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2. Introduction 

2.1 Impact of the disease 

Multiple sclerosis (MS) is a neurological disease of unknown cause most often 

affecting young adults with a peak incidence around age 30 (Koch-Henriksen and 

Sørensen 2010). The disease may lead to a range of different neurological signs and 

symptoms, including motor, sensory, visual, cognitive, energy-related and depressive 

symptoms (Compston and Coles 2008). It frequently leads to working inability, 

especially in the patients with a severe disease course (Kobelt et al. 2006; Pfleger et al. 

2010; Glad et al. 2011), to a reduced quality of life both in patients (Miller and Allen 

2010) and caregivers (Patti et al. 2007), and to excess mortality (Smestad et al. 2009; 

Kingwell et al. 2012). Around 380 000 individuals were affected by MS in Europe in 

2005, resulting in an estimated total annual cost of €12.5 billion (Sobocki et al. 2007).  

Estimates from 2013 indicated that 2.3 million people were afflicted with the diagnosis 

worldwide (Http://www.msif.org/about-us/advocacy/atlas/). Thus the disease has 

major consequences, both to patients, health care systems and society (Naci et al. 

2010). 

2.2 Epidemiology 

There are large differences in the reported prevalence of MS, both within and 

between countries. Prevalence estimates from Norway are among the highest in the 

world, with 203 per 100 000 inhabitants in a recent study (Berg-Hansen et al. 2014a). In 

contrast prevalence rates in regions of Asia are below five per 100 000 inhabitants 

(Koch-Henriksen and Sørensen 2010). A latitude gradient of prevalence has been 

identified, with a high prevalence in Northern Europe, North America, Australia and 

New Zealand, and a lower prevalence in South-America, Africa and Asia (Figure 1) 

(Http://www.msif.org/about-us/advocacy/atlas/; Koch-Henriksen and Sørensen 2010; 

Simpson et al. 2011). There’s a tendency towards higher prevalence and incidence in all 

investigated regions with time (Koch-Henriksen and Sørensen 2010).  
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Figure 1. World prevalence of MS in 2013. The figure is based on published studies in 2008-2013. The 

color codes indicate prevalence per 100 000 inhabitants. Printed with permission from Multiple 

Sclerosis International Federation.  

  

During the last century an increased female-to-male ratio has been observed, 

and in Norway the most recent study reports a female-to-male ratio of 2.2:1  (Koch-

Henriksen and Sørensen 2010; Berg-Hansen et al. 2014a).  

Early epidemiological studies identified a difference in MS prevalence between 

the coastal and rural regions of Norway (Swank et al. 1952). However, the most 

complete prevalence study to date neither found any difference in prevalence between 

different regions of Norway nor a latitude gradient (Berg-Hansen et al. 2014a).  
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Figure 2. The most important 

environmental factors associated with 

MS disease susceptibility are low levels 

of vitamin D, infections and smoking. 

Illustration: MS Research Group 

OUS/Gro Owren Nygaard 

 

Difference in MS risk between different ethnic groups have been reported 

worldwide (Milo and Kahana 2010), and a lower risk of MS has been identified in the 

Sami population compared to Caucasians in Norway (Grønlie et al. 2000; Harbo et al. 

2007). Migration studies indicate that migration from low-risk to high-risk regions may 

alter the individual MS risk, but that migration from high-risk to low-risk countries may 

not give the corresponding risk-reduction (Milo and Kahana 2010). Recent studies from 

Norway indicate that in ethnic groups with low MS risk in their home country, second 

generation immigrants develop a higher MS risk (Smestad et al. 2008; Berg-Hansen et 

al. 2014b). Hence epidemiological studies indicate that both environmental and genetic 

factors are involved in the risk of acquiring the disease.  

Further, ethnicity may influence the manifestation of symptoms at onset or the 

disease course. Most studied are the differences between African American and White 

Americans in the USA. These studies show that African Americans often have a higher 

magnetic resonance imaging (MRI) lesion burden, multiple symptoms at onset and a 

more severe disease compared to Caucasian Americans (Cree et al. 2004; Kister et al. 

2010; Weinstock-Guttman et al. 2010). A recent Norwegian study found that disease 

severity was higher in the immigrants studied than in the native Norwegian population 

(Berg-Hansen et al. 2013). Thus ethnicity may not just affect the risk of the disease, but 

also the disease course.  

2.3 Risk factors for MS 

The large differences in the reported 

prevalence of MS indicate that there are regional 

risk factors for disease susceptibility. Extensive 

research has shown that both genetic and 

environmental factors contribute to the risk of 

acquiring the disease (McKay et al. 2015).  

The most important environmental 
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Figure 3. Circus plot of 110 SNPs associated 

with increased MS risk. International 

Multiple Sclerosis Genetics Consortium 2013, 

printed with permission. 

 

factors associated with increased disease susceptibility are low levels of Vitamin D, 

infections and smoking (Figure 2) (Ascherio 2013). Longitudinal studies have observed 

associations between serum levels, dietary or supplemental intake of Vitamin D and MS 

risk later in life (Munger et al. 2004, 2006). A recent review systematically collected 

material from systematic reviews and meta analyses in the field, and found a summary 

odds ratio (OR) of 4.5 for anti-Epstein-Barr nuclear antigen sero-positivity, an OR of 

2.17 for infectious mononucleosis and an OR of 1.52 for smoking (Belbasis et al. 2015). 

Body size, gut-microbiota and nutritional salt intake may also be contribute to disease 

susceptibility or modulate the disease course (Munger et al. 2009; Berer et al. 2011; 

Kleinewietfeld et al. 2013; Wesnes et al. 2014; Farez et al. 2015). These environmental 

factors probably all contribute to increased MS risk though modulations of the immune 

system (Ascherio 2013; Kutzelnigg and Lassmann 2014). 

Both migration studies and studies of disease risk in families support a role for 

susceptibility genes in the development of multiple sclerosis (Milo and Kahana 2010; 

Westerlind et al. 2014). More than forty years ago genetic studies found associations 

between certain HLA alleles and MS risk (Jersild et al. 1972). It is now established that 

the HLA allele DRB1:1501 is the major 

genetic risk factor in MS, increasing the risk 

of developing MS threefold among Northern 

Europeans (Compston and Coles 2008). 

Recent years large international 

collaborations have led to the identification 

of 110 single nucleotide polymorphisms 

(SNPs) associated with increased MS risk 

(Figure 3) (Sawcer et al. 2011; International 

Multiple Sclerosis Genetics Consortium 

2013). With these findings around a quarter 

of the reported heritability in MS can be 

accounted for (Sawcer et al. 2014). The 
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Figure 4. Genetic and environmental risk factors contribute to disease susceptibility. Illustration: 

MS Research Group OUS/Gro Owren Nygaard 

identified SNPs are mainly located in the previously reported HLA regions or in non-

coding regions of the genome and are probably involved in the regulation of the 

adaptive immune system (Sawcer et al. 2014). Most of these SNPs add minimally to the 

disease susceptibility, with odds ratios below 1.5. However, an accumulation of risk 

genes is related to a younger age at onset and may increase risk of disease and 

presence of cerebrospinal fluid OCBs (De Jager et al. 2009; Harbo et al. 2013). Further, 

the interaction between genetic and environmental risk factors may lead to 

accumulated MS risk in some patients, as has been shown for smoking and childhood 

obesity combined with unfavorable HLA genotypes (Hedström et al. 2011, 2014).  

2.4 Pathology of MS 

We do not know the cause of multiple sclerosis, but the leading hypotheses 

concerning the initiation of the disease may be explained as illustrated in Figure 4. The 

risk of disease increases with certain genetic variants, as well as environmental factors 

(Sawcer et al. 2011). Disease is triggered by a stimulus either external (the outside-in 

hypothesis) or internal to the CNS (the inside-out hypothesis) (Hemmer et al. 2015). 
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Figure 5. Macroscopic 

drawing of MS lesions in 

brainstem and medulla. 

Carswell, 1838. Printed with 

permission from Glasgow 

University.  

 

Figure 6. Demyelination and axonal damage. Confocal 

microscopy of axons with active demyelination, 

transection and axonal swelling. Printed with permission 

from Trapp BD et al. 1998, Copyright Massachusetts 

Medical Society. 

This event initiates a cascade of pathological events, involving both the innate and 

adaptive immune system.  

2.4.1 Inflammation, demyelination and reparative mechanisms 

Pathology studies of MS patients date back to the 19th century, with 

macroscopic studies and drawings of lesions of the brainstem and spinal cord 

accompanied by atrophy (figure 5) (Carswell 1838; Cruvhelhier 1842) and microscopic 

description of CNS veins with surrounding lesions 

(Rindfleisch 1863). Disruption of the blood-brain barrier, 

focal demyelinating lesions with axonal damage and 

reactive glial scar formation in gray and white matter all 

contribute to axonal, synaptic and neuronal loss (Figure 

6) (Kutzelnigg and Lassmann 2005, 2014; Dutta and 

Trapp 2007; Bø 2009). This damage leads to the 

irreversible neurological disability associated with the 

disease (Tallantyre et al. 2010; Popescu et al. 2013). 
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Figure 7. Pathological and immunological mechanisms change 

with MS disease duration.  Adapted from Kutzelnigg 2014 and 

Hemmer 2015. Illustration: Gro Owren Nygaard 

 

Focal inflammatory 

demyelinating lesions in 

the WM dominate the 

pathology in acute and 

relapsing MS, while 

cortical lesions, atrophy 

and damage to NAWM 

dominate in the 

progressing disease 

(Figure 7) (Kutzelnigg and 

Lassmann 2014; Mahad et 

al. 2015).  

Variable degrees of remyelination have been identified in MS plaques. While 

almost all plaques are remyelinated in some patients with very long disease duration, 

remyelination can hardly be identified in others (Barkhof et al. 2003; Patrikios et al. 

2006; Goldschmidt et al. 2009). Remyelination seems to be a continuous reparative 

process, contributing to the formation of new, thin myelin sheaths surrounding axons 

both in the relapsing and the progressive phase of the disease (Franklin and Ffrench-

Constant 2008; Mahad et al. 2015). This remyelination may protect the axons against 

chronic damage by reducing energy demand for signal conduction and the 

reestablishment of a protective extracellular environment (Trapp and Stys 2009).  

2.4.2 White matter damage in MS 

White matter lesions are typically round or oval, and are mainly located 

periventricularly, juxtacortically, infratentorially and in the spinal cord (Figure 8) 

(Brownell and Hughes 1962; Polman et al. 2011). Inflammatory cells from both the 

adaptive and innate immune system contribute to demyelination, damage to the 

myelin-forming oligodendrocytes, axonal damage and neuronal death in active lesions 

(Trapp et al. 1998). Combined MRI and pathology studies have shown a high 

correspondence between T2 and FLAIR detectable lesions and these sites of 



17 
 

Figure 8. WM lesions on axial FLAIR 

image of MS patient. Illustration: 

Piotr Sowa/Gro Owren Nygaard 

inflammation, demyelination and remyelination 

(Filippi et al. 2012). A higher T2 lesion load, i.e. a 

larger volume of white matter lesions visible on T2 

weighed MRI images, increases the risk of 

conversion from CIS to MS (Kuhle et al. 2015). 

Radiological progression is also associated with a 

higher future relapse rate (Sormani et al. 2013). 

Furthermore, new or enlarging WM lesions, 

together with hypointense T1 lesions and brain 

atrophy, predict future disability progression 

(Bermel et al. 2013; Giorgio et al. 2013; Popescu et 

al. 2013). 

   While new active WM lesions mainly appear in patients with acute and 

relapsing multiple sclerosis, diffuse injury of the normal-appearing white matter 

(NAWM) is more prominent in primary and secondary progressive multiple sclerosis 

(Kutzelnigg et al. 2005). A pathology study of MS patients, mainly in the progressive 

stage of the disease, found that 72 % of NAWM investigated was histologically 

abnormal (Allen and McKeown 1979). The abnormalities included gliosis, demyelination, 

immune cell infiltration and perivascular deposits (Allen and McKeown 1979).  

2.4.3 Gray matter damage in MS 

Damage to gray matter (GM) in MS patients has been described for more than a 

century (Bø 2009). However, the impact of GM lesions and atrophy on disability has 

become evident through extensive research the last decades (Geurts et al. 2012).  

Cortical GM lesions are found in all disease stages, but are most prominent in 

patients with a long disease course (Figure 9) (Giorgio et al. 2011; Filippi et al. 2013b), 

Most cortical lesions are intracortical or located at the border between GM  and WM 

(Bø et al. 2003). However, in a subset of patients  subpial cortical lesions dominate, 

indicating meningeal involvement in the disease process (Bø et al. 2003; Calabrese et al. 
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Figure 9. Damage to white and gray matter in MS. Printed with permission from Dendrou, Fugger, 

and Friese 2015 and Nature Reviews Immunology. 

2015). A more rapidly progressing disease course is associated with more meningeal 

inflammation and GM damage (Magliozzi et al. 2010; Howell et al. 2011; Calabrese et al. 

2013).  

In addition to focal GM lesions, widespread cortical and subcortical GM atrophy 

is identified in MS patients (De Stefano et al. 2003; Sailer et al. 2003; Fisher et al. 2008). 

Subcortical atrophy is found even in patients with clinically isolated syndrome (CIS) 

indicative of MS (Henry et al. 2008). The first studies of RRMS patients with a short 

disease duration (less than three and five years respectively) showed conflicting results 

concerning cortical thinning in patients compared to controls, while studies of total 

gray matter fraction found smaller values in the patient group (Chard et al. 2002; De 

Stefano et al. 2003; Sailer et al. 2003). In patients with SPMS, GM atrophy is 

generalized and includes both cortical, subcortical, cerebellar and brainstem atrophy 

(Ceccarelli et al. 2008). A longitudinal study has found that the GM atrophy rate 
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increases with time, from 3.4 times the normal rate in CIS patients to 14 times the 

normal rate in SPMS (Fisher et al. 2008). Thus both cerebral location and GM atrophy 

rate change with disease duration.  

GM atrophy is associated with cognitive impairment (Calabrese et al. 2010b; 

Riccitelli et al. 2011) and high atrophy rates early in the disease course may be the best 

predictor available for a worse long-term disability (Filippi et al. 2013a; Popescu et al. 

2013).  

Studies of the association between GM atrophy and WM lesions have shown 

conflicting results (Bö et al. 2007; Bendfeldt et al. 2010). Recent studies indicate that 

diffuse damage to white matter tracts may be associated with damage to the 

corresponding cortical and subcortical GM (Gorgoraptis et al. 2010; Kolasinski et al. 

2012; Cappellani et al. 2014; Bergsland et al. 2015). Furthermore, MR spectroscopy 

studies have found that damage to NAWM predicts future brain atrophy and 

neurological disability evolution (Llufriu et al. 2014). However, in the progressive phase 

of the disease, GM atrophy escalates, while increase in WM lesion load is similar to 

rates in RRMS (Fisher et al. 2008). Thus GM atrophy may evolve in parallel or be 

secondary to WM damage in the early disease stages, while in the progressive stage of 

the disease other mechanisms dominate.  

