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We present the first analytic implementation of cubic and quartic force constants at the level of
Kohn—-Sham density-functional theory. The implementation is based on an open-ended formalism
for the evaluation of energy derivatives in an atomic-orbital basis. The implementation relies on the
availability of open-ended codes for evaluation of one- and two-electron integrals differentiated with
respect to nuclear displacements as well as automatic differentiation of the exchange—correlation ker-
nels. We use generalized second-order vibrational perturbation theory to calculate the fundamental
frequencies of methane, ethane, benzene, and aniline, comparing B3LYP, BLYP, and Hartree—Fock
results. The Hartree—Fock anharmonic corrections agree well with the B3LYP corrections when cal-
culated at the B3LYP geometry and from B3LYP normal coordinates, suggesting that the inclusion of
electron correlation is not essential for the reliable calculation of cubic and quartic force constants.
© 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative

Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4861003]

. INTRODUCTION

Vibrational spectroscopy provides a rich and diverse
source of information about molecular structure and func-
tionality. For this reason, methods for calculating molecular
vibrational spectra were developed already in the early days
of quantum-chemical computations, to help elucidate molec-
ular structure and to provide insight into experimental obser-
vations. Already in 1958, Bratoz recognized the benefits of
calculating the forces acting on the nuclei of a molecule in
an analytic manner.! However, the breakthrough in terms of
computing molecular gradients and force fields came with the
efficient implementation of molecular gradients by Pulay in
1969.%

Molecular gradients are the first-order derivatives of the
molecular energy with respect to nuclear displacements and
can be determined from the unperturbed electron density and
from differentiated one- and two-electron integrals. The com-
plexity increases significantly when going to the molecu-
lar force fields or molecular Hessians (corresponding to the
second-order derivatives of the molecular energy with respect
to nuclear displacements) as also the perturbed electron den-
sity matrix is needed in this case. Thomson and Swanstrgm
presented the first implementation of molecular Hessians in
1973.% In the early 1980s, implementations of molecular Hes-
sians for unrestricted and restricted open-shell Hartree—Fock
(HF) wave functions were published by Yamaguchi, Schaefer,
and co-workers.*> In the following years, second-order geo-
metrical derivatives were derived and implemented for a wide
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range of correlated wave functions.®!> More recently, imple-
mentations of molecular Hessians have been presented at the
level of density-functional theory (DFT).'%"'® For a detailed
historical account, see recent reviews of analytic derivative
techniques for molecular properties in general and molecular
force fields in particular.'-!

In parallel with the development of force-field calcu-
lations for correlated wave functions, Schaefer, Handy, and
co-workers extended the evaluation of geometrical deriva-
tives of the HF energy to third’>?* and fourth’® orders.
Despite the importance of cubic and quartic force fields
for determining, for instance, anharmonic corrections to vi-
brational frequencies, Fermi resonances,> rotation—vibration
constants,”® vibrationally averaged geometries,”’>’ and I-
doubling constants,?>3%3! these implementations have seen
little use in the literature. Part of the reason for this may
be that anharmonic corrections are important only in high-
accuracy studies,’”* where the HF approximation may not
be sufficient. Also, the implementation of efficient schemes
for obtaining anharmonic force fields by numerical differenti-
ation of forces and force constants at highly correlated lev-
els of theory has proven feasible, even for relatively large
molecules.?> 3

To some extent, the low cost of Kohn—Sham DFT has
changed this picture. In a series of studies, Barone and co-
workers have shown that high-quality harmonic force fields
in combination with DFT anharmonic corrections provide
reliable estimates of anharmonic force fields’”*® and of

© Author(s) 2014


http://dx.doi.org/10.1063/1.4861003
http://dx.doi.org/10.1063/1.4861003
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4861003&domain=pdf&date_stamp=2014-01-15

0341083-2 Ringholm et al.

anharmonic corrections to intensities,>® thus demonstrating
that anharmonic effects can now be studied straightforwardly
for large and complex molecular systems. In their studies, ge-
ometrical derivatives beyond second order were determined
by finite differences.’>***! The high cost of such finite-
difference schemes and their numerical instability provide a
strong motivation for developing analytic methods for third-
and fourth-order geometrical derivatives at the DFT level.
Also, fifth- and sixth-order geometrical derivatives are needed
in fourth-order vibrational perturbation theory (VPT4); re-
cently, we have calculated analytically quintic and sextic force
fields at the HF level of theory.*?

In this work, we describe the analytic calculation of cu-
bic and quartic force constants at the level of Kohn—Sham
DFT, using generalized-gradient-approximation (GGA) and
hybrid functionals. This work builds on several developments
in our groups in recent years. In particular, we use the frame-
work of an atomic-orbital (AO) based, open-ended quasi-
energy response-theory formalism described by Thorvaldsen
et al.® which for force fields reduces to regular energy-
derivative theory in the AO basis,** extended to fourth-order
derivatives. The geometrical derivatives of the one-electron
integrals arising from the geometry dependence of the AOs
are evaluated using the one-electron integral framework of
Gao, Thorvaldsen, and Ruud.*® The evaluation of geometri-
cal derivatives of the two-electron repulsion integrals follows
the approach of Reine, Tellgren, and Helgaker,*® expanding
solid-harmonic Gaussians directly in Hermite Gaussians. We
furthermore extend automatic differentiation of exchange—
correlation kernels*’ to include corrections arising from the
dependence of the AOs on the nuclear positions. Finally, we
demonstrate the usefulness of the code by evaluating the cubic
and quartic force constants and anharmonic force-field correc-
tions for selected molecules.

