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INTRODUCTION 
 

All organisms rely on electron transport to facilitate molecular transformations and 

for fundamental processes essential for life. Proteins involved in reduction-oxidation 

(redox) reactions generally contain redox active cofactors such as metal ions, hemes, 

flavins, disulfides, iron-sulfur (Fe-S) clusters or NADPH, which are all used in electron 

transfer reactions. Combined biochemical and biophysical approaches are important and 

widely used to understand these fascinating mechanisms.  

Metal ions and redox chemistry in biology  
The importance of inorganic compounds and metal ions in biological processes is 

indisputable. Metal ions play a central role in many challenging chemical reactions and in 

energy metabolism (1). It is estimated that 30-50% of all proteins require the presence of 

metal ions for their biological activity (2). Metalloproteins utilize metal ions as structural 

features, for fast information transfer, participation in catalysis by orienting substrates for 

reactions, functioning as Lewis acids in formation, degradation and metabolism of organic 

compounds, in signaling pathways, and in redox reactions (3). Several important 

biocatalytic processes, such as nitrogen fixation, methane biogenesis and oxidation, 

oxygen storage, and formation, utilization and degradation of metabolites, involve the 

presence of metalloenzymes. Many proteins coordinate the metal ions directly through 

charged or polar side chains, while others contain metals covalently incorporated in 

prosthetic groups, such as the protoporphyrins in heme proteins, and Fe-S clusters in Fe-S 

proteins. The metal ions included in the protein scaffold are cations characterized by 

different oxidation states, as well as experiencing different coordination environments. 

Transition metals, such as iron, manganese and copper are often found in the active site of 

enzymes that activate or transport oxygen (4). Molecular oxygen plays a key role in many 

important biological processes. The ground state of molecular oxygen is the relatively 

unreactive triplet state (S=1) with two unpaired electrons. This makes spontaneous 

reactions between carbon compounds and molecular oxygen kinetically slow. To overcome 

this restriction, many proteins make use of transition metal ions, radicals, or organic 
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cofactors to activate oxygen. Transition metals, for example, are not limited to one spin 

state, and may accept or donate electrons involved in the reaction, enabling enzymes to 

catalyze their reaction by converting oxygen to reactive states, through rearrangement of 

electrons in the partially filled transition metal ions d-orbitals (5,6). As an example, some 

classes of ribonucleotide reductase (RNR) proteins use their metallocofactor to activate 

oxygen and generate a stable radical on a nearby tyrosine residue.    

 Iron is one of the most abundant and versatile metals found in proteins, and it is 

present throughout most living systems. It may be assembled into heme proteins, iron-

sulfur clusters or non-heme mono -or dinuclear cofactors. In heme proteins, iron functions 

in storage and transport of oxygen, as in myoglobin and hemoglobin, respectively; in 

cytochromes as electron carriers (7); in heme-containing dioxygenases, involved in 

tryptophan regulation (8); in heme monooxygenases, incorporating a hydroxyl group into 

substrates, or in heme peroxidases, where the heme group participates in the oxidation of 

different substrates, e.g. cytochrome c peroxidase where also a Trp radical is generated (9). 

Additionally, iron is an important detoxifying agent in catalase and superoxide dismutase. 

Non-heme diiron carboxylate/iron-oxygen proteins catalyze a wide range of redox 

reactions (10,11). Some members of this family of proteins are the radical-forming R2 

subunits of ribonucleotide reductases (RNRs) (see below) (12), methane monooxygenase 

hydroxylase (13), and iron storage proteins, such as ferritins (14).    

 Iron has the ability to exist in several oxidation states, mainly FeII (ferrous iron) and 

FeIII (ferric iron) in biology, but also as FeIV=O (ferryl). In reactions catalyzed by iron-

containing enzymes, iron normally undergoes changes in oxidation state during the 

catalytic cycle (15). Another important transition metal able to reach the same oxidation 

states as iron, manganese, is also used by several metalloenzymes, such as the oxygen-

evolving complex in photosystem II (16). The ability to incorporate different 

metallocofactors has also been shown to be widespread in some enzymes, such as in two 

RNR subclasses (Figure 1), where one subclass can utilize either a dinuclear iron -or 

manganese cofactor (17,18), while another subclass has been found to use a 

heterodinuclear iron-manganese cofactor (19,20).    

 Metalloprotein redox chemistry is crucial in a wide variety of enzymes throughout 

nature. However, electron transfer through redox centers that do not contain metal ions is 

also an important part of redox transitions in cells. These redox centers can also be linked 

to metallocofactors in redox networks. This includes organic coenzymes such as flavin -
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and nicotinamide coenzymes, tetrahydrobiopterins, chlorophylls, vitamin B12 coenzymes, 

S-adenosyl methionine (AdoMet or SAM), as well as thiol-disulfide exchanging enzymes, 

which all play crucial roles in various redox reactions (21).    

 The cofactor of flavoproteins is derived from riboflavin, consisting of an 

isoalloxazine ring system serving in reversible electron transfer. Flavoproteins are capable 

of both one -and two-electron transfer processes, catalyzing a versatility of reactions, such 

as reduction of hydroperoxides, hydroxylation of aromatic compounds, participation in 

light-initiated reactions as well as in programmed cell death (22). While some protein-

bound flavins serve as unspecific electron donors in several redox pathways, certain 

flavoproteins participate in distinct pathways, such as the flavin mononucleotide cofactor 

(FMN) containing flavodoxin NrdI, which has been suggested to serve as a specific 

electron donor for the class Ib RNR small subunit (23). The large Complex I of the 

electron-transport chain in the inner mitochondrial membrane is an example of a system 

utilizing several redox centers. Complex I passes electrons in a multistep path from the 

nicotinamide coenzyme NADH to ubiquinone, through a FMN cofactor and a series of Fe-

S clusters (21,24). Thioredoxin reductase (TrxR) in another example of a system 

containing multiple redox centers. This dimeric flavoenzyme containing a flavin adenine 

dinucleotide (FAD) cofactor catalyzes the NADPH-dependent reduction of thioredoxins 

(Trxs) through a reversible thiol-disulfide exchange reaction (25). Trx-like proteins are 

required as hydrogen atom donors for the active site in the catalytic subunit of RNR 

(26,27).  
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Ribonucleotide reductase 
Even though RNRs have been studied elaborately and extensively for many 

decades, more detailed electronic and structural knowledge regarding the metal binding 

site is still needed. A deeper understanding of the structures and interaction pathways 

among the different proteins involved in the RNR system would also provide important 

functional insight in the nature of this fascinating enzyme.     