The main pathological substrate of neocortical GM atrophy is neuronal, axonal 

and glial degeneration and synaptic loss (Wegner et al. 2008; Popescu et al. 2015). 

Axonal damage has been identified as the factor most closely associated with 

irreversible disability in MS (Tallantyre et al. 2010). Thus GM atrophy is an indicator of 

irreversible brain damage and early GM atrophy may serve as a marker of long-term 

disability outcomes in MS patients. 

2.5 MS diagnosis 

There are anecdotes and patient histories of disease courses that fit with MS 

dating back to the 12th century (Holmøy 2006). Jean-Martin Charcot (1825-1893) 
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defined the disease clinically and pathologically, after following the disease progression 

of his housemaid until her death. He described “Sqlerose en Plaque” with a triad of 

clinical symptoms (nystagmus, scanning speech and intentional tremor), and he also 

noted cognitive impairments in some of the patients (Charcot 1868; Clanet 2008).  

The disease was later systematically characterized by Schumacher in 1965 and 

the diagnostic criteria were revised in a Workshop on the Diagnosis of Multiple 

Sclerosis in 1983 (Poser and Paty 1983). Expanding knowledge in the field and a need 

for clarifying criteria in research and clinical care has led to several revisions of the 

disease criteria. There is international consensus for the use of the current diagnostic 

MS criteria, the 2010 revisions to the McDonald criteria (McDonald et al. 2001; Polman 

et al. 2005, 2011). With these criteria RRMS can be diagnosed after a single relapse if 

there is clinical or imaging evidence of dissemination of the disease in space and time 

(Table 1). Oligoclonal bands in the cerebrospinal fluid, not identified in serum, is found 

in 80-95 % of MS cases, but are not part of the criteria for RRMS (Polman et al. 2011; 

Goris et al. 2015). The diagnosis of progressive MS is more complex and requires 

disease progression over time (Table 1) (Polman et al. 2011).  

MRI was mentioned as a possible paraclinical tool guiding the diagnosis of MS in 

the Poser criteria shortly after the introduction of MRI in clinical practice (Poser and 

Paty 1983). In the 2001 McDonald Criteria MRI assessment was established as a 

diagnostic tool, and MRI assessments have increasing weight in the subsequent 

revisions of the criteria in 2005 and 2010 (McDonald et al. 2001; Polman et al. 2005, 

2011). However, radiological evidence alone is not sufficient for the diagnosis of MS. 

The identification of radiological lesions indicative of MS without clinical symptoms or 

signs, Radiological Isolated Syndome (RIS), will only lead to an MS diagnosis within the 

next two years in around a third of the cases, even after extensive clinical and 

paraclinical examinations (Lebrun et al. 2014). In contrast, a Danish post-mortem study 

published in 1988, before the everyday use of MRI,  verified the clinical MS diagnosis 

made by neurologists in 94 % of the patients investigated (Engell 1988). Thus the  
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Table 1. Diagnostic criteria of MS. Printed with permission from Polman et al 2011 and Archives of 

Neurology.  
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Figure 10. Definitions of disease course in MS. Recommendations published by The Advisory 

Committee on Clinical Trials of MS and the MS Phenotype Group (Lublin et al. 2014). Illustration: Gro 

Owren Nygaard 

diagnosis of MS, though guided by MRI and other paraclinical examinations, should still 

be based on clinical assessment.  

2.6 Disease course 

The Advisory Committee on Clinical Trials of MS and the MS Phenotype Group 

have published recommendations for definition of the clinical course of MS (Lublin et al. 

1996, 2014). The patients investigated in this thesis were evaluated according to the 

suggestions published in 1996 (Lublin et al. 1996). According to those criteria the 

disease course of MS patients could be divided into four subtypes. In relapsing-

remitting (RRMS) the patients experienced episodes of relapses followed by total or 

partly recovery. In Primary Progressive Multiple Sclerosis (PPMS) the disease was 

progressive with no relapses. Secondary Progressive Multiple Sclerosis denoted the 
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conversion from RRMS to PPMS, and Progressive-Relapsing Multiple Sclerosis (PSMS) 

denoted a phenotype with a dominance of progressive disease with occational relapses 

(Figure 10) (Lublin et al. 1996). The latest update of clinical course by the Advisory 

Committee on Clinical Trials of MS and the MS Phenotype Group was published after 

the end of the data collection in this thesis (Lublin et al. 1996, 2014). In those 

guidelines CIS was included as a part of the MS diagnosis spectrum, and the other 

diagnoses were limited to RRMS and PMS (including both PPMS and SPMS). Annual 

evaluations of disease activity (defined as MRI evidence of new or expanding lesions or 

clinical relapses) and clinical worsening or disability progression were recommended. 

They suggested the term “confirmed worsening” for clinical symptoms remaining after 

relapses and “disability progression” for the progressive disability accumulation in PMS 

(Figure 10) (Lublin et al. 2014).  

2.7 The natural history of MS 

Around 85 % of MS patients present with a clinically isolated episode of 

neurological disability (Confavreux and Vukusic 2006). The presence of OCB, multiple 

T2 WML and a younger age increase the probability of conversion to clinically definite 

MS within the next five years (Kuhle et al. 2015). Fifteen to twenty percent of the 

patients present with a primary progressive disease and experience gradual increase in 

disability with no definite relapses (Myhr et al. 2001; Confavreux and Vukusic 2006). 

Both natural history studies and pathological studies suggest that primary progressive 

MS succeeds a period of “silent” relapses, and represents the same disease as 

secondary progressive MS (Figure 11) (Confavreux and Vukusic 2006; Kutzelnigg and 

Lassmann 2014; Dendrou et al. 2015; Mahad et al. 2015).  

Most RRMS patients convert to SPMS after 5-15 years (Scalfari et al. 2014). A 

gradual or stepwise increase in disability is the rule, but disability regression has been 

reported in a subset of patients (Tremlett et al. 2012). A higher age at onset, male sex, 

involvement of multiple systems, high relapse rate and a rapid increase in EDSS the first 

five years are prognostic markers for a worse long-term outcome, as measured by 
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Figure 11. The natural history of MS. Printed with permission from Dendrou, Fugger, and Friese 2015 

and Nature Reviews Immunology.  

conversion to SP MS and higher EDSS scores (Degenhardt et al. 2009; Scalfari et al. 

2010, 2014). However, patients with low EDSS after a long disease duration (“benign 

MS”) may be bothered with symptoms less accounted for on the EDSS scale, like 

cognitive impairment, depression and fatigue, and may also be severely affected by the 

disease (Amato et al. 2006; Smestad et al. 2010; Glad et al. 2011). 

2.8 Evidence of disease activity in MS 

In order to predict clinical course, decide on treatment and to inform patients, it 

is important to have reliable and user-friendly tools describing disease activity in MS 

patients. The most readily available measures are information about relapses, disability 

and MRI changes. 
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Relapses can be defined as any new neurological symptoms, not associated with 

fever or infection, lasting for at least 24 hours and accompanied by new neurological 

signs (Havrdova et al. 2009). Relapses are most frequent early in the disease course 

(Compston and Coles 2008). A high relapse rate during the first years after diagnosis is 

associated with a shorter time to reach EDSS 6, faster conversion to progressive MS 

and higher disability levels (Weinshenker et al. 1989; Scalfari et al. 2010, 2014). Further, 

incomplete remission from relapses may lead to long-term disability accumulation 

(Lublin et al. 2003). Also, relapses on interferon treatment increase the risk of 

sustained disability progression (Bosca et al. 2008).  

The most common measure of disability in MS is the Expanded Disability Status 

Scale (EDSS) (Kurtzke 1983). Disability progression can be defined as an increase in 

EDSS≥1 compared to baseline in the absence of a relapse the last six weeks before 

examination (Giovannoni et al. 2011). Disability progression early in the disease course 

is correlated with long-term disability (Degenhardt et al. 2009). Indeed, early disability 

progression was reported to be the strongest predictor of long term disability in 

patients treated with interferons (Río et al. 2006).  

 MRI measures of MS has had major influences on MS diagnostic criteria, 

treatment and research (Rovira et al. 2015). In clinical practice radiological progression 

can be defined as at least one new or enlarging T2 or Fluid Attenuated Inverse 

Recovery (FLAIR) white matter lesion (WML) (with or without gadolinium enhancement 

on T1) compared to MRI at baseline (Havrdova et al. 2009). As mentioned previously, 

higher T2 lesion load increases the risk of conversion from CIS to MS and radiological 

progression is associated with a higher future relapse rate (Sormani et al. 2013; Kuhle 

et al. 2015). Furthermore radiological progression, together with hypointense T1 

lesions and brain atrophy, predict future disability progression (Bermel et al. 2013; 

Giorgio et al. 2013; Popescu et al. 2013).  

No Evidence of Disease Activity (NEDA), i.e. the absence of relapses, disability 

progression or radiological progression, was first introduced as an outcome measure in 
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Figure 12. Common symptoms in MS. Illustration: MS Research 

Group OUS/Gro Owren Nygaard 

post-hoc studies of disease modifying treatment (DMT)s in clinical trials (Havrdova et al. 

2009; Giovannoni et al. 2011; Lublin et al. 2013). This outcome measure has separated 

patients treated with DMTs from those on placebo (Havrdova et al. 2009; Giovannoni 

et al. 2011; Lublin et al. 2013). Furthermore, NEDA has been used as outcome measure 

in patients with active MS treated with autologous hematopoietic cell transplantation 

(HCT) (Nash et al. 2015). A recent population-based cohort study found that almost half 

of the patients fulfilled the NEDA criteria after one year, and that NEDA status at two 

years predicted stability of disability the following five years better than any of the 

individual measures alone (Rotstein et al. 2014).  

2.9 Symptoms in MS 

2.9.1 Neurological symptoms 

A range of 

different symptoms are 

associated with MS 

(Figure 12). The 

presenting symptoms 

often include motor, 

sensory, visual or 

cerebellar symptoms 

(Compston and Coles 

2008). Later in the 

disease course the 

patients often have 

multiple neurological 

symptoms. Specific 

signs typical of MS 

include l’Hermitte’s sign, 

i.e. sensory symptoms 
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with neck flexion, and Uthoffs phenomenon, i.e. transient worsening of symptoms with 

increased body temperature (Compston and Coles 2008). Pyramidal, sensory, and 

mental disabilities (including both cognitive impairment, fatigue and depression) all 

have a large impact on MS patients’ quality of life (Nortvedt et al. 1999).  

Autonomic symptoms in MS patients include disturbed control of the bladder 

and bowel, disturbed cardiovascular function, sleep disturbancies, sexual problems and 

dysregulation of sweat organs (Haensch and Jörg 2006). Studies of autonomic 

dysregulation in MS patients have been conflicting concerning the association with 

fatigue (Egg et al. 2002; Niepel et al. 2013). However, recent studies indicate that 

autonomic nervous system (ANS) dysfunction may contribute to MS-related fatigue 

(Cortez et al. 2015).  

2.9.2 Cognitive symptoms 

Cognitive symptoms in MS were described already in the 19th century (Clanet 

2008). However, the first population-based study of cognitive impairments in MS 

patients was not performed before the early 1990s (Rao et al. 1991). Rao and 

colleagues identified cognitive impairments in 43 % of the MS patients investigated 

(Rao et al. 1991). Amato and colleagues examined MS patients with a short disease 

duration (less than two years), and they found that these patients performed worse 

than healthy controls, most notably in verbal memory and abstract reasoning (Amato 

et al. 1995). More recent studies have found cognitive impairment (CI) in patients at 

the very early disease stages: in RIS patients (Lebrun et al. 2010) and in CIS patients 

(Achiron and Barak 2003; Feuillet et al. 2007).   

Cognitive dysfunction in MS patients increases with disease duration (Amato 

and Ponziani 2001; Van Schependom et al. 2014b). A population-based study in 

Stockholm, Sweden, found that 50 % of the MS patients investigated had cognitive 

problems (Einarsson et al. 2006). Similarly, a study in Oslo, Norway, identified CI in 50 % 

of the MS patient with a long disease duration (>20 years) (Smestad et al. 2010). 
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Figure 13. Cognitive symptoms in MS. Illustration: Gro 

Owren Nygaard 

  Several cognitive domains may be affected in MS patients (Figure 13). 

Processing speed and memory are the most commonly impaired functions, followed by 

executive functions and visuospatial perception (Benedict et al. 2006). Processing 

speed may be the primary domain affected in most patients (Demaree et al. 1999; 

DeLuca et al. 2004; Covey and Zivadinov 2011; Van Schependom et al. 2014b). 

Impairments in this cognitive 

domain may contribute to a poorer 

test performance in other domains, 

like verbal memory (Lengenfelder 

et al. 2006; Forn et al. 2008; 

Urbanek et al. 2010) and executive 

functions (Denney and Lynch 2009; 

Roth et al. 2015).  

Predictors for cognitive 

impairments include young age at 

MS onset and a severe disease 

course. Some studies have found 

that CI is associated with a higher 

EDSS (Amato and Ponziani 2001), 

while others have not confirmed such an association (Smestad et al. 2010). Several MRI 

studies have found that a higher WM lesion load, damage to NAWM, GM atrophy and 

GM lesions are all associated with more cognitive symptoms (Goodin et al. 2012; Rocca 

et al. 2015).Cognitive dysfunction at diagnosis predicts disability progression and 

conversion to SP MS ten years later (Moccia et al. 2015). Furthermore, cognitive 

dysfunction itself has severe consequences: it is associated with lower working abilities 

and with reduced quality of life (Nortvedt et al. 1999; Glad et al. 2011).  

Studies of cognitive reserve in MS have shown that high premorbid intelligence 

levels moderate or delay the negative effects of structural brain damage on cognition 

(Benedict et al. 2010). Higher education and more premorbid intellectual leisure 
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activities are associated with a lower risk of cognitive dysfunction (Sumowski et al. 

2010; Martins Da Silva et al. 2015). Also a larger maximal lifetime brain growth 

measured by estimates of intracranial volume protects against CI, a phenomenon 

termed “brain reserve” (Sumowski et al. 2013). Results are conflicting as to whether 

these protective effects are sustained when the disease progresses (Amato et al. 2013; 

Sumowski et al. 2014).  

