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Abstract

Background: Global environmental change is causing spatial and temporal shifts in the distribution of species and
the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence
of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary
multi-factorial approach utilizing high quality spatial and temporal data.

Methods: We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the
distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against
Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from
90 farms in 3 ecologically different districts during 1978 – 2008 were analysed. We modelled the presence of
antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance
of wild cervids and domestic animals, using mixed effect logistic regressions.

Results: Significant predictors were large diurnal fluctuations in ground surface temperature, spring
precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/
ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not
significant in the model.

Conclusions: Our results highlight the need to consider climatic variables year-round to disentangle important
seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental
change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease
distribution might be modified by future climate and environmental change.

Keywords: Tick, Range expansion, Climate change, Climatic variability, Ixodes ricinus, Anaplasma
phagocytophilum, Bush encroachment, Ecotones, Global environmental change, Remote sensing

Background
Ticks, currently the main vectors of arthropod-borne
pathogens in Europe and a major threat to human and
animal health [1], are increasing in abundance and
expanding their distribution limits [2]. Identifying the
multiple factors that may influence vector distribution is
a prerequisite in predicting health risks for humans and

animals. The limits of the range, as is found in Norway,
are ideal grounds to unravel factors delineating popula-
tion persistence or extinction. However, the factors and/
or scale of changes at these extreme limits might not re-
flect the changes at the core distribution of the vector or
pathogen [3].
Ixodes ricinus, a three-host tick species which is free-

living with brief feeding periods between the different
tick stages (larvae, nymph and adult) [4] transmits proto-
zoal, viral and bacterial pathogens, several of which are
zoonotic. As I. ricinus is ectothermic, its fitness is strongly
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temperature dependent [5], but its activity and survival
are also closely related to the degree of relative humidity
[6,7]. Global climate change is affecting overall mean tem-
peratures and factors such as precipitation, rainfall, and
vegetation, which in turn might affect the geographic dis-
tribution of ticks and other arthropods [2,8]. Beyond
changes in the absolute levels of environmental variables,
the probable changes in variability between seasons have
also been highlighted [9,10]. Although these climatic
changes could influence the life cycle of I. ricinus, we lack
clear evidence for a consistent association between tick
abundance and a warmer and wetter climate [11]. Other
environmental variables such as landscape characteristics
and abundance of hosts are also important drivers of tick
population dynamics [12,13] and might therefore modify
or mask climatic factor effects [14,15].
Landscape and hosts are also subject to climatic factors,

as well as to agriculture, forestry and wildlife management
practices [16]. Indeed, because of the multiplicity of inter-
actions between factors influencing the tick abundance
and dynamics, the effects of climate change on ticks and
tick-borne diseases are often controversial and subject of
debate [17]. A recent distribution map of I. ricinus in
Norway [18] shows a shift in latitudinal and altitudinal
distribution. During the last three decades there have been
considerable changes in temperature, landscape, vegeta-
tion, demography, agricultural/forestry practice and the
density of host animals in Norway.
The aim of the present interdisciplinary study was to

explore the multi-factorial influence of biotic and abiotic
factors in driving the expansion of I. ricinus. While
spatially and temporally detailed tick distribution data
is unavailable for the past, the prevailing distribution
of I. ricinus in Norway corresponds to the distribution
of Anaplasma phagocytophilum [19]. The bacterium
A. phagocytophilum causes Tick-borne fever (TBF),
which is the most common vector-borne pathogen of
sheep and cattle in northern Europe [20]. Recent stud-
ies indicate that different strains of A. phagocytophi-
lum may affect different host species and there may be
variation in the pathogenicity of strains, even those af-
fecting the same species of host [20]. A. phagocytophi-
lum also causes human granulocytic anaplasmosis
(HGA), which is now widely recognised as an emer-
ging zoonotic tick-borne disease [21,22].
Changes in tick exposure can be indirectly measured

by detecting infections or evidence of infection in hosts
susceptible to tick-borne pathogens. As sheep are sus-
ceptible hosts to A. phagocytophilum [23], antibodies to
A. phagocytophilum should be good indicators of the
presence of I. ricinus, the only known vector of TBF in
northern Europe [20]. Even though the prevalence of
A. phagocytophilum in sheep also could be influenced
by the rates of infection in the tick vector, density of

hosts and the strains of A. phagocytophilum found
within a geographic area, changes in the prevalence of
A. phagocytophilum in sheep should reflect changes in
tick exposure [24,25]. We studied changes in exposure
to I. ricinus as proxied by the number of sheep sero-
positive for TBF.
All the explanatory variables were smoothed on a dec-

adal basis to even out year to year variation. We focused
on factors affecting survival and reproduction success of
ticks, namely climate, bush encroachment, demography,
abundance of cervids and farm animals.

Methods
Study design
Three study districts were selected in Southern Norway
(INLAND, COAST and FJORD) which differ with respect
to historical tick presence, topography, demography of hu-
man and animal population, bush encroachment, presence
of cervids and degree of climate change. Sheep serum
samples from farms residing in the three districts were di-
vided into 3 timespans; timespan 1 (1978–1989), timespan
2 (1990–1999) and timespan 3 (2000–2008). Several envir-
onmental, climatic and demographic variables were gener-
ated for the same timespans as the serum samples, and
their effect was tested using statistical models.