 The reduction of ribonucleotides to deoxyribonucleotides was first suggested by 

Jean Brachet in 1933 (28). However, the first evidence for this reaction performed through 

isotope experiments, emerged almost 20 years later by Peter Reichard and co-workers (29). 

These findings led Reichard to the initial discovery of RNR (30,31), and opened an 

exciting and fascinating field of research (32) for molecular biologists, biochemists and 

biophysicists, which has now lasted for more than 50 years.    

 RNRs catalyze the reduction of ribonucleotides to their corresponding 

deoxynucleoside 5’–di– or triphosphates (dNDPs or dNTPs) (33,34) (Scheme 1).  

 

 
 
Scheme 1. The reduction of ribonucleotides to their corresponding deoxyribonucleotides by RNR. 

 

This enzyme plays an important role in nucleotide metabolism, being responsible for the de

novo synthesis of all four DNA precursors, hence being crucial in all DNA-based living 

organisms. The proposed reaction of ribonucleotide reduction, explained with a reaction 

mechanism involving an active site thiyl radical (S•) being responsible for hydrogen 

abstraction (35), where one carbon bound hydroxyl group of ribose could be directly 

replaced by a hydrogen atom, was first discovered in RNR. All RNRs share a common 

catalytic mechanism involving the activation of a ribonucleotide by abstraction of the 3’-

hydrogen atom of ribose by a transient S• in the catalytic subunit, leading to the exchange 
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of the hydroxyl group on the 2’-carbon of the ribose ring with a hydrogen atom (36). RNRs 

are divided into three main classes, differing in how they generate the S•, and are discussed 

in more detail below. An overview of the current perception of all RNR classes, including 

substrates, radical initiators, and in vivo reductants is shown in Figure 1. The RNR system 

involves a fascinating variety of interacting proteins and redox cofactors, such as non-

heme diiron proteins, thiol-disulfide oxidoreductases, flavoproteins, NADPH-dependent 

proteins, AdoMet, a vitamin B12 cofactor and a 4Fe-4S cluster. Due to their importance in 

proliferating cells, RNRs are potential drug targets for cancer treatment, for antiviral agents 

and for novel antibiotics in the fight against pathogenic bacteria.   

Classification of RNRs 
All RNRs are believed to have the same evolutionary origin, with a similar S• based 

reaction mechanism and a conserved ten-stranded /  barrel fold of the catalytic subunit 

enclosing the S• (Figure 2) (37,38). However, the RNRs have been divided into three 

different classes based on allosteric regulation, oxygen dependency, sequence similarity 

and the cofactor utilized to generate the S• (12,39,40).     

 Class I RNRs are oxygen-dependent RNRs, generating a stable tyrosyl radical (Y•) 

(classes Ia and Ib) using a dinuclear metal cofactor in a small, radical-generating subunit, 

from where the Y• is shuttled to the catalytic subunit for every turnover. Class Ia RNR is 

the only class encoded in eukaryotes, but exists also in bacteria and viruses. Consisting of 

only one subunit, the prokaryotic class II RNRs (encoded by the nrdJ or nrdZ genes) 

generate their radical from the homolytic cleavage of the carbon-cobalt bond in the vitamin 

B12 cofactor (adenosylcobalamin) (41). In this reaction, CoIII is reduced to CoII, and a 

deoxyadenosyl radical is formed. The cofactor binds in the /  barrel fold close to the 

substrate binding site and the cysteine that is oxidized to S• (42). Both of these classes 

operate in the presence of oxygen, class I being strictly aerobic, whereas class II having 

two independent pathways for radical generation, one being oxygen-dependent (41). Class 

III RNRs (belonging to the radical SAM superfamily) (encoded by the nrdD-nrdG genes) 

are anaerobic and use a 4Fe-4S cluster to homolytically cleave AdoMet, generating a 

glycyl radical via a deoxyadenosyl radical, in the separate cluster containing activase. This 

glycyl radical, which is very sensitive to oxygen, is responsible for S• generation in the 

active site (34,43).  
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Figure 1. Schematic overview of the three RNR classes, showing the diversity of substrate 
specificity, electron donors and radical initiators. The figure is adapted from (44) and (45), with 
some modifications. 
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Figure 2. Crystal structures of the catalytic subunits in different RNR classes, showing the 
conserved /  barrel fold. The active site cysteine responsible for S• generation is shown in the 
center of the barrel in yellow ball-and stick representation. (A) Human class I NrdA 
(PDBid:2WGH) (46), (B) Lactobacillus leichmannii class II NrdJ (PDBid:1L1L) (37), and (C) 
bacteriophage T4 class III NrdD (PDBid:1H7A) (47). 

 
Class I RNRs 

All class I RNRs contain two components; one catalytic subunit where the substrate 

binding site is located (R1), and one component responsible for generation of a radical 

center (R2). Active class I RNRs are assembled as two homodimeric subunits, 2 and 2.  

Nucleotide reduction is initiated through the reversible one electron oxidation of a 

conserved cysteine residue to a S• in the larger catalytic 2 subunit (R1), originated by a 

dinuclear metallocofactor and Y• positioned in the 2 subunit (R2) (classes Ia and Ib).  

The R2 subunit has a conserved structural fold consisting of an eight-helical bundle, as 

initially reported in the first structure of the radical-generating subunit from Escherichia

coli in 1990 (48,49). All R2 subunits contain a dinuclear metal cluster located within a 

four-helix bundle (50), and the metal-binding residues are identical in most class I RNRs, 

where the di-metal clusters are coordinated by four carboxylates and two histidines, in 

close proximity to the tyrosine residue that generates the Y• (51) (or a phenylalanine in 

class Ic) (Figures 3 and 4).  
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Figure 3. The RNR class Ia R2 subunit from E. coli (PDBid:1RIB) (49). The two monomers of the 
radical-generating subunit are colored by monomer and displayed as a dimer ( 2) (left). The 
monomers each contain two iron ions, shown as orange spheres. The inset panel on the right shows 
the metal ion site, where the Fe ions are shown as orange spheres, and the coordinating amino acids 
and Tyr are represented as sticks and colored by atom type.   