Structural brain damage, most notably damage to deep gray matter, but also 

cortical gray matter atrophy, cortical lesions, increased WMLL and damage to NAWM 

increase the risk of CI in MS patients (Rao et al. 1989; Dineen et al. 2009; Calabrese et 

al. 2012). Results from functional neuroimaging have been more conflicting. Functional 

MRI (fMRI) studies have indicated that patients with MS or clinically isolated 

syndromes (CIS) show a different cerebral resting-state activation as well as task-

related cerebral activation patterns compared to healthy controls (Staffen et al. 2002; 

Audoin et al. 2003; Penner et al. 2003; Forn et al. 2006; Roosendaal et al. 2010; Rocca 

et al. 2014b). MS patients with both normal cognitive function (Staffen et al. 2002) and 

with mild cognitive impairment (CI) (Penner et al. 2003) may recruit more cortical areas 

during cognitive tasks than controls. Such an increased activation could be a sign of 

functional recruitment or plasticity early in the disease course compensating and 

delaying cognitive difficulties. This “functional reorganization” theory fits with results of 

fMRI studies of motor tasks in MS patients, where patients with motor impairments 

show more extensive activations in cortical areas than participants with normal 

cognitive scores (Rocca et al. 2005). However, cerebral activation may also be normal in 

patients with mild CI and altered activation may be evident only in more severely 

impaired patients (Rocca et al. 2014b). The altered cerebral recruitment among MS 

patients may thus alternatively be a sign of dysfunctional reorganization caused by the 

disease (either directly because of structural changes, i.e. lesions and atrophy or by an 

altered activation pattern caused by cerebral stress or inflammation), leading to less 

appropriate brain activation, and contributing to cognitive difficulties. Recently a 

hypothesis of cerebral network collapse as a cause for developing cognitive impairment 
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in MS has been raised (Schoonheim et al. 2015). They suggest that network collapse is 

induced after a critical threshold dependent on both structural and functional brain 

changes (Schoonheim et al. 2015).  

2.9.3 Fatigue 

Fatigue is a broad term used to describe a feeling of excessive tiredness or 

exhaustion (Krupp 2010). A distinction between fatigue as the subjective sensation of 

tiredness and performance fatigability as the objective deterioration in performance 

with time has been suggested to define a unified taxonomy for neurological disorders 

(Kluger et al. 2013).  

Fatigue is a common and often disabling symptom in MS patients (Krupp 2010). 

It afflicts more than 80 % of MS patients and 40 % report fatigue as their most disabling 

symptom (Bakshi 2003; Minden et al. 2006).  A longitudinal study found that patient-

reported severity of fatigue symptoms were not static, rather they varied considerably 

throughout the observation period in most patients (Johansson et al. 2008). Fatigue is 

associated with depressive symptoms, a worse quality of life, not living with a partner 

and not working (Bakshi et al. 2000b; Johansson et al. 2008; Smedal et al. 2011).  

The first MRI studies of fatigue in MS reported conflicting results concerning 

associations between whole brain atrophy, lesion load and fatigue (Codella et al. 2002; 

Tedeschi et al. 2007). However, further studies have found that localized WM lesion 

load, GM atrophy of frontotemporal regions, damage to NAWM in frontotemporal 

regions, and damage to corpus callosum, thalamus and basal ganglia, respectively, are 

associated with fatigue in these patients (Bakshi et al. 2000b; Calabrese et al. 2010a; 

Pellicano et al. 2010; Gobbi et al. 2014; Rocca et al. 2014a; Yaldizli et al. 2014). This 

evidence from imaging studies has led to the suggestion of a thalamo-striato-cortical 

explanatory model of fatigue in MS (Leocani et al. 2008). This model suggests that 

circuits involving thalamus, basal ganglia, and frontoparietal cortex could be disrupted 

either structurally by MS lesions or functionally by inflammation and lead to symptoms 

of fatigue (Leocani et al. 2008).  
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2.9.4 Depressive symptoms 

The life-time risk of major depression is 25-50 % in MS patients, which is two to 

five times the risk in the general population (Feinstein et al. 2014). In cross-sectional 

population-based studies 30-40% of MS patients report depressive symptoms 

(Chwastiak et al. 2002; Beiske et al. 2008). Depression is also more common in MS 

patients than in patients with other chronic diseases (Patten et al. 2003). 

 A recent diagnosis of MS, major changes in functioning, or limited social 

support increase the risk of depression (Chwastiak et al. 2002). MRI studies have found 

that WM lesion burden, ventricular enlargement and frontotemporal GM atrophy are 

associated with depressive symptoms in MS (Pujol et al. 1997; Bakshi et al. 2000a; 

Feinstein et al. 2004; Gobbi et al. 2014). Together these studies indicate that both 

social factors and structural damage to fronto-parietal brain regions contribute to 

depression in these patients.  

2.9.5 Other psychiatric symptoms  

Other psychiatric symptoms, particularly anxiety, are also common in MS 

(Beiske et al. 2008). The incidence of psychiatric comorbidity in this patient group 

remains understudied and is probably also undertreated (Beiske et al. 2008; Marrie et 

al. 2015).  

2.9.6 Vision and vison-related symptoms 

Optic neuritis (ON) is common in patients with MS. It is the first symptom of the 

disease in 25 % of MS patients and occurs during the disease in about 70 %, usually in 

the relapsing–remitting phase (Toosy et al. 2014b). High contrast visual acuity is often 

affected in acute ON and recovers only partly in most patients (Balcer et al. 2014). 

Retinal Nerve Fiber Layer (RNFL), assessed by Optic Coherence Tomography (OCT) is 

thinner in MS patients than controls, even early in the disease course of MS. 

Furthermore, RNFL thinning is associated with MRI measures of CNS GM atrophy 

(Balcer et al. 2014). Visual deficits, structural loss of retinal axonal and neuronal 

integrity and delayed VEP can frequently be found in the patients even without a 
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history of ON (Balcer et al. 2014). Eye-movement disorders are less studied, but a range 

of disorders, including nystagmus, disruption of saccades, diplopia and internuclear 

ophthalmoplegia frequently afflict the patients (Frohman et al. 2005). These 

decrements in vision and eye-movements contribute to disability and to a worse vision-

related quality of life (Schinzel et al. 2014). 

2.10 Neuroimaging in MS 

Magnetic resonance imaging is a relatively new imaging modality. The high 

sensitivity to a broad range of tissues, good contrast, relative safety and non-invasive 

nature all contribute to the popularity and usefulness of the technique. Advances in 

physics throughout the last century led to the development of the first MRI platform 

for clinical examinations of humans in 1980. The development in the field of MRI has 

led to several Nobel prizes in medicine and physics and to implementations of imaging 

both in clinical medicine and in research (Haacke et al. 1999).    

In the field of MS, the introduction of MRI has been particularly important. 

Pathological studies have long identified white matter lesions and brain atrophy in MS 

brains (Kutzelnigg and Lassmann 2014). However, prior to the MRI technology no good 

imaging modalities were available to detect these changes in the patients in vivo. In 

1981 Young and colleagues scanned ten MS patients by means of CT and MRI. They 

identified a total of 19 cerebral lesions on the CT scans, all in the periventricular regions, 

and 112 further lesions on the MRI scans (Young et al. 1981). Studies comparing MRI 

and pathological findings confirmed that T2 weighed MRI captured histologically 

confirmed demyelinated WM lesions (Stewart et al. 1984). 

The first studies of clinical and MRI findings in MS patients reported an 

incomplete association between the two, termed the “clinico-radiological paradox” 

(Barkhof 2002). This gap probably had several explanations. The use of EDSS as 

disability outcome led to imprecise clinical assessments (Cohen et al. 2012). Further, 

the early MRI studies did not image damage to gray matter and normal-appearing 
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white matter (Filippi and Rocca 2013). Also, premorbid brain resources, both cognitive 

reserve and brain reserve, that could modulate the association between brain 

pathology and clinical outcomes were not accounted for (Sumowski et al. 2014). Recent 

years this gap has diminished because of advances in the field of clinical assessments, 

MRI and cognitive reserve (Cohen et al. 2012; Filippi et al. 2014; Sumowski et al. 2014).  

Today MRI scans are parts of the routine examinations both at diagnosis and 

clinical follow-up of MS patients in Norway and internationally (Myhr et al. 2011; Rovira 

et al. 2015). Furthermore, MRI changes are used as primary or secondary outcome in 

clinical trials, and new MRI sequences are considered for future assessments in MS 

patients (Filippi et al. 2014).        

2.11 Treatment 

To date there is no cure for MS. The treatment is limited to pharmacological 

treatment of relapses, disease course and symptoms, as well as non-medical 

rehabilitation strategies. 

The intravenous or oral treatment of relapses with methylprednisolone 

significantly reduces the severity and longevity of relapses in CIS, ON and MS patients. 

However, no evidence of long term effect of such treatment has been found (Beck et al. 

1992; Miller et al. 2000; Toosy et al. 2014b). Thus this treatment is indicated if 

symptoms are bothersome to the patients or interfere with daily function (Myhr et al. 

2011).    

Disease modifying treatments (DMTs) for RRMS have been available since the 

1990s (Paty et al. 1993; The IFNB Multiple Sclerosis Study Group 1993). Most disease-

modifying treatments (DMTs) reduce the annual relapse rate in RRMS and the number 

of new MRI lesions, but do not stop the disease progression completely (Piehl 2014; 

Galea et al. 2015).  
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Figure 14. Mode of action of DMTs used in MS. From Piehl 2014, printed with permission.  

Subcutaneous Interferonβ (IFNβ) 1b injections were the first DMTs with clinical 

and MRI effect on disease course, with a 30 % reduction in relapses and new T2 

enhancing lesions (The IFNB Multiple Sclerosis Study Group 1993). Subcutaneous 

glatiramer acetate, a myelin basic protein peptide-analogue followed in 1996, with 

similar effects (Johnson 2012). These early DMTs may reduce time to conversion to 

definitive MS (Tedeholm et al. 2013), but early treatment with these drugs does not 

generally affect disability progression five years later (Kappos et al. 2009). A large 

Canadian population-based study neither found long-term effects on disability (Shirani 

et al. 2012). When both clinical and neuroradiological evidence of continued disease 

activity were taken into account, more than half of the patients who started treatment 

with these first-line drugs had an inadequate response within the first 2 years (Rudick 

and Polman 2009). Thus both short-term and long-term effects of the early first line 

treatments for MS are modest. 
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The first phase III study of Natalizumab was published in 1996 (Polman et al. 

2006). This is a humanized monoclonal antibody that binds to the a4-integrin of very 

late antigen-4, a surface marker present on immune cells, and is given by monthly IV 

infusion (Piehl 2014). This drug reduced the relapse rate after one year by 68 percent 

and led to an 83 percent reduction in radiological progression compared to placebo 

(Polman et al. 2006). Fingolimod was the first oral treatment approved for RRMS and 

also the first drug to target the sphingosine-1-phosphate receptors, arresting immune 

cells in peripheral lymph nodes (Piehl 2014). Fingolimod showed a reduction of relapses 

of 53–60% compared to placebo and of 38–52% compared to IFNb, respectively (Cohen 

et al. 2010; Kappos et al. 2010). However, risk of severe side-effects, most notably 

Progressive Multifocal Leucoencephalopathy (PML) when using Natalizumab and 

cardiac arrhythmias when using Fingolimod have limited the use of these treatments 

(Piehl 2014). After the data collection for this thesis, several new treatments have 

become available, including Alemtuzumab (a humanized monoclonal antibody directed 

against CD52, a surface antigen expressed on certain subtypes of lymphocytes, 

originally approved for the treatment of haematological malignancies), 

Dimetylfumarate (the methyl ester of fumaric acid, an intermediate in the citric acid 

cycle, previously used for the treatment of psoriasis) and Teriflunomide (an inhibitor of 

the enzyme dihydroorotate dehydrogenase, thought to exert cytotoxic effects on 

proliferating lymphocytes and possibly involved in the modulation of cytokine 

production) (Piehl 2014). The mode of action of these and other proposed drugs are 

illustrated in Figure 14 and the trade name and administration of different treatments 

in use in Norway are illustrated in Table 2.  

In addition to these established treatments, recent publications of the effects of 

autologous hematopoietic cell transplantation have shown very promising results, 

though randomized controlled studies are still lacking (Burman et al. 2014; Burt et al. 

2015; Nash et al. 2015). 

 Treatment of symptoms, like spasticity, pain, bladder dysfunction, walking 

disability, depression and epileptic seizures may alleviate the patients’ symptoms  
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Drug Trade name Administration 
1

st
, 2

nd
 or 3rd line 

treatment 

Interferonβ1b 

Betaferon®/ 

Extavia® 

250 μg sc every other day 1 

Interferonβ1a 

Avonex®/ 

Rebif® 

30 μg sc weekly/ 

22/44 μg sc three times per week 

1 

Glatiramer 

acetate 
Copaxone® 20 mg sc daily 1 

Fingolimod Gilenya® 0.5 mg p.o. daily 2 

Natalizumab Tysabri® 300 mg i.v. monthly 2 

Teriflunomide Aubagio® 14 mg po daily 1 

Dimetylfumarate Tecfidera® 240 mg p.o. twice daily 1 

Alemtuzumab Lemtrada® 
12 mg  iv x5/x3 two series of 

treatment a year apart 
1 and 2 

Autologous hematopoietic cell 

transplantation 

Research protocol at Haukeland 

University Hospital 
3 

Table 2. Disease modulatory treatments in Norway in 2015. Illustration: Gro Owren Nygaard 

 (Toosy et al. 2014a; Feinstein et al. 2015). However, MS patients often have multiple 

symptoms and pharmacological treatment targeting one symptom may lead to the 

worsening of another. Thus in practice, an effective response may be hard to achieve 

(Feinstein et al. 2015). For these patients, multidisciplinary rehabilitation may be useful 

and improve daily function (Grasso et al. 2005). 
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Neuropsychiatric rehabilitation is still in its infancy (Rosti-Otajärvi and 

Hämäläinen 2014). Studies of daily physical activity (Rietberg et al. 2014) and cognitive 

reserve-building activities (Schwartz et al. 2015) show that MS patients are less active, 

both physically and cognitively, than healthy controls. There are few studies of the 

effect of lifestyle interventions on cognition and other symptoms in MS patients. 

However, a pilot study has found that physical exercise may improve cognition in 

progressive MS (Briken et al. 2014), and some studies indicate that reserve-building 

activities like cognitive training may improve cognitive test results and alter functional 

cortical networks (Penner et al. 2007; Hubacher et al. 2015).  
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3. Aims of the study 

The overall aim of the study was to explore the association between neurological, 

cognitive, fatigue and depressive symptoms and MRI characteristics in early RRMS. This 

was sought through clinical, paraclinical and experimental examinations of a cohort of 

recently diagnosed RRMS patients. A better understanding of these associations will 

improve future treatment of this patient group.  

 

Specific aims were: 

1) To investigate the differences in cortical structure between healthy controls and 

early MS patients, and to assess whether the cortical structure of the RRMS patients 

were associated with neurological, cognitive, fatigue or depressive symptoms. 

2) To determine whether RRMS patients with evidence of disease activity at one year 

follow-up had similar change in disability, cognition and brain volumes as patients 

without evidence of disease activity and healthy controls. 

