind to 

complementary mRNA and causes their degradation prior to translation [177].  One of the 

major challenges with this method is that the observed effects could be caused by non-specific 

knockdown of other genes with similarities in nucleotide sequence to the desired gene. A 

match of 11-15 nucleotides is sufficient to induce an off-target effect [178]. The use of low 

concentrations of siRNA can minimize the risk of off-target effects. In each experiment 

negative controls were included and contained the same nucleotide composition as the siRNA, 

but without substantial sequence homology to the genome (scrambled siRNA/siCtr). The 

siRNA oligonucleotides (Stealth RNAi) used in paper II and III were purchased from 

Invitrogen, and protein knockdown was verified by the use of Western blot analysis. 

 

Several inhibitors were used in the articles, targeting; pan-caspases (Z-VAD-fmk, paper I), 

Wee1 (MK1775, paper III) and Chk1/2 (AZD7762, paper III). The use of inhibitors is a quick 

and efficient way for abrogating the function of a desired protein. Target specificity can, 

however, be a problem, especially when using high drug concentration. MK1775 is a highly 

selective inhibitor which has been shown to reduce Wee1 activity with a half-maximal 

inhibitory concentration (IC50) of 5nM [179,180]. The inhibitor has shown affinity for 8 out of 

224 tested kinases besides Wee1, of which YES1 was the only high affinity target [181]. 

AZD7762 is a potent and selective inhibitor of Chk1 (IC50 of 5nM) and Chk2 (IC50 of 

>10nM). The inhibitor has good enzyme selectivity (>10 fold) against more than a hundred 

other tested kinases, including CDK1, p38 and MAPKAP2 [86]. 

 

 

6.4 Measurements of viability 

 

Viability assays were performed in all three papers, either by 3-(4.5-dimethylthiazol-2-yl)-5-

(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS), CellTiterGlo (CTG) 

assays and/or by cell count of trypan blue-excluding cells.  
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MTS is a colorimetric method for determining the amount of viable cells by measuring their 

ability to reduce MTS reagent, in the presence of phenazine ethosulfate, into a water-soluble 

formazan product [182]. The colored end-product can be measured by a spectrophotometer, 

and has a linear correlation with dehydrogenase activity in metabolically active cells.   

 

CTG is a luminescence method for measuring viable cells by quantifying ATP. The CTG 

reagent contains detergents to rupture cells thereby causing the release of intracellular ATP, 

and ATPase inhibitors to stabilize it. The reagent also contains luciferin, Mg2+ and mutated 

luciferase that can generate a measurable luminescent signal. In addition to monolayer 

cultures, the CTG method can also be used to assess viability in spheroids [183].  

 

The number of cells can be quantified by counting them in a microscope either by using a cell 

counter, or manually in a Bürker counting chamber. In order to get a more accurate count, 

trypan blue can be added to distinguish between living and dead/dying cells, since only the 

cell membranes of the latter will be permeable to the dye.  

 

The three methods consider different aspects of a cell population, and the measured treatment 

effect may therefore deviate. In particular, the mechanism of action of a drug, as well as cell 

line variations, has been found to contribute to this discrepancy. In a study by Chan et al. the 

use of ATP and MTS-reducing assays led to an underestimation of potency and/or maximal 

efficacy compared to the actual number of cells present in the well, following treatment with a 

range of chemotherapeutic agents and kinase inhibitors [184].    

  

 

6.5 Protein detection by immunohistochemistry (IHC), western blot and flow cytometry  
 

In this thesis, different methods for studying levels and post-translational modifications of 

proteins have been used; immunohistochemistry (paper II), western blotting (paper I, II and 

III) and flow-cytometry (I and III).  

 

Immunohistochemistry is a method that can be used for detecting a desired protein in tissue 

preparations and single cells. In addition to providing information on whether or not the 

selected protein is present, the method allows the researcher to evaluate its sub-cellular and 

intra-tissue localizations. Like most other assays IHC has its limitations. Tissue fixation and 
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processing can lead to changes in the epitopes and thereby either limit the accessibility or 

cause a high non-specific background, which can cause later misinterpretation of the results. 

Furthermore, in cohorts collect over an extended time period differences in tissue handling 

may occur. The subjectivity in the interpretation of staining pattern and different scoring 

systems can also influence the outcome [185]. The method heavily depends on the specificity 

of the antibody used. In paper II, we used a commercially available monoclonal Wee1 

antibody (sc-5285, B-11) that was obtained from Santa-Cruz. Since the provided datasheet did 

not specify that the antibody could be used on IHC, precautions were therefore made to 

validate its specificity; first by western blot and later by evaluating staining pattern of siWee1 

transfected paraffin-embedded melanoma cells. Furthermore, the IHC analysis was optimized 

for the antibody, and both negative and positive controls were included. The negative control 

included substitution of the monoclonal primary with mouse myeloma protein of the same 

subclass and concentration as anti-Wee1, while the positive control consisted of sections from 

normal placenta with known expression of Wee1.  

 

Western blot analysis is a widely used technique for detecting a specific protein in a cell 

extract [186]. Proteins are first denatured and separated according to the length of the 

polypeptide by gel electrophoresis, transferred to a membrane and then stained with a desired 

antibody. Among the advantages of the method is that protein size can be detected, and shifts 

in the molecular size can therefore also give an indication of protein modifications. The 

separation of proteins by size minimizes the problem with misinterpretations due to unspecific 

antibody binding to other proteins. Most antibodies can be used for this method, with the 

exception of those that require the native conformation of the protein to be intact in order to 

bind. Furthermore, a single sample can be run on several gels and analyzed for multiple 

antibodies. Western blot as a method is, however, less suited for measuring changes in protein 

levels or -modifications that only occur in a small fraction of the total cell population.  

 

Flow cytometry is a method that can be used to evaluate molecules such as proteins and DNA 

in cells. The technique permits the analysis of multiple parameters, gives a good 

quantification of signals from single cells and is thus an invaluable tool for studying sub-

populations of cells. Compared to western blot analysis, the method has much lower 

requirements on the number of input cells, is less time-consuming and more cost-effective. 

Among the challenges with the method is the limited number of compatible antibodies that 

can be used.  
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In the multiparameter flow cytometry analysis performed in paper III, cells were barcoded 

with pacific blue, an amine reactive fluorescent dye, in order to minimize the sample to 

sample variation that can arise from staining variability [187]. The barcoding procedure 

involved labeling the different samples with increasing concentrations of pacific blue prior to 

combining them in one tube and staining with antibodies (pHH3 and γH2A.X) and cell cycle 

633 (see below). The four populations could later be separated by their relative expression of 

pacific blue after the sample was run on the flow cytometer. The barcoding thus allows us to 

study minor changes in antibody staining in the different samples, which could otherwise be 

caused by differences in the relative amount of cells versus antibodies.  

 
 

6.6 Measurements of cell cycle progression 

 

Cell cycle distribution was analyzed in all three papers using flow cytometry. In paper I and 

II, Hoechst 33258 was used for fluorescent staining of DNA in order to determine the fraction 

of cells with 2n (G1 phase), 4n (G2 or M phase) and intermediate (S phase) DNA content. 

Since neither treatment with CD437 (paper I) or siRNA transfection of Wee1 (paper II) 

resulted in accumulation of cells with 4n DNA content, separation of G2 and M phase cells 

was not performed. In paper III, a multiparameter flow cytometry analysis was conducted in 

order to investigate if cells were more susceptible to DNA damage, as assessed by increased 

expression of γ-H2A.X, in different phases of the cell cycle. In order to distinguish between 

cells in G2 and M phase, those belonging to the latter phase were separated using  an antibody 

against the phosphorylated Serine 10 residue of histone H3 (pHH3), a marker of mitosis 

[188]. Due to the inclusion of three additional fluorescent dyes (including pacific blue for 

barcoding), cell cycle 633 staining was more convenient for separating cells according to 

DNA content than Hoechst 33258 in this experiment. Hoechst 33258 did, however, produce 

DNA histograms with narrower peaks and better separation of cells according to cell cycle 

phase, than cell cycle 633.  
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6.7 Measurement of cell death and apoptosis 

 

Cells can die in several ways, and the different forms of death can be classified according to 

several criteria; morphological (e.g. apoptosis, necrosis), enzymological (e.g. involvement of 

for instance proteases such as caspases), functional aspects (e.g. programmed or accidental) or 

immunological characteristics (immunogenic or non-immunogenic) [74].  

Trypan blue exclusion assay was used to determine the amount of dead cells in paper I. The 

method can distinguish between living and dead cells based on their ability to resist uptake of 

trypan blue dye from the medium; however it cannot discriminate between apoptotic and 

necrotic cell death. Cells undergoing apoptosis in vivo are quickly recognized and engulfed by 

circulating phagocytes due to the exposure of phosphatidyl serine on the cell surface, prior to 

cell membrane permeabilization which could potentially cause harm to the nearby tissue 

[189]. When apoptotic cells take up trypan blue from the medium, it is usually due to cells 

undergoing a process of ‘secondary necrosis’ as a result of not being removed/eaten [75]. 

Determination of cell death by loss of plasma membrane integrity can underestimate the 

amount of apoptotic cells, as these could be dying without having concluded their demise 

[74].  

Another way to study cell death is to look for nuclear fragmentation (karyorrhexis), a 

morphological feature of apoptosis [75]. Immunofluorescence microscopy of cells stained 

with Hoechst 33342, a fluorescent dye that binds to AT-rich regions of DNA, was conducted 

in paper I to study the occurrence of ‘apoptotic bodies’ following treatment with CD437.  

Degradation of nuclear DNA into mono-and oligionucleosomal units is among the key 

biochemical features of apoptosis, and can be detected by the aid of commercial kits such as 

the ‘Cell death detection ELISAplus’ kit used in paper I and II. In addition to detecting the 

intracellular content of histone-associated-DNA-fragments, the ELISA kit also allows 

detection of these in the extracellular fluid, which is referred to as a ‘necrotic index’ in paper 

I. In retrospect, a different label, such as ‘presence of extracellular histone-associated DNA-

fragments’, would be more correct when referring to the latter. As previously mentioned, late-

apoptotic cells die by a process of secondary necrosis in vitro which involves spillage of the 

intracellular content into the extracellular fluid, and the occurrence of histone-associated 

DNA-fragments in the medium could therefore result from both necrotic and formerly 

apoptotic cells. 
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Another approach to study the presence of apoptotic cells is to demonstrate activation of 

specific caspases. Activation of effector caspases associated with apoptosis, such as caspase 3, 

can be detected by Western blot analysis by cleavage products from their zymogene form.  

Apoptosis mediated by caspases involves cleavage of several proteins that are required for 

cellular functions and survival [190]. Among the downstream targets of caspase 3 is PARP 

(PARP-1), a protein with multiple cellular functions including DNA-repair [81]. Cleavage of 

PARP by caspases results in formation of two cleavage products; a 24kDa and an 89kDa 

fragment [191]. Caspase-mediated cleavage of PARP is considered a hallmark of apoptosis 

[81], and can be detected by Western blot analysis. Cleavages of caspase-3 and PARP were 

used to look for apoptosis in all three papers. 

 

 

6.8 Analysis of drug combinations 

 

Drug interactions were quantified by the Chou-Talalay method in paper I (CD437 and 

Lexatumumab) and paper III (MK1775 and AZD7762). The method is based on the median-

effect equation which is derived from over 300 rate equations of enzyme dynamics [192]. A 

computer program (CalcuSyn) can be used in order to calculate a combination index (C.I.) 

values for the drug combinations based on the Chou-Talalay method [193]. The C.I. value 

depicts the interaction of the combined drugs; Synergy (C.I. < 1), additive effect (C.I. = 1) 

and Antagonism (C.I. > 1). The Chou-Talalay method is widely used for determining drug 

interactions, but other systems also exists, such as Peckman’s isobolograms and the response 

surface model [194]. 

The prerequisite for the Chou-Talalay method is a dose-effect curve for each drug that must 

contain a minimum of three data points, and give a good linear correlation of the median-

effect plot (r > 0.9 in cell culture experiments). Furthermore, both drugs must have effect as 

single-agents. In paper III, drug interactions were determined in several cell lines using the 

same concentrations of drugs. In terms of abiding to method requirements, this posed a 

problem in two cell lines (WM983B and WM1366) where the median-effect plot for the drugs 

gave a less than optimal linear correlation. Drug concentrations were thus adjusted for these 

cell lines to allow calculations of C.I. values. Further increasing the concentrations of 

MK1775 and AZD7762 to a level where the inhibitors are likely unspecific, could cause a 

potential bias in the experiment. 
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7. RESULTS AND DISCUSSION 
 

 

7.1 Treatment of advanced melanoma 

 

Advanced melanoma has over the past decades proven notoriously resistant to therapy, and 

the survival rates of patients diagnosed with this type of cancer have subsequently been low. 

In the recent years, new treatment alternatives have been developed leading to improved 

clinical outcome for patients [52]. These approaches are mainly focused on targeting the 

immune system or - specific genetic mutations. Although the new drugs have led to improved 

overall survival, all are associated with development of resistance and severe adverse effects 

in patients. In the three papers included in this thesis, we have investigated the anti-tumour 

effect of targeting DDR mechanisms (Paper II and III) and retinoid treatment in combination 

with a TRAIL agonist (Paper I) in malignant melanoma. Additionally in paper II, Wee1 was 

examined as a potential biomarker. 

 
 

7.2 Elucidation of the anti-tumour effect of the synthetic retinoid CD437 in melanoma 

 

We initially started working with CD437 as a part of a research project that was focused on 

identifying new downstream targets of the MAPK/ERK signaling pathway, among which we 

found Nur77 (unpublished results). CD437 has been shown to up-regulate Nur77, a nuclear 

orphan receptor that is suggested to be involved in retinoic induced apoptosis [133,195,196]. 

Since treatment with CD437 had an anti-proliferative effect in melanoma cells, this spurred us 

to further investigate its effect in two cell lines; FEMX-1 and WM239 (Paper I).  