 

The class I RNRs are divided into three structurally homologous subclasses; Ia, Ib, 

and Ic (Figure 4). Although class Ia and Ib RNRs have identical coordination sites, studies 

have shown that the class Ib NrdF can also utilize an active MnIII
2-Y• cofactor (Figure 4D) 

(17,18,52), in addition to the classical FeIII
2-Y• cofactor (Figures 4A-C), which can be 

assembled in both subclasses (53,54). In contrast to classes Ia and Ib, the newly discovered 

class Ic RNR, so far only characterized in the intracellular pathogen Chlamydia 

trachomatis, has been shown to be able to utilize a stable, heterodinuclear MnIVFeIII 

cofactor (Figures 4E and F) to initiate reduction of nucleotides in the catalytic site of R1 

(19,20,55,56). This subclass contains a phenylalanine residue instead of the radical-

generating tyrosine found in classes Ia and Ib. The different RNR subunits are encoded by 

the nrd genes. The NrdA/NrdE (R1/R1E) and NrdB/NrdF (R2/R2F) subunits are encoded 

by the nrdA and nrdB genes, respectively, in class Ia; the nrdE and nrdF genes, 

respectively, in class Ib; and by the nrdA and nrdBPhe genes, respectively, in class Ic. While 

the operon structures of the genes encoding these subunits are nrdAB and nrdABPhe in 

classes Ia and Ic, respectively, the class Ib RNR operon structure encodes two additional 

proteins; NrdH and NrdI, and the gene arrangement is in most cases nrdHIEF. Class Ib 

RNRs will be discussed in more detail in the next section.  
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Figure 4. The metal ion sites in class Ia, Ib and Ic RNR. Fe -and Mn ions are shown as orange and 
purple spheres, respectively, and the coordinating amino acids and Tyr or Phe are represented as 
sticks and colored by atom type. (A) E. coli class Ia RNR (PDBid:1MXR) (57), (B) mouse class Ia 
RNR (PDBid:1W68) (50), (C) Salmonella typhimurium class Ib RNR (PDBid:2R2F) (58), (D) C. 
ammoniagenes class Ib RNR (PDBid:3MJO) (17), (E) C. trachomatis class Ic RNR (PDBid:1SYY) 
(55), and (F) C. trachomatis class Ic RNR (coordinates were obtained from Martin Högbom) with 
one metal center occupied by iron and the other by manganese. 
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Many organisms can express multiple classes of RNRs, where expression varies 

depending on growth conditions, such as adaptation to different O2 levels in the 

environment. Further complexity can also be provided by the presence of more than one 

enzyme belonging to the same class or subclass. For example, Streptomyces clavuligerus 

and Pseudomonas aeruginosa express class I and class II RNRs, using both classes during 

aerobic growth (59,60). E. coli expresses two subclasses of class I RNRs; class Ia and class 

Ib (61) (in addition to class III (62)) while Saccharomyces cerevisiae contains two 

essential RNR small subunit genes, as well as two large subunit genes, coding for four 

proteins with non-overlapping function (63-65). Another example is the presence of a p53-

incucible small subunit found in mammals, fishes, birds and possibly nematodes. The 

p53R2 protein is expressed when the tumor suppressor protein p53 is defective (66,67). 

Mycobacterium tuberculosis encodes the class Ib RNR as well as the class II RNR. The 

class Ib RNR in M. tuberculosis, however, is coded by a gene cluster containing intergenic 

spacings, contrary to the nrdHIEF operon structure seen in most class Ib RNR containing 

genomes (Figure 5). The well-characterized M. tuberculosis active small subunit, 

NrdF2/R2F-2, is encoded by the nrdF2 gene. In addition, an alternate small subunit, 

NrdF1/R2F-1, encoded by nrdF1 is expressed in this bacterium, previously thought to be 

unable to form a functional class Ib RNR with R1 (68-71) (see Paper I). Recently, another 

R2c-like protein (Rv2033) was characterized in M. tuberculosis, denoted R2lox, lacking 

RNR activity, and proposed to be a ligand oxidase (72). 

 

 
 

Figure 5. Organization of the RNR-encoding genes in M. tuberculosis, shown as arrows. The 
nrdF1 gene is not linked to nrdF2, and neither of the genes encoding the small subunit of class Ib 
RNR are linked to nrdE; the gene encoding the large subunit.  

 

All class I RNR subclasses are usually assembled in the 2 2 functional form 

(Figure 6A). However, different oligomeric forms have recently been described and 
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discussed (Figure 6) (46,73-76). Recent human R1 structures show binding of effectors at 

different recognition-binding sites in an 2 assembly (Figure 6B), and an inactive 4 4 

oligomeric form of the E. coli class Ia RNR has been observed in the presence of elevated 

levels of dATP (Figure 6D), also obtained as an interlock form of an ( 4 4)2 complex (77). 

Additionally, a hexameric 6 ring-like structure has been observed in the crystal packing of 

R1 from S. cerevisiae (Figure 6C).  

 

 
 

Figure 6. Different RNR molecular assemblies. (A) The proposed E. coli class Ia 2 2 complex, 
generated by alignment of the R2 dimer ( 2) with the R1 dimer ( 2), using the original class Ia 2 2 
holocomplex coordinates (PDBid:1RIB) (49,78), (B) the human R1 dimeric structure ( 2) shown 
with TTP (green), GDP (red) and ATP (orange) bound at the S (specificity) site, C (catalytic) site 
and A (activity) site, respectively (PDBid:3HND, 3HNE) (46), (C) hexameric packing of R1 ( 6) in 
S. cerevisiae (PDBid:3PAW) (46), (D) the 4 4 ring-like structure in E. coli (PDBid:3UUS) (75), 
see also (76).   
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The class Ib RNR system 
Class Ib RNRs are the primary sources of dNTPs for a wide variety of prokaryotes, 

including many pathogens, such as M. tuberculosis, Bacillus anthracis, Streptococcus 

pyogenes, and Bacillus cereus (79). The class Ib enzyme consists of the 2 (NrdE) and 2 

(NrdF) subunits (58), where the active form, as in class Ia, is believed to comprise an 2 2 

stoichiometry (38,78). Initially, class Ia and Ib RNRs were divided into two subclasses 

based on polypeptide sequence homology and allosteric regulation. Both subclasses 

possess identical metal-binding residues, and they were for a long time assumed to 

generate an FeIII
2-Y• cofactor. However, initially proposed by Auling and coworkers (80-

82), several recent studies performed on class Ib RNRs from E. coli (18,83), 

Corynebacterium ammoniagenes (17), Bacillus subtilis (84-86), B. anthracis (87), and B. 

cereus (52,87) have demonstrated that these RNRs can also utilize a MnIII
2-Y• cofactor in 

their NrdF subunits, to initiate nucleotide reduction in R1. Hence, class Ib RNRs are 

unique in that they can assemble both active FeIII
2-Y• and MnIII

2-Y• cofactors.  