Collection of samples and sample size
The serum samples belong to the sample and culture col-
lection of the Norwegian Veterinary Institute (NVI), and
were collected randomly, throughout the year, as part of
the national surveillance programs (see Additional file 1).
Each of 90 farms was sampled once (except for four farms
which were sampled two (2), three (1) and four (1) times).
A total of 2963 samples were collected. Assuming a sero-
prevalence of A. phagocytophilum of 10% in sheep flocks,
we aimed for 300 samples per timespan within each dis-
trict to be able to estimate prevalence with a 95% confi-
dence limit and accuracy of 10% ± 3.39% (CI 0.069-0.140)
using the R package Epi.

Study area
Five municipalities were selected in the districts of Aust-
Agder and Vest-Telemark (INLAND), an inland area
previously thought to be free of I. ricinus [26,27]. Seven
municipalities were selected in the district of Jæren
(COAST), an exposed coastal and agricultural district
with no or low abundance of ticks in the past [26,27].
Two municipalities were selected in the district of Hau-
galandet (FJORD), a more sheltered fjord and valley dis-
trict, where I. ricinus has been common since the first
surveys [26,27]. I. ricinus is now present in all munici-
palities that constitute these three districts [18]. A de-
scription of the landscape, vegetation and general

Jore et al. Parasites & Vectors 2014, 7:11 Page 2 of 14
http://www.parasitesandvectors.com/content/7/1/11



climate in INLAND, COAST and FJORD is given in
Additional file 1.

Laboratory method
An enzyme-linked immunosorbent assay (ELISA) was
used to test for the presence of antibodies against A. pha-
gocytophilum in sheep [28,29], with minor modifications
(Details given in Additional file 1). The absorbance value
of each test sample was expressed as a ratio of positivity
(PP). The cut-off point between positive and negative sam-
ples was 0.20 PP. This was based on the mean PP value + 2
standard deviations of several negative ovine sera [29].

Definition of the outcome variable
The unit of observation was a single serum sample from
an individual sheep. The outcome variable was the pres-
ence (≥ 0.20 PP) or absence (< 0.20 PP) of antibodies to
A. phagocytophilum in each serum [29].

Climatic data
As climatic variables tend to be spatially homogenous
over short distances, each study district was divided in
three zones depending on elevation and distance to the
sea. Three representative farms were then chosen in
each zone, resulting in 27 farms for which climatic vari-
ables were derived. Climatic variables were also gener-
ated for the rough grazing used by 22 farms at a
different elevation or more than 10–20 km away from
the farm. Further details are given in Additional file 1.

Remote sensing data
Landsat images covering the 3 study districts were re-
trieved for the summer of either 1984 or 1988, and 2006
(Landsat 5TM). A binary map of bush encroachment
from the 80’s to 2006 was produced. Buffer zones of a
500-m radius were established around farms and rough
grazing locations. The total area of bush encroachment,
the number of patches found within each zone, and their
mean area were calculated (See Additional file 1). The
bush encroachment variables were assumed to reflect a
continuous process during the study period and were as-
sumed to be independent of timespan.

Demographic factors, grazing systems and the animal
populations
The number of bagged cervids (moose, roe deer and red
deer), number of sheep over one year of age, number of
livestock farms and the human population in the muni-
cipalities were retrieved from Statistics Norway for
1980–2008. Changes in these factors during the study
period are displayed in Additional file 1: Figures S2, S3
and S4 and Table S2.
The grazing system of each farm was identified on the

basis of information given by the farmers and/or by the

municipal agricultural offices. Two types of grazing sys-
tems were encountered: infield grazing in fenced pas-
tures near or around the farm and rough grazing in
semi-natural forest/mountain pastures away from the
farm during the summer and autumn. The altitude ranges
of the grazing areas are given in Additional file 1: Table S1.
Fifty-eight farms (64%) grazed the sheep on mountain pas-
ture whilst 32 farms (36%) kept the sheep on fenced pas-
tures near the farm. All the farms in INLAND used
mountain pastures at high elevation (mean 880 masl),
whilst in COASTand FJORD 52% and 77% of the farms re-
spectively used rough grazing, at a far lower altitude (mean
318 masl and mean 515 masl, respectively).

Preprocessing of climate and temporal variables
Eleven of the twenty-two climatic variables for farm and
pasture level were calculated on a monthly basis and the
rest annually (Table 1). Highly correlated variables were
identified using the first and second components of
principal component analyses, and were subsequently
grouped using means. For example, as the relative hu-
midity variables for the winter months were highly
correlated, they were grouped for the months October-
March (RHmeanOct-Mar). The aggregated climatic vari-
ables were not highly correlated (all pairwise Pearson cor-
relation coefficients < 0.7), and were assumed to account
for the main seasonal patterns of the respective climatic
variables. All temporal predictor variables were aggregated
over a ten-year timespan matching the timespan defined
for the outcome variable. For example, the moose popula-
tion from the 1980’s (timespan 1), represent the mean
bagged moose population during the period 1980–1989,
1990’s (timespan 2) defined as 1990–1999 and 2000’s
(timespan 3) as 2000–2008. For the climatic variables the
definition of the timespan period took into account tick
biology. Ticks might complete the life cycle in three to six
years. Therefore, climatic variables were aggregated for ex-
tended periods starting 4 years prior to the sampling
timespans.