CD437 has previously been reported to have anti-tumour effect in a range of cancer cell lines, 

including melanomas [131,132,197-199]. In these studies, as well as ours, retinoid treatment 

led to both apoptosis and cell cycle arrests. The mechanisms through which this is induced 

have been reported as varied and appear to be cell line-dependent, as previously described in 

the introduction part of this thesis. Thus, we sought to investigate some of the mechanisms 

underlying the anti-tumour effect of CD437, in order to potentially find rational combinations 

with other drugs.   
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In both cell lines, the protein expressions of p53 and its downstream target p21 were increased 

following treatment with CD437. In line with these results, the cell cycle distribution shifted 

in response to retinoid exposure, with an accumulation in G1/S and S- phase of WM239 and 

FEMX-1 cells, respectively. Increased expression of γ-H2A.X, indicative of DNA damage, 

was also observed in both cell lines following exposure to CD437 (data not shown). p21 has 

previously been shown to induce G1/S arrest in response to DNA damage in both a p53-

dependent and –independent manner, but is according to some studies not implicated in the S-

phase checkpoint [120]. As opposed to this, other studies have indicated a role of p21 and p53 

in the intra-S and G2/M checkpoints [200,201]. The relative contribution of p21 to the S-phase 

arrest observed in FEMX-1 cells exposed to CD437 thus remains unclear.  

In a previous study, CD437 was shown to promote apoptosis through ER-stress induced genes 

in ovarian adenocarcinoma [202]. In these cell lines, siRNA mediated knockdown of CHOP, a 

central protein in ER-mediated apoptosis and -cell cycle arrest [203], impaired CD437-

induced growth inhibition. In line with this study, transcriptional up-regulation of CHOP was 

observed in WM239 cells, and to a minor degree in FEMX-1 cells, following retinoid 

treatment. These results suggest that CD437 induces ER-stress in melanoma cells, a finding 

which can potentially be exploited for combinational therapy. For instance, a recent study 

showed that ER-stress induced autophagy could overcome B-RAF inhibitor resistance in 

melanoma [204]. 

Furthermore, a lysosomal pathway for CD437-induced apoptosis has been described in human 

leukemia cells, in which cathepsin D and free radicals act as death mediators [134]. In this 

study, inhibition of cathepsin D (by pepstatin A) blocked CD437-mediated generation of 

reactive oxygen species (ROS) and apoptosis. Increased level of cathepsin D was observed 

following treatment with CD437; however intracellular translocations were not assessed in 

our study. 

CD437-induced apoptosis differed in the two melanoma cell lines in regards to caspase-

dependence and DNA-fragmentation. Whereas induction of apoptosis following retinoic 

treatment could be abrogated by using a pan-caspase inhibitor (Z-VAD-fmk) in FEMX-1 

cells, this was not the case in WM239 cells. Caspase-dependent apoptosis in response to 

treatment with CD437 has previously been reported in other cell systems such as human 

leukemia [205] and non-small cell lung carcinoma [206]. Caspase-independent apoptosis, on 

the other hand, has been implicated in human prostate carcinomas following exposure to the 

retinoid [207].  
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Unlike WM239 cells, DNA-fragmentation, one of the biochemical hallmarks of apoptosis 

[208], was not observed in treated FEMX-1 cells. One of the central endonucleases 

responsible for creating the characteristic DNA fragmentation pattern seen in human apoptotic 

cells is DFF40, a protein that under normal circumstances is kept inactive through an 

inhibitory binding to DFF45. Upon caspase-mediated cleavage of the latter protein, DFF40 is 

released and causes nuclear DNA degradation [80]. Cleavage of DFF45 was not observed in 

FEMX-1 cells, supporting the lack of DNA fragmentations in this cell line following 

treatment with CD437.  

Previous studies on cells treated with CD437 have shown that apoptosis can be initiated 

through the extrinsic pathway leading to cleavage of caspase 8, and this was also observed in 

our experiments [209,210]. The mechanisms underlying these observations are, however, 

unclear. In a study by Boisvieux-Ulrich et al., CD437 mediated caspase 8 cleavage appeared 

to be dependent on JNK signaling, however the mechanisms behind this phenomenon was not 

elucidated any further [209]. Another possible explanation is that increased expression of 

death receptors following retinoid treatment may sensitize cells to death signals. In line with 

the latter hypothesis, increased expression of death receptors has been observed in cancer cell 

lines treated with CD437, including ours (DR5 and Fas) [207,210,211]. Moreover, exposure 

to DNA-damaging agents (e.g. doxorubicin, methotrexate) have been shown to enhance 

expression of both Fas receptors and –ligands, resulting in activation of the extrinsic pathway 

of apoptosis [212].  

 

 

7.3 Combinational treatment and therapeutic relevance of CD437 and Lexatumumab 

 

The increased expression of death receptors (Fas and DR5) following treatment with CD437 

prompted us to combine the retinoid with a TRAIL receptor-2 agonist, Lexatumumab. The 

latter agent is a human agonistic monoclonal antibody designed to activate DR5 receptors and 

has been shown to selectively target cancer cells, whilst generally sparing normal cells [213].  

In line with what has been observed by others [149], treatment with the TRAIL agonist 

decreased the viability in both cell lines as a single agent. When combining Lexatumumab 

with CD437, the cell viability was further reduced and resulted in a synergistic effect. 

Supporting these results, a previous study by Sun et al. similarly showed an increased effect 

of combined treatment with TRAIL and CD437 in human lung cancer [210].  
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Despite causing some reduction in viability at the given concentration, cleavage of caspase 8 

was surprisingly not detected in either cell line following administration of Lexatumumab as a 

single agent, or in combination with CD437. Likewise, cleavage of caspase 3 was not 

observed in FEMX-1 cells exposed to mono-or combined treatment with the drugs. Cleavage 

of the latter caspase was, however, seen in WM239 cells following dual-agent treatment, as 

opposed to mono-treatment. It is possible that the method is not sensitive enough to detect 

cleavage of caspases at the low concentration of drugs used in the experiments. In retrospect, 

it would be beneficial to substantiate the results by verifying the experiments with other 

methods, in particular the lack of caspase 8 activity. In both cell lines, PARP cleavage 

increased following the drug combination, as opposed to either single-agent treatment. This 

indicates an increased initiation of apoptosis, and corresponds well with the synergistic effect 

on viability observed after dual administration, as opposed to either CD437 or Lexatumumab 

as single-agents. 

 

Retinoids regulate many cellular processes, including cell growth, differentiation and death, 

and have emerged as potential therapeutic agents for cancer. Several retinoids are now 

included in treatment of cancers, such as ATRA (acute promyelocytic leukemia)[129] and 

Bexarotene (cutaneous T-cell lymphoma) [214]. 

Although originally developed as topical treatment for acne, CD437 has shown strong 

apoptotic properties in a range of neoplastic cell lines of different histological origin, as well 

as in in vivo models [199,215].  Sun et al. previously showed that CD437 could induce 

apoptosis in human lung cancer, whilst sparing normal lung epithelial cells [216]. However, 

in another study the retinoid induced apoptosis in normal rabbit tracheal epithelial cells, 

indicating that adverse effects may arise from treatment [217]. Another potential drawback is 

drug solubility, as CD437 is highly lipophilic and thus dissolves poorly in water [218]. The 

latter issue could be resolved through encapsulation of the retinoid in a water-soluble host 

molecule, such as β-cyclodexin, as shown by Mishur et al.[218]. CD437 has not been 

included in clinical trials; however it serves as a prototype for a promising class of 

synthetically developed retinoid related molecules [219]. 

Clinical phase I studies have shown that Lexatumumab is well tolerated in patients, although 

the anti-cancer response has been limited in these studies [220-222]. It has since then been 

suggested that patients should be screened for tumour expression of DR5 receptors prior to 

treatment. Moreover, studies should be made to evaluate if TRAIL administration should be 

given combined- or sequentially with other drugs [223]. 
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7.4 Wee1 protein expression increases during disease progression 

 

In paper II, we examined Wee1 protein expression in a panel of benign nevi, primary- and 

metastatic melanoma, and found that the kinase expression increased in the direction of 

malignancy. This relationship may be explained by augmented proliferation of malignant 

cells, as enhanced Wee1 activity and -protein levels have been found in S- and G2 phases of 

the cell cycle [93,224]. In line with this, Cyclin A and Ki67 showed a positive correlation 

with Wee1 in the examined specimens, indicating that these melanoma samples were more 

proliferative [225]. Shortly after paper II came out in 2012, a similar study to ours was 

published by Bhattacharya et al. demonstrating increased protein expression of Wee1 in 

primary-, as compared to metastatic melanomas (10 tumours in each group) [226]. Both 

studies were performed with the same Wee1 antibody. The exact reason to why the results 

differed remains unknown. We can, however, speculate on whether the variation in sample-

size in the two studies, or perhaps the treatment status prior to the biopsy, could influence the 

outcome. If the metastatic melanoma samples were collected post-chemotherapy, this could 

potentially affect the proliferation status and hypothetically the expression of Wee1. High 

expression of Wee1 (protein or mRNA) has also been reported in other cancer forms, such as 

osteosarcoma [227], glioblastoma [228], breast cancer [229] and vulvar squamous cell 

carcinoma [230], while low expression has been found in non-small-cell lung cancer [231]. 

Furthermore, our study revealed that high expression of Wee1 was associated with thicker 

tumours, ulceration and decreased relapse-free survival. In agreement with these results, a 

large gene expression profiling study (472 tumours/502 cancer-related genes) previously 

showed that increased gene expression of Wee1 correlated with shorter relapse-free survival 

of melanoma patients [232]. In the context of the well-known role of Wee1 in DDR, its 

association with malignancy in melanoma and other cancer forms indicates that the kinase is 

necessary in order to maintain some level of genetic stability during malignant transformation. 

 

 

7.5 Targeting Wee1 in melanoma 

 

The up-regulated expression of Wee1 and its association with malignancy prompted us to 

study the effect of siRNA mediated knockdown of the kinase in malignant melanoma cell 

lines (paper II). Our hypothesis was that if Wee1 expression in malignant cells is high in order 
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to prevent DNA damage from occurring during cell division, removal of the kinase should 

potentially allow genotoxic insults and increased cell death even in the absence of exogenous 

insults.  

Transfection with siRNA targeting Wee1 successfully reduced the kinase expression in three 

melanoma cell lines, WM239, WM45.1 and LOX. In accordance with our hypothesis, DNA 

damage, decreased viability and apoptosis were observed in WM239 and WM45.1 cells in the 

absence of Wee1. Similar findings have also been observed in other cancers such as sarcoma 

[233], colorectal and non-small-cell lung cancer [234]. The anti-tumour effect of mono-

targeting Wee1 in melanoma cell lines is likely a result of a two-step process. Wee1 has 

previously been shown to regulate CDK2 activity during S-phase, and thereby prevent 

excessive initiation of replication forks which could otherwise lead to nucleotide shortage and 

Mus81-mediated DNA damage [157]. In line with this, DNA damage has been shown to arise 

in the absence of Wee1 in other studies, as well as ours [233,234]. Secondly, the kinase has an 

important function in the G2/M checkpoint, and prevents mitotic entry of cells with DNA 

damage [92,93]. Thus, targeting Wee1 is believed to indirectly cause DNA damage and 

thereafter allow the cell to pass the G2/M checkpoint. Once the cell reaches G1, DNA DSB 

could be corrected by the error-prone NHEJ mechanisms, or alternatively the damaged cell 

may pass on to S-phase if the checkpoint is impaired. Proliferative cells can thereby 

accumulate DNA damage in the absence of Wee1, which potentially promotes genetic 

instability and/or cell death. 

Surprisingly, little or no effect was observed in LOX cells deprived of Wee1. Despite removal 

of the kinase, pCDK1tyr15 remained unaltered in the latter cell line, suggesting that other 

mechanisms may contribute to regulate this phosphorylation apart from Wee1. Myt1 is a 

negative regulator of CDK1/CDK2 that has a stronger preference for the tyr14 residue, but is 

also capable of phosphorylating the tyr15 residue of CDKs [235]. Although no further studies 

were performed to investigate the mechanisms underlying the persisting pCDK1tyr15 in LOX 

cells in the absence of Wee1, we speculate if Myt1 could have a more prominent role in this 

cell line. In this regard, Guertin A et al. recently found that tumour cell lines with low Myt1 

(PKMYT1) mRNA levels appeared to have a greater sensitivity to Wee1 inhibition [234]. 

Furthermore, simultaneous Myt1 knockdown in cell lines that were less responsive to Wee1 

inhibition potentiated the effect of MK1775 (Wee1 inhibitor) by nearly a 5-fold. The lack of 

response to Wee1 removal could thus be a result of such compensatory mechanisms 

controlling CDK1/2 activity in LOX cells, a phenomenon which might have implications for 

Wee1 as a possible therapeutic target, and therefore warrants further investigation. 
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Several studies have found that TP53-mutated cells are in particular sensitive to Wee1 

inhibition when combined with DNA-damaging agents or radiotherapy [179-181,236,237]. 

This phenomenon might be explained by TP53 mutated cells being more reliant on the G2/M 

checkpoint in order to repair DNA damage that occurs in the absence of Wee1, than cells with 

functional p53 that can arrest in G1/S. As opposed to this hypothesis, mono-targeting of Wee1 

has shown cytotoxic effect in sarcoma cells in a p53-independent manner [234]. In 

accordance with the latter study, siRNA mediated knockdown of Wee1 in WM239 (p53wt) 

and WM45.1 (p53Mut) cells resulted in approximately the same reduction in viable cells. In 

this regard, it should be noted that while p53 mutational inactivation is relatively rare in 

melanoma, its function is often abnormal [121,122]. However, whereas WM45.1 cells 

accumulated in S-phase in the absence of Wee1, WM239 cells were retained in G1 whilst 

expressing increased levels of p53 and p21. This indicates that while the G1/S checkpoint 

appears functional in WM239 cells, they still accumulate DNA damage and die in the absence 

of Wee1. Our results from paper II thus appear to point to a less important role of the TP53 

mutational status in terms of predicting the effect of targeting Wee1 in this cell line. However, 

when more melanoma cell lines were included in paper III, inhibition of Wee1 (MK1775) led 

to a stronger reduction in viability in TP53 mutated cells (WM45.1 and WM983B) compared 

to those with wild-type (FEMX-1, WM239, patient 3 and WM1366). Moreover, in addition to  

TP53mut , both WM983B and WM45.1 cells harbour mutations in the CDKN2A gene that 

encodes the CDK inhibitor proteins p14 and p16 that are involved in cell cycle regulation in 

G1/S [238]. Although the relative contribution of the TP53 and CDKN2A mutations in 

sensitizing the WM983B and WM45.1 cell lines to targeting Wee1 has not been determined, 

it seems plausible that the G1/S checkpoint will be less functional in these cells.  