Active FeIII
2-Y• cofactor generation 

Similar to the class Ia RNR, the FeIII
2-Y• cofactor can be formed in vitro by self-

assembly from apo-NrdF in the presence of FeII, O2, and an additional electron, forming 

the Y• required for dNDP formation in the 2 subunit (NrdE) (39,53,54,88). The formation 

of the FeIII
2-Y• has been well characterized in the class Ia RNRs, and has been studied in 

detail especially in E. coli. The diferric iron cluster and the Y• are formed when molecular 

oxygen reacts with diferrous iron in the radical generating RNR subunit:  

Y + FeIIFeII + O2 + H+ + e-  Y• + FeIII-O-2-FeIII + H2O 

After oxygen binding to the diferrous iron site, a μ-peroxodiferric intermediate (FeIII-O-O-

FeIII) is likely formed (89,90), possibly followed by reduction by a neighboring tryptophan 

residue, leading to the formation of intermediate X (FeIV-O-FeIII) (91,92). This 

intermediate spontaneously decays to the active FeIII-O-FeIII cluster, oxidizing the nearby 

catalytically essential tyrosine to a Y•. Kolberg et al. (36) have proposed a reaction 

pathway for the generation of the Y• in E. coli class Ia R2, which was recently also revised 

by Tomter et al. (45). 
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Active MnIII
2-Y• cofactor generation 

Contrary to the self-assembly of the active FeIII
2-Y• cofactor in NrdF, the active 

MnIII
2-Y• cofactor can only be generated from the MnII

2 site in a self-assembly process in 

the presence of O2  and the reduced flavodoxin-like protein NrdI (18). NrdI, encoded by the 

nrdI gene, is found in all organisms with genomes coding for the class Ib RNR (93,94). In 

most organisms expressing the class Ib RNR, the corresponding genes are organized in a 

cotranscribed nrdHIEF operon structure (61). NrdI contains an FMN cofactor, 

demonstrated to be able to act as a two-electron reductant (95,96) (Figure 7), and originally 

proposed to act as a reductant for generation and maintenance of the active FeIII
2-Y• 

cofactor (93). However, later biochemical studies proposed that NrdI, in its fully reduced 

hydroquinone form (NrdIhq, containing FMNH-) reacts with O2 providing the oxidant, H2O2 

or HO2
-, required for generation of the active MnIII

2-Y• cofactor, also supported by 

spectroscopic and crystallographic studies (17,18,97). The most recent work in this field, 

elucidated by Cotruvo et al. (23), has suggested through monitoring of the MnIII
2-Y• 

cofactor assembly by stopped flow absorption and rapid freeze quench EPR 

spectroscopies, that the metal-ion cluster oxidant is in fact O2
- (Figure 8). This reactive 

oxygen species is produced by the reaction of NrdIhq with O2, oxidizing NrdI to its neutral 

semiquinone form (NrdIsq, containing FMNH•) (23). The hydrophilic O2
- is believed to 

diffuse through a proposed hydrophilic solvent channel, extending from the flavin cofactor 

of NrdI to metal site 2 in NrdF. This channel is structurally conserved in B. cereus and E.

coli NrdF, as confirmed by the two first crystal structures of NrdI in complex with NrdF 

(97) (see Paper II). This oxidant channel is distinct from the hydrophobic access route 

proposed for O2  transport to the diferrous site in class Ia RNR, and presumably also for 

class Ib FeII
2-containing RNRs (49). Studies have shown that the MnIII

2-Y• cofactor can be 

formed both in vitro and in vivo (52,83), and that the manganese form of the enzyme has a 

higher specific activity compared to the iron form, as in the case of B. anthracis (87), B.

cereus (98) and B. subtilis (84), all showing a 10-fold increase. It is still not fully 

understood how the in vitro process of cofactor assembly using identical metal 

coordinating ligands, but different metals and oxidants (99), is controlled in vivo.
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Figure 7. (A) Overall structure of the B. cereus NrdI (PDBid:2X2O) (96), with the FMN cofactor 
represented as sticks. (B) Structural alignment of NrdI structures with the FMN cofactor in 
different redox states. Residues proximal to the FMN cofactor on the 40S loop, as well as the active 
site of the oxidized form of the FMN cofactor are shown in yellow (PDBid:2X2O), while the one-
electron reduced semiquinone form is shown in turquoise (PDBid:2X2P) (96), all shown as sticks. 
A conformational change in the 40S loop is induced upon reduction of the FMN cofactor, resulting 
in a peptide flip between residues 44 and 45. This orients the Gly44 carbonyl group towards N5 of 
the FMN cofactor, initiating hydrogen bonding (shown as dashed lines). (C) Flavin mononucleotide 
redox and protonation states. 
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Figure 8. The latest proposed mechanism of MnIII
2-Y• generation in NrdF. One-electron reduction 

of O2 by NrdIhq generates O2
-.The O2

- is proposed to be channeled through a hydrophilic solvent 
channel to MnII

2-NrdF, reacting with and forming a MnIIIMnIV intermediate, which decays to 
MnIIIMnIII, oxidizing tyrosine to Y•. The detailed structures of the proposed MnIIMnIII-OO(H) and 
MnIIIMnIV intermediates are unknown (23), where the latter intermediate might also exist in a 
different resonance condition. The oxidation state of NrdI when it dissociates from NrdF is also 
unknown. Mn2 is indicated in red.  

 

In addition to the proteins encoded by the nrdHIEF operon, several accessory 

proteins have been shown or are suggested to act as interacting redox partners in the class 

Ib RNR. Ferredoxin/flavodoxin-NADP(H) oxidoreductases (FNRs) catalyse the reversible 

redox reaction between ferredoxins or flavodoxins and NAD(P)+/NAD(P)H. Some of these 

are believed to provide reducing power to NrdI, as well as to other ferredoxin/flavodoxin-

dependent enzyme systems such as some cytochrome P450s and methionine synthase 

(100-102). Reduction of the active site of the catalytic subunit of classes I RNRs is 

performed through the assistance of glutaredoxins (Grxs), Trxs, and other subclasses of the 

Trx superfamily. A detailed introduction to these disulfide oxidoreductases will be given in 

a later section.   