Statistical analyses
The prevalence data at individual sheep level (presence
or absence) were fitted with a mixed effect logistic re-
gression. In order to account for spatial and temporal
structure in the data, the variables “municipality” and
“timespan” were designated as random effects in the
mixed effect logistic regression. Four municipalities were
combined with a neighbouring municipality such that
each random effect level contained data from at least
two farms. The multivariable regression was performed
with the function lmer (lme4 package in R) and family
binomial. All analyses were performed in R version
2.14.0 [30]. Generalized additive models [31] were used
to identify possible nonlinear relationships or skewed
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Table 1 Definition of all climate and temporal variables used in the analyses

Variable for both infield and rough grazing level Definition

Moose The number of bagged moose in the municipality (divided by size of
municipality)

Red Deer The number of bagged red deer in the municipality (divided by size of
municipality)

Roe Deer The number of bagged roe deer in the municipality (divided by size of
municipality)

Sheep The number of sheep in the municipality (divided by size of municipality)

NuFarms The number of farms in the municipality (divided by size of municipality)

F_masl The meters above sea level at which the farm is situated

Humans The number of inhabitants in the municipality (divided by size of
municipality)

Area Denoting district 1,2 and 3 (INLAND,COAST and FJORD)

Timespan Denoting the 3 decades; timespan 1(80s), timespan 2(90s) and timespan 3
(00s)

Nu_patch Number of patches of bush encroachment in a 500-m radius

Meanarea_p Mean area of patches of bush encroachment intersected by a 500-m radius
(m2)

Area shrubi Total area covered by patches of bush encroachment intersected by a 500-m
radius (m2)

TMeanJan; TMeanFeb; etc.…. Daily mean air temperature; monthly basis

TMeanSDJan; TMeanSDFeb; etc… Daily mean air temperature standard deviation; monthly basis

TminJan; TminFeb; etc.. Lowest daily mean air temperature; monthly basis

TmaxJan; TmaxFeb; etc.. Highest daily mean air temperature; monthly basis

GrowSeasDays The length of the growing season. (1)

RRSumJan; RRSumFeb; etc.. Precipitation sum, monthly basis

RH > 70DaysJan; RH > 70DaysFeb; etc.. Number of days with relative humidity >70%; monthly basis

RHMeanJan; RHMeanFeb; etc.. Mean relative humidity; monthly basis

SatDefMeanJan.; SatDefMeanFeb; etc.. Mean saturation deficit; monthly basis. (2)

SatDef < 5DaysJan; SatDef < 5DaysFeb; etc.. Number of days with saturation deficit <5 mmHg; monthly basis

SnoStartDays Number of days in a hydrological year* to snow depth ≥2 cm (3)

SnoEndDays Number of days in a hydrological year* to snow depth ΓΫ ≤2 cm in spring

SnoDepth≥ 2Days Number of days in a hydrological year* with snow depth ≥2 cm

SnoDepth1-2Days Number of days in a hydrological year* with snow depth of 1–2 cm

SnoDepth2-20Days Number of days in a hydrological year* with snow depth of 2–20 cm

SnoDepth > 20Days Number of days in a hydrological year* with snow depth >20 cm

SnoSum Sum of snow depth (cumulative) per hydrological year*

GSTminJan Lowest daily ground surface temperature (GST); monthly basis

GSTmaxJan Highest daily ground surface temperature (GST); monthly basis

FTDays-SnoDepth≥ 2 Number of days in a hydrological year* with freeze-thaw events at ground
surface with snow depth≥ 2 cm. (4)

FTDays-SnoDepth < 2 Number of days in a hydrological year* with freeze-thaw events at ground
surface with no snow cover or snow depth <2 cm.

BlackFrdays Number of days in a hydrological year* with black frost; daily GST < 0°C and
ground bare of snow or snow depth < 2 cm.

TDecr÷5 < DaysJan; TDecr÷5 < DaysFeb; etc.. Number of days per month where temperature decrease in GST from a day
to the next day are >5°C.

TDecr÷10 < DayJan; TDecr÷10 < DayFeb; etc.. Number of days per month where temperature decrease in GST from a day
to the next day are >10°C.
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variable distributions. These exploratory analyses sug-
gested second-order polynomial terms for four variables,
and categorisation of a skewed variable.
We used a two-step procedure for model selection.

Initially we fitted single variable mixed effect logistic re-
gressions of all potential predictor variables with munici-
pality and timespan as random effects and kept only
variables with a p-value ≤ 0.20 for further model selec-
tion. Twenty-eight of 67 variables were kept for the
farm/infield and 18 of 67 variables for the rough grazing
(see Additional file 1: Table S3). A stepwise backward
model selection approach was applied to build the full
model, using Akaike Information Criteria (AIC) for
model selection [32]. Highly correlated variables (Pearson
correlation coefficient ≥ 0.7), were not included in the
full model at the same time. A difference of ≤ ± 2
of the AIC value was regarded as equivalent models
and the most parsimonious model was then chosen.
Residuals of the final model were plotted against all ex-
planatory variables, and mapped, in order to explore
any potential remaining systematic patterns. The pre-
dictive power of the final model, with random effects
included, was assessed by plotting predicted farm
prevalence against observed farm prevalence. To meas-
ure the accuracy of the model, area under the curve
(AUC) of a ROC curve was calculated. The ROC curve
is a plot of the sensitivity versus (1- specificity) for all
thresholds [33].