The bulk of this paper is organized as follows. In
Sec. II, we give a brief account of the AO-based energy-
derivative framework used by us and give the expressions for
the cubic and quartic force constants. A brief description of
the evaluation of the exchange—correlation contribution is also
given. Section III contains computational details of the cal-
culations, while Sec. IV presents and discusses the results.
Finally, in Sec. V, we give some concluding remarks and per-
spectives for the analytic calculation of higher-order proper-
ties that involve geometrical distortions.

Il. THEORY

We here present the theory behind our AO-based imple-
mentation of DFT cubic and quartic force fields, the AO-
formulation ensuring that the approach is suitable for linear-
scaling methodology.*® The approach builds on the general
AO-based framework for time- and perturbation-dependent
basis sets by Thorvaldsen et al.,** here applied to time-
independent perturbations. We note that, even though ex-
plicit equations are given for the evaluation of the cubic
and quartic force fields, our implementation uses a recursive
scheme, for which explicit expressions for energy derivatives
are not needed.*” Compared with the earlier implementations
by Schaefer, Handy, and co-workers,??~>* our implementation
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is extended to DFT and formulated entirely in the AO basis,
although at present a molecular-orbital-based response solver
is used to determine the perturbed density matrices.

In Sec. IT A, we review the basic theory of the analytic
calculation of geometrical derivatives at the DFT level, pro-
viding explicit expressions for the cubic and quartic force
constants; next, in Sec. II B, we describe the evaluation of
exchange—correlation contributions to the cubic and quartic
force constants, combining the perturbation dependence of
the overlap distributions with the use of automatic differentia-
tion to evaluate the higher-order exchange—correlation kernel
derivatives.*’

A. AO-based energy derivative theory

We follow the notation of the AO-based response the-
ory for self-consistent-field (SCF) methods with time- and
perturbation-dependent basis sets by Thorvaldsen et al.,*’
specialized to static perturbations. In Kohn—Sham DFT, the
energy can in the AO basis be written as

r 1
E[D)ZhD + 3G DD+ Exe [p D) + e (1)

In this expression, “Tr” indicates that the trace of the ma-
trix products on the right-hand side of the equation is taken,
E. [p (D)] is the exchange—correlation energy, which is a
functional of the generalized density vector p (see Sec. II B),
hnye s the nuclear repulsion energy, and D is the AO density
matrix. The density matrix fulfills the idempotency relation

0 =DSD — D. 2)

We have in Egs. (1) and (2) also introduced the one-electron
integral matrix, h, the two-electron integral matrix con-
structed from D with y fractional exchange, G” (D), and the
overlap matrix, S, whose elements are given by

1 Zx
huw = (X —EVZ—ZmD@), (3)
K
G2, (M) =" Mpa(8uvap — ¥ upar)- )
af
Su,v = (X,u|Xv>~ 5

The x, are spherical-harmonic Gaussian AOs and the sum-
mation in Eq. (3) is over atomic nuclei at R and with charge
Zk. The two-electron integrals are defined in the conventional
manner as

Buvpo = / / dxdxy x5 (X1) X (X0 73 X0 (%2) Xo (%2) . (6)

with integration over all spin and spatial coordinates.
The optimized Kohn-Sham density fulfills the SCF
condition

FDS — SDF =0, (7)

where the Kohn—-Sham matrix F is defined as

OE
= 22 —h+G”(D)+Fy, 8
pf =h 6 @+ (8)
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Fy. = /dr

Following Refs. 43, 49, and 50, we take as our start-
ing point for the generation of higher-order derivatives the
energy-gradient Lagrangian £ defined as

L0 = £9D, £y, 0 2 LED)

with

0 Ex(r) 0p(r)
dp(r) oDT ’

©))

-S"W -1 Y—-¢,Z, (10)
where the superscript a indicates differentiation with respect
to an applied perturbation of strength ¢,. In Eq. (10) we have
introduced the energy-weighted density matrix

W = DFD, (11)

as well as matrices that represent the constraints on the un-
perturbed reference state—in particular, the idempotency and
SCF-state matrices, respectively,

Z = DSD — D, (12)

Y = FDS — SDF. (13)

For an optimized SCF state, Egs. (2) and (7) can be written
compactly as Z = 0 and Y = 0. Additionally, we have intro-
duced the Lagrange multipliers A, and ¢,, respectively, for
these constraints. In Ref. 43, it is shown that Eq. (10) is vari-
ational in D if the zeroth-order multipliers are defined as

A, = D“SD — DSD", (14)

¢, = F'DS 4+ SDF* — FDS? — S“DF — F.  (15)

The subscript a on the multipliers does not indicate differen-
tiation, merely the relation to £°.

Since we require Eq. (10) to be variational in the den-
sity D and the multipliers A, and ¢,, we can take advantage
of the 2n + 1 rule for the density and the 2n + 2 rule for
the multipliers®®>! when differentiating the energy gradient
Lagrangian.