Past studies have also indicated that the level of genetic instability is a predisposing factor to 

the cells sensitivity to inhibition of Wee1 or Chk1 [239,240]. In this regard, melanomas 

display a high degree of chromosomal instability [241], and is also one of the cancer forms 

harbouring most mutations [2]. In a previous study, Iorns et al. demonstrated that cell lines 

with high expression of Wee1 were in particular sensitive to inhibition-, as well as siRNA 

mediated knockdown of the kinase [229]. As opposed to this, no major differences in Wee1 

protein level were detected in the cell lines in paper II or III. 
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7.6 Increased anti-tumour effect of combined targeting of Wee1 and Chk1/2 

 

Inhibition of Wee1 has successfully been combined with for instance DNA-damaging agents 

[242], Heath Shock protein 90 inhibitors [243] and more recently targeting of other central 

proteins in DDR, such as Chk1 [244,245]. In line with this, our next approach was to combine 

a Wee1 inhibitor (MK1775) that is currently included in clinical trials, with a Chk1/2 inhibitor 

(AZD7762) in paper III. Whereas both inhibitors decreased the viability in our panel of 

melanoma cell lines, a stronger reduction was observed when combining them. To further 

assess the drug interaction we used the Chou-Talalay method for calculating combination 

index values, and found synergistic effects from co-targeting Wee1 and Chk1/2. In line with 

these results, previous studies have observed synergy when combining inhibitors of these 

kinases in several cancer forms, including a melanoma cell line (A2058) [244,246-248].  

The increased anti-tumour effect of combined inhibition of Wee1 and Chk1/2 were also 

recapitulated in 3D-models. In these experiments we found that despite drug-removal, 

spheroids exposed to the drug combination were unable to regain growth within the time 

frame of the experiment (exception being WM239 cells).  

 

The effects of mono-and combined targeting of Wee1 and Chk1/2 were further assessed in 

xenograft models in paper III, and resulted in slightly lower tumour volumes in mice treated 

with a combination of inhibitors, as opposed to mono-targeting. For this experiment we used 

‘Patient 3’ cells, which grew well on mice, however it was not among the most responsive 

cell lines in our in vitro experiments. The cell line was recently established from a biopsy 

from a patient, and is therefore assumed to have undergone less selection and hold a more 

authentic degree of tumour heterogeneity, as compared to the other cell lines [249]. 

Supporting our results, a stronger effect of co-targeting Wee1 and Chk1 has been observed in 

colorectal cancer - and mantel cell carcinoma xenograft models, as compared to inhibition of 

either Wee1 or Chk1 [248,250]. Our results did, however, not reach the statistical significance 

seen in the latter studies. 
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7.7 Mechanisms underlying the anti-tumour effect of combined inhibition of Wee1 and 

Chk1/2 

 

The increased anti-tumour effect of combined targeting of Wee1 and Chk1/2, as compared to 

mono-targeting, spurred us to investigate some of the mechanistic backgrounds to how 

inhibition of these kinases affects melanoma cells.  

Wee1 and Chk1/2 both regulate the cell cycle through controlling CDK activity in S-phase 

and in the G2/M transition. It has previously been suggested that inhibition of Wee1and 

Chk1/2 cause a cytotoxic effect through hyperactivation of CDKs [156,251]. Wee1 is known 

to directly phosphorylate the tyr15 residue of CDK1/2, whilst Chk1/2 indirectly contributes to 

maintain it through inhibition of the CDC25 phosphatases. In line with this, pCDK1Tyr15 

levels were reduced following inhibition of Wee1 (and to some extent Chk1/2), and even 

further decreased in cells exposed to a combination of these inhibitors. Likewise, a further 

reduction in pCDK1Tyr15 has been observed in other studies following co-targeting of Wee1 

and Chk1 [246,247]. In one of these studies, Davies et al. found that the cytotoxic effects of 

MK1775 (Wee1 inhibitor) and AR458323 (Chk1 inhibitor) were at least partially due to 

hyper-activation of CDKs, as the anti-proliferative effect mediated by the inhibitors could be 

partially rescued by CDK inhibition (Roscovitine) [247]. The lack of response to Wee1 

inhibition in LOX cells, where pCDKTyr15 remained unaltered; further support the notion of 

CDK hyper-activation as a contributing factor to the anti-tumour effect of targeting at least 

Wee1. The studies by others, as well as our own, thus indicate that the CDK hyper-activation 

is one of the underlying causes of the anti-tumour effect of inhibition of Wee1 and Chk1/2. 

However, if increased CDK activity was the only mechanism causing the stronger anti-tumour 

effect of combined targeting versus single-agent exposure, then one might expect an additive, 

rather than synergistic effect. Although both Wee1 and Chk1 regulate replication initiation 

through CDK activity in S-phase, Chk1 has multiple other targets that may influence 

replication fork progression and -stability [157]. Furthermore, besides its contribution to CDK 

regulation, Chk1 also has important roles in DNA repair and the mitotic spindle checkpoint, 

which may contribute to the synergistic effect observed from its combined targeting with 

Wee1 [163,164,252].  

Whereas single-agent treatment with Wee1 and Chk1/2 inhibitors induced DNA damage, this 

increased following combined targeting of the kinases in WM239 cells. In support of this, 

Guertin et al. previously demonstrated that inhibition of Wee1 and Chk1 led to synergistic 

accumulation of DNA damage in colon carcinoma cell lines [248]. Moreover, the latter study 
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showed that aberrant CDK activity, resulting from combined targeting of the kinases, was 

required for inducing DNA damage.  

In line with other studies, we found that DNA damage occurred in S-phase cells following 

inhibition of Wee1 and Chk1/2 in all three cell lines [156,157,248]. The latter finding is in 

accordance with the proposed functions of the kinases in controlling genome integrity through 

suppression of CDK2 activity in S-phase [253]. Thus, the increased induction of DNA 

damage following inhibition of Wee1 and Chk1/2 may hypothetically create a positive 

feedback loop leading to toxic levels of damaged DNA, since DDR mechanisms are less 

functional in their absence.  

 

Furthermore, combined targeting of Wee1 and Chk1/2 led to a more pronounced abrogation 

of the G2/M checkpoint, as seen by an increase of cells expressing the mitotic marker pHH3 

following short-time inhibition of the kinases, as compared to treatment with either single-

agent. A proportion of these cells contained intermediate amount of DNA equivalent to S-

phase, indicating that these had undergone premature mitosis. Similar observations have been 

made following inhibition of Wee1 and Chk1 in a previous study [246].  

 

Whereas reduced viability was observed following mono- and combined inhibition, the 

relative effect varied in the different melanoma cell lines, with the most prominent effect 

observed in WM45.1 and WM983B cells. This divergent response to Wee1 and/or Chk1/2 

inhibition may have several causes as previously discussed in terms of Wee1 inhibition, one 

of which being TP53 and CDKN2A mutations. In this regard, the most responsive cell lines 

were also the ones with mutations in the mentioned genes, unlike the rest of the cell lines. As 

opposed to this hypothesis, Guertin et al. found that the p53 status could not predict synergy 

following combined inhibition of Wee1 and Chk1 in a panel of various cancer cell lines [248]. 

More studies should be performed in order to establish the p53-dependency, as this could 

potentially be an inclusion criterion for such a treatment regimen in the future.  
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7.8 Effect of targeting Wee1 and Chk1/2 on normal cells 

 

The ultimate goal of cancer therapy is to selectively kill cancer cells, whilst simultaneously 

sparing normal dividing cells in the body. Traditional chemotherapies act on rapidly dividing 

cells, which unfortunately also include some of the normal cells in the body. In fact, in many 

organs, normal cells proliferate at the same rate or even more rapidly than tumour cells [254], 

such as hematopoietic cells in the bone marrow [255,256], and epithelial cells in the mucosa 

of the gastrointestinal tract [257], skin and hair follicles [258].  This poses a problem in terms 

of adverse effects when treating cancer.  

To study the effect of combined inhibition of Wee1 and Chk1/2 on normal cells, we included 

two primary cell lines established from non-cancerous skin, FF144 SC (fibroblasts) and 

FOMA4 (melanocytes), in paper III. Compared to melanomas, these cells only displayed a 

very modest reduction in viability from combined targeting of Wee1 and Chk1/2. Similar 

observations have also been made in other preclinical studies, demonstrating that normal cells 

are less responsive to combined targeting of these kinases than cancer cells [246-248]. 

Moreover, mice treated with inhibitors appeared healthy in our experiments, although adverse 

effects were not extensively studied. The differences in response can potentially be explained 

by tumour cells having elevated replication stress due to genetic alterations and -instability, 

thereby making them more dependent on Wee1 and Chk1/2 as compared to normal cells 

[259,260]. Variances in proliferation rates between normal- and melanoma cells may also 

influence their relative sensitivity to inhibition of these kinases, making the slower dividing 

cells less susceptible.  

 

 

7.9 Wee1 and Chk1/2 as targets for therapy  

 

The small-molecular inhibitor of Wee1, MK-1775, has been included in several phase I 

studies on patients with solid- and hematologic cancers; however few study results have been 

published (ClinicalTrials.gov). Phase II studies are currently recruiting or ongoing. Such 

experimental programs have, on the other hand, been terminated for the Chk1/2 inhibitor, 

AZD7762, due to adverse effects in patients [261,262]. Likewise, clinical trials including 

other inhibitors of Chk1 and Chk1/2 have also been terminated. Despite this, phase I studies 

with newer agents targeting these kinases are still ongoing or recruiting. In this regard, the 
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reported toxicities observed in patients have appeared drug-specific, rather than class-specific, 

indicating that they could instead be off-target effects (reviewed in [263]). Still, concerns have 

been made regarding Chk1 as potential target for therapy, as the mechanisms underlying its 

function in normal cells are currently poorly understood [264].  

Mak et al. recently raised another concern in terms of single-agent targeting of Wee1 or Chk1, 

as administration of low concentration drugs had a proliferative effect in non-small cell lung 

carcinoma and cervical cancer [265]. This observation is likely explained by the shortening of 

the cell cycle following partial deprivation of the kinases, indicating that these cells are 

tolerant to some degree of DNA damage or chromosomal instability associated with 

acceleration of the cell cycle. These limitations were, however, overcome by co-targeting 

Wee1 and Chk1. 
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8. CONCLUDING REMARKS 
 

New treatment alternatives for patients with metastatic melanoma have emerged over the past 

few years leading to improved overall survival.  However, all of these are associated with 

adverse effects, development of resistance and there are still no curative treatment alternatives 

for the majority of patients with advanced disease. In light of being among the cancer forms 

with the most increasing incidence rates, the search for additional treatment alternatives for 

this patient group is of great importance. 

In this thesis we have investigated the anti-tumour effect of treatment with a vitamin A 

derivative, the synthetic retinoid CD437, in melanoma. Administration of the retinoid caused 

cell cycle arrest and apoptosis, and led to up-regulation of death receptors (FAS and DR5) in 

two cell lines. A synergistic decrease in viability was observed after combined treatment with 

Lexatumumab, a TRAIL agonist that activates DR5 receptors. Our results, in line with what 

has been reported by others, are of potential clinical interest if the drug solubility issues with 

CD437 can be overcome. 

DNA damage response proteins, such as Wee1 and Chk1/2, have become attractive targets for 

therapy in the recent years. In this thesis, we have shown that the Wee1 protein expression 

increases in the direction of malignancy, and is associated with shorter relapse-free survival of 

patients. We have also demonstrated that inhibition of Wee1 and Chk1/2 result in anti-tumour 

effects in cell lines and xenograft model, effects which were amplified by combined targeting 

of the kinases. These are findings with possible therapeutic relevance, in particularly since 

inhibitors of Wee1 and Chk1/2 are currently included in clinical trials.   
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9. FUTURE PERSPECTIVES 
 

To further evaluate the potential of Wee1 and Chk1/2 as therapeutic targets, we are currently 

investigating the response to mono-and combined inhibition of the kinases in primary cell 

lines of metastatic melanomas collected from patient biopsies, whilst also screening these 

samples for mutational status of tp53 and CDKN2A. Determining the protein expression of 

Wee1 and Myt1 in these samples may also be of interest. By comparing the response to 

treatment one may get a better understanding of which patients could benefit from such 

treatment regimens. Our preliminary results are so far promising in terms of anti-tumour 

effect, however increased proliferation has been observed in two patient samples following 

targeting of Chk1/2. The latter finding emphasizes the necessity of further molecular sub-

classification of the responders and defining some inclusion criteria for patients prior to 

treatment.  

Due to the adverse effects observed in patients treated with AZD7762, we will in our future 

experiments substitute it with another Chk1/2 inhibitor, LY2606368, which is currently 

included in clinical phase II trials (ClinicalTrials.gov).  

 

Furthermore, targeting Wee1 in combination with DNA damaging agents has led to increased 

anti-tumour effect in several cancer forms [179,242]. In a recent study, combined inhibition of 

Wee1 and the genotoxic agent doxorubicin was shown to increase DNA damage in melanoma 

cell lines, as compared to mono-treatment with either drug [266]. To further explore the 

potential in such a treatment regimen, we wish to combine Wee1 inhibition with other DNA 

damaging agents such as Dacarbazine.  