Results
Antibodies against Anaplasma phagocytophilum
A total of 1543 samples (52%) were positive for antibodies
against A. phagocytophilum (Figure 1). Seropositive sheep
were detected in all areas and during all timespans
(Additional file 1: Table S1 and Table S2). There was
an increase in the number of positive animals over
time for FJORD, an increase for the last time span in
COAST whilst there was a decrease over time in posi-
tive samples collected from INLAND (Table 2). FJORD
showed the highest number of positive animals (Table 2).

Climatic variables
The general trends in essential climatic variables for
period 1981–2010 are described in Additional file 1:

Figure S1. Figure 2 displays some variables significant in
the multivariable model (Table 3). INLAND is character-
ized by higher inter-annual and decadal climate variabil-
ity and shows more variations between the timespans.
COAST had the most prominent and homogenous
changes. The greatest increase was in the number of
days per year with high day-to-day fluctuations in
ground surface temperature (TDecr÷5 < DaysJan-Dec, def-
initions in Table 1). FJORD had the least prominent
changes over time compared to INLAND/COAST, but
still at a level of > 20% change for several variables.

Vegetation changes
Bush encroachment was observed in all study areas. IN-
LAND had the most pronounced bush encroachment of
farm surroundings and rough grazing. On average 10
patches of bush encroachments intersected a 500 m ra-
dius around the farm, totalling on average about 5ha
(6.4% of the buffer area). On the other hand, 500 m radii
around rough grazing locations intersected on average 8
patches of bush encroachment, totalling an average 3.5
ha (4.5%). INLAND also had the largest mean size of
encroached patches, with 0.5 ha near farms and 0.3 ha
in rough grazing locations. COAST, a more intensively
used region where agricultural land covers most of the
area, had on average 2 patches of bush encroachment
intersecting a 500 m radius, totalling less than 1ha (1.3%)
on average in both farm and pasture locations. COAST
also had the smallest average mean size of patches,
below 0.2 ha both around farms and in pastures. FJORD
presented an intermediate situation, with 4 and 6
patches intersected on average in farms and on rough
grazing respectively, totalling just over 1ha (1.3%)
around farms and just over 2 ha (2.5%) in rough graz-
ing locations.

Results for multivariable regression
The model that best predicted A. phagocytophilum-
prevalence in the three districts over time included
large daily fluctuations in temperature in general, and
in certain months of the year, seasonal precipitation
changes, duration of snow cover, bush encroachment,
abundance of red deer and density of farms with ani-
mals (Table 3). The six variables explaining most of the

Table 1 Definition of all climate and temporal variables used in the analyses (Continued)

TIncr + 5 < DaysJan; TIncr + 5 < DaysFeb; etc.. Number of days per month where temperature increase in GST from a day
to the next day are >5°C.

TIncr + 10 < DaysJan; TIncr + 10 < DaysFeb; etc.. Number of days per month where temperature increase in GST from a day
to the next day are >10°C.

(1) Number of days between the end of the first continous 4-day period with a 24 h mean air temperature > 5°C and the beginning of the last continous 4-day
period with a 24 h mean air temperature >5°C. (2) Saturation Deficit (SDF) is a measure of air humidity (in mmHg); it is the difference between actual and maximum
vapour content: SDF = (1 − RH/100) × 4.9463 × e(0.0621T). RH is the daily mean RH (%), T is the daily mean air temperature (°C). (3) For all SnoDays variables and SnoSum
the number of days refers to the hydrological year. (4) A freeze-thaw event is defined as when daily Ground Surface Temperature (GST) crosses 0°C from one day to the
next. *A hydrological year is from 1 September – 31 August.
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variation (as assessed by the AIC value), were the
density of farms, relative humidity from October–
March, yearly number of days with black frost, precipi-
tations in May, duration of snow cover and abundance
of red deer. The model predicts the observed farm
prevalence very well (Figure 3). The AUC of the result-
ing model was 0.85.

At farm/infield
The mean patch area of bush encroachment, density of
livestock farms, abundance of red deer, number of days
per year with day-to-day fluctuation in ground surface
temperature (GST) >5°C, number of days with snow
depth of ≤ 2 cm (SnoStartDays), standard deviation of
mean air temperature in April and relative humidity

Figure 1 Geographic distribution of farms which were positive and negative for antibodies against A. phagocytophilum during
timespan 1, timespan 2 and timespan 3 in the three regions (INLAND, COAST and FJORD). A positive farm is defined as a farm with one or
more positive samples. A negative farm has no positive samples.
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during October-March were positively associated with
the outcome. Of these variables, the highest impacts on
the probability of a positive outcome were found by one
unit increase in red deer abundance, SnoStartDays, and
relative humidity during October–March (Table 3). The
numbers of days in June with day-to-day increase in
GST of >5°C was negatively associated with the out-
come. The amount of precipitation in May had a posi-
tive significant association with increased prevalence of
TBF in sheep at lower values, and a negative relationship
at higher values (> 90 mm). An increase by 1 standard
deviation from the mean amount of May precipitation

(from 93 mm to 113 mm) decreased the probability of a
positive outcome by 0.6 (95% CI: 0.4, 0.9).