3) To investigate whether the results of a common test of processing speed in MS, the 

Symbol Digit Modalities Test (SDMT), was affected by disease specific confounders like 

saccadic initiation time or hand motor speed in early MS patients.  

4) To assess whether RRMS patients and controls had similar pupillary responses to 

problem-solving, and to assess whether these responses differed according to cognitive 

scores, fatigue levels or depressive symptoms.  
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4. Summary of results 

4.1 Paper I 

 Cortical thickness and surface area relate to specific symptoms in early relapsing-

remitting multiple sclerosis 

Cortical atrophy is common in early RRMS. Whether this atrophy was caused by 

changes in cortical thickness or cortical surface area was not known prior to this study, 

nor was the correlation between these measures and clinical symptoms. The objective 

of this study was to investigate the difference in cortical surface area, cortical thickness 

and cortical volume between early RRMS patients and healthy controls, and to study 

the relationship between these measures and neurological disability, cognitive decline, 

fatigue and depression. RRMS patients (n = 61, mean age 34 years, mean disease 

duration 2.4 years) underwent MRI, neurological and neuropsychological examinations. 

We estimated cortical surface area, thickness and volume and compared them with 

matched healthy controls (n = 61, mean age 34 years). We estimated the correlations 

between clinical symptoms and cortical measures within the patient group. We found 

no differences in cortical surface area, but widespread differences in cortical thickness 

and volume between the groups. Neurological disability was related to regionally 

smaller cortical thickness and volume. Better verbal memory was related to regionally 

larger surface area, and better visuospatial memory related to regionally larger cortical 

volume. Higher depression scores and fatigue were associated with regionally smaller 

cortical surface area and volume. We concluded that cortical thickness, but not cortical 

surface area, was affected in early RRMS and identified specific structural correlates to 

the main clinical symptoms in early RRMS 

4.2 Paper II 

A longitudinal study of disability, cognition and gray matter atrophy in early multiple 

sclerosis patients according to evidence of disease activity 
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New treatment options may make “no evidence of disease activity” (NEDA: no 

relapses or disability progression and no new or enlarging MRI lesions, as opposed to 

“evidence of disease activity” [EDA] with at least one of the former), an achievable goal 

in relapsing-remitting multiple sclerosis (RRMS). The objective of this study was to 

determine whether early RRMS patients with EDA at one-year follow-up had different 

disability, cognition, treatment and gray matter (GM) atrophy rates from NEDA patients 

and healthy controls (HC). RRMS patients (mean age 34 years, mean disease duration 

2.2 years) were examined at baseline and one-year follow-up with neurological (n=72), 

neuropsychological (n=56) and structural MRI (n=57) examinations. Matched HC (n=61) 

were retested after three years. EDA was found in 46 % of RRMS patients after one 

year independent on treatment strategy. EDA patients used more first line and less 

second line disease modifying treatment than NEDA (p=0.004). The patient groups 

differed in disability at follow-up (p=0.010); EDA patients progressed (EDSS: 1.8-2.2, 

p=0.010), while NEDA patients improved (EDSS: 2.0-1.7, (p<0.001). Cognitive function 

was stable in both patient groups. Subcortical GM atrophy rates were higher in EDA 

patients than HC (p<0.001). These results support the relevance of NEDA as outcome in 

RRMS and indicate that pathological neurodegeneration in RRMS mainly occur in 

patients with evidence of disease activity. 

4.3 Paper III  

Eye and hand motor interactions with the Symbol Digit Modalities Test in early 

multiple sclerosis 

Eye and hand motor dysfunction may be present early in the disease course of 

RRMS, and can affect the results on visual and written cognitive tests. We aimed to test 

for differences in saccadic initiation time (SI time) between RRMS patients and healthy 

controls, and whether SI time and hand motor speed interacted with the written 

version of the Symbol Digit Modalities Test (wSDMT). Patients with RRMS (n=44, mean 

age 35 years), time since diagnosis < 3 years and matched controls (n=41, mean age 33 

years) were examined with ophthalmological, neurological and neuropsychological 
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tests, as well as structural MRI (white matter lesion load (WMLL) and brainstem 

lesions), visual evoked potentials (VEP) and eye-tracker examinations of saccades. We 

found that SI time was longer in RRMS than controls (p<0.05). SI time was neither 

related to WMLL, nor to the presence of brainstem lesions. Both SI time and 9 hole peg 

test (9HP) correlated negatively with the results of wSDMT (r=-0.32, p<0.05, r=-0.47, 

p<0.01), but none correlated with the results of the Paced Auditory Serial Addition Test 

(PASAT). We concluded that RRMS patients had an increased SI time compared to 

controls. Cognitive tests results, exemplified by the wSDMT, could be confounded by 

eye and hand motor function. 

4.4 Paper IV 

 Pupillary responses to problem-solving in early MS patients 

Cognitive impairment and fatigue in early multiple sclerosis (MS) patients are 

frequent and troublesome symptoms, probably related to both structural and 

functional brain changes. An altered regulation of central neuropeptides could lead to 

changes in regulation of autonomic function, cognitive difficulties and fatigue. However, 

whether there is a connection between these symptoms in early MS patients is 

currently unknown. We tested whether measurements of pupil size during problem-

solving in early MS patients could detect early functional brain changes associated with 

cognitive load. Early MS patients (n= 49, mean disease duration 2.6 years) and healthy 

controls (n=43) with no prior eye pathology were included. Neurological impairment, 

MRI, visual evoked potentials (VEP), depression and fatigue were assessed in all the 

patients. In both groups we assessed processing speed and retinal imaging. Pupil size 

was recorded with an eye-tracker while patients and controls were orally presented 

with seven multiplication tasks of increasing difficulty. We found that both groups 

performed well on the cognitive test. The groups showed similar pupillary responses to 

cognitive tasks at a group level with 15.8 % dilation in patients and 15.7 % dilation in 

controls for the easy tasks (t=0.02, p=0.982). However, while controls with low 

cognitive scores (LCS) (n=9) had an increased pupillary response to cognitive tasks, LCS 
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MS patients (n=6) did not show such an increased response (Analysis of variance 

(ANOVA) between-groups effect: F(2, 25)=8.10, p=0.009). There was a trend towards a 

smaller pupillary response in patients with fatigue and depression (ANOVA between-

groups effect: F(2, 30)= 2.60, p=0.118) and F(2, 30)= 1.14, p=0.294). This is the first 

study to investigate pupillary responses to cognitive tasks in MS patients. Our results 

suggest that MS-related changes in cognition and fatigue are associated with changes 

in the autonomic regulation of task-related pupillary responses. This supports the 

theory of a link between cognition and fatigue in MS. 
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5. Methodological considerations 

This thesis is based on clinical quantitative research, i.e. we have raised 

scientific hypotheses and used statistics to test whether the corresponding null-

hypotheses could be discarded (Laake et al. 2008). There are several points to consider 

when evaluating such research. First, the population tested should be suitable to for 

testing our hypotheses. Secondly, the measures should be relevant and precise. And at 

last, the statistical methods used should provide estimates of effect sizes and their 

uncertainty, and guide us to decide whether our null-hypotheses should be discarded 

(Laake and Hjartåker 2007).  

5.1 Study design 

Internal validity relates to the extent to which the results reflect the populations 

tested, for example whether we were able to capture the true depressive symptoms in 

our patient cohort. Selection bias, information bias and wrong statistical methods may 

threaten internal validity (Laake and Hjartåker 2007). External validity relates to 

whether the results can be generalized to another population, e.g. whether our cohort 

resembles a cohort of patients in another city or another country. A good study design 

would lead to good external validity (Laake and Hjartåker 2007). 

The studies in this thesis were observational, i.e. the participants had not been 

exposed to any systematic medical intervention, except for treatment according to 

national guidelines, that could alter their risk of disease or disease progression (Laake 

and Hjartåker 2007). However, in both Paper III and Paper IV, we have used 

experimental tasks, i.e. examinations not in common use. These tasks have been 

designed specifically for the purpose of the study to investigate the potential 

differences in outcome between the participants.   

The material in this thesis is provided from baseline and follow-up examinations 

of a cohort of early MS patients collected in a hospital clinic and with a time since 

diagnosis of less than four years, and matched controls. Paper I, III and IV had a cross-
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sectional design; patients and controls were examined at one time-point, matched on 

group level, and compared. The patients were identified retrospectively, i.e. after the 

diagnosis of RRMS. In cross-sectional studies a careful selection of patients and controls 

is necessary to avoid a selection bias, as discussed in the next section. 

Also, there is a potential to encounter an information bias. An information bias 

may occur if a variable is measured on a categorical scale, and the error leads the 

variable to be placed in an incorrect category. Correspondingly, if a variable is 

measured on continuous scale the error may lead the variable to be over- or 

underestimated. A non-differential misclassification or information mistake is a 

misclassification unrelated to other study variables. In contrast, in a differential 

misclassification the wrongly classified variable is related to other study variables 

(Rothman 2012). Cross-sectional studies with a retrospective design are susceptible to 

the differential misclassification called recall bias; i.e.  people with a certain disease 

may have remembered more previous symptoms than healthy people (Laake and 

Hjartåker 2007). Disease duration, i.e. the time from the first probable symptom of the 

disease, may thus have been over-estimated in this study because of recall bias. Most 

of the outcome variables of the studies were, however, unrelated to the patients’ 

subjective recall of events.  

Paper II had a prospective longitudinal design, where the main outcome was 

change in clinical and MRI measures from baseline to follow-up. Here the patients were 

followed prospectively from baseline to follow-up. The main advantage of prospective 

cohort studies is the possibility to study causality: e.g. whether differences in exposure 

at baseline cause different outcomes at follow-up. The disadvantages are that 

longitudinal studies are time consuming and costly. They are prone to selection bias, i.e. 

a non-random skewness in the inclusion of participants, as not all the invited 

participants may wish to participate, either at baseline or follow-up. This could lead to 

a reduction in the representativeness, i.e. the ability of the study population to reflect 

the source population, of the cohort. Such a skewness could reduce the external 

validity of the study (Laake and Hjartåker 2007).  
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5.2 Patients and controls 

5.2 1 Patient recruitment 

The patients of these studies were included in the period from January 2012 to 

December 2012. We aimed to capture all patients who received the diagnosis of RRMS 

from January 2009 to October 2012 and who lived in regions of Oslo receiving public 

neurological services from Department of Neurology, Oslo University Hospital (OUH), 

Ullevål, at the time (Figure 15). 

The abundancy of sources for patient identification secured that most of the 

RRMS patients diagnosed in 2009-2012 in the relevant region were identified (Figure 

15). The low number of patients who declined to participate was a methodological 

strength of the study. However, we did not examine all identified cases because of 

limited MRI capacity. These unexamined cases may have contributed to selection bias.  

The inclusion criteria were a diagnosis of RRMS in the period 2009-2012, age 18-

50, and clinical follow-up at the Department of Neurology, OUH, Ullevål. The exclusion 

criteria were a history of other psychiatric or neurological diseases, drug abuse, 

previous adverse Gadolinium reaction, pregnancy or breast feeding at inclusion, or 

non-fluency in Norwegian. The main advantage of these stringent criteria was a well-

defined homogenous patient sample, reducing the impact of confounding, i.e. the 

confusion of effects (Rothman 2012). The disadvantage of these criteria was a possible 

lower representativeness; the patients investigated may not have represented the 

average MS patient at the department. Furthermore, the inclusion of patients from 

only one neurological department, may have led to some selection bias. This may 

reduce the external validity of the study. However, we did not aim at including all 

RRMS patients in the region; our main focus was to ensure that we could carefully 

compare patients and controls, and identify MS as the key factor for the clinical and 

paraclinical differences observed between the groups.   
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Figure 15. Patient inclusion in Paper I-IV. Illustration: Gro Owren Nygaard 
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5.2.2 Healthy Control recruitment 

Two different control groups were used in these studies. In Paper 1 and II, 

healthy controls were selected from the ongoing project “Cognition and plasticity 

through the lifespan” at the Department of Psychology, University of Oslo, from a pool 

of approximately 150 eligible participants (Walhovd et al. 2013). Inclusion criteria were 

right handedness, fluency in Norwegian, normal or corrected to normal vision and 

hearing and MRI at two timepoints. Exclusion criteria were neurological or psychiatric 

disease, drug abuse, head trauma, depressive symptoms (BDI>16), Mini Mental State 

Examination (MMSE) score <26 or subjective worries concerning cognitive function. 

These controls were identified through newspaper advertisements, among students 

and employees at the University of Oslo. They were matched with the RRMS patients 

on group level at baseline, based on age, gender and availability of MRI at baseline and 

follow-up. The method of control recruitment may have led to an excessively healthy or 

otherwise resourceful sample, and thus to a selection bias. People with high awareness 

of health and cognitive abilities may have been recruited, i.e. a “Healthy Worker Effect” 

(Laake and Hjartåker 2007).  As can be seen from the background and demographic 

tables of Paper I, the controls had high general ability levels and high levels of 

education. They did, however, match our patient sample quite well on these points 

(see Paper I), so that comparability was ensured. 

In Paper III and Paper IV another control group was used. These controls were 

mainly recruited from the hospital and university environment after direct inquiry by 

email. The inclusion criteria were age 18-50, fluency in Norwegian and no medical 

conditions known to affect the visual pathways. These controls were matched on age 

and gender on a group level to the patient samples of Paper III and IV. Because of the 

recruitment procedure, we would expect a similar selection bias as with the first 

control group, i.e. we could have recruited controls with a better health and higher 

cognitive functions than the patients. As illustrated in these papers, the controls had a 

slightly higher education and better verbal memory than the patients. However, a 
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similar proportion of patients and controls were classified with low cognitive scores, 

because they failed at least one of three cognitive tests (Smith Aron 1982; Delis et al. 

2000; Benedict et al. 2012a). We therefore believe that for our purposes, the groups 

were comparable. 

5.3 MS diagnosis 

The patients included in the study were diagnosed by clinicians at the 

Department of Neurology, OUH, Ullevål, in 2009-20012 according to the diagnostic 

criteria at the time (Polman et al. 2005, 2011). The diagnosis was confirmed for study 

purposes first by patient journal examination, and then by detailed patient interviews, 

MRI evaluations and clinical investigations. At the start of the inclusion to the study, a 

relapsing-remitting disease course was not a part of the inclusion criteria. Two patients 

with primary progressive MS and one with secondary progressive MS were therefore 

examined. These patients have been followed-up with the same examinations as the 

included patients, but have been excluded from the studies. 

The diagnostic criteria changed during the time of diagnosis of the patients. 

Most of the patients included received the diagnosis in 2011 according to the 2010 

McDonald Criteria. However, some were diagnosed in 2009 and 2010, and were thus 

subject to slightly different diagnostic criteria. The main difference between the 2005 

and 2010 McDonald criteria was the inclusion of MRI evaluations for proof of 

dissemination in time and space from one MRI examination only (Polman et al. 2011). 