1. Molecular gradient

Let us first consider the first-order geometrical deriva-
tives of the molecular energy. In this case, Eq. (10) simplifies
to Pulay’s expression from 19692
dE v OF

oL 2=

—S“W, (16)

de, e,
where no derivatives of the Lagrange multipliers are required
because of the 2n + 2 rule.’® We note that the molecular gra-
dient can be determined from a knowledge of the unperturbed
density alone, in accordance with the 2n + 1 rule.

2. Molecular Hessian

Differentiating Eq. (10) with respect to b, keeping only
terms that fulfill the 2n + 1 and 2n + 2 rules, we obtain for
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the molecular Hessian the expression

¢E L _ 9’E 9’E D’
de,dgy, dey, d0e,08,  0g,0DT
—SUPW — STW?. (17)

As for the gradient, no zeroth-order multipliers are required.
However, the first-order perturbed density matrix is needed to
calculate the molecular Hessian; we return to the evaluation of
the perturbed densities in Sec. II A 5. Henceforth, we adopt
the subscript notation of Ref. 43, writing the Hessian as

d’E
= £8h ZEQ — SW), (18)

de,de,

where superscripts denote total derivatives. The subscripts (k,
n) specify the maximum order of the perturbed density matrix
D: to order k for collections of perturbations involving pertur-
bation a, and to order n for collections of perturbations not
involving perturbation a. The notation ny for the SW term
specifies in a similar manner the maximum order of differen-
tiation of W in this term, as dictated by the value of n.

The Hessian expression in Eq. (17) is not explicitly sym-
metric in a and b (the numerical values, of course, are). As
shown by Sellers, an explicitly symmetric formula can be ad-
vantageous from a numerical point of view.>?

3. Cubic force constants

For the calculation of cubic force constants, the third-
order energy derivative is needed. Proceeding as above, we
differentiate the gradient Lagrangian twice, keeping only
terms that fulfill the 2n + 1 and 2n + 2 rules

'C(ll,blc 2 (Eu)lln _ Sabcw _ Sacwb _ Sabwc _ Sawlllc
=AYV = L2y (19)
where the subscript 1 on the right-hand side indicates that

only terms with density matrices up to first order are to be
included. For example, in the expressions

W.* = D’F'D + D'FD° + DF’D‘ + DF/'D,  (20)

7} =D"SD + D’SD° + DS’D° + DS*D  (21)

there are no terms containing D*°. In Ref. 43 it is shown how
to rewrite the above expression in a more symmetric form
T
LY = Ef — (SW)P — S“Wh — A Y0 — ¢ ZY . (22)
Here, a prime on the subscript means that the subscript refers
to the maximum order of differentiation of S, D, and F (rather
than the order of D), for example,

W2 = D’F°D + D’FD + DF’D¢, (23)

7! = D’S’D + D’SD° + DS’DC. (24)

Even though the two first terms E{’ and (SW)‘{"A’/" in Eq. (22)
are explicitly symmetric in abc, the remaining terms are not.
It is possible to symmetrize the expression but this does not
give any computational benefits.
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4. Quartic force constants

Following the same procedure as for the cubic force con-
stants, it is possible to derive the following expression for the

fourth-order energy derivative:*

Tr .
ng)]cd L Eg,b]cd _ (Sw)ahad

lw
— SUWIE — SUWIT — S©PWHT — STWi
SR ST YA CHED YA ST W Gl
— T — eSEY - T — g I (29)

As expected, we need up to second-order perturbed density
matrices and first-order multipliers. By retaining the second-
order density matrices involving the perturbations bcd, it is
possible to eliminate the first-order multipliers*?

cobed T pabed _ (SW)zbed — §eWhed — n, Y5 — ¢, 25
(26)
In this notation, the latter expression appears more com-
pact, but if one expands the different terms, one finds that
Egs. (25) and (26) are of similar complexity. Finally, we note
that neither expression is explicitly symmetric in the pertur-
bation labels.

5. Perturbed density matrices

To evaluate the expressions for the energy derivatives, we
need first- and second-order perturbed density matrices. Since
the unperturbed density matrix satisfies the idempotency con-
dition and the SCF equations, the perturbed density can be
obtained by differentiating Eqgs. (2) and (7). In other words,
the matrix D? is the solution to the simultaneous equations
7P =0and Y’ = 0:

DSD’ + DS’'D+D’SD—D* =0, (Z’'=0), (27)
FDS’ + FD’S + F’DS — SDF’ — SD’F — S’DF = 0,
(Y = 0). (28)

We rewrite Eq. (27) by collecting only terms containing D?
on one side, yielding

DSD’ +D’SD —D’ =N, N=Z'|p_, (29

which has a solution of the general form

D’ =D, + Dy, (30)
D, = NSD + DSN — N, (31)
D, = XSD — DSX, (32)

where D? has been partitioned into a particular part D, and a
homogeneous part Dy. In the homogeneous equation, N = 0
and the equation is automatically satisfied by the ansatz
D, = XSD — DSX.