At rough grazing
The total area of bush encroachment and the number of
days with black frost during the year were positively as-
sociated with the outcome. The probability of a positive
outcome was approximately 2.5 times higher for the
three bush encroachment categories with more bush en-
croachment than the lowest category defined by the first
quartile of the variable “Area shrubi”. An increase by one
unit in the black frost variable increased the probability of

Table 2 Changes in the prevalence of antibodies against A. phagocytophilum in sheep and farms

District Timespan Farms tested (n) Sheep tested (n) Positive sheep (n) Proportion positive
sheep [95%CI]*

Mean farm prevalence [90% range]

INLAND 1 6 379 139 0.37 [0.32-0.42] 0.33 [0.18 – 0.46]

2 0 0 n.a n.a n.a

3 16 436 124 0.28 [0.24-0.33] 0.26 [0.06 – 0.52]

COAST 1 12 520 252 0.48 [0.44-0.53] 0.59 [0.34 – 0.92]

2 20 403 117 0.29 [0.26-0.35] 0.39 [0.00 – 1.00]

3 12 339 210 0.62 [0.57-0.67] 0.61 [0.13 – 1.00]

FJORD 1 6 240 151 0.63 [0.56-0.69] 0.72 [0.14 – 1.00]

2 9 326 249 0.76 [0.71-0.81] 0.78 [0.47 – 1.00]

3 11 320 301 0.94 [0.91-0.96] 0.94 [0.80 – 1.00]

In the 3 study regions during three different timespans: timespan 1; 1978–1989, timespan 2; 1990 – 1999; timespan 3: 2000–2008. *Confidence intervals obtained
from assuming that the positive sheep are independent and following a binomial probability distribution.

Figure 2 Changes over time in the specific climate variables, which was significantly associated with the outcome in the multivariable
model. (A) INLAND, (B) COAST and (C) FJORD. Farm denotes the variables significant at farm level, whilst pasture denotes variables significant at
rough grazing level. Changes are shown for timespan 2 (1990-1999) and timespan 3 (2000-2008) relative (in %) to timespan 1 (1980-1989).
RRSumMay : Precipitation in May; SnoStartDays: Number of days from 1 September - 31 August to snow depth ≥2 cm, TDecr÷5<DaysJan-Dec : Number of
days per month where temperature decrease in Ground Surface Temperature (GST) from a day to the next day are >5 °C; RRSumMar : Precipitation in
March; and BlackFrdays: Number of days from 1 September – 31 August with black frost, daily GST < 0°C and ground bare of snow or now depth < 2 cm.

Jore et al. Parasites & Vectors 2014, 7:11 Page 7 of 14
http://www.parasitesandvectors.com/content/7/1/11



a positive outcome by 2.5 times (95% CI: 1.8, 3.4). The
amount of precipitation in March was negatively associ-
ated with the outcome.

Discussion
Understanding the response of populations to environ-
mental change requires detailed spatial and temporal
data, and also consideration of the variability in condi-
tions and of non-climatic factors along with the climate
[34,35]. Many disease distribution models use means, ig-
noring fluctuations, and will probably not be able to pre-
dict the diversity of animal responses. Incorporation of
non-climatic factors, such as biotic interactions, is espe-
cially important [36,37]. Our models covered climate
and its variability, habitat alteration, and changes in host

animal populations, agricultural practices and demog-
raphy through three decades.

Distribution of Ixodes ricinus
The upslope shift of I. ricinus is even greater than docu-
mented previously [18], with a positive INLAND farm at
748 masl. Sheep serum positive for A. phagocytophilum
in INLAND and parts of the COAST districts (Figure 1)
in the early 1980’s did not correspond with published
distribution maps [26,27]. This might be caused by dif-
ferent data resolution [18].
FJORD had higher numbers of positive sheep com-

pared to COAST, probably indicating that ticks were
relatively more abundant in FJORD. The number of
positive sheep increased in FJORD, and more recently in
COAST, indicating an increased sheep-tick exposure
over time. It might also indicate that as A. phagocytophi-
lum, which causes persistent infections in sheep [38]
gets established in an area, there will be more reservoir
hosts for more ticks to be infected and spread the dis-
ease. It is more difficult to explain why in INLAND the
number of positive sheep decreased over time. One pos-
sible explanation is that a reduction in the number of
sheep farms in INLAND might have resulted in less con-
tact between herds during summertime, possibly lower-
ing the infection risk for sheep coming from areas where
ticks are uncommon. In addition, climate change was
less pronounced and the INLAND-farms/rough grazing
were at higher altitudes, however, INLAND had the
most pronounced degree of bush encroachment. The
prevalence of A. phagocytophilum in sheep could also be
influenced by the tick infection prevalence rate, the tick
life cycle and the density of sheep, cattle and wildlife
hosts. The specific strains of A. phagocytophilum circu-
lating might also be of importance as some may not be
infective to sheep.
As whole cell bacterial antigens were used, it is expected