This alteration of the diagnostic criteria may have reduced the time from disease onset 

to diagnosis. Some patients potentially eligible to the study may therefore not have 

fulfilled the 2005 criteria, while they would have been identified with the new criteria. 

In our study, some patients not diagnosed with MS according to the 2005 McDonald 

Criteria may thus have been classified as CIS and were not included in the study. The 

most probable consequence of the slight change in diagnostic criteria was a longer 

delay from disease onset to diagnosis in the patients diagnosed according to the 2005 

McDonald Critera. 
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5.4 Clinical assessments 

5.4.1 Neurological assessment 

In MS EDSS is widely used as a measure of neurological disability (Kurtzke 1983). 

At the lower end of the scale, i.e. from EDSS 0-4, the scale is a sum score of 

neurological deficits. At higher EDSS scores (4.5-10) the scale is essentially a measure of 

mobility (Kurtzke 1983). Gait disabilities are important in the MS patients’ evaluation of 

bodily functions (Heesen et al. 2008). Still, there is little doubt that other symptoms, 

like fatigue, depressive symptoms and cognitive difficulties are important and gain too 

little weight in this scale (Cohen et al. 2012). We used the EDSS as the main descriptive 

neurological outcome measure in all our papers. The patients included all had an 

EDSS<4 with no or minor gait impairments, so that the outcome represented a sum 

score of neurological deficits. To compensate for the underestimation of other 

neurological outcomes, fatigue, depressive symptoms and cognition, we supplemented 

the protocol with tests to examine these factors. 

Other neurological outcome measures have been proposed to overcome the 

bias of walking ability in EDSS, of which Multiple Sclerosis Functional Composite (MSFC) 

is the best known (Rudick et al. 1997; Cutter et al. 1999). MSCF is a composite measure 

of walking speed,  the 25 feet walking test,(25FWT), a measure of hand function, the 9 

hole peg test (9HP) and a measure of processing speed and working memory, the 

Paced Auditory Serial Addition Test 3 seconds version (PASAT) (Gronwall 1977). MSFC 

has been criticized for the use of the PASAT as the cognitive test of choice. PASAT was 

originally created to estimate patients’ recovery from concussion (Gronwall 1977), and 

has later been applied to a large range of neurological and psychiatric disorders 

(Tombaugh 2006). It is often regarded unpleasant to complete both by patients and 

examiners, it relies on mathematical skills and it is negatively affected by age, IQ and 

speed of speech (Tombaugh 2006). Further, MSFC has the disadvantage of complicated 

scoring procedures, as the scale is based on z-scores created for each study, not on 

standardized norms or cut-off values. New versions of MSFC, possibly with another 
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cognitive test and easier scoring algorithms, are therefore warranted (Brochet et al. 

2008; Drake et al. 2010; Cohen et al. 2012). In Paper I-III we used the raw scores of the 

tests included in the MSFC. We did, however, also include other cognitive tests, like the 

SDMT, possibly with better psychometric abilities (Van Schependom et al. 2014a).  

5.4.2 Cognitive assessment 

Standardized test batteries for the assessment of cognitive impairments in MS 

patients were introduced in the 1990s. The most well-known batteries are Rao’s Brief 

Repeated Battery (BRB) (Rao et al. 1991) and the Minimal Assessment of Cognitive 

Function in MS (MACFIMS) (Benedict et al. 2002), with partly overlapping and partly 

complementary cognitive tests. As we planned this study, an international consensus 

group published another, even shorter, test battery; the Brief International Cognitive 

Assessment in Multiple Sclerosis (BICAMS) (Langdon et al. 2011). This 15 minutes 

battery was meant for use in research and initial non-specialist examinations of 

cognition in MS, and has the advantage of short administration time, simple 

procedures and scoring systems, tests of the main domains affected in MS patients, 

and inclusion of tests that were thought to have good cross-cultural validity (Benedict 

et al. 2012a; Dusankova et al. 2012). Validation and translation of BICAMS have already 

been performed in several countries, and more studies are ongoing (Dusankova et al. 

2012; Eshaghi et al. 2012; Goretti et al. 2014). We did not perform a thorough 

validation of this test battery as part of our study. The verbal memory test, CVLT -2 

already was thoroughly validated and translated to Norwegian (Lundervold and Sundet 

2004). The other tests were non-professionally translated and the symbols used were 

visually examined and regarded appropriate in a Norwegian population. In paper I we 

compared the patients’ scores with published American norms (Nygaard et al. 2014). 

This procedure may have led to artificially low scores because of flawed instructions of 

SDMT and BVMT, or to artificially high scores because of cultural cues overlooked 

among the symbols in the same tests. However, both SDMT and BVMT require 

minimally verbal instruction and the symbols used have not been assessed differently 

in any cross-cultural translation (Benedict et al. 2012a; Dusankova et al. 2012; Eshaghi 
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et al. 2012). We therefore believe that the administration of these tests were 

appropriate. For Paper II, III and IV the outcome of interest were either change in test 

score (Paper II), association with tests of other functions (Paper III) or comparison to a 

Norwegian healthy control sample (Paper IV), thus the bias was non-differential, if 

present at all.  

For assessments of general ability levels in Paper I we used the Norwegian 

version of the vocabulary and matrix reasoning of the Wechsler’s Abbreviated Scale of 

Intelligence (WASI) (Wechsler 1999; Brager-Larsen 2001). The Norwegian version of 

WASI provides very similar intelligence estimates as the original and longer Wechlser 

Adult Intelligence Scale III (WAIS III) and the Norwegian translation has retained its 

properties as a robust estimate of general ability levels (Bosnes 2009). 

The healthy controls included in Paper I and Paper II had been investigated at 

baseline with a comprehensive battery of cognitive tests before the patient 

examinations in our studies. To ensure both comparability with the healthy controls 

and tests relevant for an MS population, we chose not to adhere strictly to either 

battery, but to create a test battery that would capture both comparability with the 

controls and disease-specific relevance (Table 3). Thus we were able to compare 

patients and controls on certain cognitive domains and to use tests common in MS 

research to ensure readability and comprehension within the research community.  

We encountered an unforeseen methodological problem with the use of BVMT 

and, most of all, with CVLT. For the latter both patients and healthy controls performed 

much better than previous published norms (Nygaard et al. 2014). Thus we 

encountered a possible ceiling effect, where the true abilities of the participants could 

not be measured, as most of the participants performed at the upper extreme of the 

test scores. These results may be caused by a selection bias; both patients and controls 

were recruited from young, well-educated, urban, mostly female persons. The healthy 

control sample of Paper III and IV was partly recruited from the hospital environment, 

and remembering daily to-do-lists may be part of their professional work, thus they 
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Table 3. Cognitive tests used in Paper I-IV. Illustration: Gro Owren Nygaard 

could be particularly gifted or trained in this kind of short-term memory, which may 

represent a selection bias compared to the patients.    

We have not published the results of all the tests that the patients and controls 

have undergone due to excess of collected data. This could have led to a publishing bias 

(Laake et al. 2008), i.e. that we only published positive results. However, which 

cognitive outcome measures to include in the papers were decided on before the 

statistical analyses. The patients mainly scored similarly as the controls, also indicating 

that such a selection of positive results did not take place.  

5.4.3 Assessment of evidence of disease activity 

In Paper II we evaluated the patients in our cohort after 13 months according to 

NEDA. Patients with no relapses, no disability progression and no radiological 

progression at follow-up compared to baseline were classified as NEDA. A relapse was 

defined as any new neurological symptoms, not associated with fever or infection, 

lasting for at least 24 hours and accompanied by new neurological signs. Disability 

progression was defined as an increase in EDSS≥1 compared to baseline in the absence 

of a relapse the last six weeks before examination. Radiological progression was 

defined as at least one new or enlarging T2 or FLAIR WML (with or without gadolinium 



53 
 

enhancement on T1) compared to MRI at baseline. Patients with either a relapse, or 

disability progression or radiological progression were classified as with evidence of 

disease activity (EDA). 

In our definition of NEDA we did not make any distinction between neurological 

worsening and neurodegenerative disability progression, as recommended in the new 

guidelines for defining the clinical course in MS (Lublin et al. 2014; Giovannoni et al. 

2015). Further, we could not know for sure whether the disability progression 

sustained, since we performed only one follow-up examination in this study.  

An international panel recently has suggested a decision model based on an 

extended variant of NEDA; The Multiple Sclerosis Decision Model (MSDM) (Stangel et al. 

2014). This model has the advantage of including a detailed neurological assessment 

and assessments of both fatigue and cognition; and of less rigorous dichotomous 

outcomes. The disadvantages are time consuming assessments and complicated 

algorithms. Thus the use of MSDM may cause time constraints and require clinical 

training. In contrast, NEDA is based on a dichotomous MRI evaluation, medical history 

and neurological assessment; which is manageable also in busy outpatient clinics. 

5.4.4 Assessment of fatigue  

In our study, we used the Fatigue Severity Scale (FSS) to measure fatigue, a nine 

item self-report scale for rating fatigue in chronic medical and neurological disorders 

(Krupp et al. 1989). FSS has the advantages of being well-established, easy to fill in and 

has shown associations with brain functional and structural changes in MS patients 

(Filippi et al. 2002; Rocca et al. 2014a). The Norwegian translation and validation has 

shown good levels of response and the scores are correlated with self-perceived 

morbidity. The cut-off at four points for categorization into fatigue or non-fatigue has 

been questioned in a Norwegian validation study, since a large proportion of the 

participants fulfilled the criteria of fatigue with this cut-off (Lerdal et al. 2005).  

A new fatigue scale, Fatigue Scale for Motor and Cognitive Function (FSMC), has 

shown a better distinction between motor and cognitive fatigue symptoms in MS 
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(Penner et al. 2009). Such a distinction may improve the structure-versus-symptom 

relationship in future studies. We therefore supplemented the FSS with FSMC 

assessments in the follow-up of the patients in our study, though these results are not 

yet published.  

5.4.5 Assessment of depression 

In MS research, structured interviews to assess whether the patients fulfil 

diagnostic criteria for depressive disorders are seldom used. Instead questionnaires of 

depressive symptoms are used to rate and categorize patients according to self-

reported depressive symptoms (Feinstein et al. 2014). We have used the Beck 

Depressive Inventory-II ( BDI) (Beck et al. 1996), a self-report psychometric scale, for 

the assessment of depression. This has been widely used in MS research. There are 

some notable shortcomings of this scale; the scale overlaps with symptoms that may 

be caused by neurological changes in MS, like fatigue, altered sleep patterns, changes 

in appetite, poor concentration and impaired memory (Feinstein et al. 2014). 

Alternative scales, like the Beck Depression Inventory -Fast Screen (Benedict et al. 2003) 

and Hospital Anxiety and Depression Scale (Honarmand and Feinstein 2009) have also 

been validated for use in MS and may be better at separating depression from disease-

related symptoms (Feinstein et al. 2014). Still BDI is the psychometric scale suggested 

to be used in the evidence based guidelines for assessment and management of 

psychiatric disorders in individuals with MS by the American Academy of Neurology 

(Minden et al. 2014). Our choice of BDI was partly pragmatic, as the healthy controls 

used in Paper I and II had already filled in this questionnaire in their baseline analyses. 

The choice of this scale may have led to a confounding of disease-related symptoms on 

the depression rating. One solution to this problem could have been to exclude the 

questions most vulnerable to such a confounding from the analyses, as has been done 

in previous studies of MS and depression (Landrø et al. 2004; Smestad et al. 2010). 

However, to ensure comparability with the healthy controls, to other studies and for 

ease of the reader, we chose to adhere to the standard version of the scale. 
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5.4.6 The use of questionnaires 

The patients investigated in this thesis were asked to fill in a comprehensive 

questionnaire at home, including both questions about depression and fatigue and in 

addition other questionnaires not yet published. We could not control that all patients 

filled in the questionnaires. Therefore the studies suffer to some extent from 

incomplete data collection. As we did not control the environment in which the 

patients filled in the questionnaires, their answers may have been influenced by 

unobserved differences in environment (like different living situations influencing 

perceived fatigue or depression, or different levels of fatigue at different times of the 

day). Patients could also have been influenced by the surge of the moment; if they 

filled in the questionnaires right after a long and tiresome examination they may have 

felt more tired or depressed than usual. The questionnaire may also have been difficult 

to interpret; though the Norwegian translations and validations make that less 

probable. And a last; the questionnaires were long and time consuming to fill in; and 

may thus themselves have led to exhaustion or lack of completion. These factors could 

have led to concerns concerning internal validity. However, most patients returned the 

questionnaires, completed them correctly and did not complain of the length of the 

questionnaires, and we therefore believe that most of these limitations were overcome. 

5.5 Neuroimaging 

There are several possible confounders when using neuroimaging in patient and 

control samples. First of all, the imaging modality of choice may not envisage all 

relevant pathology. Second, the quality of the actual images acquired may be poor. 

Third, the analysis tools may not be reliable. And last, non-disease related factors may 

confound the results (like age, gender, life habits, genetics or comorbidities) (De 

Stefano et al. 2014). Each of these points will be discussed below. 

5.5.1 Image acquisition 

The patients and the controls of Paper I and II underwent MRI examinations in 

the same 1.5 T Siemens Avanto scanner (Siemens Medical Solutions) with a 12-channel 
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head coil. This scanner was chosen because the controls had already undergone 

examinations in this machine. Recent literature has found that stronger magnets not 

only to detect more MS related lesions, but also to detect more relevant lesions; and 

the associations between MRI and disability is higher with higher field strengths 

(Stankiewicz et al. 2011).  We regarded the advantages of including a healthy control 

group scanned in the same machine as more important, but this choice may have 

contributed to the relatively low association between cortical structure and patient 

signs and symptoms in Paper I.   

The controls were scanned between June 2007 and December 2008 at baseline 

and between January 2011 and June 2013 at follow-up. The patients were scanned 

between January 2012 and January 2013 at baseline and between April 2013 and 

February 2014 at follow-up. The longer interval between the MRI examinations of the 

controls may have led to changes in field inhomogeneities and other changes in the 

MRI machine. However, the Magnetization Prepared Rapid Gradient Echo (MP-RAGE) 

sequences were kept identical between the scanning periods. We used 3-dimensional 

T1-weighted MP-RAGE sequences for surface-based and volumetric analyses, and 

combined the MP-RAGE and the Fluid-Attenuated Inversion Recovery (FLAIR) sequence 

to estimate the white matter (WM) lesion load.  

The sequences parameters of the MP-RAGE sequences were: repetition time/ 

echo time/time to inversion/flip angle = 2400 ms / 3.61 ms / 1000 ms / 8°, matrix 192 × 

192, field of view= 240. Each scan lasted 7 min 42 s and consisted of 160 sagittal slices 

with a voxel size of 1.20 × 1.25 × 1.25 mm. The FLAIR sequence parameters were as 

follows: repetition time / echo time / time to inversion / flip angle = 6000 ms / 3.33 ms 

/ 2200 ms / variable T2, matrix 256 × 204, field of view= 260. Each scan lasted 7 min 02 

s and consisted of 176 slices, with a slice thickness of 1 mm and a voxel size of 1.0 × 1.0 

× 1.0 mm. 
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The ideal voxel size for surface based and volumetric studies is not known. 