To determine X, we use the differentiated SCF equa-
tion. Inserting Eq. (30) into Eq. (28) and collecting all terms
containing X on the left, we arrive at the coupled-perturbed
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Kohn—Sham equations (or more generally the linear response
equations)

EPX =M, (33)

where we can identify the electronic Hessian E!?! in the AO
basis

oF oF
EPX = <—Dh>DS - SD(—

BT BT Dh) + FDyS — SD,F,
(34)

and the right-hand side
M= Yb|Db:Dg. (35)

In the same way, the second-order perturbed density ma-
trix D” can be determined from the equations Z*¢ = 0 and
Y?¢ = 0. The resulting equations have the same structure as in
Egs. (30) and (33), the matrices N and M now being

N = Z"|pry, (36)

M = Y"|pre_pye. (37)

To summarize, we must solve one set of linear response equa-
tions for each perturbed density matrix, where the right-hand
side depends on (perturbed) density matrices of lower orders.
We refer to Ref. 43 for further details.

B. Evaluation of exchange—correlation contributions

We employ an exchange—correlation energy Ey. defined
as the integral over a local function €4(r) that depends on the
density n(r) and its Cartesian gradient Va(r):

Ex = / dr exc(n(r), V() = / dree(p®).  (38)

where

n(r) = Q(r)D, (39)

Va(r) = (VQ(r))D. (40)

To simplify notation, we henceforth collect the density vari-
ables n(r) and Va(r) in a generalized density vector p(r). This
notation also simplifies a generalization of our implementa-
tion to other density variables such as the kinetic-energy den-
sity in meta-GGA functionals and density variables in spin
DFT and current DFT.

The exchange—correlation energy and the exchange-
correlation potential matrix are integrated on a numerical grid
defined by a set of suitably chosen grid points r; and grid
weights w;, according to

Ex =) wixe(p(r)), (41)

N 0exc(p(ry)) dp(r;)

(Fxc)uv ~ lz w; —3,0(1‘,-) —3Dm
=Y wivye(ri)(Qp)un (X). 42)
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When differentiating the exchange—correlation energy and
potential matrix we ignore the contribution from the grid-
weight derivatives. The importance of grid-weight deriva-
tives in the evaluation of geometrical derivatives at the DFT
level has been discussed by Baker et al.’* and Johnson and
Frisch.!” The extension to higher order is not straightforward,
and for this reason we use very large grids in order to mini-
mize the errors arising from the lack of grid-weight deriva-
tive contributions, and the quality of the results has been
verified by test calculations against numerically calculated
derivatives.

For the implementation of DFT analytic cubic and quar-
tic force constants, we need up to fourth-order geometri-
cal derivatives of the exchange—correlation energy density
(€%, €% €ibc and €%?) and up to second-order geomet-
ric derivatives of the exchange—correlation potential matrix
contributions (v¢, and v%). The exchange—correlation en-
ergy density derivatives are evaluated using the following
expressions:

dexe
ezc=3—p°p, (43)
w06 o e 4
€xe = EP + Wﬁ P, (44)

0€xc .
6ahc — abc

2
0 EXC[ a  bc b ac c ah]
XC

» a2 1P + 07" +pp

93¢, X
- W;p“p” J (45)

0€xc 3%
Eabcd — Xc abcd 4 XCr a bcd 4 b acd
e B e (0“0 pp

c ~abd

+)0,0 dabC]

+pp

ey

9p3

a b cd a c  bd a . d bc

+ [0 0" p“ + p“p 0" + p*p%p

4 pbpcpad 4 pbpdpac 4 pcpdpub]

4

4 e o b pe i (46)
dp*

where the arguments of densities, functional derivatives,

and overlap distributions have been omitted for notational

clarity.

In our code, the contractions of the functional deriva-
tive vectors with the perturbed generalized density vectors are
not explicitly programmed. Instead, we obtain the perturbed
exchange—correlation energy densities €y directly from the
XCFUN program*’->* by forming a generalized density Tay-
lor series expansion (p, p“ p?, p®, ...), which is inter-
nally contracted with the density functional Taylor expan-
sion. This approach significantly reduces the complexity of
the exchange—correlation integrator.

If the total energy had been variational with respect to
the density p, then, according to the 2n + 1 rule, we would
only need the first-order (second-order) perturbed densities
for the cubic (quartic) force field. In our case, the energy is
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variational with respect to the AO density matrix D, which
means that we still need the second- and third-order (third-
and fourth-order) perturbed densities.

This dependence is given as

p? 2 QD + @,D°, (47)

P’ = QD + QD" + Q°D° + @,DP, (48)

abe Tt qabe
Pt =R, D
b b b
+ Slf) D¢ + QZCD + S'lpcDa
aybc byac cyab
+ QID 4+ Q2D“ + QD
+ @,D, (49)
bed Tt qabed
p° _Slf) D
abcyd abdy¢ acdyb bedya
+ QD! 4 QDS 4 QD 4 QD
+ ﬂ;chd + QZCDbd + SZZdDbc + Slchad
bd dyab
+ ﬂp D + SZ; D¢
+ QD" + /D! + QD! 4 QID
+ @,D, (50)

Depending on the perturbation order, many of the above
terms are omitted when applying the 2n + 1 rule to the
density matrix. Note that the omitted terms are not zero
by themselves, but only in combination with non-exchange—
correlation terms containing the same density matrices. Here
we have used

@ = 2910, 1)
ab ab,0 a,b

Qb = 2[4 @2P], (2)

e LR AR A 7 NECS)

ﬂszd — Z[szcd,o + sz;z)bc,d + Sz;z)bd,c + sz;z)b,cd
acd,b ac,bd ad,bc a,bed
+ Q77 + QU7 + QU+ QF ]. (54)
collecting

Q7w = x," . (35)

(VP = (VP ) xd + x:P (V). (56)

into the generalized overlap distribution vector (Q25°7),,,.