that the method will detect antibodies against all strains of
A. phagocytophilum that infect sheep. However, as not all
strains of A. phagocytophilum infect sheep, the results
could underestimate the distribution of ticks. Using preva-
lence of A. phagocytophilum in sheep as a proxy to estab-
lish temporal changes in the range and density of ticks
could potentially miss tick populations which do not
harbour A. phagocytophilum or strains of the organism
that do not infect sheep, and thus underestimate the range
and density of tick populations.
One possible weakness of the present study is that it

did not investigate the prevalence of A. phagocytophilum
in I. ricinus during the study period. There is, however, a
problem of inference since prevalence in questing and
feeding ticks can differ vastly; e.g. a Belgian study found
only an A. phagocytophilum prevalence of 3% in quest-
ing ticks, whilst a prevalence of 21.7% in feeding ticks

Table 3 The output (parameter estimates, standard errors
and p-values) of the mixed effect logistic regression (see
Table 1 for definitions)

Variable Estimate Std.
error

Exp
(est) P-value Δ AIC

Intercept 2.30 0.84 0.006

Area shrubi 1 vs. 0* 1.05 0.27 2.86 <0.001

14Area shrubi 2 vs. 0* 0.85 0.23 2.35 <0.001

Area shrubi 3 vs. 0* 0.79 0.23 2.21 <0.001

Meanarea_ p 0.45 0.12
1.40

<0.001
9

Meanarea _p2 −0.11 0.03 <0.001

RHmeanOct-Mar 1.21 0.13 3.34 <0.001 88

BlackFrdays 0.92 0.16 2.50 <0.001 55

SnoStartDays 1.17 0.20 3.23 <0.001 34

NuFarms 2.67 0.31
2.27

<0.001
94

NuFarms2 −1.85 0.21 <0.001

Red deer 1.28 0.22 3.59 <0.001 29

Pasture −1.36 0.30 0.25 <0.001 18

RRSumMay −0.18 0.15
0.59

0.224
46

RRSum2
May −0.35 0.06 <0.001

RRSumMar −0.40 0.14 0.67 0.004 6

TIncr + 5 < DaysJun −1.11 0.21
0.40

<0.001
27

TIncrþ 5 < Days2Jun 0.19 0.04 <0.001

TMeanSDApr 0.43 0.22
1.93

0.047
5

TMeanSD2
Apr 0.22 0.08 0.004

TDecr ÷ 5 < DaysJan − Dec 0.22 0.10 1.25 0.035 2

Δ AIC denotes the change in AIC level obtained if excluding the relevant
variable from the selected model. The continuous variables are scaled (before
taking polynomials) to mean zero and variance one. The factor by which the
odds of positive outcome are increased for each one-unit change in the variables
are represented by the computed exp (estimates). For the polynomials the odds
ratio is calculated only for an increase of one standard deviation from mean. ICC
(Intraclass correlation; ratio of the variance between subjects over the total
variance) for municipality was 0.33 and ICC for timespan was 0.36. The
“Area shrubi” variable was categorized (in 4 equal parts defined by quartiles)
to capture the nonlinear relationship (at logit-scale) with the outcome. The
variables Area shrubi, BlackFrDays and RRSumMar represent the rough
grazing level.
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[39]. Thus low prevalence in questing ticks might not be
indicative of infection rates.

Climatic factors
Climate variability – tick population and A.
phagocytophilum transmission
The data indicates that there was a significant increase
in the frequency of monthly drops in temperature with
time in COAST and INLAND during the latter timespan
(Figure 2). Climate change may increase temperature
variability [8]. Raffel et al. [33] concluded that an in-
crease in the severity of unpredictable drops in temperature
might be relevant to disease transmission. Ectotherms gen-
erally adapt to temperature variations by a left-skewed asym-
metric response [40] resulting in a non-linear relationship
between body temperature and fitness. In addition, temper-
ate ectotherms, like those living in Norway, have a lower
optimal temperature relative to the species maximum
temperature, and display a greater asymmetry com-
pared to Mediterranean and tropical ectotherms. Fur-
thermore, studies on the malaria vector (Anopheles
stephensi) and pathogen (Plasmodium chabaudi) have
revealed that fluctuations around the lower temperatures
(16-18°C) speed up intensity of pathogen transmission,

whilst fluctuations around higher temperatures (24-26°C)
might slow it down [41]. Such fluctuations probably also
affect the stress resistance of the vector, and the contrac-
tion and multiplication of the infectious agents within the
vector [41,42]. Paaijmans et al. [41] have shown that the
mosquito and parasite are influenced by the extent of daily
temperature variations and suggest the need to consider
this for other ectotherms. This might explain why large
fluctuations in temperature were positively associated with
the presence of Anaplasma-infected ticks. In a theoretical
model, temperature variability was found to strongly affect
the time at which I. ricinus cohorts emerged [43].