However, a voxel size between 1.0 and 1.25 mm is considered the easiest to work with 

in the software program we applied (http://surfer.nmr.mgh.harvard.edu/).  

Partial voluming, i.e. the phenomenon that a mixture of different tissue within 

one voxel may lead to misclassification of the tissue and confound the borders of 

different tissue types in MRI studies, may have influenced the location of the CNS GM-

WM borders in the studies. Furthermore, artefacts either caused by field 

inhomogeneities, by metal implants in the participant or by ghosting during the image 

acquisition could have led to distorted images.  To ensure proper clinical patient follow-

up and good quality of the imaging studies, all the scans were evaluated by clinical 

neuroradiologists and examined for defects and distortions before image analyses, 

ensuring good imaging quality for all analyses.  

5.5.2 Image analyses 

For the volumetric and surface-based analyses we used the open source 

software program FreeSurfer, version 5.1 in Paper I and version 5.3 in Paper II (Figure 

16). The analyses were performed in the neuroimaging lab of the Lifespan Changes in 

Brain and Cognition (LCBC) research group at the Department of Psychology, University 

of Oslo, with the kind assistance from experienced researchers in the lab. Freesurfer 

analyses have been applied to MS patient samples also previously (Sailer et al. 2003). 

Both surface based and volumetric analyses can be performed with this software, both 

of which are highly relevant for MS research. Furthermore, the longitudinal pipeline in 

FreeSurfer enables good quality longitudinal analyses (Reuter et al. 2012). The analyses 

can be run in an automated mode to limit analysis time. However visual inspection is 

necessary and manual edits may be performed. The long analysis time makes it 

unfeasible to use this software in everyday clinical practice, but is a good tool in 

research when large nodes of computational power are available (Vrenken et al. 2012).  

The difference in MRI intensity between gray and white matter varies with 

location in the CNS. This variance is caused partly by local variance in the histology of 
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Figure 16. Freesurfer pipeline. Printed with permission from https://surfer.nmr.mgh.harvard.edu. 

cortical gray matter and the subjacent white matter and partly by acquisition artifacts, 

such as variable penetration of the radio frequency pulse, magnetic field 

inhomogeneities and local differences in receiver coil sensitivity. (Cortical gray matter 

in motor cortex is brighter than in frontal cortex, because of its higher myelin content). 

Furthermore, the highly folded structure of the cerebral surface and the thin fingerlike 

protrusions of white matter in the cerebral gyri complicate linear approaches to surface 

reconstruction. These factors have previously led to difficulties in imaging processing of 

the cerebral surface (Fischl 2012). FreeSurfer has provided solutions to the above-

mentioned difficulties. The identification of GM-WM-boundaries is based on local 

differences in intensity. Non-linear registration is applied instead of approximating the 

surface to a plane. Furthermore, a method where the surface of the cortical boundaries 

are inflated to a sphere before registration to a common atlas is utilized (Fischl et al. 

1999a, 1999b).  
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The reliability and accuracy of this method have been tested by comparisons to 

histological measures of cortical thickness (Rosas et al. 2002) and by within-subject 

test-retest studies, as well as by comparison with previous studies of cross-subject 

regional cortical thickness (Fischl and Dale 2000). Furthermore, comparisons have been 

made between FreeSurfer estimates and manual measures of cortical thickness in 

disease and control populations (Kuperberg et al. 2003) and estimation of the stability 

of the thickness measures with respect to scanner platform, field strength and 

sequence type have been performed (Han et al. 2006). Finally, the correlations 

identified between cortical structure and cognitive measures are stable across scan 

session, scanner manufacturer and field strengths (Dickerson et al. 2008). 

Still, there are several possible processing failures when using the FreeSurfer 

software. These failures may be divided into hard and soft failures (Fischl 2014). Hard 

failures are failures in the software programming, leading the programs to end before 

the processing is complete. These failures may be avoided by an ordered structure of 

directories, by using well-documented commands and by good data quality. Soft 

failures are errors during the analysis process, like skull strip errors, segmentation 

errors, intensity normalization errors, pial surface misplacement or errors creating 

topological brain defects, like holes and handles on the cortical surface. In the case of 

these errors, the processing of the structural images is completed, but the result may 

need manual modifications (Fischl 2014). Manual modifications, on the other hand, 

may lead to biases, because the operator is not blinded to the identity of the 

participant or because the operator does not treat the material equally for other 

reasons. As far as possible, we have tried to control for these errors, by structured 

analysis procedures, visual evaluation of the segmentation and blinded modification or 

exclusion of wrongly segmented images. 

FreeSurfer is constructed for the analysis of 3D T1 weighted images of about 1 

mm3.  A recent study comparing 3T and 7T images of healthy individuals concluded that 

both this software and other image analysis software may overestimate human 

cerebral cortical thickness from analyses of images from 1.5 or 3T MRI machines, 
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Figure 17. WM lesions on FLAIR image of MS patients and delineation of WM lesion using Cascade. 

Illustration: Piotr Sowa/Gro Owren Nygaard  

because of partial voluming (Lüsebrink et al. 2013). This overestimation is, however, 

hard to overcome with the available MRI platforms and image analysis tools available 

today. 

FreeSurfer has been used in MS research for more than a decade. One of the 

first studies identifying regional cortical thickness in MS patients was performed using 

this technique (Sailer et al. 2003). Recent studies have provided evidence that this 

method can be used in MS multicenter-studies (Narayana et al. 2012) and longitudinal 

analyses (Rinaldi et al. 2012). The impact of juxtacortical lesions on the segmentation of 

the GM/WM border has specific interest in MS research. Recent research has 

suggested that lesion filling,  i.e. replacing juxtacortical WMLs with the signal intensity 

of surrounding WM to improve GM/WM separation, could improve MRI analyses in MS 

samples (Battaglini et al. 2012). We did not utilize this method and may have 

underestimated the annual GM atrophy in our analyses (see Paper II). However, we do 

not believe that this limitation impacts on our main results. 

Estimates of white matter lesion load (WMLL) for analyses in Paper I and III were 

performed using an automatic pipeline for WMLL estimates 

(http://ki.se/en/nvs/cascade) (Damangir et al. 2012). This method has also been used 
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Figure 18. The Early Treatment Diabetic Retinopathy 

Study (ETDRS) standardized viewer. Model ESV 3000, 

printed with permission from Good-Lite Co., Elgin, IL). 

in the estimation of WMLL of patients with coronary heart disease and Alzheimer’s 

disease (Vuorinen et al. 2014a, 2014b). The method achieved high sensitivity (90%) and 

specificity (99.5%) when compared to manual delineation of WML (Figure 17) 

(Damangir et al. 2012). 

Taken together, we regard the image analysis tools used in this study well 

validated both in healthy participants and in the MS population, and well suited for the 

purposes in this study.  

5.6 Assessment of vision, retinal nerve layer and visual evoked potentials 

The decrements to the visual pathway may confound the results of tests of eye 

movements and pupillary responses. We therefore controlled for the results of these 

tests in Paper III and IV. These tests are discussed briefly below. 

5.6.1 The link between neuroimaging and brain structure 

Several studies support an association between MRI results and pathological 

findings in MS (Filippi et al. 2012; Rocca et al. 2015). We therefore chose to use MRI to 

assess CNS differences between 

patients and controls and to assess 

longitudinal volumetric changes.    

5.6.2 Assessment of vision 

In Paper III and IV 

assessments of vision of patients 

and controls were performed at 

the Department of Ophthalmology 

by an experienced ophthalmologist 

and co-worker, MD Sigrid Aune de 

Rodez Benavent (SADRB), and by 

experienced research opticians at 

the department. Visual acuity was 
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Figure 19. OCT of MS patient with a history of ON on her left eye. RNFL is delineated by the orange 

and red lines. Illustration:  Sigrid Aune des Rodez Benavent/Gro Owren Nygaard 

tested at four meter using an Early Treatment Diabetic Retinopathy Study (ETDRS) 

standardized viewer (Figure 18) (model ESV 3000; Good-Lite Co., Elgin, IL) (Ferris et al. 

1982). The spherical equivalents of the participants’ prescription, a measure of the 

curvature of the cornea, were reported (Millidot 2009).  

5.6.3 Assessment of retinal nerve fiber layer 

Optic coherence tomography (OCT) offers a unique possibility to non-invasively 

and directly assess a part of the CNS, the retinal nerve fiber layer (RNFL) (Balcer et al. 

2014). In Paper IV, where our main aim was to examine task-related pupillary 

responses in early MS patients, we controlled for the possible effect of differences in 

RNFL between the groups. Retinal imaging was performed by the same trained 

ophthalmologist (SADRB) with the spectral domain RS-3000 OCT Retina Scan (Nidek Inc., 

CA, USA). RNFL data were obtained with the Disc Circle protocol with a scan width of 

3.45 mm and a scanning speed of 53 000 A-scans/s, centered on the optic nerve (Figure 

19). All scans included had a signal strength of 8/10 or better.  
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Figure 20.  Assessment of visual evoked potentials. Printed with permission 

from (Sand et al. 2013), Tidsskriftet for den Norske Legeforening and J. 

Engqvist. 

5.6.4 Assessment of visual evoked potentials 

Assessments of visual evoked potentials to p100 (VEP) estimates the time for 

the neural impulses caused by a checker board stimuli to reach from the retina via the 

optic nerve to the visual cortex (Figure 20) (Sand et al. 2013). VEP is a sensitive marker 

of previous ON, and can be used when a history of ON is a deciding factor for a MS 

diagnosis (Polman et al. 2011; Sand et al. 2013). It is frequently pathological in MS 

patients, also in patients without a history of clinical ON, and prolonged VEPs are 

associated with 

disability (Di 

Maggio et al. 

2014). VEPs were 

obtained and 

analyzed at the 

Department of 

Clinical 

Neurophysiology, 

OUH, Ullevål. The 

examinations 

were performed 

with dimmed 

light. The screen was placed 100 cm from the eyes of the patients, with a Dantec 

Keypoint Focus system with checkerboard patterns (check size 65’) presented at 2 Hz 

with a 16” cathode ray tube screen. Three hundred responses were averaged from the 

mid-occipital lobe to the mid-frontal lobe. The VEP results were evaluated by two 

experienced clinical neurophysiologists (Kristian Bernhard Nilsen and Lars Etholm). VEP 

was regarded pathological with VEP delay > 110 ms and/or with a delay at least 6 ms 

greater than compared to the contralateral eye. 
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Figure 21. The experimental setup for assessment of 

saccadic initiation time. Illustration: Sigrid Aune des 

Rodez Benavent/Gro Owren Nygaard  

5.7 Eye-tracker measurements 

 We used a SMI (SensoMotoric Instruments, Teltow, Germany) R.E.D. eye-

tracking device with a remote unit attached below a 22 inch computer screen (Dell, 

P2210) for the assessment of eye movements and the task-related pupillary responses 

in Paper III and IV. Measurements were conducted throughout the day for both groups. 

We did not use a head 

fixator or chin rest during the 

experiments. This rendered the 

experiments more sensitive to 

confounders like disease-related 

head tremor (White and Fielding 

2012). To control for this, all 

participants went through a 

calibration procedure, where a five-

point pattern was displayed to the 

participants before running the eye-

tracking sessions. The participants 

who did not reach the calibration 

criteria were excluded from the 

analyses.  

Blinking temporarily disrupts 

the pupillometric measurements, 

but we did not observe any 

pathological blinking in the MS 

patients examined. We would 

therefore expect these disruptions 

to affect patients and controls 

similarly. Any disruption would then 
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lead to a non-differential measurement bias, and not cause any false differences 

between the groups. 

Data was recorded at a sampling rate of 60 Hz, i.e. new measurements every 16 

ms. Higher sampling rates are possible and would have captured more details of rapid 

eye movements, minute pupillary changes and, possibly, more noise. Fielding and 

coworkers have performed similar experiments with a sampling rate of 1000 Hz 

(Fielding et al. 2009). The variations in measurements of delay to saccadic onset were 

similar in magnitude in Fielding’s study and ours (Fielding et al. 2009). Therefore, for 

our main outcome, saccadic initiation (SI) time, we believe that our sampling rate was 

sufficient. 

Our experimental setup was designed and the stimuli presentation was 

implemented using SMI Experiment Center®, which synchronized eye-movement 

recordings to the presentation of the stimuli. As can be seen from the illustration 

(Figure 21), the participants were instructed to fixate at the center of the screen and 

then move their gaze towards the star in the appropriate corner with the appearance 

of a central arrow. Some cognitive processing was necessary to decide on the direction 

of the arrow. This time spent to evaluate the direction of the arrow was included in the 

SI time. In everyday situations one would often have to evaluate a cue before a 

saccadic initiation. Therefore we our experimental design was realistic. However, as we 

do not separate the cognitive operation of choosing direction and the saccadic eye 

movement our results are not readily comparable to previous studies (e.g. (Fielding et 

al. 2009).   

5.8 Statistical considerations 

5.8.1 Sample size 

The reference population is the population from which the participants of the 

studies were drawn. If not all the participants in the reference population are included 

in a study, the study will potentially suffer from sampling variation, i.e. variations in the 
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variables measured because of differences between the chosen sample and the 

reference population (Kirkwood and Sterne 2003). Because of sampling variation we 

cannot rule out the possibility that the size of the effect observed in the study will be 

different from the true effect. In other words we can never guarantee that a study will 

be able to detect an effect however large we make it. However, we can increase the 

probability of a true result by increasing the sample size. This is called the power of the 

study. Ideally, we would perform power calculations, i.e. calculations of the sample size 

necessary to have a certain probability of capturing a real effect in our study, before 

the initiation of a study (Kirkwood and Sterne 2003). However, as our study was 

restricted by patient and MRI availability we did not perform such analyses. 

5.8.2 Statistical tests 

We used IBM SPSS Statistics v 22 (SPSS, Chicago, IL) for statistical analyses. We 

visually inspected histograms and Q-Q plots of the data to assess whether the data was 

normally distributed. All data satisfied this normality check. We then tested for 

difference between patients and controls, between the patients at different time 

points and between subgroups (e.g. EDA, NEDA and HC) with appropriate tests. 

Independent samples t-tests, paired samples t-tests, χ2 –tests and one-way between-

group analyses of variance (ANOVAs) with Bonferroni-corrected post-hoc tests were 

applied. The χ2 -tests performed on categorical variables with two values only (e.g. 

gender) were corrected for possible overestimation with Yate’s continuity correction.  

To control for differences in age and gender between the patient groups (for 

example EDA and NEDA) we performed one-way between-group analyses of covariance 

(ANCOVAs) where appropriate with the dependent variable of interest (for example 

volumetric measurements and atrophy rates), group as a fixed factor, and age and 

gender as covariates.  