Having discussed exchange—correlation energy density
contributions, we now turn to the exchange—correlation po-
tential matrix contributions. The perturbations can either act
on the generalized overlap distribution or on the functional
derivative term, giving

[0xe(R2)0]" = Ve(Rp)pw + 0xe(25) 5 (57)
[0xe(R)n]™ = V() + v (25)
+ o (), + e (27 (58)
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where we have used

82
o, = a;c P, (59)
93 9%
ab __ XC a b XC _ab
Ve = _8,03 + _8,02 P, (60)

Finally, we note that an efficient implementation of the
density evaluation and matrix distribution routines is essen-
tial, bearing in mind the large number of terms that need to be
evaluated. We evaluate both the densities and the matrix el-
ements in a blocked manner, allowing mathematical matrix—
matrix multiplication libraries to be used in conjunction with
efficient pre-screening techniques.

lll. COMPUTATIONAL DETAILS

To calculate the cubic and quartic force constants, the re-
cursive implementation*” of the open-ended response-theory
framework by Thorvaldsen et al.** has been used, as pro-
vided by the OPENRSP program package. We use the DAL-
TON program package® as a backend for the calculation of
undifferentiated integrals and the unperturbed and perturbed
density matrices, which are obtained with the linear response
solver of Jgrgensen et al.’>® The calculation of properties as-
sociated with one-electron integrals was carried out using the
GENI1INT library,”’ building on the flexible integral evalua-
tion scheme of Gao and co-workers.* The differentiated two-
electron integrals were mainly calculated using Thorvaldsen’s
CGTO-DIFF-ERI code,”® which uses the scheme of Reine
et al. for the evaluation of differentiated two-electron integrals
using solid-harmonic Gaussians,*® but some of the lower-
order contributions were calculated using DALTON. The dif-
ferentiated exchange—correlation energy and potential contri-
butions needed for the cubic and quartic force constants were
calculated using the XCFUN library,>* which uses automatic
differentiation for evaluating the derivatives of the exchange—
correlation energy.” We have used an in-house integra-
tor to perform the integration of the exchange—correlation
contributions.

Cubic and quartic force constants in the Cartesian ba-
sis were calculated at the HF and DFT levels of theory for
methane, ethane, benzene, and aniline. For methane, we per-
formed a basis-set convergence study using the 6-31G>° and
the correlation-consistent basis sets®® of double-, triple-, and
quadruple-zeta quality (cc-pVDZ, cc-pVTZ, and cc-pVQZ).
For the other molecules, we have used the cc-pVTZ basis set
for ethane and the cc-pVDZ basis set for benzene and aniline.
In order to explore the sensitivity of the results to the choice
of exchange—correlation functional, both the BLYP®!-%* and
the B3LYP® functionals have been used.

For the HF and B3LYP calculations, the geometry was
optimized and the molecular Hessian was calculated at the
DFT (B3LYP) level of theory with the DALTON program
package,’ using the same basis as in the anharmonic force
field calculations. The B3LYP Hessian was used in the vibra-
tional analysis—both for evaluating the harmonic vibrational
frequencies and for transforming the anharmonic force con-
stants to a reduced normal coordinate basis*® before evalu-
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ating the fundamental frequencies (vide infra). Although not
consistent, this approach circumvents the well-known defi-
ciencies of the HF method for harmonic frequencies and al-
lows us to get a better impression of the quality of the HF
cubic and quartic force constants. For the calculations involv-
ing the BLYP functional, the geometry optimization, the vi-
brational analysis, and the cubic and quartic force constants
were calculated using this functional, allowing us to com-
pare directly the results obtained using the BLYP and B3LYP
functionals.

In the calculations, we have converged the coupled-
perturbed Kohn—Sham equations to a relative norm of 107°,
observing no problems with convergence of the response
equations. To reduce the errors arising from the lack of grid-
weight derivative contributions, we have used an ultrafine grid
with a radial quadrature accuracy of 2 x 107! and with an
angular expansion order of 64.

From the cubic and quartic force constants, anharmonic
frequency corrections were calculated using the generalized
vibrational second-order perturbation (GVPT2) model,®*¢” in
which terms that are too large because of Fermi resonances
are excluded from the perturbational treatment®® and treated
variationally.*! The threshold criteria for the identification of
Fermi resonances are those used by Bloino and Barone® ex-
cept for ethane, where the threshold for the Martin parameters
was increased to 1.5 cm~! from the default value of 1 ecm™!,
to avoid a splitting of degenerate modes due to unevenly dis-
tributed interactions between these modes and a different set
of two degenerate modes, which would otherwise lead to an
unsymmetric identification of Fermi resonances. We refer to
Refs. 41 and 69 for more details about the GVPT2 model and
the treatment of Fermi resonances. All rotational effects, as
described by the rotational constants and the Coriolis cou-
pling constants in the GVPT2 scheme, are disregarded in the
present work.