Duration of snow cover – tick population
Climatic changes during the last 30–40 years in Southern
Norway have had the clearest impact in winter [44].
Warmer winters with less snow and increase in spring
temperatures are accompanied by earlier spring snow
melt and bare ground, which causes rapid spring warm-
ing and greater drying of soils and vegetation [45]. The
absence/presence of snow cover, rather than the length
of the growth season, was significant for tick distribu-
tion. As long as the snow is absent ticks can still quest,
given that the temperature during some period of the

Figure 3 Prediction of the presence of A. phagocytophilum at farm level using the final model. The colour black denotes timespan 1, red
timespan 2 and green timespan 3. The black line is the regression line of observed versus predicted presence with an intercept of −0.013 and a
slope of 1.023 which give an adjusted R2 of 0.80.

Jore et al. Parasites & Vectors 2014, 7:11 Page 9 of 14
http://www.parasitesandvectors.com/content/7/1/11



day is high enough, even though the growth season has
ended. The prominent coastal distribution of I. ricinus
in Norway is better explained by the length of the period
without snow than the length of the growth period.
James et al. [46] also found that the length of the growth
season was not significant when modeling environmen-
tal determinants of I. ricinus in Scotland. However, a
study on the distribution of I. ricinus in Sweden regards
the length of the growth season as the best predictor for
tick distribution, but this study also described I. ricinus
as consistently present when the period of snow cover
was ≤ 125 d/year and as consistently absent with a snow
cover ≥ 175 d/year [47]. The importance of relative hu-
midity during the winter months probably results from
the impact on ticks that are not protected by snow
cover. Snow cover affects the survival of ticks during
winter [48], as it increases ground surface temperatures
[49] and ensures stable and high relative humidity in the
air. In places with little or no snow the ticks are not
protected, and the absence of snow together with low
relative humidity will probably kill the ticks. The sig-
nificance of number of days with black frost in the
rough grazing areas might reflect that absence of snow
cover during the winter is far more crucial for I. ricinus
than the actual exposure temperature. Precipitation
in March serves as an indicator of the duration of
snow cover in INLAND and areas of higher elevation
in COAST and FJORD, as the precipitation consists
mostly of snow. An accumulation of snow can delay
the start of spring in the rough grazing areas, render-
ing the habitats less favourable for ticks and their
hosts.

Spring temperature – tick population
Increased temperature fluctuations during April (Figure 2),
are often linked to the presence of persisting high-
pressure systems producing sunny, calm weather with
gradually increasing air temperatures. April is normally
the month with the highest degree of temperature rise,
and marks the transition from winter to spring. The
IPCC reports that there is very high confidence that
there is an earlier start to spring [50], and since 1900
the temperature increase in Norway has been greatest
in spring [44]. An early exit from diapause can be crit-
ical for interstadial development and thus the presence
and abundance of ticks [51]. Dobson et al. [51] sug-
gested that developmental diapause exit for I. ricinus is
around 1st of April in England – and that April-July
is a critical phase for the tick inter-stadial develop-
ment. Additionally, the effects of climate conditions on
winter/spring survival of important tick hosts need to
be considered, as was observed for white-footed mice
(Peromyscus leucopus), in Canada, an important tick
larval host [52]. It is possible that persisting high-

pressure systems also have an indirect effect through
increased survival of small animal hosts for the ticks.

Precipitation in May – tick population
The effect of precipitation in May (Figure 2) had a nonlin-
ear effect. There was a positive relationship with low pre-
cipitation values, and a negative one for high precipitations
(> 90 mm per month). Since the 1990s, precipitations have
increased substantially in May [44] (Figure 2). A recent
study by Dyrrdal et al. [53] showed that the frequency of
moderate to strong precipitation events has increased in
most parts of Norway since 1957, particularly in wet re-
gions. The intensity of strong precipitation events has also
showed a general increase. IPCC reports that climate
change very likely has increased the frequency of observed
heavy precipitation events [50].
Studies on I. scapularis from Ontario in Canada [54]

and I. ricinus at several British sites [51,55], climatically
similar to some places in Norway, indicate that egg de-
position take place during late April - May. The climatic
factors during the month of egg deposition will probably
be critical for the distribution of ticks, as there would
not be sustainable tick population if the eggs do not sur-
vive and hatch. The effect of flooding upon the dog ticks
(Rhipicephalus sanguineus and Haemaphysalis leachi
leachi) shows that flooding affected oviposition, reduced
the number of eggs laid and the percentage of hatchabil-
ity [56]. It has been suggested that heavy rain silts up
the egg masses [57]. Other studies have shown that
light-to-moderate rainfall is favourable for oviposition,
whilst excessive rainfall reduces oviposition and tick dis-
tribution [58,59].
Firm interpretation of significant climate variables is

challenging, but these results highlight the role of vari-
ability and directions for future research on the role of
climate.