 

It has been previously been demonstrated that upon inhibition of checkpoint kinases, tumour 

cells may activate compensatory survival mechanisms, such as the MAPK/ERK and 

PI3K/Akt signalling cascades, thus decreasing the therapeutic effect [267]. In line with this, 

we have observed that inhibition of Wee1 has led to increased activation of the MAPK/ERK 

signaling pathway in several melanoma cell lines. This finding spurred us to combine 

MK1775 with a B-RAF inhibitor (Vemurafenib), from which we found a synergistic decrease 

in cell viability. In our future studies, we wish to further explore the potential in this treatment 

combination in expanded panels of cell lines, and in xenograft models.  
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11.  ABBREVIATIONS 
 
 
AIF        Apoptosis-inducing factor  

AJCC      American Joint Committee on Cancer 

Akt     V-Akt murine thymoma viral oncogene homolog 

Apaf-1     Apoptosis protease activating factor 1 

ATM Ataxia telangiectasia mutated 

ATP     Adenosine triphosphate  

ATR Ataxia telangiectasia and Rad3-related 

Bad      Bcl-2-associated death promoting homolog 

Bcl-2        B-cell lymphoma-2  

Bcl-xl        Bcl-2 like 1 protein (long form) 

Bid     BH3 interacting domain death agonist 

Bim     Bcl-2 like 11 protein 

B-RAF      v-raf murine sarcoma viral oncogenes homolog B1  

CAK CDK-activating kinase      

CD437/AHPN      6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene  

        Carboxylic Acid  

CDC25      Cell division cycle 25 

CDK Cyclin-dependent kinase 

CDKN2A      Cyclin-Dependent Kinase Inhibitor 2A 

Chk1/2 Checkpoint kinase 1/2 

CHOP C/ERB homologous protein 

CKI CDK inhibitor protein 

CTG      Cell Titer Glo 

DcR1/2      Decoy Receptor 1/2 

DDR                                           DNA damage response 

DISC       Death inducing Signaling complex 

DNA                                          Deoxiribonucleic acid 

DR4/5     Death Receptor 4/5 

DSB DNA double-strand breaks 

EndoG       Endonuclease G 

ERK Extracellular Regulated Signaling Kinase 

FADD     Fas-associated death domain protein 
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Fas     TNF receptor superfamily, member 6 

FDA     Food and Drug Administration 

GNA11      Guanine nucleotide binding protein (G protein), alpha  

        11  

GNAQ       Guanine nucleotide binding protein (G protein), q   

        polypeptide    

GRIN2A      Glutamate receptor, ionotropic, N-methyl D-aspartate  

        2A (GRIN2A) 

HR Homologous recombination  

IAP     Inhibitor of apoptosis 

IHC      Immunohistochemistry 

IL-2     Interleukin-2    

MAPK Mitogen-activated protein kinase 

Mcl-1       Myeloid cell leukemia sequence 1 

MEK1/2     Mitogen/Extracellular signal-regulated Kinase 1/2 

MITF            Microphthalmia-associated transcription factor   

MOMP      Mitochondrial Outer Membrane Permeabilization 

MRN Mre11, Rad50, Nbs1 

mRNA     messenger ribonucleic acid 

MTS      3-(4.5-dimethylthiazol-2-yl)-5-(3-       

        carboxymethoxyphenyl) -2-(4-sulfophenyl) -2H-  

        tetrazolium 

Myt1     Myelin transcription factor 1 

NHEJ Non-homologous end-joining 

N-RAS      Neuroblastoma RAS viral oncogenes homolog  

PARP     Poly (ADP-ribose) polymerease 

PD-1                                           Programmed cell death 1 protein 

PI3K     Phosphoinositide 3 kinase 

PTEN      Phosphatase and tensin homologue deleted on   

         chromosome 10 

Puma     p53 upregulated modulator of apoptosis  

RNA     Ribonucleic acid 

RPA        Replication Protein A 

siRNA     Small interfering RNA 
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SMAC/DIABLO      Second mitochondria-derived activator of    

           caspases/Direct IAP-binding 

SSB        Single-Stranded breaks (SSB) 

ssDNA Single-stranded DNA 

TNFalpha     Tumour necrosis factor-alpha 

TRADD     Tumour necrosis factor receptor type 1-associated  

     death domain  

TRAIL     Tumour necrosis factor (TNF)-related apoptosis-  

         inducing ligand 

UV      Ultraviolet 

XIAP     X-linked inhibitor of apoptosis protein 

XP      Xeroderma pigmentosum  

Yes1      Yamaguchi sarcoma viral oncogene homolog 1 
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Abstract

Notoriously resistant malignant melanoma is one of the most increasing forms of cancer worldwide; there is thus a
precarious need for new treatment options. The Wee1 kinase is a major regulator of the G2/M checkpoint, and halts the cell
cycle by adding a negative phosphorylation on CDK1 (Tyr15). Additionally, Wee1 has a function in safeguarding the genome
integrity during DNA synthesis. To assess the role of Wee1 in development and progression of malignant melanoma we
examined its expression in a panel of paraffin-embedded patient derived tissue of benign nevi and primary- and metastatic
melanomas, as well as in agarose-embedded cultured melanocytes. We found that Wee1 expression increased in the
direction of malignancy, and showed a strong, positive correlation with known biomarkers involved in cell cycle regulation:
Cyclin A (p,0.0001), Ki67 (p,0.0001), Cyclin D3 (p = 0.001), p21Cip1/WAF1 (p = 0.003), p53 (p = 0.025). Furthermore, high Wee1
expression was associated with thicker primary tumors (p = 0.001), ulceration (p = 0.005) and poor disease-free survival
(p = 0.008). Transfections using siWee1 in metastatic melanoma cell lines; WM239WTp53, WM45.1MUTp53 and LOXWTp53, further
support our hypothesis of a tumor promoting role of Wee1 in melanomas. Whereas no effect was observed in LOX cells,
transfection with siWee1 led to accumulation of cells in G1/S and S phase of the cell cycle in WM239 and WM45.1 cells,
respectively. Both latter cell lines displayed DNA damage and induction of apoptosis, in the absence of Wee1, indicating
that the effect of silencing Wee1 may not be solely dependent of the p53 status of the cells. Together these results reveal
the importance of Wee1 as a prognostic biomarker in melanomas, and indicate a potential role for targeted therapy, alone
or in combination with other agents.
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Introduction

Malignant melanoma is the second most increasing form of

cancer in Norway, following prostate (men) and lung cancer

(women) [1]. Whereas the prognosis is good when detected early,

there are no curative treatments once the cancer has spread to

distant organs (stage IV). Thus, there is a desperate need for new

and more effective treatment options.

The cell cycle is the orderly series of events leading to cell

division, and is regulated by the assembly and activation of

complexes of CDKs and cyclins, which again triggers the

transition between each of the four phases; Gap 1 (G1), DNA

synthesis (S), Gap 2 (G2) and mitosis (M). During these events,

DNA damages may arise both as a consequence of normal

metabolic activity and due to environmental factors, and division

may be arrested/delayed at three major DNA damage checkpoints

(G1/S, intra- S and G2/M) before cell division. The G1/S

checkpoint is largely controlled by p53, a tumor suppressor protein

which function is impaired/lost in the majority of cancers, thus

compromising this checkpoint. Hence most cancer cells exposed to

DNA-damage rely on the S- and G2/M checkpoints for repair to

occur. Encountering the S-phase checkpoint, genomic insults

cause cells to slow down cell cycle progression rather than being

arrested, rendering the G2/M checkpoint to ultimately halt the cell

cycle progression [2]. Central in regulating the transition between

the G2 and M phases is Wee1-like protein kinase (Wee1), a

tyrosine kinase [3]. Wee1 negatively regulates entry into mitosis by

phosphorylating the Tyr15 residue of Cyclin Dependent Kinase 1

(CDK1, also known as CDC2), thus inactivating the CDK1/cyclin

B complex and arresting the cell cycle.

In addition to being a key regulator of the G2/M checkpoint,

Wee1 also plays an active role in stabilizing the genome in the S-

phase. By suppressing CDK2 activity during DNA synthesis, Wee1

prevents unscheduled initiation of replication that may potentially

lead to DNA lesions [4].

Kinases, such as Wee1, represents potential therapeutic targets,

however, their expression varies in different types of tumors. Over-

expression of Wee1 has previously been reported in osteosarcoma,

glioblastoma and breast cancer [5–7]. Under-expression, on the

other hand, has been described in non-small-cell lung cancer [8].

Cell lines showing an enhanced level of Wee1 have also been

demonstrated to be more sensitive to treatment with siWee1 [6].
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Due to many promising in vitro results, the Wee1-inhibitor

MK1775 have very recently been included in two phase I clinical

trials both as mono-therapy and in combination with either 5-

fluorouracil [9] or topotecan/cisplatin [10].

In the present study, we demonstrate for the first time that

Wee1 is up-regulated in human malignant melanomas as

compared to normal melanocytes and benign nevi, and that high

expression of Wee1 is associated with poor disease-free survival

and markers of increased tumor cell proliferation. Our in vitro

results further revealed a reduced amount of viable cells,

accumulation of cells in G1/S or S-phase and double-strand

DNA breaks following transfection with siWee1 in both p53 wild-

type and mutated melanoma cell lines. Together our results

indicate a role of Wee1 in proliferation and genomic stability in

malignant melanoma, thus potentially making the kinase an

eligible therapeutic target.

Materials and Methods

Speciments
Formalin-fixed, paraffin-embedded tissue sections from 108

primary malignant melanomas (75 superficial spreading (SSM)

and 33 nodular melanomas (NM)), 23 metastases and 10 benign

nevi (7 combined, 2 combined+intradermal and 1 intradermal)

were randomly collected from the archives of The Norwegian

Radium Hospital and regional hospitals. Clinical follow-up was

available for all patients. The Regional Committee for Medical

Research Ethics South of Norway (S-06151) and The Social and

Health Directorate (06/2733) approved the current study proto-

col.

Immunohistochemical analysis
Three-mm sections made from formalin-fixed paraffin embed-

ded tissues were immunostained using the Dako EnVisionTMFlex+
System (K8012, Dako Glostrup, Denmark). Deparaffinization,

rehydration and target retrieval were performed in one operation

in a Dako PT-link and EnVisionTM Flex target retrieval solution

with high pH. To block endogenous peroxidase the sections were

treated with Dako EnVision Peroxidase Block for 5 minutes.

Sections were incubated with monoclonal Wee1 antibody (B-11,

sc-5285, 1:300, 0.67 mg IgG1/mL) from Santa Cruz Biotechnol-

ogy, Inc.(CA, USA) for 30 minutes. Thereafter, the sections were

incubated with Dako EnVisionTM FLEX+ mouse linker for

15 minutes followed by incubation with Dako EnVisionTM

FLEX/HRP for an additional 30 minutes. For visualization of

staining, the sections were treated with 393-diaminobenzidine

tetrahydrochloride (DAB) Chromogen (Dako), counterstained with

haematoxylin, dehydrated and mounted from xylol with Richard-

Allan Scientific Cyto seal XYL (Thermo scientific, MA, USA).

Sections from normal placenta with known expression of Wee1

was used as positive control, whereas negative controls included

substitution of monoclonal antibody with mouse myeloma protein

of the same subclass and concentration as anti-Wee1. Four

semiquantitative classes were used to describe the number of

stained tumor cells: absent, 0; ,10%, 1; 10–50%, 2; .50%, 3.

Staining in cytoplasm and nucleus were evaluated separately.

Wee1 expression in more than 10% of the tumor cells was

considered as high. The expression pattern of Wee1 was compared

to proteins previously examined in our melanoma panel, where

high expression has been set as .5%: Cyclin A [11], Ki67 [11],

Cyclin D3 [12], Cyclin D1 [12], p27 [13] p21CIP1/WAF1 [14] and

p53 [15].

Statistical analysis
Statistical analysis was performed using of SPSS version 18.0

(Chicago, IL). The relationship between the expression level of

Wee1 and tumor thickness was evaluated non-parametrically using

the Mann-Whitney two sample test. Comparison between Wee1

expression and Ki-67, Cyclin A,- D1,- D3, p21CIP1/WAF1, p27kip1,

p53 as well as SSM and NM, was conducted by the use of chi-

square tests. Kaplan-Meier survival estimate was used to evaluate

the impact on survival.

Melanocytes isolation
Normal melanocytes were isolated from human foreskins.

Briefly, foreskins derived from circumcisions of newborns were

washed with Hanks’ balanced salt solution (HBSS) (Invitrogen,

Carlsbad, CA). Excess adipose tissues were removed, and the skin

specimens were cut into approximately 0.560.5 cm2 pieces and

incubated in 0.48% dispase II (Invitrogen) at 4uC. After 18 hours,

the epidermis was manually removed from the dermis, cut and

digested in 0.05% trypsin for 5 min in 37uC. The suspensions were
diluted in 254CF medium (Invitrogen) and serially filtered through

40 mm cell strainers (Becton Dickinson, Franklin Lakes, NJ). The

cells were plated in the T25 flask and cultured until confluence was

reached. Differential trypsinization was used for first passage in

order to obtain a pure melanocyte culture. Once confluent, 26106

melanocytes were harvested using EDTA, embedded in 200 mL
1.5% agarose and fixed in 10% neutral buffered formalin for

1 hour, and processed by routine histological methods.

Cell lines and Growth conditions
The human metastatic melanoma cell lines WM45.1 and

WM239 were kindly provided by Dr. Meenhard Herlyn (the

Wistar institute, Philadelphia, USA) [16,17]. The LOX cell line

was established from a lymph node biopsy of a melanoma

metastasis, at the Norwegian Radium Hospital (Oslo University

Hospital, Norway) [18]. All cell lines were maintained in RPMI-

1640 medium (LONZA, Verviers, Belgium) supplemented with

5% Fetal Calf Serum (Biochrom, KG, Berlin, Germany) and

2 mM L-glutamine (LONZA, Verviers, Belgium). The cells were

grown in monolayer culture at 37uC in humidified conditions

containing 5% CO2 and 95% air.

Small interfering RNA (siRNA) transfection
All cell lines were plated out in either 6-well plates (1.56105

cells/well) or in 96-well plates (56103 cells/well) 24 hrs in advance

of the transfection. The cells were transfected with 10 nM siRNA

targeting Wee1 (OligioID; ‘VHS50841’) or RNAi negative control

duplexes (Negative Control LOW GC, 12935-200) using Lipo-

fectamineTM RNAiMAX transfection reagents (all reagents from

Invitrogen corporation, CA, USA).

MTS assay
Five thousand cells per well were seeded in 96-well plates and

left to attach overnight, before siRNA transfection for the

indicated time.

Cell viability was determined using the 3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium)

(MTS) assay (Promega, WI, USA), in which the capacity of the

cells to convert MTS salt into a brown formazan product was

measured. Absorbance was measured at 490 nm using ASYS

UVM340 96-well plate reader.

High Wee1 Correlates with Poor Outcome in Melanoma
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Trypan blue dye exclusion test
Cells treated with SiCtr or SiWee1 were harvested using

trypsin/EDTA (LONZA), along with medium containing floating

cells. After centrifugation, the cell pellet was resuspended in PBS

containing trypan blue (Merck, Stockholm, Sweden). Viable (dye

excluding) and trypan blue stained dead cells were counted.

Cell Death Detection ELISAplus

Determination of cytoplasmic histone-associated-DNA-frag-

ments was assessed using a commercially available kit (Roche

Diagnostic GmbH, Mannheim, Germany), following the manu-

facturers instructions. The presence of histones in cytoplasm is

indicative of apoptosis. The ELISA signal was quantified by

measuring the absorbance at 405 nm (reference 495 nm), using

ASYS UVM340 96-well plate reader (Fisher Scientific, Oslo,

Norway).