IV. RESULTS AND DISCUSSION

In Tables I-1V, we have listed the calculated fundamen-
tal frequencies of methane, ethane, benzene, and aniline, re-
spectively. Regarding the basis-set dependence of the anhar-
monic corrections, the methane results in Table I indicate it
is rather weak, with small differences between 6-31G and cc-
pVQZ anharmonic corrections, the largest difference between
the HF/6-31G and HF/cc-pVQZ results being 6 cm™! (4%).

Regarding the differences between the various levels of
electronic-structure theory, we see from Table I that the dif-
ference between the HF and the B3LYP corrections (both
calculated using B3LYP geometries, harmonic frequencies,
and normal coordinates) are not large for methane, the ab-
solute value of the B3LYP corrections being on average
smaller than 10%. From the results for the larger molecules in
Tables II-1V, this behaviour appears to be a general trend,
but with some discrepancies being slightly larger than 10%.
Also, in a few cases, the B3LYP anharmonic corrections are
larger than the corresponding HF corrections—for modes 8
and 12 in benzene and for mode 13 in aniline, for instance,
the B3LYP correction is substantially more negative than the
HF correction. These differences are mostly the result of
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TABLE I. Harmonic fundamental vibrational frequencies w, corrected fundamental frequencies v, and anhar-

monic vibrational corrections § for methane. All values are incm™'.

1

Mode  wg3Lyp VHF SHF VB3LYP  OB3LYP  VBLYP SBLYP  WBLYP Wexp Vexp™
6-31G
1 3165 2999 — 166 3011 — 154 2933 — 157 3090
2 3043 2910 —132 2920 —122 2847 — 126 2973
3 1601 1552 —48 1557 —44 1521 —45 1566
4 1403 1357 —45 1362 —41 1325 —42 1367
cc-pVDZ
1 3146 2977 — 169 2088 — 158 2906 —162 3068
2 3025 2887 —138 2892 —133 2817 —137 2954
3 1530 1484 —46 1488 —42 1451 —43 1494
4 1309 1264 —46 1268 —41 1233 —42 1275
cc-pVTZ
1 3129 2971 — 158 2081 — 148 2906 —152 3058
2 3027 2900 — 127 2904 —122 2836 —127 2963
3 1559 1511 —48 1514 —44 1481 —45 1526
4 1341 1294 —47 1298 —43 1267 —44 1311
cc-pvVQZ
1 3127 2967 — 160 2979 — 148 2903 —152 3055 3156.8  3022.5
2 3025 2896 —129 2902 —122 2833 —127 2960 3025.5 2920.9
3 1558 1510 —48 1514 —44 1481 —44 1524 1582.7 1532.4
4 1340 1293 —47 1298 —43 1267 —43 1310 1367.4 1308.4

“Experimental data taken from Ref. 74 and ordered by decreasing frequency.

differences between the HF and B3LYP values for the asso-
ciated diagonal (iiii) quartic force constants; for mode 12 in
benzene, differences in the semidiagonal (iijj) quartic force
constants are also important. Overall, the BLYP anharmonic
corrections are in good agreement with the B3LYP correc-
tions, but with some exceptions. For mode 2 in benzene,
for example, the anharmonic correction is substantially less
negative with the BLYP exchange—correlation functional, be-
cause of different identifications of Fermi resonances at dif-
ferent levels of theory. In general, however, the BLYP anhar-
monic corrections are slightly more negative than the B3LYP
corrections.

Among the different levels of theory applied here, the
B3LYP results are in best agreement with the experimental
fundamental frequencies. The listed HF results are of com-
parable quality but have been obtained at the B3LYP geome-
try and are based on the B3LYP harmonic vibrational analy-
sis; they would have been considerably worse had they been
based on HF quantities alone. In any case, the calculation
of HF anharmonic corrections based on DFT geometries and
harmonic frequencies should be a viable approach in many
cases. Likewise, we expect harmonic frequencies calculated
at higher levels of theory—for instance, at the coupled-cluster
level of theory—to perform well in combination with SCF an-
harmonic corrections; indeed, such an approach has been used
in earlier works.3%70-71

The BLYP results consistently show the poorest agree-
ment with experiment. However, much of the discrepancy
arises from inaccurate harmonic frequencies. For all sys-
tems, the BLYP corrections are mostly close to the HF and
B3LYP corrections—however, for methane, the BLYP cor-
respondence to experiment for the harmonic frequencies is
clearly inferior to the B3LYP correspondence. This is further

accentuated when we note that, for the high-frequency modes
in methane, the derived experimental anharmonic corrections
are in general smaller than the calculated ones, suggesting that
the experimental harmonic frequencies are underestimated. In
general, the agreement between the B3LYP and BLYP anhar-
monic corrections is good, supporting the notion that it is the
harmonic frequencies that are poorly described by the BLYP
functional.