Radical transfer from R2 to R1  
RNRs use, as already mentioned, a free-radical mechanism, in which a transient S• 

in the active site of R1 initiates ribonucleotide reduction by abstraction of a hydrogen atom 

(H•) from the C3’ of the ribose ring. In class II and III RNRs, the active site cysteine is 
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oxidized by direct hydrogen abstraction by a 5’deoxyadenosyl radical or a stable glycyl 

radical, respectively. In the case of class I RNRs, oxidation occurs by the Y• (class Ia and 

Ib) or MnIVFeIII cluster (class Ic) stored in a subunit (R2) different than the catalytic R1 

subunit. In the case of class Ia RNR, in which the radical initiation process has been 

studied extensively (103-106), the distance between the Y• in R2 and the active site 

cysteine in R1 has been proposed to be ~35 Å, based on the 3D model of the R1-R2 

complex (78), as well as kinetic techniques and different spectroscopies, such as pulsed 

electron-electron double resonance (PELDOR) spectroscopy (107,108). Rather than a 

slow, single electron tunneling step, conserved redox-active aromatic amino acids in both 

subunits have been proposed to mediate a long-range intersubunit electron transfer with 

transient radical formation. The electron transfer is thought to be coupled to several short-

range proton transfer steps (proton-coupled electron transfer or PCET). Even though no 

structure of the functional 2 2 holoenzyme has been obtained till date, a radical transfer 

mechanism mediated by the aromatic residues has been established based on a docking 

model of R1-R2 (78). However, less is known about the proton transfer. Recent studies 

have also shown that the FeIII
2 cluster in class Ia E. coli RNR also functions in the enzymes 

catalytic cycle, in addition to generation of the Y• (109).  
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Thioredoxin  
Thiol-redox diversity 

Redox pathways based on disulphide-bridges are involved in a variety of cellular 

processes, such as protein folding (110), enzymatic reactions as hydrogen donors (26), 

response to oxidative stress (111) and modulation of protein activity (112), and are 

important in the maintenance of redox states in cells. The involvement of thiols is also 

common for all RNR classes, where redox-active cysteines, thiyl radicals and thiol 

containing proteins play an essential role in the catalytic cycle of RNRs. In the oxygen-

dependent class I and II RNRs, a pair of cysteines performing the reduction of the substrate 

is located in the active site of R1, in addition to the cysteine forming the thiyl radical. The 

active site cysteine pair is oxidized during the reaction, and is reduced by two additional 

cysteines located on the flexible C-terminus of the R1 subunit. Consequently, these C-

terminal cysteines need to be reduced by an external reductant for each turnover (27,113). 

Such reduction reactions of disulfide bonds, as well as oxidation reactions of cysteine 

pairs, are mediated by thiol-disulfide oxidoreductases. The thiol-disulfide oxidoreductases 

are members of the Trx superfamily, performing the fast and reversible thiol-disulfide 

exchange between their active site cysteines and cysteines in the substrate protein (25). 

Trxs are small ubiquitous proteins found in bacteria, plants and animals. They all share a 

common C-X-X-C active site motif and show a conserved / /  sandwich polypeptide 

fold. Examples of E. coli proteins exhibiting different functions, but all having a Trx-like 

fold, are presented in Figure 9. In class III RNRs, only one of the two active site cysteines 

found in class I and II RNRs is conserved, while the other is entirely absent. In contrast to 

Trx-like proteins, the reductant of the class III RNRs is formate, which is oxidized to 

carbon dioxide during catalysis (114,115).      

 Proteins involved in the oxidation of disulfide bonds, such as DsbA (a member of 

the Dsb (disulfide bond) family of enzymes), are involved in disulfide bond formation in 

periplasmic proteins in bacteria, catalyzing the oxidation of peptide and protein cysteines 

(116). Also, eukaryotic protein disulfide isomerases (PDI) are involved in the 

rearrangement of incorrectly disulfide-bonded proteins in the lumen of the endoplasmic 

reticulum of eukaryotic cells (117,118). 
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Figure 9. E. coli proteins belonging to the Trx superfamily, all containing the Trx-like fold and the 
C-X-X-C active site motif. (A) TrxA (PDBid:2TRX) (119), (B) Grx (PDBid:1EGO) (120), (C) 
DsbA (PDBid:1FVK) (121), and (D) NrdH-redoxin (PDBid:1H75) (122). 

 

In the cytoplasm of E. coli, several pathways play roles in the reduction of disulfide 

bonds. Among the most studied members are the two thiol-disulfide bond reducing 

systems using the reducing potential derived from NADPH in the reduction of multiple 

cytoplasmic enzymes; the Trx system and the Grx system. The latter consists of three Grxs, 

glutathione (GSH) and glutathione reductase (Gor), while the former is composed of two 

Trxs and TrxR (25). The electrons from NADPH are transferred via TrxR or Gor, 

homodimeric enzymes called pyridine nucleotide disulfide oxidoreductases. TrxR reduces 

Trx, while Gor reduces glutathione disulfide (GSSG), a disulfide derived from two GSH 

molecules, to GSH, which then reduces Grx (123,124). In addition, NrdH-redoxin, which 
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functions as an electron donor for NrdE in the bacterial class Ib RNR, also has the Trx-like 

fold. This small redox protein, found in E. coli and several other organisms, is related in 

amino acid sequence to Grxs, but behave functionally as Trxs (122). While Grxs reduce 

their substrates using electrons derived from NADPH via Gor and GSH, Trxs and NrdHs 

reduce their substrates using electrons from NADPH via TrxR, as illustrated in Scheme 2. 

 

 
 

Scheme 2. The electron flow from NADPH to the final substrate, mediated by TrxR and Trx. 

 

Other members of the Trx superfamily, are the glutathione S-transferases and the 

hydroperoxidases (125), however, these proteins do not contain a C-X-X-C active site 

motif. Regardless of differences in their active sites, all the above mentioned proteins are 

related by their Trx fold, forming distinct, but structurally related families (126). 

The thioredoxin-like fold and active site motif 
The crystal structure involving an oxidized active site C-X-X-C motif was first 

solved for the E. coli Trx (127), in which the molecule showed to include a central -sheet 

motif, and hence, core of five parallel and antiparallel strands surrounded by four -

helices. Thus, the characteristic Trx-fold is noticeably smaller than Trx itself, lacking one 

-strand and one -helix. Extra residues and secondary structure elements are present in all 

other proteins containing the standard fold as well, in addition to the approximately 80 

residues making up the Trx fold. The four Grx orthologs found in E. coli also revealed the 

classical Trx-like fold with a central pleated sheet surrounded by helices (128,129). NrdH 

seems to be a hybrid of Trx and Grx (Figure 9). Despite these differences, functional 

similarity is found among several important classes of redox proteins, including Trx, NrdH 

and Grx, which all share the C-X-X-C similar reaction mechanisms.
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E. coli Trx1 was first discovered as the electron donor for RNR (26). Based on sequence 

similarity, a second Trx, Trx2, was also discovered as a reductant for RNR, despite some 

structural and functional differences compared to Trx1 (130). Grx1 was discovered as an 

alternative electron donor for RNR, coupling the reducing capacities of GSH and Gor to 

the enzymatic formation of deoxyribonucleotides (128,131,132). In addition to their 

involvement in electron transfer in several enzymatic systems, members of the Trx 

superfamily are involved in a range of other cellular functions, such as signal transduction 

pathways, sulfate assimilation and involvement in oxidative stress response (133-135). 