In Paper II the scan interval was longer for HC than patients, therefore annual percent 

change of the cortical and subcortical volumes were estimated as described in 

FreeSurfer version 5.3 (Reuter et al. 2010).  
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Table 4. Type 1 and type 2 errors. Based on (Kirkwood and Sterne 2003). Illustration: Gro Owren 

Nygaard 

5.8.3 Type 1 and Type 2 errors 

When performing a hypothesis test, we get one of four outcomes, as illustrated 

in Table 4. We may correctly sustain or discard the null-hypothesis. However, two 

mistakes can be made. First, we may discard the null-hypothesis even though it is true. 

This is called a Type 1 error. Second, we may accept the null-hypothesis even though it 

is wrong. This is called a Type 2 error (Kirkwood and Sterne 2003; Laake et al. 2008). We 

can reduce the probability of Type 1 errors by using a lower significance level, and Type 

2 errors by increasing the power of the study, either by a higher sample size or an 

increased precision of the measurements.  

All results in this thesis were reported based on a significance level of 0.05. The 

significance level, or p-value, equals the probability of the occurrence of a result as 

extreme as, or even more extreme, than the one observed, even though the null 

hypothesis is true (Kirkwood and Sterne 2003). When we reported that we found a 

difference in disability between NEDA and EDA patients at follow-up in Paper II, the 

probability of the observed difference occurring by chance, even though it was not true, 

was below 5 %. 
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When performing multiple testing, we corrected for this, either using Monte 

Carlo simulations provided in Freesurfer (Paper I) or by Bonferroni corrections (Paper II 

and IV), to keep the chance of type I errors low. Further, we sought to use methods 

with good precision, to reduce the chance of type II errors. However, as our studies 

were restricted by MRI and patient availability, we did not have the opportunity to 

increase power by increasing sample size. In Paper IV the large variation in task-related 

pupillary responses (Peak pupillary dilation was 15.8 % (SD 7.4) in patients and 15.7 % 

(SD 7.9) in controls) and relatively small sample size (41 patients and 43 controls) may 

have led to a type II error; there may be differences between patients and controls not 

identified with our tests.  

5.9 Ethics 

5.9.1 Ethical approvals 

This project was approved by the Ethical Committee of the South-Eastern Region of 

Norway. All participants received oral and written information and gave written 

consent to participate in the study.  

5.9.2 Ethical considerations of clinical and cognitive assessments 

The main inconvenience to the participants in this study was the possible 

exhaustion caused by the time consuming examinations. The patients may have felt 

obliged to participate in the study because of loyalty to the treating institution or 

because of personal knowledge of any of the clinicians involved in the study. 

Furthermore the patients may have become more aware of the large variety of possible 

symptoms in MS because of the different tests, and may thus have been unnecessarily 

worried.  

To avoid exhaustion we always made sure that the patients wanted to proceed 

during the examinations and adjusted the test situations when necessary. Whenever 

the patients were worried about the test results we provided follow-up consultations 

to give feedback and explain the results of the tests. And, finally, the positive responses 
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throughout the examinations ensured us that participation in the study was mostly a 

positive experience for both patients and controls.   

5.9.3 Ethical considerations of MRI assessments 

MRI assessments are generally regarded safe, even though there are several 

minor and possibly major risk factors involved, mainly caused by the strong magnetic 

field in the magnet (Westbrook et al. 2011). Magnetic objects or implants may cause 

damage to the participants if the safety requirements are not followed, and the radio 

frequency pulse leads to a transient heating of the patient, possibly inducing the heat-

related Uthoff’s phenomenon, causing reversible neurological symptoms in MS patients. 

Furthermore, the noise of the MRI machine and the long period of immobility may lead 

to reversible discomfort or to fear in participants with claustrophobia (Westbrook et al. 

2011). 

The intravenous injection of Gadolinium to evaluate blood-brain-barrier leakage 

is also considered safe to patients without renal failure (Westbrook et al. 2011). 

However, recent studies have indicated that Gadolinium may in fact accumulate in the 

brain of patients after several injections (Kanda et al. 2015). The pathophysiological 

consequence of this accumulation is not known. Gadolinium is, however, a lethal agent 

and Gadolinium chelates should not be administered unless there are medical 

indications. In this study we performed MRIs with Gadolinium chelate-injections as part 

of clinical follow-up. However, because the patients in the study were scanned and 

clinically followed at two locations of the hospital physically and technologically 

separated, we were not able to completely avoid that some patients underwent more 

examinations than strictly necessary. 
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6. General discussion 

6.1 Structure of the cerebral cortex in early MS patients 

Gray matter atrophy early in the disease course has been associated with long-

term disability in MS (Filippi et al. 2013a; Popescu et al. 2013) and is considered an 

important target in new treatment studies (Filippi et al. 2014). In the first paper of this 

thesis we confirmed that the cerebral cortex of MS patients with short disease duration 

(mean 26 months) was thinner than in healthy controls. These results were in line with 

previous research (De Stefano et al. 2003; Sailer et al. 2003), and showed that cortical 

thinning was present also in patients from our population-based cohort.  

While cortical thickness has been thoroughly examined in MS, cortical surface 

area has barely been studied. Previous studies have shown that cortical surface area is 

reduced in developmental disorders like Williams syndrome (Meda et al. 2012) and 

microcephaly (Rimol et al. 2010). In other neurological disorders, like Parkinson’s 

disease, an increased cortical surface area compared to controls has been identified 

(Jubault et al. 2011). A small study of patients with Alzheimer’s disease did not reveal 

differences in surface area between patients and controls in the temporal lobe 

(Dickerson et al. 2009). We did not identify any reductions in cortical surface area in MS 

patients compared to healthy controls in Paper I. Another recent study, predominantly 

studying cerebral curvature and white matter volume in CIS and MS patients, also 

found preserved cortical surface area in MS patients using Freesurfer software (Deppe 

et al. 2014). Other studies have found a reduced cortical surface area in MS patients 

compared to controls (Hier and Wang 2007; Gorgoraptis et al. 2010). This difference 

may in part be caused by differences in disease duration and procedure used in the 

studies. Compared to the first study (Hier and Wang 2007), we included more patients 

and used a robust method. Compared to Gorgoraptis and colleagues (Gorgoraptis et al. 

2010) our patients had a lower age and lower disability, otherwise our methods were 

comparable. 
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Pathophysiologically the cortical surface area is an interesting measurement, 

because meningeal inflammation may play an important role in MS pathogenesis. 

Ectopic B-cell follicle-like structures in the deep sulci of the brain have been identified 

in around 40% of patients with secondary progressive MS. The presence of such 

inflammation was associated with a more severe disease course (Howell et al. 2011). 

Such inflammation could potentially cause a reduction of the cortical surface area. Our 

study indicated that if cortical inflammation was present early in the disease, it did not 

alter the cortical surface area. Taken together, ours and other’s research may therefore 

indicate that the cortical surface area is affected differently during the course of the 

disease. Longitudinal studies of changes in the structure of the cerebral cortex in MS 

are lacking, but may provide further insight into the pathophysiological events in early 

MS and the clinical impact of these changes.  

6.2 Association between cortical structure and specific symptoms –

indicators of emotional brain reserve in MS patients 

In Paper I we found that higher disability in MS patients was associated with a 

regionally thinner cortex and an overall higher lesion load (r=0.3), similar to other 

studies (De Stefano et al. 2003; Sailer et al. 2003; Narayana et al. 2012). This gap 

between disability and proof of structural brain damage by imaging, termed the 

“clinico-radiological paradox” (Barkhof 2002), may partly be explained by the lack of 

specificity of the disability score EDSS (Cohen et al. 2012) and by the fact that not all 

structural brain damage is visible on standard MRI sequences (Filippi et al. 2012). In 

addition functional brain changes may occur as a response to the disease (Rocca et al. 

2003).   

 We also identified an association between fatigue and cortical volume of the 

right fronto-parietal region, similar to previous studies of MS patients with fatigue 

(Calabrese et al. 2010a; Pellicano et al. 2010; Gobbi et al. 2014). These results fit with 

the hypothesis that there is a thalamo-striato-cortical determinant to fatigue (Engström 

et al. 2013). Furthermore, they support the concept that fatigue in MS is related, at 
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least in part, to characteristics of frontal and parietal cortical areas, known to be 

involved in cognitive and attention processing, even from the early stages of disease. 

 We further identified an association between depression and cortical surface 

area, mainly in the frontal and parietal lobes, as well as an association between 

depression and a smaller cortical volume in the same regions. Associations between 

depression and regional cerebral volume changes in MS patients have also been 

identified previously (Bakshi et al. 2000a; Gobbi et al. 2014). We found a negative 

association between cortical surface area and depressive symptoms in cerebral regions 

with no reduced surface area in the patient group compared to the controls. This may 

possibly indicate the presence of an emotional “brain reserve”; a larger surface area in 

certain regions may be related to less depressive symptoms when presented with a 

neurological disease. This hypothesis corresponds to the hypothesis of a cognitive 

“brain reserve" in MS, where a larger life-time brain volume is associated with less 

cognitive decline (Sumowski et al. 2014).  

6.3 Cognitive function and cognitive reserve in early MS 

We identified no cognitive impairment in our patient group compared to 

published norms. This result is in contrast to most previous studies of early RRMS 

patients (Rao et al. 1991; Amato et al. 1995, 2010; Achiron and Barak 2003). The first 

studies of cognition in early MS patients diagnosed patients according to more 

stringent diagnostic criteria than we used (Amato et al. 1995). Thus the other patients 

may have had a longer disease duration or a more severe disease than our patients. 

Further, many studies of cognition in MS have been clinic-based, contributing to a 

possible selection of more severely ill patients (Achiron and Barak 2003).    

The combination of large regional thickness differences between patients and 

controls, as well as the sparse associations between cognitive performance and cortical 

morphology in our patient sample, fits with the cognitive reserve hypothesis, i.e. that 

premorbid education, leisure or other activities may protect against, conceal or 
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postpone cognitive decline (Sumowski et al. 2009, 2010, 2014; Amato et al. 2013). 

Most of our patients had high general ability levels and high levels of education. They 

were either students or working, confirming that this was a well-functioning patient 

group, and that they participated in “reserve-building” activities (Schwartz et al. 2015). 

It must, however, be kept in mind that the tests applied here did not capture all aspects 

of cognition that may be affected by the disease. 

Even in the absence of evidence of cognitive decline in our patients, we 

identified associations between test performance and cortical structure in the patient 

group. For verbal memory, we identified an association between good performance 

and a larger cortical surface area in parts of the left occipital and temporal cortex. For 

visuospatial memory we identified an association between performance and right 

temporo-parietal volume. These results were similar to studies of regional lobar cortical 

thickness of MS patients with a longer disease duration (Benedict et al. 2002). We 

found no association between regional cortical measures and SDMT results in the 

patient group. This may be explained both by the good performance of the patients 

and by the nature of the test, further investigated in Paper III.  

6.4 Evidence of disease activity in early MS and relation to treatment 

With the emergence of new disease modifying treatment (DMT) options, 

“disease activity free status” (Havrdova et al. 2009; Bevan and Cree 2014) or “no 

evidence of disease activity” (NEDA) (Rotstein et al. 2014) has been introduced as an 

ambitious goal of multiple sclerosis (MS) therapy. The rationale for this concept is that 

MS treatment should aim for no signs of disease activity; neither new relapses, 

disability progression nor new or enlarging white matter (WM) lesions. In Paper II we 

evaluated the disease activity in our early RRMS cohort 13 months after baseline and 

found that 46 % showed evidence of disease activity in spite of treatment according to 

national guidelines. Thus 54 % of our patients were categorized as NEDA. This 

proportion of patients with no evidence of disease activity was comparable to a recent 

cohort study, which found that 46 % of their patients fulfilled the NEDA criteria after 
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one year (Rotstein et al. 2014). Lower proportions of NEDA have been observed in most 

clinical trials, both for patients receiving DMTs and placebo (Havrdova et al. 2009; 

Giovannoni et al. 2011; Lublin et al. 2013). In contrast, a recent interim report on the 

effect of AHCT of MS patients reported 78 % NEDA after 3 years (Nash et al. 2015).  In 

our study patients were included irrespective of disease activity and treatment, while 

most clinical trials include patients with active disease only. Furthermore, the patients 

in our cohort were assigned to treatment by their neurologist, not randomized, and all 

patients in our cohort had disease duration ≤ 3 years. Current literature shows that we 

are still far from the goal of no evidence of disease activity in MS patients. The low 

proportion of NEDA among the patients receiving first line DMTs (40 %) in our study is 

of particular interest. Long term effects of first line DMTs in registry studies remain 

uncertain (Shirani et al. 2012; Tedeholm et al. 2013). Our study supports that these 

drugs may not give sufficient protection against disease activity in early MS. 

6.5 Disability progression, cognition and gray matter atrophy in early MS 

Changes in disability, as measured by EDSS, is the most common outcome 

studied in MS populations (Cohen et al. 2012). In Paper II we found that the NEDA 

patients improved in disability. A disability improvement has also been reported in 

other studies, but the observation is rare (Tremlett et al. 2012; Nash et al. 2015). Such 

an improvement may reflect tissue repair in the absence of inflammation. A disability 

improvement in the absence of evidence of disease activity makes NEDA a highly 

relevant goal for future treatment of MS patients. Such data bears promise that 

adequate treatment may not just halt the disease progression; it may even lead to 

improvements in function. 

In the NEDA group, there was a trend towards an improvement also in 

processing speed, probably the main cognitive domain affected in MS (Van 

Schependom et al. 2014b). Even though the observation period of our study was short, 

this result may have been a consequence of disease stability. The EDA patients caught 

up with the NEDA group on verbal learning at follow-up. This may have been caused by 
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a combination of practice effects and because they had not yet reached the ceiling of 

the test score at baseline. Fatigue and depressive symptoms were similar between the 

patient groups at baseline and at follow-up, indicating that neither of these factors can 

predict EDA, nor are they the direct consequence of EDA in a one-year perspective. 

In line with previous studies, the patients in our study showed both a thinner 

cerebral cortex and a smaller subcortical volume compared to controls, and annual 

subcortical GM atrophy rates were larger in patients than controls (Geurts et al. 2012). 

The subcortical GM atrophy rates between the EDA and NEDA patients differed 

numerically, but were not significantly distinguishable in our sample. However, the 

subcortical atrophy rates of the patients with disease activity (EDA) were significantly 

higher than in the healthy controls. We therefore hypothesized that pathological 

neurodegeneration in the EDA patient group drives the increased atrophy rates of the 

RRMS patients.   