In order to get a better global understanding of the per-
formance of the different computational levels, we have in
Tables II-1V also collected the mean absolute errors (MAEs)
for the different computational levels compared to experi-
ment. We note that the harmonic B3LYP frequencies in gen-
eral are about 2.5% off the experimental frequencies, in line
with the recommended scaling factors often used for B3LYP
calculations of 0.9679.72 We note that for aniline, the MAE
is somewhat larger than for the other molecules, but this is
largely due to mode 30 which displays a MAE of almost
25%. Excluding this mode, the MAE for the B3LYP harmonic
frequencies is 2.4%. Including anharmonic corrections to the
B3LYP harmonic frequencies, either at the HF or B3LYP lev-
els of theory, brings the MAE down to about 1% with the
HF error being slightly larger and the B3LYP error slightly
smaller than 1%, the differences in general being small. How-
ever, once again mode 30 in aniline is an interesting case,
clearly showing the superiority of the B3ALYP method over
the HF method for difficult cases, as the HF fundamental fre-
quency for this mode is off by 23% from the experimental
value, B3LYP instead being only 0.8% off the experimental
data.

The BLYP model in contrast provides a much bet-
ter MAE than the B3LYP model for harmonic frequencies.
However, this agreement is fortuitous and when adding the
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TABLE II. Harmonic fundamental vibrational frequencies w, corrected fundamental frequencies v, and anhar-

monic vibrational corrections § for ethane using the cc-pVTZ basis set. All values are in cm™ .

1

Mode WB3LYP VHF SHF VB3LYP SB3LYP VBLYP SBLYP WBLYP Vexp™
1 3093 2945 — 148 2953 — 140 2875 — 145 3020 2971.1
2 3068 2923 — 145 2932 —136 2854 — 141 2994 2955.0
3 3025 2867 —159 2870 — 155 2800 — 158 2958 2920
4 3024 2867 — 158 2868 — 156 2797 — 159 2956 2915
5 1507 1458 —48 1462 —45 1427 —46 1473 1471.6
6 1503 1452 -51 1456 —47 1422 —48 1469 1468.1
7 1423 1387 -36 1391 —-32 1352 -33 1385 1388.4
8 1413 1376 -37 1379 —-34 1346 -35 1381 1379.2
9 1223 1188 —-34 1191 —-31 1159 —-32 1191 1190
10 995 969 -27 972 —-23 934 —-25 958 994.8
11 827 823 —4 821 -5 802 -6 809 821.6
12 305 267 —38 273 —-32 265 —-32 297 289
Mean absolute error relative to experiment in percent
2.81 1.55 1.22 3.80 1.17

“Experimental data taken from Ref. 75 and ordered by decreasing frequency.

anharmonic corrections to the BLYP data, the MAE actually
increases, from about 1% to 3%—4%. If we instead add the
BLYP corrections to the B3LYP harmonic frequencies, the
MAE becomes comparable to that obtained with HF (about
1%).

The differences between the anharmonic corrections ob-
tained at various levels of theory are relatively small. How-
ever, for certain spectroscopic processes that have recently
received increased attention—for example, the doubly vi-

brationally enhanced four-wave-mixing using two incident
infrared lasers discussed in Ref. 73—the principal two-
dimensional spectroscopic features may consist of closely
spaced peaks separated by a distance related to the an-
harmonic coupling between the modes involved, in addi-
tion to lower-order contributions. The shape of such fea-
tures can be very sensitive to the values of the anharmonic
corrections, putting higher demands on the accuracy in the
calculated anharmonic corrections for two-dimensional than

TABLE III. Harmonic fundamental vibrational frequencies w, corrected fundamental frequencies v, and anhar-

monic vibrational corrections § for benzene using the cc-pVDZ basis set. All values are incm™ .

1

Mode  wpsLyp VHF SHF VB3LYP SB3LYP VBLYP® SBLYP WBLYP Vexp”

1 3198 3047 — 151 3054 — 144 2960 —155 3115 3073.942
2 3187 3029 —159 3034 —153 2975 —130 3104 (3057)

3 3171 3027 — 144 3035 — 136 2944 — 144 3088 3056.7
4 3161 2991 — 169 2996 — 165 2901 —177 3078 3064.3674
5 1645 1596 —49 1599 —46 1538 —45 1583 1600.9764
6 1506 1475 -32 1476 -30 1430 -31 1462 1483.9854
7 1364 1331 -33 1333 —31 1294 -33 1327 (1350)
8 1356 1346 —10 1330 —26 1298 -30 1328 1309.4

9 1186 1171 —15 1171 —15 1140 —16 1156 1177.776
10 1162 1152 —10 1150 —12 1123 —12 1136 1149.7
11 1059 1038 —21 1039 —-20 1007 —21 1028 1038.2670
12 1022 993 -29 982 -39 943 —46 989 993.071
13 1019 1002 —-17 1004 —15 971 —16 986 (1010)
14 1013 997 —16 999 —14 973 —15 987 (990)
15 986 961 —26 959 —28 920 —31 952 (967)
16 866 844 -22 843 -23 814 -25 839 847.1

17 723 709 —14 705 — 18 681 —21 702 (707)
18 691 678 —13 677 —14 656 —16 672 673.97465
19 618 612 -6 611 -7 596 -7 603 608.13
20 414 404 —10 404 —10 391 —11 402 (398)

Mean absolute error relative to experiment in percent
2.43 0.83 0.76 3.30 1.13

“Modes 7 and 8 and modes 13 and 14 were switched after an analysis of the normal coordinates to agree with the B3LYP ordering.
YExperimental data taken from Ref. 76 and ordered by decreasing frequency.