 The two cysteine residues in the C-X-X-C motif can reversibly form a disulfide 

bond, enabling Trx-related proteins to participate in disulfide exchange reactions (136). 

The residues between the two cysteines vary among the different protein classes, including 

Trxs and Grxs. In E. coli Trx, the disulfide bridge is formed from Cys32 and Cys35, 

spaced by Gly33 and Pro34 (C-G-P-C). Cys32 is the N-terminal nucleophilic cysteine, 

while Cys35 is the C-terminal, buried cysteines. The three Grx orthologs found in E. coli, 

Grx1, Grx2, Grx3 all share a C-P-[F-Y-W]-C active site sequence (137), whereas Grx4, a 

member of the last group of Grxs, is a monothiol enzyme containing an active site C-X-F-

X motif, usually as C-G-F-S (138,139). NrdH-redoxins typically contain a C-[VM]-Q-C 

motif (140). Other variations to the two residues flanking the redox active cysteines are 

found among additional members belonging to the Trx superfamily. DsbA contains an 

active site conserved C-P-H-C motif (141), while the eukaryotic PDI contains the active 

site sequence C-G-H-C (142). 

Mechanism of electron transfer in thioredoxin 
The reduction potentials of thiol-disulfide reactions are correlated with the pKa 

value of the surface exposed N-terminal reactive cysteines. A low redox potential has been 

correlated with a relatively high pKa value and vice versa. For example, the E. coli Trx low 

redox potential of -270 mV (143) is correlated with a relatively high pKa value of 7.1-7.4 

(144). Experiments have shown that the -X-X- residues in the active site motif contribute 

to changes in the pKa values, and hence, the tuning of redox potentials (145).  

 The side chain of the E. coli Trx N-terminal Cys32 is exposed to the solvent, and 

has a pKa value which is lowered from approximately 9 to 7, crucial to drive efficient thiol-

disulfide exchange reactions at physiological pH values (123). In order to give disulfide 

reductants low reduction potentials, nature has evolved enzymatic systems with the Cys32 
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thiol initiating the nucleophilic attack positioned in a special microenvironment. The 

lowered nucleophilic cysteine pKa value, leading to deprotonation, has been suggested to 

involve contributions from several factors, including assistance from an alpha-helix dipole 

(146), charge-charge interactions (147) and intra-protein hydrogen bonding (148). It has 

been proposed that the latter is the leading determinant to be considered when predicting 

pKa values, resulting in the suggestion that the low pKa value of the N-terminal Cys32 is 

due to hydrogen bonding to the Cys35 amide proton (149,150). However, the pKa value of 

Cys35 is estimated to values up to 4 units higher, making this residue virtually unreactive 

(136,151). There are no polar or acidic groups in the immediate environment of the C-

terminal buried Cys35 S -atom that can stabilize a thiolate prior to the second nucleophilic 

attack. As an explanation, a proximal, conserved Asp26 has been proposed to act as a 

general acid/base catalyst in the deprotonation of the thiol of Cys35, through a water 

molecule positioned between the Asp26 carboxyl group and the Cys35 S -atom (136,152). 

This hypothesis has later been supported by the analysis of a 1 Å resolution structure of 

oxidized Trx from Acetobacter aceti, where a water molecule is aligned between Asp26 

and Cys35, well positioned to participate in proton transfer between the Asp26 and Cys35 

side chains (153). However, reduced crystal structures of Trx showing this feature are yet 

not solved. Even though the replacement of Asp26 in Trx strongly impairs the catalytic 

reaction rate in the redox reactions of Trxs (154), the deprotonation mechanism of the 

buried Cys35 is still debated (136).        

 The fundamental mechanism of Trx-mediated electron transfer, proposed by Kallis 

and Holmgren in 1980 (155), is explained using E. coli amino acid numbering in Figure 

10. Electrons pass from reduced Trx to the substrate via several steps. The initial 

nucleophilic attack on the disulfide substrate involves Cys32, with the formation of a 

mixed disulfide (step 1) (Figures 10A and B). The next step, involving deprotonation of 

Cys35, makes the second nucleophilic attack caused by this thiolate possible. This resolves 

the mixed disulfide intermediate, generating a dithiol in the substrate (Figures 10C and D). 

The proton abstraction necessary to induce the nucleophilic attack of the last thiolate, 

illustrated in step 2, is possibly assisted by Asp26, but not completely understood.  
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Figure 10. The disulfide reductase reaction mechanism of Trx. (A) The initial nucleophilic attack 
performed by the Trx N-terminal Cys on the substrate disulfide bond is followed by a 
deprotonation of the buried C-terminal Cys (step 2) and a second nucleophilic attack, resolving the 
mixed disulfide intermediate (C), and leading to a reduced substrate (step 3 and D). 

 

Interestingly, variations to the possible role of Asp26 as an acid/base catalyst for 

the buried Cys are likely present among other subclasses of the Trx superfamily (Paper 

III). Some members lack the amino acid residue analogous to the E. coli and A. aceti Trx 

Asp26.  Examples of such groups of proteins, possessing Trx functionality, are the NrdH-

redoxins, previously shown to be able to act as reductants of the catalytic site of the R1 

subunit in the class Ib RNR (87,156,157), and Clostridium pasteurianum Cp9-redoxins, 

involved in the reduction of various hydroperoxide substrates (158).  

 

 
 

Figure 11. Organization of the genes encoding the B. cereus class Ib RNR. Contrary to the 
classical class Ib RNR operon structure, the gene coding for the putative NrdH-redoxin (BC3987) 
is not linked to the genes coding for NrdI, NrdE and NrdF. 