Flow cytometric cell cycle analysis
Cells were harvested by trypzination and washed 16 in PBS.

Cell pellets containing approximately 106 cells were re-suspended

in 1 mL 70% ice-cold methanol and left to fixate for a minimum

of 24 hrs. Fixated cells were washed 16 in PBS, and stained with a

solution containing 2 mg/mL Hoechst 33258 in PBS. Flow

cytometric analysis was performed using LSR II UV laser (BD

biosciences, San Jose, CA).

Western blot analysis
Cells were harvested using a rubber policeman, washed once in

16PBS, and then lysed in ice-cold NP-40 Lysis buffer (1% NP-40,

10% glycerol, 20 mM Tris-HCl (pH 7.5), 137 mM NaCl,

100 mM NaF), Aprotenin (0.02 mg/mL), Phosphatase inhibitor

cocktail 1 (10 mL/mL), Phosphatase inhibitor cocktail 2 (10 mL/
mL), PhenylMethaneSulfonyl Fluoride (PMSF) (1 mM), Leupeptin

(0.02 mg/mL), Pepstatin (0.02 mg/mL) and Sodium vanadate

(1 mM) (Sigma-Aldrich, St. Louis, MO)). Bradford (Bio-Rad

Laboratories AB, Sundbyberg, Sweden) analysis was performed

for protein quantification, and 25 mg protein/lane was resolved in

SDS polyacrylamide gel electrophoresis (PAGE) and transferred to

a PDVF immobilon membrane (Millipore, Bedford, MA). To

ensure even loading, filters were stained with naphtholblue black

(Sigma-Aldrich) and later re-stained with a-tubulin. The mem-

branes were blocked in 5% non-fat milk in TBST (150 mM NaCl,

25 mM Tris-Cl, (pH 7.5), 0.01% Tween 20), and probed with

primary antibodies at 4uC overnight, with gentle agitation.

Primary antibodies Caspase 3 (#9662/#9664 (even mix)),

Caspase 8 (#9746), Caspase 9 (#9502), Cyclin B1 (#4138S),

Cyclin D3 (#2936), p21CIP1/WAF1 (#2946), p-p38 Thr180/

Tyr182 (#4631) and PARP (#9532), were purchased from Cell

Signaling (Beverly, MA). a-tubulin (DMIB) was acquired from

Calbiochem (Nottingham, UK), whereas Cyclin A (sc-751), p53

(sc-126) and Wee1 (sc-5285) were obtained from Santa Cruz

(Santa Cruz, CA). c-H2AX (#05-636) and pCDK1Tyr15

(ab47594) antibodies were acquired from Millipore and Abcam

(Cambridge, England), respectively. Membranes were thereafter

washed 3610 minutes in TBST. Membranes were hybridized

with an appropriate secondary antibody (HPR-conjugated anti-

rabbit or anti-mouse IgG antibodies (Promega)) for 1 hr at room

temperature, with gentle agitation, and then washed in TBST for

3610 minutes. Protein bands were detected after first incubating

the membranes with ECL-plus (GE Healthcare, Chalfont St Gils,

UK) for 5 minutes, and then exposing them to X-ray films.

Results

Increased expression of Wee1 in melanoma
High protein expression of Wee1 has previously been reported

in human cancers [5–7]. Since the status of Wee1 expression in

melanomas has not been extensively studied, paraffin-embedded

tissue from a panel of benign nevi and primary- and metastatic

melanomas, in addition to a sample of cultured melanoncytes,

were analyzed for Wee1 protein expression by immunohistochem-

isty. As illustrated in Figure 1A, protein expression of Wee1 was

hardly detectable in the nucleus of the cultured melanocytes,

however brown granules were seen in the cytoplasm, most likely

due to melanin. Furthermore, as demonstrated in Table 1 and

illustrated in Figure 1A, a heterogeneous Wee1 staining pattern

was observed in the vast majority of the tumor samples. However,

the percentage of positive cells varied in tissues of different stages.

Based on distribution, positive immunoreactivity in $10% of the

tumor cells was used as cut-off to discriminate between high and

low Wee1 expression. Whereas only 20% of the nevi displayed

Wee1 expression in $10% of the tumor cells, this was the case for

42% of the primary- and 70% of the metastatic tumors.

Furthermore, while none of the examined nevi contained .50%

Wee1 immunoreactive cells, such expression was found in 4% of

the primary melanomas and 22% of the metastatic tissues.

Nodular lesions expressed higher levels of Wee1 than the

superficial spreading tumors. Wee1 expression was in all cases,

except two, exclusively localized to the cell nucleus.

High expression of Wee1 is associated with poor
prognosis and increased proliferation
Since expression of Wee1 increased in direction from nevi to

primary- and metastatic melanomas, we next examined the

relationship between Wee1 expression, clinical parameters and

disease outcome. As shown in Table 2, and Figure 1B, high Wee1

expression (in $10% of the tumor cells) was significantly

associated with thicker primary tumors (p = 0.001), T-staging

(p = 0.004), as well as with ulceration (p = 0.005) and poor disease-

free survival (p = 0.008). No association with over-all survival was

found (data not shown).

Since our panel of melanomas has been previously analyzed for

other regulators of the cell cycle, we examined the relationship

between Wee1 and expression of these parameters (Ki-67, Cyclin

A,- D1,- D3, p21CIP1/WAF1, p27kip1 and p53) [11–15]. As shown in

Table 2, significant co-variations between Wee1 expression and

cyclin A (p,0.0001), Ki67 (p,0.0001), Cyclin D3 (p = 0.001), p53

(p = 0.025) and p21CIP1/WAF1 (p = 0.003) were detected. No

associations between Wee1 expression and Cyclin D1 and

p27kip1 were observed (data not shown). Together these results

suggest that high Wee1 protein expression is associated with

increased proliferation in human melanomas.

In vitro results support a role of Wee1 in proliferation and
genome stabilization
To further study the role of Wee1 in melanomas we knocked-

down its expression using siRNA in the three metastatic cell lines,

WM239 (p53-wild-type), WM45.1(p53-mutated) and LOX (p53-

wild-type). Wee1 was effectively silenced in all three cell lines, as

confirmed by western blotting; however, phosphorylation on

Tyr15 of CDK1, a downstream target of Wee1, was only down-

regulated in WM239 and WM45.1 cells (Figure 2A). Decreased

cell viability as estimated by MTS (Figure 2B) and a relative

reduction of living cells (Figure 2C), were observed after 24, 48

and 72 hours of siWee1 transfection in WM239 and WM45.1, but

not in LOX cells.
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Furthermore, we observed that Wee1 silencing led to increased

cell death in WM 239 and WM 45.1 as determined by the cell

death detection ELISAplus kit (Figure 3A). Likewise, cleavage of

Poly(ADP-ribose) polymerase (PARP) and pro-caspase-3, markers

of apoptosis [19], were detected in the absence of Wee1

(Figure 3B).

Serine 139 phosphorylation of H2AX (c-H2AX) is a sensitive

marker for DNA double-strand breaks, and may be constitutively

expressed in untreated cells due to oxidative DNA damage during

metabolic activity [20,21]. Expression of c-H2AX was observed in

all cell lines, however in the absence of Wee1, an increase of c-
H2AX was observed in WM239 and WM45.1 cells, indicating

increased DNA damage (Figure 3B).

The p53 tumor suppressor protein accumulate in the presence

of DNA damages, thus leading to DNA repair, cell cycle arrest or

apoptosis [22]. An increase in p53 protein expression was observed

in WM239 (p53WT) cells following treatment with siWee1, but not

in WM45.1 (p53MUT) or LOX cells (p53WT). Notably, these results

indicate that inhibition of Wee1 may sensitize melanoma cell lines

to DNA damage regardless of their p53 status.

Since Wee1 is a key regulator of the G2/M phase transition, we

studied the effect of Wee1 knockdown on cell cycle progression. As

demonstrated in Figure 4A, flow cytometry analysis revealed

accumulation of WM239 and WM45.1 cells in the G1/S- and S-

phase, respectively. The cell cycle distribution was, however, not

affected in siWee1 treated LOX cells. Furthermore, immunoblot-

ting revealed that cyclin D1, -A, and –B1 protein levels were

weakly to moderately down-regulated in WM239 and WM45.1,

but not in LOX cells. Moreover, a marginal decrease in cyclin D3

expression was observed in WM239 cells. Despite increased p53

expression, p21CIP1/WAF1 protein expression was weakly increased

Figure 1. High Wee1 expression increases with tumor progression and is associated with a shorter relapse-free period. A. Wee1
expression in cultured melanocytes, benign nevi, primary- and metastatic melanoma, analyzed by immunohistochemistry. B. Melanoma patients were
grouped according to Wee1 expression in their tumors (high (n = 44) or low (n = 63)). Relapse-free survival in months was estimated for both groups
and presented as a Kaplan Meyer curve.
doi:10.1371/journal.pone.0038254.g001

Table 1. Number (percentage) of melanocytic lesions
expressing different levels of Wee1.

Expression
level Low High

No. Analyzed 0% ,10% 10–50% .50%

Nevi 10 0 (0%) 8 (80%) 2 (20%) 0 (0%)

Primary
melanoma

108 3 (3%) 60 (56%) 41 (38%) 4 (4%)

Superficial
spreading

75 1 (0%) 49 (65%) 24 (32%) 1 (0%)

Nodular 33 2 (6%) 11 (33%) 17 (52%) 3 (9%)

Metastatic
melanoma

23 1 (4%) 6 (26%) 11 (48%) 5 (22%)

Wee1 expressions in benign nevi, primary- and metastatic melanoma were
estimated by immunohistochemistry, and categorized in four semi-quantitative
classes according to percentage of immunoreactive tumor cells. The groups
were further divided into low (,10%) and high ($10%) expression.
doi:10.1371/journal.pone.0038254.t001
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in WM239 cells. No alterations were seen in WM45.1 or LOX

cells (Figure 4B). As previously reported, p21CIP1/WAF1 was not

constitutively expressed in WM45.1 cells, and Wee1 silencing did

not affect its expression [23]. The p38 MAP kinase signaling

pathway has previously been shown to be involved in p53-

independent cell cycle arrest as a response to DNA damage [24],

hence we next examined its activation in the absence of Wee1. In

support of this hypothesis, increased phosphorylation of p38,

indicative of an active signaling pathway, was observed in WM239

and WM45.1, but not in LOX cells, following transfection with

siWee1.

Discussion

In the present study, immunohistochemisty was applied to

examine the level of Wee1 in a panel of benign nevi and primary –

and metastatic melanomas, as well as in one sample of isolated

normal melanocytes, in order to evaluate the impact of altered

expression on disease progression and clinical outcome. We

demonstrate that Wee1 up-regulation follows tumor progression

and is associated with thicker tumors, ulceration and decreased

relapse-free survival. Similar results have previously been reported

in other forms of human cancers, such as glioblastoma and breast

cancer [5,6]. In non-small-cell lung cancer, on the other hand,

reduced Wee1 expression was associated with a higher recurrence

rate [8]. Furthermore, Wee1 showed a strong, positive correlation

with markers of proliferation: Cyclin A, Ki67 and Cyclin D3 [25].

In support, we have previously reported that increased expression

of Ki67, Cyclin A and -D3 is associated with tumor thickness,

progression and poor clinical outcome in melanomas [11,12]. In

line with these findings, our in vitro results demonstrated that in the

absence of Wee1, both Cyclin D1, -D3 (only in WM239) and -A

protein expression were weakly decreased in two out of three

melanoma cell lines. Based on these findings, we hypothesize that

Wee1 contributes to increased proliferation in melanomas.

The augmented expression of Wee1 may seem as a controversy

in malignant tumors, based on its well-known inhibitory role in cell

cycle progression. However, Wee1 also has a role in genomic

stabilization during replication by preventing DNA damage to

occur [26,27]. Furthermore, if other mutations have led to

increased CDK- activity, elevated levels of Wee1 may be beneficial

to avoid premature mitotic entry resulting in cell death [4]. Our in

vitro results using siRNA mediated downregulation of Wee1, led to

increased cell death, thus further emphasizing the association with

malignancy observed in vivo. It is therefore likely that the high

Table 2. Wee1 expression correlates with clinical parameters-
and markers of tumor progression.

Clinical
parameter

No.
Analyzed ExpressionLow High p-value {

Mean tumor
depth

105 1.99 mm 3.90 mm 0.001

T-stage

T1 (0–1 mm) 27 22 (81%) 5 (19%) 0.004

T2 (1.01–2.0 mm) 34 21 (62%) 13 (38%)

T3 (2.01–4 mm) 18 7 (39%) 11 (61%)

T4 (.4 mm) 26 10 (38%) 16 (62%)

Ulceration 100 No 46 (46%) 22 (22%) 0.005

Yes 12 (12%) 20 (20%)

Marker*

Cyclin A 99 Low 39 (39%) 12 (12%) ,0.0001

High 19 (19%) 29 (29%)

Ki67 99 Low 46 (46%) 17 (17%) ,0.0001

High 12 (12%) 24 (24%)

Cyclin D3 99 Low 48 (48%) 21 (21%) 0.001

High 10 (10%) 20 (20%)

p21Cip1/WAF1 71 Low 30 (42%) 9 (13%) 0.003

High 13 (18%) 19 (27%)

p53 67 Low 38 (57%) 20 (30%) 0.025

High 2 (3%) 7 (16%)

*Low expression of Cyclin A [11], Ki67 [11], Cyclin D3 [12], p21 [13] and p53 [14];
defined as immunoreactivity in ,5% of the tumor cells. Wee1 expression in
,10% of tumor cells is defined as low.
{Statistical significances determined by Chi-square tests.
doi:10.1371/journal.pone.0038254.t002

Figure 2. Transfection with siWee1 effectively shuts down
Wee1 expression and reduces cell viability. A. Cells were
transfected with siWee1 for 48 hours. Expressions of Wee1 and
pCDK1Tyr15 were examined by western blot analysis. a-tubulin was
used as loading control. The figure is representative of at least three
independent biological experiments.B and C. Cells were transfected
with siWee1 (dots: 24 h, stripes: 48 h and no-pattern: 72 h). The relative
amount of viable cells was estimated by MTS (B), and the relative
quantity of living cells was estimated by counting trypan-excluding cells
(C).
doi:10.1371/journal.pone.0038254.g002
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levels of Wee1 observed protect the melanoma cells against DNA

damage and cell death. In line with this hypothesis, our in vitro

results showed that double-strand DNA damage, as demonstrated

by increased cH2AX expression, occurred in the absence of Wee1

in both WM239 and WM45.1 cells, and was accompanied by

accumulation of cells in the G1/S- and S phases, in the two cell

lines, respectively. In accordance with our results, Dominiguez-

Kelly et al. [27] recently reported augmented amounts of cH2AX

in cells stalled in the S-phase, following treatment with siWee1.