034103-9 Ringholm et al.

J. Chem. Phys. 140, 034103 (2014)

TABLE IV. Harmonic fundamental vibrational frequencies w, corrected fundamental frequencies v, and anhar-

monic vibrational corrections § for aniline using the cc-pVDZ basis set. All values are incm™".

1

Mode  wpsLyp VHF Sur VB3LYP  OB3LYP VBLYP" SBLYP WBLYP Vexp”
1 3626 3457 — 169 3452 —174 3326 — 183 3509 3485
2 3528 3371 — 156 3368 — 160 3244 — 169 3413 3401
3 3198 3052 — 146 3059 —139 2972 — 143 3115 3094
4 3179 3025 — 154 3032 — 148 2939 — 157 3096 3074
5 3173 3034 — 140 3042 —132 2950 — 140 3090 3050
6 3157 3011 — 146 3019 — 138 2935 —139 3074 3040
7 3156 2996 — 160 3002 — 154 2908 — 165 3073 3013
8 1665 1622 —43 1626 —40 1564 —40 1604 1618
9 1635 1588 —48 1592 —43 1528 —43 1572 1603
10 1635 1592 —43 1596 -39 1548 -39 1586 1590
11 1530 1495 —34 1497 —-32 1448 —33 1481 1501
12 1496 1463 —33 1466 -31 1420 —31 1451 1470
13 1369 1349 —19 1338 —31 1306 -35 1341 1324
14 1349 1324 —25 1324 —24 1286 —26 1312 1308
15 1311 1285 —26 1286 —25 1245 —25 1270 1278
16 1188 1170 —18 1170 —18 1138 —19 1157 1173
17 1166 1153 —12 1153 —12 1123 —15 1138 1152
18 1134 1112 —22 1115 —19 1086 —19 1105 1115
19 1068 1048 —21 1053 —15 1022 —16 1037 1054
20 1048 1030 —18 1031 —-17 998 —18 1016 1028
21 1006 986 —20 989 —17 959 — 18 977 996
22 989 963 —26 956 -33 915 -39 954 968
23 967 942 -25 941 —26 901 -30 930 957
24 885 858 —27 859 —25 823 —29 851 874
25 833 809 —24 812 —21 786 —-22 808 823
26 828 806 —-22 806 —-22 775 —24 799 808
27 766 740 —26 744 —21 716 —-23 739 747
28 706 692 —14 691 —15 668 —17 685 689
29 632 623 -8 624 -8 606 -9 615 619
30 614 379 —235 494 —120 487 — 111 598 (440/490)
31 534 526 -8 528 -7 511 -8 519 526
32 509 486 -23 493 —16 478 —15 493 501
33 419 410 -9 410 -9 397 -9 406 415
34 382 381 -1 380 -2 370 -3 372 390
35 289 266 -23 286 -3 288 —4 292
36 223 217 -6 218 -5 210 -5 216 233
Mean absolute error relative to experiment in percent®
3.06 1.68 0.94 3.75 2.12

“Modes 9 and 10 were switched after an analysis of the normal coordinates to correspond to the ordering of the B3LYP normal

modes.

YExperimental data taken from Ref. 77 and ordered by decreasing frequency.
¢Excluding mode 35 for which no experimental data exist, and using the experimental value of 490 cm™" for mode 30.

for one-dimensional spectroscopies. Our results suggest that
the inclusion of correlation effects in the calculated anhar-
monic vibrational corrections by means of DFT may be
worthwhile, in spite of the added computational cost. Finally,
we note that the rotational effects, which have been neglected
in our work, should not be sufficiently large to affect our con-
clusions.

V. SUMMARY AND OUTLOOK

We have presented the first analytic DFT implementa-
tion of cubic and quartic force constants. Our implementa-
tion is based on a recursive, open-ended, AO- and density-
matrix-based energy derivative approach for SCF methods

(HF and DFT). In combination with open-ended schemes for
one- and two-electron integrals and for exchange—correlation
contributions, this approach allows for a compact and effi-
cient code for the analytic evaluation of anharmonic force
constants.

We have demonstrated that the hybrid B3LYP exchange—
correlation functional is superior to the generalized-gradient
BLYP functional for calculating the fundamental frequencies
of several small- and medium-sized molecules. However, this
observed superiority of the B3LYP model is mostly the re-
sult of improvements in the harmonic force field—the differ-
ences between the B3LYP and BLYP fundamental frequen-
cies are much larger than the differences in the anharmonic
corrections. This effect is also reflected in the results obtained
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using the HF model: the HF anharmonic corrections are in
good agreement with the B3LYP corrections when the HF
calculations are based on the B3LYP structure and harmonic
force field.

In future work, we intend to apply the calculated cubic
and quartic force constants to obtain fundamental vibrational
frequencies for use in various spectroscopic designs and to
obtain anharmonic corrections to spectroscopic intensities—
in particular with an eye towards multidimensional vibrational
spectroscopies, where anharmonic effects are important.
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