 

The class Ib RNR operon from B. cereus lacks the nrdH gene encoding the NrdH-

redoxin, differing from other characterized class Ib RNRs. However, a gene coding for a 
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small Trx-like protein, BC3987 (Figure 11), has been located in the B. cereus genome, 

revealing a significant amino acid sequence similarity with NrdH. The mechanism behind 

the proton abstraction of the C-terminal buried cysteine in these proteins has not been 

investigated until recently (Paper III). 
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AIMS OF STUDY 
 

The aim of this thesis has been to structurally and functionally characterize proteins 

involved in the class Ib RNR system. Detailed knowledge about the mode of interaction 

between different RNR proteins at the molecular level, as well as catalytic mechanism, is 

crucial for the development of antimicrobial drugs. X-ray crystallography, combined with 

biochemical analysis, QM/MM calculations, as well as different spectroscopic techniques 

provides detailed information about the structural and functional features of these enzymes.

 The M. tuberculosis class Ib RNR contains two genes encoding the small R2 

subunit, nrdF1 and nrdF2, encoding R2F-1 and R2F-2, respectively. The latter has 

previously been characterized, and assumed to be the only biologically active RNR small 

subunit. The lack of biochemical and biophysical data on the putative R2F-1 subunit lead 

us to carry out experiments corresponding to the first part of the thesis, involving 

biochemical and spectroscopic characterization of R2F-1.     

 In the second part of the project, an extensive crystallographic study of the B.

cereus class Ib RNR small subunit in complex with NrdI was performed. It has been of 

great interest for us to investigate this protein-protein assembly, in order to examine 

geometric and structural features, as well as to investigate the binding modes between 

these proteins.          

 The class Ib RNR operon from B. cereus lacks the nrdH gene, coding for the NrdH-

redoxin in other characterized class Ib RNRs. However, BC3987, a protein homologous to 

NrdH, has been located in the B. cereus genome. The presence of a Thr residue, also 

conserved in all NrdHs, was found located in the proximity of the C-X-X-C active site 

motif in BC3987, unlike in typical Trxs. This encouraged us to carry out a characterization 

of BC3987 and investigate the role of the Thr sidechain on the deprotonation of the C-

terminal buried Cys, in order to find a model for the enzymatic reaction mechanism in 

BC3987 and other similar Trx-like proteins. 
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SYMMARY OF PAPERS I-III 
 

Paper I 

Hammerstad, M., Røhr, Å. K., Andersen, N. H., Gräslund, A., Högbom, M., and 

Andersson, K. K. (2014) The class Ib ribonucleotide reductase from Mycobacterium

tuberculosis has two active R2F subunits. J. Biol. Inorg. Chem. DOI: 10.1007/s00775-014-

1121-x

This paper presents the first evidence for an active diferric tyrosyl radical (FeIII
2-

Y•) cofactor in the M. tuberculosis class Ib RNR putative R2F-1 small subunit, supported 

by UV-vis, X-band EPR, and rRaman spectroscopy. Additionally, R2F-1, which was 

previously thought to be inactive, showed enzymatic activity when assayed with R1. 

 The first genetic and biochemical characterization of the class M. tuberculosis class 

Ib RNR was performed almost two decades ago by Rubin and coworkers (68). The study 

revealed the presence of two genes, nrdF1 and nrdF2, encoding the class Ib small subunit 

(R2F-1 and R2F-2, respectively). Since then, R2F-2 containing the FeIII
2-Y• cofactor has 

been well characterized, and suggested to be the only R2 subunit able to form a functional 

class Ib RNR in M. tuberculosis with R1, thereby implying that R2F-1 is unable to 

substitute for R2F-2 in the active class Ib RNR system.     

 In this study, we have found that R2F-1 is able to generate an active FeIII
2-Y• 

cofactor. X-band EPR studies reveal minor differences in the radical spectra when 

comparing the R2F-1-FeIII
2-Y• with the previously characterized R2F-2-FeIII

2-Y•, and the 

simulated EPR spectra of R2F-1 and R2F-2 display well resolved, nearly identical 

anisotropic proton hyperfine coupling parameters (hfc). The study also presents the first 

rRaman characterization of structural details associated with the Y• cofactor of R2F-1 and 

R2F-2 in M. tuberculosis, indicating that no exchangeable hydrogen atom is present 

adjacent to the radical. Most importantly, Fe-reconstituted R2F-1, when assayed with R1, 

revealed similar specific activity to that of R2F-2, comparable to previously published 

results for the latter. This suggests that the M. tuberculosis class Ib RNR can function with 

two biologically active small subunits. 
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Paper II 
Hammerstad, M., Hersleth, H. -P., Tomter, A. B., Røhr, Å. K., and Andersson, K. K. 

(2014) Crystal structure of Bacillus cereus class Ib ribonucleotide reductase di-iron NrdF 

in complex with NrdI. ACS Chem. Biol. 9 (2), 526–537 

The first crystal structure of the E. coli class Ib RNR NrdF subunit in complex with 

the flavoprotein NrdI was published by Boal et al. (97) in 2010, revealing the presence of a 

continuous channel connecting the FMN cofactor of NrdI with the NrdF MnII
2 active site.

 In this paper, we present the first crystal structure of B. cereus NrdI-Fe2-NrdF. 

Compared to the E. coli NrdI-MnII
2-NrdF crystal complex, our structure confirms similar 

NrdI-NrdF binding through a network of conserved residues lining the core interface in 

both structures. In the E. coli and B. cereus complex structures, these charged and polar 

residues create a similar hydrophilic channel, suggested to serve in transport of the 

hydrophilic oxidant, O2
-. This supports a conserved NrdI-NrdF binding in all class Ib 

RNRs, providing a general structural basis for cofactor activation.    

 The NrdI-Fe2-NrdF structure presented in this paper contains a di-iron site, 

differing from the NrdI-MnII
2-NrdF structure from E. coli. Our work reveals a specific 

movement of a metal-coordinating carboxylate residue linked to the metal type present in 

the di-metal site, also supported by the B. cereus Fe2-NrdF and MnII
2-NrdF crystal 

structures presented in this paper. In the NrdI-Fe2-NrdF and Fe2-NrdF structures, the 

carboxylate conformation seems to structurally block the access of an oxidant channeled 

from the FMN cofactor to the di-metal cofactor in NrdF. However, the carboxylate 

conformation seen in MnII
2-NrdF crystal structures opens up for the water network leading 

to the di-metal site in NrdF, allowing oxidant access.     