Given its role in maintaining genomic stability in S-phase, we

speculate whether cells lacking Wee1 may fail to regulate CDK

activity during replication, thus leading to DNA damage and S-

phase arrest [26]. Another possible explanation may be that cells

in lack of a functional G2/M checkpoint rush into mitosis without

securing a proper DNA synthesis, potentially leading to so-called

mitotic catastrophe and cell death [7,28].

In accordance with a study by Hashimoto et al. [29], using

Wee1 inhibitor PD0166285 in murine melanoma, silencing of

Wee1 also led to decreased proliferation in WM239 and WM45.1

cells in the present study. Strikingly, the growth inhibitory effect in

murine melanomas was even stronger than what was observed in

our study following siWee1 transfection. However, whereas

siWee1 is believed to be highly specific, PD0166585 is a

nonselective Wee1 inhibitor which even at low concentrations

can target a range of other kinases involved in regulating CDK

activity, such as Membrane-associated tyrosine/threonine protein

kinase 1 (MYT1) and Serine/threonine-protein kinase 1 (CHK1)

[28,30]. The increased effect may also simply be due to the

differences in tumor cell lines. Notably, silencing of Wee1 had no

effect on LOX cells in terms of proliferation, cell death or cell cycle

distribution. However, phosphorylation of its downstream target

CDK1Tyr15 was not abolished in this cell line, thereby providing a

possible rationale for lack of response to treatment with siWee1.

Hence, we speculate if other mechanisms are more central in

CDK1 regulation in this cell line, for instance MYT1, known from

other cell systems to have much of the same functions as Wee1

[31].

In the present study we found that Wee1 had a strong positive

correlation with p53 expression and p21CIP1/WAF1 in primary

melanomas. High p53 expression has previously been shown to

correlate with poor clinical outcome and increased proliferation in

metastatic melanoma [32,33], however the opposite has also been

found [34]. Likewise, we have previously reported that p53 protein

expression is increased in metastatic melanoma compared to

benign nevi, however, although not significant, high expression

was also associated with a more favorable disease progression [15].

Despite being mutated in the majority of human cancers,

mutational inactivation of p53 is rare in melanomas; yet the

protein may not function as normal. In this regard, it was shown

that despite being expressed as wild-type in melanoma, p53 could

activate some genes in response to stress, but lacked the ability to

inhibit growth or induce apoptosis [33,35]. Interestingly, our in

vitro results demonstrated that the effects of silencing Wee1 were

not exclusive to p53 mutated cell lines. In contrast to our findings,

effects of inhibiting Wee1 in other cancer forms have in previous

studies been described as limited to cells with mutated p53, in

particular when combined with DNA damaging agents [36–38].

Additionally, p21CIP1/WAF1, a down-stream target of p53, was

significantly correlated with Wee1 in primary melanomas.

p21CIP1/WAF1 is a well-known inhibitor of CDKs, and is known

to promote cell-cycle arrest in response to many stimuli, however

the protein may also exhibit oncogenic activities [39]. In line with

this, we have previously demonstrated that p21CIP1/WAF1 expres-

sion is up-regulated in primary melanomas compared to benign

nevi, and is associated with thicker tumors [14]. When silencing

Wee1 in vitro, p21CIP1/WAF1 expression increased marginally, in

WM239 cells only, suggesting that the association between Wee1

and p21CIP1/WAF1 observed in vivo could be due to indirect

mechanisms. However, the accumulation of cells in G1/S phase,

accompanied by increased p21CIP1/WAF1 protein expression, in

siWee1 treated WM239p53wt cells, suggests that the augmented

p53 protein level probably is able to trigger the G1/S checkpoint

in response to DNA damage in this cell line. Hence we speculate if

the increased cell death seen in WM239 cells in the absence of

Wee1, is related to the cells inability to control CDK activity

during DNA replication, rather than the ability to stop the cell

cycle progression in G2/M. Notably, Reinhardt et al. has

previously reported that activation of the p38/MAPK signaling

pathway may cause cell cycle arrest after DNA damage in the

absence of p53 [24]. In both WM239 and WM45.1 cells activation

of the p38/MAPK signaling pathway increased in the absence of

Wee1 suggesting that the p38/MAPK signaling pathway may

contribute to the arrest following DNA damages induced by

siWee1.

Figure 3. Transfection with siWee1 promotes DNA damages
and apoptosis. A. Presence of cytoplasmic oligonucleosomes was
measured by ELISA following 48 h siWee1 transfection. Induction of
apoptosis shown as enrichment factor calculated as absorbance at
405 nm of siWee1 treated cells relative to siCtr treated cells. B. Protein
expressions were measured by Western blot following 48 h transfection
with either siCtr or siWee1. Cleavage of PARP and Caspase 3 are shown
with arrows. a-tubulin was used as loading control. The figure is
representative of at least three independent biological experiments.
doi:10.1371/journal.pone.0038254.g003
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In conclusion, our results indicate that despite being an inhibitor

of cell cycle progression, high expression of Wee1 is associated

with malignancy and poor prognosis in patients with melanoma.

Our in vitro results further support these findings; silencing of Wee1

resulted in DNA damage and increased cell death in two out of

three cell lines regardless of p53 status. Thus, high expression of

Wee1 appears to protect the cancer cell from DNA damage and

ultimately cell death. These findings potentially make Wee1 an

eligible target in melanoma, both as mono-therapy and in

combination with DNA damaging agents.
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Abstract 

Background: Malignant melanoma has an increasing incidence rate and the metastatic disease 

is notoriously resistant to standard chemotherapy. Loss of cell cycle checkpoints is frequently 

found in many cancer types and makes the cells reliant on compensatory mechanisms to 

control progression. This feature may be exploited in therapy, and kinases involved in 

checkpoint regulation, such as Wee1 and Chk1/2, have thus become attractive therapeutic 

targets. 

Methods: In the present study we combined a Wee1 inhibitor (MK1775) with Chk1/2 

inhibitor (AZD7762) in malignant melanoma cell lines grown in vitro (2D and 3D cultures) 

and in xenografts models. 

Results: Our in vitro studies showed that combined inhibition of Wee1 and Chk1/2 

synergistically decreased viability and increased apoptosis (cleavage of caspase 3 and PARP), 

which may be explained by accumulation of DNA-damage (increased expression of γ-

H2A.X) - and premature mitosis of S-phase cells. Compared to either inhibitor used as single 

agents, combined treatment reduced spheroid growth and led to greater tumour growth 

inhibition in melanoma xenografts. 

Conclusions: These data provide a rationale for further evaluation of the combination of Wee1 

and Chk1/2 inhibitors in malignant melanoma. 

 

 

Keywords 

Malignant melanoma, Wee1, MK1775, Chk1/2, AZD7762, cancer therapy, cell cycle 

inhibitors, 

 

 



 
 

3 
 

Background 

Malignant melanoma is the deadliest form of skin cancer, in addition to having one of the 

most increasing incidence rates of all cancer forms [1]. Although curable by surgical excision 

at an early stage, patients diagnosed with metastatic melanoma (stage IV) have had a median 

survival of 6-10 months [2]. Despite recent year’s advances leading to new treatment options 

such as Ipilimumab, Vemurafenib, Trametinib and Dabrafenib, there are still no curative 

treatment alternatives for the majority of the patients with advanced disease [3,4]. 

In response to DNA-damage, the dividing cell is arrested through activation of checkpoint 

mechanisms in order to allow time for DNA-repair to be completed. If the damage is too 

severe, apoptosis or senescence is induced to ensure that unrepaired DNA-damage is not 

passed on to future generations of cells. Loss of checkpoint mechanisms is frequently found in 

cancer, a trait which can be exploited in cancer therapy. Wee1 is a kinase involved in 

checkpoint regulation that in response to DNA-damage or replication stress can halt the cell 

cycle progression in S- and G2 phases by adding inhibitory phosphorylations (Tyr15) on 

cyclin-dependent kinases CDK2 and CDK1, respectively [5]. In our previous study we found 

that Wee1 was up-regulated in human melanomas as compared to benign nevi, and that high 

expression of Wee1 was associated with poor disease-free survival [6]. Likewise, over-

expression of Wee1 (protein and/or mRNA) has been reported in osteosarcoma, glioblastoma 

and ovarian- and vulvar squamous cell carcinomas, thus emphasizing its potential as a 

therapeutic target in cancer [6-10] Furthermore, targeting Wee1, either by siRNA mediated 

silencing or inhibitors, has in several studies, including ours, been shown to lead to increased 

DNA-damage and apoptosis [6,11,12]. 

Although mono-targeting of Wee1 has shown anti-tumour effect in some cancer cell lines, a 

stronger effect has been observed when combining Wee1 inhibitors with for instance DNA-

damaging agents, Heath Shock Protein 90 inhibitors and more recently inhibitors of other cell 
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cycle regulatory proteins such as Chk1/2 [13-16]. The Chk1/2 kinases are key regulators of 

DNA-damage surveillance pathways and DNA repair. Chk2 is a protein that is stably 

expressed throughout the cell cycle and is activated in response to DNA-damage; in particular 

DNA double-strand breaks through the ATM-Chk2-p53-p21 pathway. The expression of 

Chk1, on the other hand, is primarily found in S- and G2 phases, where it is active even in the 

unperturbed cell cycle. During normal cell cycle progression, Chk1 has been shown to 

regulate replication forks during DNA replication and entry into mitosis. Chk1 activation in 

response to DNA-damage is preferentially triggered through the ATR-Chk1-CDC25 pathway, 

although some cross-talk between Chk1 and ATM has been reported (reviewed in [17]Chk1 

has been shown to activate Wee1 in Xenopus extracts and yeast; however such a relationship 

has not been recapitulated in higher eukaryotes [18,19]. Previous studies have shown an 

advantageous effect of combining Wee1 and Chk1/2 inhibitors as compared to mono-

targeting in a variety of cancer cell lines, and points to complementary functions of the 

kinases [13,20,21] 

In the present study we investigated the combined use of the Wee1 inhibitor MK1775 with a 

Chk1/2 inhibitor (AZD7762) in a panel of metastatic melanoma cell lines. While both 

inhibitors had an effect as mono-agents, combined administration gave a stronger anti-tumour 

effect both in vitro and in xenografts models. Co-treatment led to increased dephoshorylation 

of CDK1, DNA-damage, premature mitosis and apoptosis. In summary, our results warrant 

further evaluation of combined use of Wee1 and Chk1/2 inhibition in malignant melanoma. 
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Materials and methods 

 

Cell lines and growth conditions.  The human metastatic melanoma cell lines 

WM239, WM45.1, WM983B and WM1366 were kindly provided by Prof. Meenhard Herlyn 

(the Wistar institute, Philadelphia, USA) [22,23]. The FEMX-1 cell line was established at the 

Radium hospital [24]. The ‘Patient 3’ cell line was a kind gift from Prof. Peter Hersey (Royal 

North Shore Hospital, Sydney, Australia) [25]. All cell lines were maintained in RPMI-1640 

medium (LONZA, Verviers, Belgium) supplemented with 5% Fetal Calf Serum (Biochrom, 

KG, Berlin, Germany) and 2 mM L-glutamine (LONZA, Verviers, Belgium). The cells were 

grown in culture at 37ºC in humidified conditions containing 5% CO2, either as monolayer 

cultures in 75cm2 bottles or in 96 flat-bottom well plates. Normal human melanocytes 

(FOMA4)  and fibroblasts (FF144sc) were isolated from human foreskin and cultured in 

254CF (Invitrogen corporation, CA, USA) and DMEM 10% FBS medium, respectively, as 

previously described [6]. 

 

Spheroids were generated by plating suspended cells (500-4000 cells/well, 

dependenton the cell line) in Corning® 96 Well Clear Round Bottom Ultra Low Attachment 

Microplates (Corning, MA, USA). Spheroid formation was allowed for 3 days prior to 

treatment. Images of spheroids were obtained using phase-contrast on an Olympus IX81 

microscope with a 4x objective. Spheroid volume was calculated using Olympus Soft Imaging 

Solution Gm6H software. A minimum of two independent biological experiments were 

conducted, where each experiment contained at least four parallels of the individual treatment 

options. 
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Chemical inhibitors. Wee1 inhibitor MK1775 and Chk1/2 inhibitor AZD7762 were 

purchased from Selleck Chemicals (TX, USA) and used for time intervals and concentration 

indicated in the text. 

 

Small interfering RNA (siRNA) transfection. All cell lines were plated in either 6-

well plates (1.5 x 105 cells/well) or in 96-well plates (5 x 103 cells/well) 24 hrs in advance of 

the transfection. The cells were transfected with 10nM siRNA targeting Wee1 (OligioID; 

‘VHS50841’), Chk1 (OligioID: ‘VHS40226’) or RNAi negative control duplexes (Negative 

Control LOW GC, 12935-200) using LipofectamineTM RNAiMAX transfection reagents (all 

reagents from Invitrogen corporation, CA, USA). Transfection was allowed for 5 hrs before 

the medium was replaced with RPMI w/5% FCS and 2mM L-glutamine. Transfected cells 

were harvested after 48 hrs for further analysis. 

 

Viability assays. Four thousand cells per well were seeded in 96-well plates and left to attach 

overnight, before treatment with MK1775 and/or AZD7762 for 48 hrs.  The growth inhibitory 

effects of mono- and combined treatments were measured using the3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay (Promega, 

WI, USA). Absorbance was measured at 490nm using ASYS UVM340 96-well plate reader. 