6.6 Saccadic initiation time and hand motor speed in early MS 

Early features of RRMS may include eye motor disturbances (Reulen et al. 1983; 

Frohman et al. 2005; Graves and Balcer 2010), fine motor control of the hand (Cutter et 

al. 1999) or cognitive dysfunction (Amato and Ponziani 2001; Amato et al. 2010). The 

Symbol Digit Modalities Test (SDMT) (Smith Aron 1982) is a widely used test of 

processing speed, recently suggested as sentinel test for cognitive impairment in MS 

(Van Schependom et al. 2014a). It is part of several test batteries used in the 

assessment of cognitive impairment in MS patients  (Benedict et al. 2002; Langdon et al. 

2011) and is suggested for use in clinical trials (Benedict et al. 2012b). Because of the 

wide use of the SDMT (Benedict et al. 2004; Drake et al. 2010; Langdon et al. 2011), it is 

important to identify whether decrements in motor function could lead to input or 

output level problems related to the procedure of the test.  

In Paper III we tested Saccadic initiation time (SI time), i.e. the time from a 

central visual cue appears to the onset of an appropriate saccade in patients and 
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controls. We found that SI time was increased in patients with MS compared to healthy 

controls. We also tested motor hand function of the patients with 9HP. We found that 

both hand function (9HP), and SI time were associated with the test results of the 

wSDMT. These motor functions were not associated with the auditory and oral test of 

the same functional domains, PASAT. The fact that SDMT was associated with both 

saccadic initiation time and hand motor speed implies that the clinician should keep in 

mind that eye movement disorders and hand motor difficulties could confound the 

results of this test. These confounders may not affect the real-life value of this test, but 

in diseases with motor difficulties, like MS, input and output problems may contribute 

to false low cognitive test scores.     

6.7 Pupillary responses to problem solving in MS patients and controls 

Cognitive dysfunction and fatigue are common and troublesome symptoms, 

often present early in the disease course of MS (Krupp et al. 1988; Amato et al. 2010). 

The cause of these symptoms are only partly accounted for by functional and structural 

changes visible on MRI (Bakshi et al. 1999; Genova et al. 2013; Rocca et al. 2014a, 

2015). Whether there is a connection between autonomic disturbances, fatigue and 

cognitive difficulties in these patients is currently unknown. In Paper IV we tested 

whether measures of pupil size during problem-solving in early MS patients could 

detect early functional brain changes associated with fatigue and cognition.  

Pupillometry has been used in psychological research as a marker of processing 

load, i.e. the intensity of mental activity (Laeng et al. 2012). The task-evoked pupillary 

response provides a reliable and sensitive indicator of within-patient variations in 

processing load in memory, language, reasoning and perception tasks, and it is 

sensitive to between-group differences in intelligence (Beatty 1982).The task-evoked 

pupillary response is associated with activation of locus coeruleus (LC) and 

noradrenergic activation of large brain regions, including sympathetic and 

parasympathetic nuclei. Thus the pupillary response mirrors both brain activation (e.g. 

cognitive load) and central autonomic changes.  
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 We found that patients and controls showed similar pupillary responses to 

cognitive tasks at a group level. This result indicated that most patients and controls 

had a similar and normal LC response to cognitive tasks. Thus most patients showed a 

well-functioning task-related allocation of attention that facilitated efficient cognitive 

processing. This result fits with recent fMRI results of cognitive processing of early MS 

patients, where normal activation patterns were found in the cognitively preserved 

patients (Rocca et al. 2014b). 

6.8 Pupillary responses to problem solving in patients with different 

symptoms 

As expected from the literature, we found that controls with a low cognitive 

score (LCS) had an increased pupillary response to simple cognitive tasks compared to 

controls with normal cognitive scores (Hess and Polt 1964; Beatty 1982). We did, 

however, not identify any increased pupillary response in the LCS-MS patients. This lack 

of response could indicate an altered LC activation during cognitive tasks in these MS 

patients.  There was a trend towards a smaller pupillary response in patients with 

fatigue and depression, but the group differences did not reach significance.  

From the clinical impression that MS patients may experience symptom relief 

with tricyclic antidepressants (TCA) and l-dopa treatment, the hypothesis that MS may 

be caused by altered noradrenergic (NA) transmission  was raised (Berne-Fromell et al. 

1987). Even though this hypothesis has little support, there are an increasing number 

of studies indicating that the LC/CNS NA-system is altered in MS patients. In 

experimental autoimmune encephalitis (EAE) mice and in autopsies of chronic MS 

patients, reduction in CNS NA levels and damage to LC neurons have been described 

(Polak et al. 2011). The same research group found that LC damage increases the 

symptom severity in EAE, and that increasing NA and NA precursor levels reverse this 

effect (Simonini et al. 2010).Treatment of EAE mice with a vincamine derivate called 

vindeburnol, which temporary depletes CNS NA and leads to an upregulation of LC NA 

levels and metabolism, leads to a reduction in EAE symptoms  (Polak et al. 2012). A 
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randomized controlled trial of treatment to normalize NA levels of the CNS 

(lofepramine, phenylalanine and B12) in 69 MS patients in different stages of the 

disease, led to a reduction in MS symptoms in the treated patients (Wade et al. 2002). 

In a small subgroup of patients, a reduction in T1 lesions and a slower atrophy rate on 

MRI was observed (Puri et al. 2001). Thus, there are several indicators that the LC/CNS 

NA-system is altered in MS patients and that this alteration has clinical and pathological 

consequences.  

In line with this, modafinil, a sympathomimetic used in the treatment of 

attention deficit and hyperactivity disorders, has been suggested as a treatment for 

fatigue in MS patients (Niepel et al. 2013). The autonomic disturbances present in the 

fatigued patients prior to treatment were alleviated by the treatment, and it was 

suggested that the effect of modafinil partly was an indirect dopaminergic effect on the 

LC  (Niepel et al. 2013). The hypothesis that dopaminergic disturbancies may be a key in 

MS fatigue has also recently been proposed (Dobryakova et al. 2015). Our results 

indicated that these pathways are mostly preserved in early MS patients, but we 

propose that pupillary responses in patients with cognitive impairment and fatigue 

with long disease duration should be investigated further. 

6.9 Pupillary responses to problem solving in patients with a history of 

ON or brainstem lesions 

The diversity of the symptoms and the dissemination of lesions and non-lesion 

pathology in the CNS of MS patients make the isolation of specific causes of different 

symptoms in MS patients difficult. In particular, altered pupillary responses could be 

caused by both disruptions of the visual pathways, altered activation of the involved 

nuclei and of the pathways from these nuclei to the pupillary muscles. Prior to this 

study it was not known whether the disruption of the visual pathways caused by ON or 

brainstem lesions would lead to an altered task-related pupillary response in MS 

patients. In Paper IV we were able to control for both brainstem lesions and a history of 

ON. Neither brainstem lesions nor ON affected the pupillary response found in patients 
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with preserved vision. This result is important for future studies of the task-related 

pupillary response in MS patients. 

7. Theoretical and clinical implications of the thesis 

In this thesis we have examined cognition, disease activity and structural MRI 

changes in a cohort of early RRMS patients. The results discussed in this thesis have 

several theoretical and clinical implications.  

Damage to cerebral gray matter and a rapid increase in disability early in the 

disease course are associated with worse long term outcome in MS patients 

(Degenhardt et al. 2009; Scalfari et al. 2010, 2014; Popescu et al. 2013). The absence of 

disease activity measured by NEDA identified in Paper II was associated with disability 

regression and normal GM atrophy rates compared to healthy controls. Thus this thesis 

supports the use of NEDA as treatment goal for MS patients.   

The large proportion of patients on first line DMTs with evidence of disease 

activity after just one year identified in Paper II (46 %) implies that we did not reach the 

goal of NEDA in these patients. Considering the potential long term consequences of 

early disease activity, this study supports a more liberal use of second line DMTs in 

early MS patients.  

After the completion of this study new DMTs have become available and are 

part of the new treatment guidelines for MS in Norway (under revision) (Hartung et al. 

2014; Thomas and Wakefield 2015). Future studies should focus on the effect on 

disease activity, disability, cognition and GM changes in patients on these treatments 

as well.    

The good and stable performance of the patients on cognitive tests in Paper I-IV 

results has several implications. Previous studies have found conflicting effects of 

cognitive reserve on cognition in MS patients as the disease has progressed (Amato et 
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al. 2013; Sumowski et al. 2014). Our patient group seemed quite robust to cognitive 

changes early in the disease process. Further investigations of cognitive decline in 

population-based MS cohorts diagnosed according to the new diagnostic criteria are 

warranted. Our study was not designed as an epidemiological study, but the cohort was 

drawn from an unselected patient pool. We therefore expect the disease related 

symptoms and signs reported in this thesis to resemble those of RRMS patients drawn 

from similar populations. According to our results, early RRMS patients are mostly 

cognitively well-functioning, which is relevant for the clinical approach to patient 

information and care.  

We identified associations between depressive symptoms and cortical surface 

area and volume, and between fatigue and cortical volume in Paper I. These brain 

regions were not different between patients and controls. A possible implication of 

these results is that larger cortical surface area and higher cortical volume in certain 

brain regions could be protective against depressive and energy-related symptoms. Our 

results indicate that premorbid brain resources may be relevant not only in cognition, 

but also in the mental health of MS patients. This result should trigger further research 

into potential “mental brain reserve”.  

In Paper III we found that wSDMT was associated with both saccadic initiation 

time and hand motor speed. Thus in diseases with motor difficulties, like MS, input and 

output problems may contribute to false low cognitive test scores. The study pointed to 

a problem potentially present when performing testing of any kind: other factors than 

the one we want to assess may confound the results. Paying attention to the potential 

pitfalls of confounders in the assessment of patients may help ensuring correct 

diagnosis and treatment; this holds true both for patients with MS and other 

neurological disorders. 

In Paper IV we found that most patients tested had normal pupillary responses 

to cognitive tasks, indicating that this method did not identify LC or central autonomic 

changes on a group level in early MS. We have shown that this method may be used in 
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Figure 22.  Model of factors contributing to the onset of cognitive decline in MS.  The model is based 

on hypotheses of network collapse, cognitive reserve and the role of modulatory neurotransmitters  in 

the development of cognitive decline in MS (Sumowski et al. 2009; Hanken et al. 2014; Schoonheim et 

al. 2015). Illustration: Gro Owren Nygaard 

MS studies, since pupillary responses were preserved in both patients with a history of 

ON and brainstem lesions on MRI. The patients with low cognitive scores did not show 

the expected large pupillary responses in our study. This is an indicator that LC 

activation may be altered in CI MS patients. Future studies of pupillary responses in CI 

MS patients may contribute to a better understanding of the mechanisms of cognitive 

impairment in MS.  

Schoonheim and coworker have suggested that cognitive impairment is a result 

of network collapse, induced by structural brain damage and network inefficiency 

(Schoonheim et al. 2015). Studies of cognitive reserve have shown that education or 

other intellectual stimuli prior to disease onset may modulate the effect of structural 

brain damage on cognitive function in MS patients (Sumowski et al. 2009). It is 

currently not known whether functional changes in cerebral networks are delayed in 
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MS patients with cognitive reserve. The lack of LC activation, illustrated as the low 

pupillary response in LCS-MS patients could contribute to such a network collapse. 

From the combined results from literature and the papers included in this thesis I 

propose a model to explain the mechanisms contributing to the onset of cognitive 

impairment in MS patients (FIgure 22). I hypothesize that cognitive reserve would 

stabilize functional brain networks and delay the diminishing network efficiency, as 

illustrated with the dark red dotted line. LC alterations or other alterations of 

modulatory neurotransmitters in the CNS, on the other hand, could contribute to a 

faster network collapse, as illustrated by the pink line, and thus contribute to an earlier 

onset of cognitive impairment in these patients.    
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8. Future perspectives 

This thesis includes baseline and one-year follow-up data of a cohort of early 

MS patients. Longitudinal studies, at least with small drop-out rates, are valuable in 

studying the disease evolution. This study, with its well-defined population and large 

data collection at baseline, may provide a valuable basis for a long-term assessment of 

cognition, disease activity and MRI changes in RRMS patients. Such studies could lead 

to a better understanding of the associations between cognition, brain structure and 

functional brain changes in MS and improve future treatment of this patient group. 

We identified very little cognitive difficulties in our patient sample. However, 

the tests included here only covered some of the cognitive domains possibly affected in 

MS. Future studies could utilize other data from this cohort study, not yet analyzed, to 

study subtle cognitive impairments in these patients in more detail. In particular, 

analyses of continuous performance tests (Anti-saccade test and Attention Network 

Test), designed to identify minute differences between groups could elaborate on 

brainstem involvement and aspects of attention impairments.   

Whether GM or WM changes are the first to appear in MS is still unknown. This 

could be studied in order to understand the first events initializing the disease. It would 

therefore be interesting to further characterize the gray matter changes of these 

patients, and contribute to identify new methods evaluating GM changes in early MS.  

Through the work on this thesis I have I have realized that proper prevalence 

and incidence studies of cognitive impairments in MS populations are still scarce. 

Studies of the magnitude of this problem are still warranted.  

Further, this study has taught me a great deal about performing an 

observational study. It has inspired me to wish for a more comprehensive data 

collection of MS patients in Oslo, in Norway and internationally. Large collaborations 

with good inclusion rates may contribute to unveil associations between risk factors, 
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like genetic susceptibility and environmental exposures, clinical and structural changes 

in MS. 

At last, future research should ask new research questions. We could perhaps 

amend the pathological processes seen in MS by enhancing the reparative strategies of 

the CNS, e.g. by inducing remyelination in demyelinating lesions. Emerging research 

holds promise of new treatment strategies with the ambition not only to slow the 

disease development, but also to improve future function in MS patients.   

The next decades of MS research hopefully will lead to better understanding of 

who acquires the disease, why they acquire it, how we should treat them and how we 

can prevent others from acquiring this devastating neurological disease.  
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10. Errata 

Page 9, line 18(the heading of Paper III): …” symbol digit Modalities Test”… corrected 

to …“Symbol Digit Modalities Test”… 

Page 22, figure legend: “Figure 9. Definitions of disease course in MS”  corrected to 

“Figure 10. Definitions of disease course in MS” because of duplication in the 

manuscript. All the following figures are re-numbered accordingly. 

Page 38, line 2: …” the modulation of cytocike production”… corrected to …” the 

modulation of cytokine production”…  

Page 49, line 28: …” diagnosis in the patients diagnosed according to 2005”… corrected 

to …” diagnosis in the patients diagnosed according to the 2005 McDonald Critera”… 

Page 54, line 14: …” may case time constraints and require clinical training”… corrected 

to …” may cause time constraints and require clinical training 

Page 78, line 22: …” experimental automimmune encephalitis (EAE)”… corrected 

to … “experimental autoimmune encephalitis (EAE)”… 

Page 82, figure 21 (new 22): y-axis legend “Structural and functional damage” 

corrected to “Structural damage and functional network efficiency” 

Paper IV, page 28, line 649, figure caption:  “SI Fig 2. Fig 5.” corrected to “SI Fig 2.”   