Land cover and bush encroachment- tick population and A.
phagocytophilum transmission
In this study we focused on one specific aspect of vege-
tation change, bush encroachment. This change may be
related to a more favorable environment for ticks
[60-62], especially in areas where it connects to other
landscape types [60,63]. Trees and bushes probably pro-
vide a more stable and humid microhabitat, thereby po-
tentially enhancing tick survival [60]. At farm- level,
beyond the direct effects of increasing areas more suit-
able for ticks and some hosts, the size of patch would re-
late to the presence of ecotones, that is, interfaces
between bushy or woody vegetation and grasslands, with
more possibilities for interaction between suitable areas
and susceptible sheep.
Woodlands are the natural habitat for I. ricinus [63] as

they provide a favorable environment and a diversity of
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hosts. Small mammals and wild cervids circulate be-
tween woodlands, ecotones and pasture areas and this
movement of animals affects the distribution of I. ricinus
[64]. In rough grazing, the exact area used by sheep is
impossible to outline, and the characterization of those
areas may be more indicative, resulting in more generic
variables, such as area, being significant. Bush encroach-
ment of open fields in Norway is linked to decreasing
numbers of farms, changed forestry practices, change of
agricultural use and climate change [65]. Forest re-
growth is likely to ultimately replace bush in encroached
areas. Regrowth after abandonment or reduced use and
climate change are concurrent, and hard to separate. At
this stage, land use might have a greater impact on forest
regrowth than climate change in Norway [65,66]. Rough
grazing is considered the main restricting factor for for-
est re-growth [67]. In Sweden and Latvia, an increase in
the prevalence of tick-borne disease has been associated
with abandonment of fields and pastures and with the
expansion of woodland [68,69].

Domestic animal hosts - tick population and
A. phagocytophilum transmission
The significance of the number of livestock farms in the
municipality could be related to the fact that the pres-
ence of more farms will provide more ruminants and
thus major tick hosts. This would be in contrast to the
widespread belief that reintroduction of sheep and cattle
to an area will alleviate the tick burden through the ef-
fect of grazing on the vegetation [70,71]. However, dens-
ities in Norway may be insufficient to affect tick habitat
suitability as was observed elsewhere. A higher number
of farms might be associated with increased contact be-
tween herds on rough grazing. Herds from tick-infested
areas will then seed ticks into the rough grazing pasture
areas, possibly causing increased tick exposure for other
herds utilizing the same areas. Anthropogenic activities
such as farming have also the potential to change the
availability and density of hosts and vectors, and thus in-
directly influence the spread and persistence of infec-
tious pathogens within an ecosystem [72-74].

Cervid populations - tick population and
A. phagocytophilum transmission
In the multivariable analyses red deer was the only cer-
vid that had a significantly positive association with the
outcome. Roe deer and moose were not associated with
the outcome. The role of these species might be different
depending on the A. phagocytophilum strain.
The strains infecting roe deer belongs to a different

ankA gene cluster than those infecting red deer, sheep,
European bison and cows, and roe deer might not be
relevant reservoirs for granulocytic anaplasmosis in
humans and domestic animals [75]. Red deer has been

reported as hosts for 16S rDNA variants of A. phagocyto-
philum, known to cause TBF in sheep [76]. This might
provide an explanation as to why red deer, and not roe
deer, were significant. However, msp4 genotyping per-
formed indicated a clustering of wild ruminant strains
distinct from sheep variants [76]. There are several dis-
tinct A. phagocytophilum 16S rDNA and msp4 gene var-
iants circulating in sheep and wildlife in Norway [77],
six 16S rDNA and 24 msp4 variants have been reported
[76,77]. The transmission cycle of A. phagocytophilum in
Europe is not completely understood and we do not
know the specific role of the different tick host species
in the transmission cycle [75]. Infection risk for A. pha-
gocytophilum over the years might thus potentially be re-
lated to changes in one of the reservoir species.
Cervid species are regarded as key hosts to ticks

[78,79]. High population densities of cervids are ex-
pected to be associated with efficient host finding and
adequate nutrition for ticks. However, cervids may also
affect tick abundance through the effect of grazing on
vegetation. Results from studies on the influence of roe
deer on tick abundance are conflicting [80-85] even
though positive associations between roe deer and tick
abundance have been reported [86-88]. Evidence points
towards a far more complex relationship between deer
and tick density, where for instance density of deer
above threshold values might have little effect on tick
abundance [89,90] or a decoupling of stage-specific tick
abundances can occur [81]. The relationship between
deer abundance and tick birth rate is probably difficult
to predict because ticks can aggregate on fewer deer or
alternate hosts in response to abundance declines.
Hunting data at the municipality level was used as a

proxy for the total population of cervids. The number of
bagged cervids is reported to reflect the overall size of
the total population [91], although some urge caution in
using wildlife bag data since differences in spatio-
temporal patterns between bag data and population
size have been detected [92].

Conclusion
Tick distribution and tick bite exposure are associated
with a complex combination of climatic and environ-
mental factors, including those related to human activ-
ities, which operate at diverse spatial and temporal scale.
This multifactorial interdisciplinary study contributes to
a more comprehensive understanding of the intricacies
and interactions of the drivers of shifts in I. ricinus
distribution, and represents an advance by considering
biotic and abiotic factors simultaneously. The study also
integrates seasonality, short-term temperature dynamics
and possible climatic threshold effects, which appeared
essential even though interpretation remains challen-
ging. Expected climate changes accentuate the importance
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of our finding, and the need for considering climate
variability effects upon ticks and tick-borne patho-
gens. The relative importance of the different factors
studied here might change as the global environment
continues to change, including the respective role of
abiotic/biotic factors and those related to human land
use.
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