Alternatively, viability was assessed using the CellTiter-Glo® Luminescent Cell Viability 

Assay kit (Promega) following the manufacturer's protocol.  Luminescence was measured 

using GloMax® Luminometer (Promega).  Viability of treated cells was normalized to the 

untreated control cells. Each experiment was performed with three parallel observations and 

repeated at least three times. 
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Calcusyn analysis. Synergy was determined by the Chou and Talalay Combination 

Index (C.I.)[26] for non-exclusive treatments (treatments affecting different targets or sites of 

the same target), and calculated by Calcusyn software (BioSoft, Feruson, MO, USA). Of note, 

this method requires that a dose effect curve for each drug is made, in which the data-points 

give a good r-value (>0.90 for cell systems) [27]. Given the variation in dose effect of the 

drugs in the different cell lines, the concentrations of the inhibitors were adjusted for the 

individual cell lines (suppl. Figure 2) in order to abide to the requirements of the method  

 

Western blot analysis. Cells were harvested and western blot conducted as previously 

described [6]. Caspase 3 (#9662/#9664 (even mix)), Caspase 8 (#9746), Caspase 9 (#9502), 

PARP (#9532) and Wee1 (#4936S) primary antibodies were purchased from Cell Signaling 

(Beverly, MA). α-tubulin (DMIB) was acquired from Calbiochem (Nottingham, UK), 

whereas Cyclin A (sc-751) and p53 (sc-126) antibodies were obtained from Santa Cruz (Santa 

Cruz, CA). γ-H2AX (#05-636) and pCDK1Tyr15 (ab47594) antibodies were acquired from 

Millipore and Abcam (Cambridge, England), respectively. Following primary hybridization, 

membranes were washed 3 x 10 minutes in TBST and hybridized with an appropriate 

secondary antibody (HPR-conjugated anti-rabbit or anti-mouse IgG antibodies (Promega)) for 

1 hr at room temperature, with gentle agitation. Membranes were then washed in TBST for 3 

x 10 minutes before being incubated in ECL-plus (GE Healthcare, Chalfont St Gils, UK)  for 

5 minutes. Protein bands were visualized by exposing the membranes to X-ray films. 

 

Flow cytometry and barcoding. Cells were harvested by trypzination and fixated in 

70% ice-cold ethanol at -20˚C for a minimum of 24 hrs. In order to eliminate variation in 

antibody staining, control as well as treated cells were labelled with different concentrations 

of Pacific Blue (0.125, 0.031, 0.0062 and 0.00078ng/μL, respectively) for 30 min at RT in the 
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dark, in accordance with the fluorescent cell barcoding (FCB) technique [28]. All samples 

were subsequently mixed in one tube and incubated with primary antibodies (mouse anti-

γH2AX (1:500, 05-636, Millipore) and rabbit anti-phospho Histone H3 (ser10)(1:500, 

CS#9701, Cell Signaling)) diluted in detergent buffer (0.1% Igepal CA-630, 6.5mM 

Na2HPO4, 1.5mM KH2PO4, 2.7mM KCl, 137mM NaCl, 0.5mM EDTA [pH 7.5]) containing 

4% nonfat milk for 1 hr at RT, and afterwards with secondary antibodies; anti-rabbit 

Alexa488 and anti-mouse Dyelight549 (1:1000, Invitrogen) for 30 min at RT in the dark. 

Cells were finally incubated with PBS containing Cell Cycle 633/Fx cycleTM far red stain 

(1μL/mL,) and PureLink RNAse A (5μL/mL) (Invitrogen) for 30min at 4˚C in the dark. Flow 

cytometric analysis was performed using a LSRII flow cytometer (BD Biosciences) with Diva 

software, and the four samples were gated based on the Pacific Blue signal before analyzes of 

cell cycle distribution, γH2AX and phospho Histone H3 (ser10) expression. 

 
 

 In vivo studies. ‘Patient 3’ cells (2x106) were subcutaneously injected on each side of 

the dorsa of nude female mice (athymic nude foxn1 nu) and tumour bearing mice were 

subsequently divided into groups of 7 mice each. MK1775 and AZD7762 were dissolved and 

administered as recommended by the manufacturer (Selleck Chemicals). Briefly, 30 mg/kg 

MK1775 were given orally whereas 25mg/kg AZD7762 were administered intravenously 

both as single agents and in combination. The treatments were given three times a week for 

two weeks. Tumour sizes were measured regularly using a calliper, and the volume V was 

calculated as follows: V = W2×L×0.5 (where W and L are tumour width and length, 

respectively). The experimental protocol was evaluated and approved by the National Animal 

Research Authority and conducted in accordance with regulations of the European Laboratory 

Animals Science Association. 
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Statistical Analysis. All statistical analyzes were conducted using SPPS 

PASWStatistics version 18. Comparison of tumour volume at day 48 was performed with 

one-way between-groups ANOVA. Post-hoc comparisons were performed using the Tukey 

HSD tests. 

 

Results 

 

Synergistic effect of combined treatment with Wee1 inhibitor MK1775 and Chk1/2 

inhibitor AZD7762 in melanomas 

In order to study the effects of targeting Wee1 and Chk1/2, a panel of six metastatic 

melanoma cell lines were treated with increasing concentrations  (0,063μM to 1μM) of  the 

commercially available inhibitors MK1775 (Wee1) and AZD7762 (Chk1/2) for 48 hrs (Figure 

1A and 1B). Mono-treatment with either inhibitor reduced the viability in all tested cell lines, 

though the effect differed in a dose- and cell line dependent manner. The most pronounced 

effect was observed in WM45.1 (IC50: 0.4μM (MK1775), 0.15μM (AZD7762)) and 

WM983B (IC50: 0.35μM (MK1775), 0.04μM (AZD7762)) cells. In the other cell lines 

neither MK1775 nor AZD7762 were able to reduce the viability by 50% following treatment 

with concentrations up to 1μM of either drug (Figure 1A and 1B). 

We next investigated if combining the drugs could further decrease the cell viability as 

compared to single-agent treatments. The concentrations of the inhibitors used for 

combinational studies were chosen to be within the target-specific range of the compounds 

[29,30]. While exposure to either 200nM MK1775 or 100nM AZD7762 for 48 hrs only led to 

a modest reduction, co-treatment resulted in a marked reduction in cell viability (Figure 1C).  

For WM983B cells, however, 100nM AZD7762 alone decreased the viability by 90% and co-

treatment with MK775 did not enhance the effect. When reducing the AZD7762 
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concentration, combined treatment with MK1775 was superior to single-agent treatment also 

in this cell line (Suppl. Figure 2). Of note, primary cultures of melanocytes (FOMA4) and 

fibroblasts (FF144SC) were only modestly affected when exposed to either mono- or 

combinational treatment (Figure 1C). Finally, in order to verify that the effect of the inhibitors 

could be assigned to targeting Wee1 or Chk1 we performed siRNA mediated knockdown of 

the proteins in three of the cell lines (WM239, WM45.1, WM983B) (Suppl. Figure 1A and 

1B). 

To further address the anti-tumour effect of combining the two inhibitors, drug interaction 

was determined using the Chou-Talalay method for quantifying synergy or antagonism [26]. 

Co-treatment with different concentrations of MK1775 and AZD7762 resulted in 

Combination Index (C.I.) values of less than 1 in the majority of cases, indicating a 

synergistic interaction of the drugs (Table 1 and Suppl. Figure 2). 

Together, our results demonstrate an increased anti-tumour effect of co-targeting Wee1 and 

Chk1/2 in melanoma cell lines. 

 

Combined inhibition of Wee1 and Chk1/2 leads to reduced viability and irreversibly 

inhibits growth of melanoma 3D-cultures 

Three-dimensional tumour cell cultures have in several studies been reported as superior to 

monolayer cultures in terms of reflecting in vivo conditions for testing drug delivery systems 

and efficacy [31-33]. Hence, our next aim was to study long-term effects of MK1775 and 

AZD7762 on cells grown as spheroids (3D-cultures). Cells cultured as spheroids for three 

days were exposed to 200nM MK1775 and/or 100nM AZD7762 for a total of 3 days, and 

followed for an additional 8 days (Figure 2A). During the latter period, 50% of the medium 

was replaced twice with drug-free medium. Whereas spheroids given mono-treatments 

appeared diminished on day 14, combinational inhibition led to a marked decrease in spheroid 
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size (Figure 2B and 2D). Moreover, daily monitoring of growth revealed that WM45.1 and 

WM983B spheroids treated with the drug combination were unable to expand in size 

following drug-removal, thus indicating an irreversible effect within the time-frame of the 

experiment (Figure 2D). The volume of the WM239 spheroids, however, continued to 

increase following treatment, but remained markedly reduced compared to the control. In 

consistence with this, cell viability estimated by CellTiterGlo assay on day 14 was greatly 

reduced in spheroids treated with the drug-combination in contrast to those in the control or 

mono-treatment groups (Figure 2C). In accordance with our observation in 2D models, the 

decrease in viability following combinational treatment was more profound in WM45.1 and 

WM983B spheroids, as compared to WM239 cells. Together, our results indicate that 

combined use of MK1775 and AZD7762 has an increased anti-tumour effect compared to 

mono-treatment also in 3D cultures, and prevents spheroid growth even after drug-removal. 

 

Combinatorial therapy reduces tumour growth in melanoma xenografts 

Based on the promising in vitro results, we next investigated the in vivo efficacy of treatment 

with MK1775 and AZD7762 in melanoma xenografts. For this study we chose a cell line 

named ‘Patient 3’, that was recently established from a metastasis from a patient undergoing 

treatment with the selective BRAF inhibitor PLX4720, and previously DTIC [34]. Mono-

treatment with either inhibitor resulted in reduction of tumour sizes as compared to the control 

group, and a tendency to a more prominent effect in the group given a combination of the two 

drugs was observed (Figure 3). A statistically significant difference (p<0.05) in tumour 

volume was found by ANOVA. Post-hoc comparisons using the Tukey HSD test indicated 

that the mean score of the control group (M=14.47, SD=2.87) was significantly different (p < 

0.024) from the combination group (M=6.47, SD=3.88). No direct immediate toxic effects 

were observed during the experiment with the given dosages. 
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Inhibition of Wee1 and Chk1/2 lead to DNA-damage and apoptosis 

To elucidate the mechanisms by which MK1775 and AZD7762 affect melanoma cell 

viability, we first examined the effect on Tyr15 phosphorylation of CDK1 in WM239, 

WM45.1 and WM983B cells after being exposed to 200nM MK1775 and/or 100nM 

AZD7762 for 48 hrs. Whereas Wee1 inhibition decreased pCDK1 expression in all cell lines, 

the combination of drugs resulted in an even stronger reduction, as assessed by western blot 

analysis (Figure 4A). Down-regulation in pCDK1 expression following treatment was also 

observed after shorter exposure times (1, 3, 7 and 24 hrs, data not shown). Interestingly, 

treatment with the Chk1/2 inhibitor, alone or in combination with Wee1 inhibition, decreased 

the total level of CDK1 in WM983B cells. Similar patterns were observed following siRNA 

transfections targeting Wee1 and Chk1, although combinational treatments with siRNA had 

less effect than what was observed with the inhibitors (Suppl. Figure 1C). 

Furthermore, as seen in all three cell lines, both mono- and combinational treatment, as well 

as siRNA mediated knockdown, led to increased expression of γ-H2A.X, indicative of DNA 

double-strand breaks [35] (Figure 4A and Suppl. Figure 3C).  A further increase in γ-H2A.X 

was observed in WM239 cells following combined targeting of Wee1 and Chk1/2, as opposed 

to treatment with either inhibitor alone. Cleavages of Caspase 3 and PARP, associated with 

apoptosis, were observed in all three cell lines following treatment with the inhibitors. 

Combined inhibition led to a more pronounced cleavage product when compared to either 

single agent treatment, as assessed by immunoblotting (Figure 4A). These findings indicate 

that simultaneous targeting of Wee1 and Chk1/2 leads to DNA-damage and apoptosis in 

melanoma cell lines. 
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Wee1 and Chk1/2 inhibitors induce premature mitosis and DNA damage in S-phase cells 

To study how MK1775 and AZD7762 affect cells in different phases of the cell cycle, 

treatment with the respective drugs were allowed for three hours (Figure 4B-E and Suppl. 

Figure 3). The short time frame serves as a compromise between allowing the drugs to work, 

while at the same time limiting cell cycle progression. Cells in different phases of the cell 

cycle were gated based on their relative amount of DNA and expression of the mitotic marker 

phospho-Histone H3 (pHH3), as analyzed by flow cytometry (Figure 4B). Narrow gating for 

cells belonging to G1, S and G2 were used in order to avoid incorrect/uncertain assumptions 

of which cell cycle phase a cell belongs to (Suppl. Figure 3).  Higher drug concentrations 

(2μM MK1775/1μM AZD7762) were used given the short exposure time, (Figure 4B-E), 

however the same trends were also observed following treatment with lower doses of 

MK1775 (200nM) and AZD7762 (100nM) (Suppl. Figure 4). Whereas exposure to either 

inhibitor led to an increased amount of mitotic cells, this fraction was augmented by the drug 

combination. Moreover, combined treatment led to an increased fraction of S-phase cells co-

expressing pHH3, indicative of cells having entered mitosis prematurely (Figure 4B, 4C and 

Suppl. Figure 4). 

To further study how the inhibitors affect cells in different phases of the cell cycle, we 

examined the median expression of γ-H2A.X in the gated sub-groups (Figure 4C, (for gating 

of cells, see Suppl. Figure 3)) following short-time drug exposures. As seen in figure 4D and 

4E, increased expression of γ-H2A.X was predominantly found in S-phase cells, indicating 

that cells undergoing DNA-replication are especially sensitive to DNA-damage. Our results 

therefore suggest that combined treatment with MK1775 and AZD7762 leads to premature 

mitosis and DNA-damage in S-phase cells. 
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Discussion 

In our previous study we showed that high expression of Wee1 is associated with poor 

disease-free survival in patients with melanoma and that in vitro targeting of the kinase leads 

to decreased cell viability. To further evaluate Wee1 as a potential target in melanoma, we 

have in the present study combined a Wee1 inhibitor (MK1775) with a Chk1/2 inhibitor 

(AZD7762). Our hypothesis is that simultaneous inhibition of two cell cycle control proteins 

will introduce a high degree of DNA-damage incompatible with cell viability. The combined 

inhibition led to an increased anti-tumour effect both in vitro and in xenografts models. 

Furthermore, our in vitro studies showed that co-treatment synergistically decreased viability 

and increased apoptosis, which may be explained by DNA-damage- and premature mitosis of 

S-phase cells. Our results provide a rationale for further testing of the treatment regimen in 

melanoma models. 

Mono-targeting of Wee1, either by siRNA mediated knockdown or inhibitors, has shown a 

potent anti-tumour effect in some cancer cell lines [6,36] but only limited effect in other 

studies [7,8]. In line with this, the efficacy of mono-targeting of Wee1 by MK1775 varied in 

the tested melanoma cell lines in the present study, where low concentrations (200nM) had 

little effect in some of the cell lines, such as WM1366.  Interestingly, a stronger anti-tumour 

efficacy was observed in the same cell line following exposure to MK1775 in a recent study 

by Haarberg et al.[37], however the experimental conditions in our studies differ with regard 

to exposure time to the drug and assay for detecting viability.  

For the purpose of increasing the efficacy, inhibition of Wee1 (MK1775) has been combined 

with other therapeutic agents in clinical trials, such as gemcitabine and cisplatin 

[ClinicalTrials.gov]. Simultaneous inhibition of Wee1 and Chk1, on the other hand, has only 

been investigated in preclinical studies, but has been found as an eligible combination 

following siRNA high-throughput screens of acute myeloid leukemia, lung-, prostate- and 
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ovarian cancer [13,20,21]. Combined inhibition of Wee1 and Chk1 using commercial 

inhibitors have been shown to synergistically enhance the therapeutic efficacy in several 

cancer cell lines, including the A2058 melanoma cell line [13,16,20,38]. In agreement with 

these reports, combined targeting of Wee1 and Chk1/2 led to a synergistic reduction of 

viability in our cohort of melanoma cell lines. In addition, the same trends were observed for 

combined siRNA mediated knockdown of Wee1 and Chk1 compared to mono-targeting of 

either protein. However, siRNA mediated down-regulation and use of small molecular 

inhibitors are not always comparable [21]. The experiments using siRNA only targeted Chk1, 

whereas AZD7762 inhibits both Chk1 and Chk2.  Still, a previous study by McNeeley et al. 

showed that the anti-tumour activity of AZD7762 following DNA damage is likely related to 

Chk1- rather than Chk2 inhibition [39]. 

 

 Similar to what was observed in monolayer cultures, an increased effect of combined 

targeting was also found in multicellular spheroids. Likewise, a weak increase in efficacy was 

observed in melanoma xenografts following combined treatment versus either mono-

treatment alone. A previous study showed that combinational inhibition of Wee1 (MK1775) 

and Chk1 (MK8776) led to increased in vivo efficacy in neuroblastoma xenografts [40], 

providing additional support for our results. 

Studies have indicated that the response to Chk1 or Wee1 inhibitors is dependent on the p53 

mutational status of the cells, in particular when combined with DNA-damaging agents, while 

others have reported no such effect [41,42]. Partly supporting the first hypothesis, the anti-

tumour effect was most pronounced in the p53 mutated WM983B and WM45.1 cells, and less 

in the p53WT cell line WM239. Although disabling point mutations in TP53 are only found 

in 10% of melanomas, inactivation of the protein is found in approximately 90% of the 

tumours (reviewed in [43]), suggesting that the effect of checkpoint inhibition in melanoma is 
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not strictly dependent on the p53 mutation status. Furthermore, the level of genetic instability 

has been suggested as a predictor of the response to Wee1 and Chk1/2 inhibition [44,45]. In 

this regard, melanomas have been shown to be one of the most genetically unstable tumour 

forms [46,47]. Combined inhibition of Wee1 and Chk1/2 in primary cultures of melanocytes 

or fibroblasts had less effect on viability than observed in the melanomas. In accordance with 

these results, Carrassa et al. found no synergistic effects of combining Wee1 (MK1775) and 

Chk1 inhibitors PF-00477736 (or allegedly AZD7762) in the normal fetal human lung cell 

line MRC-5 [20]. While both Wee1 and Chk1 are known to have functions in the unperturbed 

cell cycle, normal cells are less proliferative and have a lower degree of genetic alterations- 

and instability than tumour cells, which may explain the difference in response to kinase 

inhibition. However, phase I clinical trials with AZD7762 have been terminated due to 

cardiac toxicity in patients [48,49], and also clinical trials with other Chk1 and Chk1/2 

inhibitors (reviewed in [50]) have been terminated. Concerns have been raised on whether 

targeting Chk1 may lead to toxicity in normal cells due the multiplicity of functions of the 

protein in the unperturbed cell cycle (Reviewed in [51]). Furthermore, embryonic lethality is 

associated with Chk1 depletion in mice [52]. On the other hand, the observed toxicities in 

patients following treatment with various Chk1 inhibitors have appeared as drug-specific 

rather than class-specific and may thus be a consequence of off-target effects (reviewed in 

[50]). Clinical studies with novel Chk1 (MK-8876/SCH 900776) and Chk1/2 (LY2606368) 

inhibitors with improved specificity are currently ongoing or recruiting (ClinicalTrials.gov).  

 When further investigating the effect of combined inhibition of Wee1 and Chk1/2, we 

found a stronger reduction in pCDK1 (tyr15) levels compared to treatment with either drug 

alone. In line with this, Wee1 has been shown to directly phosphorylate CDKs, and removal 

of Wee1 is thus expected to reduce such phosphorylations [53]. Chk1, on the other hand, 

phosphorylates the CDC25 phosphatases, leading to the latter proteins sequestration or 
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degradation, thereby hindering activating dephosphorylation of pCDK1/2 (tyr15) [54]. 

CDK1/2 phosphorylation is thus indirectly maintained by Chk1, and removal of the latter may 

promote further reduction of pCDK1/2. Inhibition of Wee1 and Chk1 has previously been 

shown by Davis et al. to be accompanied by decreased expression of pCDK1 and a 

synergistic reduction in cell viability [13]. They further showed that the antiproliferative 

effect of the inhibitors was partially reversed after CDK inhibition (Roscovitine), suggesting 

that CDK hyperactivity may be a contributing factor, rather than the sole cause of the 

antiproliferative effect of Chk1 and Wee1 inhibition. Deregulated activity of CDKs, as a 

consequence of Wee1 depletion, has in a previous study been shown to induce replication 

stress and loss of genomic integrity through subsequent nucleotide-shortage and increased 

firing of replication origins [55] In line with this, we observed that inhibition of Wee1 led to 

increased levels of DNA-damage and apoptosis, as assessed by expression of γ-H2A.X and 

cleavage of caspase 3 and PARP, respectively. The effect on apoptosis was amplified by 

combining the inhibitors, supporting a synergistic effect on viability. A further increase in 

DNA-damage following combined targeting of the kinases was seen in WM239 cells. 

Similarly, combined inhibition of Wee1 and Chk1 has in a previous study been demonstrated 

to induce a more intense and durable DNA-damage and anti-tumour effect than either drug 

alone [38]. Interestingly, treatment with the Chk1/2 inhibitor or Chk1 siRNA reduced the total 

protein level of CDK1 in the WM983B cell line. In agreement with this, transcriptional 

reduction of cell-cycle regulators, such as CDK1, has been observed after Chk1 depletion in 

somatic cells [56].  

Similar to what has been reported by others [38,57,58], inhibition of Wee1 as well as Chk1 

was shown to induce DNA-damage in the S phase of the cell cycle. These findings are in 

accordance with the proposed function of the kinases in restraining CDK activity during DNA 

replication (reviewed in [59]). Furthermore, it has been suggested that the cytotoxic effect of 
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Chk1 inhibition in melanoma cells is most likely due to inhibition of Chk1 in S phase, which 

drives cells prematurely from late S phase into an aberrant mitosis [44]. In line with this, 

combinational treatment with Chk1/2 and Wee1 inhibitors increased the population of S-

phase cells co-expressing the mitotic marker, pHH3. These are cells that have entered mitosis 

without having completed replication, most likely due to the compromised  G2/M checkpoint 

in the absence of Wee1 and/or Chk1. Likewise, an increased proportion of mitotic cells was 

observed following mono-targeting, and to a further extent by the combination of the 

inhibitors. Most likely the G2 cells have abrogated the G2/M checkpoint and entered mitosis 

given the short timeframe of this experiment (3 hrs).  

In summary, our results support an increased anti-tumour effect of combined inhibition of 

Wee1 and Chk1/2 and provide a rationale for further evaluation of the kinases as therapeutic 

targets in human melanomas.  
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Figure Legends 

 

Figure 1. Increased anti-tumour effect of combined inhibition of Wee1 and Chk1/2.   

A and B, Melanoma cell lines grown as monolayer cultures were treated with increasing 

concentrations (0.063- 1μM) of MK1775 (A) or AZD7762 (B) for 48 hours, and viability was 

measured by MTS analysis. C. Metastatic melanoma cell lines and primary cultures of human 

melanocytes (FOMA4) and fibroblasts (FF144 SC) were exposed to 200nM MK1775 and/or 

100nM AZD7762 for 48 hours. Cell viability was determined by MTS analysis. Data 

presented are the mean of at least three independent biological experiments and presented 

with positive standard deviation. 

 

Figure 2. Cytotoxic effects of MK1775 and AZD7762 are not reversed by medium 

renewal in 3D cultures. A. Experiment outline; spheroid formation was allowed prior to 

treatment (day 0-3), inhibitors (MK1775: 200nM, AZD7762: 100nM) were added on day 3. 

On day 6 and 10  

50%  of the medium was substituted by fresh medium containing no inhibitors. B. Spheroids 

were visually assessed on day 14 using light microscopy; scales in bottom right corners show 

500μm. C. Spheroid viability was estimated by CellTiterGlow analysis on day 14, and 

presented as the average of four individual experiments. D. Spheroid volume (Y-axis) was 

measured/estimated using Olympus Soft Imaging Solution Gm6H software. Changes in 

volume were estimated for each spheroid relative to its size on day 3. The graphs represent the 

average of two individual experiments presented with positive standard deviations. 
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Figure 3. Combinatorial treatment with MK1775 and AZD7762 reduces tumour growth 

in melanoma xenografts. Patient 3” xenografts were treated with MK1775 (30mg/kg, three 

times per week, orally), AZD7762 (25mg/kg, three times per week, i.v. injection) or a 

combination of theinhibitors, for two weeks (7 mice per group). The tumour volumes were 

measured twice a week using a caliper, and are presented as tumour volume relative to the 

volume of the tumour at the initiation of the treatment. Standard bars represent positive 

standard deviation. Comparison of tumour volume at day 48 was performed with one-way 

between groups ANOVA, and post-hoc comparisons with the Tukey HSD tests (* p < 0.024 

untreated vs. combination group). 

 

Figure 4. Combined inhibition of Wee1 and Chk1/2 leads to increased mitotic entry and 

DNA-damage in S-phase cells. A. Cells were treated with MK1775 (200nM) and/or 

AZD7762 (100nM) for 48 hours. Expression of proteins involved in DNA-damage response 

and apoptosis was determined by western blot analysis, and α-tubulin was used as loading 

control. B, C, D and E. WM983B cells were treated with either DMSO (control) or high 

concentrations of MK1775 (2μM) and/or AZD7762 (1μM) for 3 hours, and analyzed by Flow 

Cytometry B. Subpopulation gating of mitotic (blue) and pre-mitotic (purple) cells were based 

on their DNA content and expression of pHH3. The percentages of cells are indicated above 

the gated populations. C. The percentage of cells in mitosis (M) and pre-mitosis (Pre-M) are 

shown as fold change from the control cells. D. Expression of γ-H2A.X, indicative of DNA-

damage, was assessed following treatment with inhibitors. E. The median expression of γ-

H2A.X was determined for cells in the indicated phases of the cell cycle (for gating see Suppl. 

Figure 3), and shown as fold change from the control cells. Data are representative or average 

of four independent experiments. 
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Supplementary figures legends. 

 

Supplementary Figure 1. Increased anti-tumour effect of SiRNA mediated knock-down 

of Wee1 and Chk1.  A and B. Cell viability was measured 48h following SiRNA mediated 

knockdown by MTS (A) and CellTiterGlow (B) assays. C. Expression of proteins involved in 

DNA-damage response and apoptosis was determined by western blot analysis, and α-tubulin 

used as loading control. Data are the mean or representative of three independent experiments. 

 

Supplementary Figure 2. Synergistic effect of combining Wee1 and Chk1/2 inhibitors.  

A .Cells were treated with three different concentrations of MK1775 (200, 400 and 800nM) 

and/or AZD7762 (50, 100 and 200nM) as indicated. Cell viability was measured by MTS 

after 48 hours.  B. The combination Index (C.I) values were calculated by CalcuSyn software 

based on the Chou Talalay method for measuring drug interaction, for each combination of 

inhibitors C and D. Drug concentrations were adjusted for WM983B (MK1775; 50, 100 and 

200nM and/or AZD7762 (20, 40 and 80nM) and WM1366 (MK1775; 1, 2 and 4μM and/or 

AZD7762 (0.25, 0.5 and 1μM) cells in order to abide to Chou Talalay method requirements. 

. Data are the mean of three independent experiments and presented with error bars showing 

positive standard deviation. 

 

Supplementary Figure 3. Example of sub-gating of cells in different phases of the cell 

cycle. Different samples (Control, MK1775, AZD7762, Combination) were separated by their 

relative expression of Pacific blue (See Material and methods for barcoding procedure). Cells 

of different phases of the cell cycle were sub-gated based on DNA content and expression of 

the mitotic marker pHH3 (dark green: G1, Blue: S, orange: G2 and purple: Mitotic cells). 

Median expressions of γ-H2A.X were determined by Diva software. 
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Supplementary Figure 4. Combined inhibition of Wee1 and Chk1/2 leads to increased 

mitotic entry and DNA-damage in S-phase cells. Cells were treated with indicated 

concentrations of MK1775 (MK) and or AZD7762 (AZD) for 3 hours, barcoded and analyzed 

by flowcytometry. A. Percentage of cells in mitosis (M) and pre-mitosis (Pre-M) were 

calculated relative to the control. B. Median expression of γ-H2A.X in cells of different cell-

cycle phases, relative to the control. Data are the mean of four independent experiments 

 

Table 1. The Combination Index (C.I.) values after combined treatment with MK1775 and 

AZD7762 

Cell line Average C.I. 

value* 

Standard 

deviation 

WM239 0.3 ± 0.1 

WM45.1 0.9 ± 0.3 

WM983B 0.7 ± 0.4 

WM1366 0.6 ± 0.4 

FEMX-1 0.4 ± 0.1 

“Patient 3” 1.0 ± 0.2 

*C.I. values are estimated from the dose response effects presented in Suppl. Figure 2A and 

2B. 
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