 We further show that binding of NrdI to NrdF introduces steric clashes in the NrdI-

NrdF-NrdE formation, and discuss the potential mode of binding interactions between 

these proteins upon active cofactor generation and 2 2 holoenzyme formation. 
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Paper III 
Røhr, Å. K., Hammerstad, M., and Andersson, K. K. (2013) Tuning of thioredoxin redox 

properties by intramolecular hydrogen bonds. PLoS One 8 (7), e69411

In this paper, a small Trx-like protein from B. cereus, BC3987, has been 

characterized, and we have proposed a substrate reduction reaction mechanism for Trxs 

with a similar active site environment.       

 Together with certain other Trx-like proteins, BC3987 lacks the conserved 

carboxylate residue believed to function in deprotonation of the C-terminal cysteine, as 

proposed for the E. coli and A. aceti Trxs. However, BC3987 contains a Thr8 residue 

preceding the active site C-X-X-C motif, able to form a hydrogen bond to the buried 

cysteine. This residue has been shown to be conserved in other Trx-like proteins, such as 

NrdH-redoxins, and is believed to increase enzymatic activity, playing a central role in the 

reaction mechanism in these proteins.      

 Through biochemical assays comparing the wild type BC3987 with the Thr8Ala 

mutant, we have shown that the efficiency of substrate reduction is reduced for the mutant. 

Also, thiolate pKa titrations were performed comparing the wild type and Thr8Ala mutant 

enzymes. The results revealed that the wild type enzyme may have two titratable thiolates 

with different pKa values, 5.1 and 7.2, whereas the mutant enzyme has one thiolate with a 

pKa value of 7.2, and a second thiolate with a different behavior. Additionally, the mutant 

was shown to be unstable at pH values below 5.4.     

 The paper also presents the high resolution crystal structures of the wild type 

BC3987, as well as the Thr8Ala mutant with oxidized active sites. Based on these crystal 

structures, as well as crystal structures from other organism showing different Thr8 

rotamers, QM/MM calculations were performed in order to investigate the role of Thr8 in 

lowering of the buried cysteine pKa value. The calculations revealed that the Thr8 hydroxyl 

group and the Gln9 amide proton could form hydrogen bonds to the buried cysteine. Based 

on the modeling studies of the reduced active site, and the biochemical investigations 

performed in this work, a reaction mechanism model is proposed. This model involves 

deprotonation of the buried cysteine by the proximal Thr residue, proposed for Trxs 

lacking an analogue to the acidic Asp26 residue believed to participate in deprotonation of 

the C-terminal thiol in E. coli Trx. 
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MY CONTRIBUTIONS TO 
PAPERS I-III 

Paper I 
Designed and carried out most of the experiments (cloning, protein expression and 

purification, activity measurements, UV-vis spectroscopy, preparation of EPR -and 

rRaman samples, contribution to EPR experiments), analyzed the corresponding data, 

performed structural investigations and discussion, and wrote the manuscript.

Paper II 
Designed and carried out most of the experiments (protein expression and 

purification, single-crystal light absorption spectroscopy, protein crystallization and data 

collection), solved and refined several structures, investigated and analyzed 

crystallographic data, and wrote the manuscript.

Paper III 
Carried out experiments (in particular work with the T8A mutant protein), analyzed 

data and participated writing the manuscript. 
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DISCUSSION 
 

The main goal of my thesis has been to increase the knowledge of different proteins 

involved in the class Ib RNR, through structural, spectroscopic and biochemical 

investigations. In the following section, I will summarize the results presented in Papers I 

to III, and place these contributions in context with the ongoing research in the field of 

RNRs and other redox enzymes.         

 The discussion has been divided into four parts, starting with a short introduction to 

three of the biophysical techniques used; rRaman and EPR spectroscopy (Paper I), and X-

ray protein crystallography (Papers II and III). Thereafter, the different findings from 

Papers I to III will be discussed; the alternative R2F-1 RNR subunit in M. tuberculosis, the 

structure of the B. cereus NrdI-NrdF crystal complex, and the B. cereus BC3987 

thioredoxin. 
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A short introduction to biophysical 
techniques 
X-ray protein crystallography 

Crystallography is one of the most powerful methods used for visualization of 

three-dimensional images of molecules at atomic resolution. It can provide detailed 

structural information about functional aspects of proteins, such as conformational changes 

including metal coordination geometries, and mechanisms of binding.    

 In order to be able to visualize an object, light with the wavelength corresponding 

to the size of the objects is required. Atomic distances are in the 10-10 m range; hence, to 

resolve the positions of atoms within a molecule, X-ray radiation is required. In order to 

amplify the scattering signal, a prerequisite for solving a three-dimensional structure of a 

protein by X-ray crystallography is a well-ordered crystal that diffracts X-rays. Molecules 

pack in the crystal in an ordered pattern. Based on each equivalent point in the crystal, a 

unit cell can be defined. This three-dimensional array of molecules is described by the 

crystal lattice, whereas the whole symmetry of the lattice is defined by its space group. 

 The scattering of electromagnetic radiation from the electrons in a crystal, 

interfering constructively, generates a diffraction pattern, which can be used to determine 

the protein structure. The intensity of the diffraction spots depends on the position of atoms 

in the sample through which X-rays pass, and therefore, information about the molecular 

content of the unit cell. Since scattered X-ray beams in a diffraction experiment cannot be 

converted directly into an image as in conventional light microscopy, indirect 

computational procedures are crucial for structure determination. The structure factor is a 

function of the atomic content in the crystal, and sums up the scattering from all the 

electrons in the unit cell from each direction. Since the structure factor is the Fourier 

transform of the electron density, the electron density at every position in the unit cell can 

be calculated. One of the challenges in structure determination, however, is the fact that the 

time component of the scattered waves is lost during data collection. This is referred to as 

the phase problem. In order to solve the phase problem and hence, solve the structure by 

generating an electron density map, the approach used in this thesis has been “molecular 

replacement” (MR).         
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 For improvement of the atomic coordinates corresponding to the final structural 

model, structure refinement is performed in an iterative manner. The generated model is 

compared to the diffraction data, until any discrepancy between the two has reached a 

minimum. The correctness and quality of the structure is evaluated, and the agreement 

between the model and the experimental diffraction data is measured by the R-factor.   

Electron paramagnetic resonance spectroscopy 
As an important complement to structural determinations by X-ray crystallography, 

electron paramagnetic resonance (EPR or electron spin resonance (ESR)) is a 

spectroscopic technique used to study species containing unpaired electrons. It detects 

changes in electronic spin configuration and depends on the presence of a permanent 

paramagnetic moment, being a useful and sensitive method for studying paramagnetic 

active sites in metalloproteins and free radical intermediates. Hence, EPR can give intrinsic 

information about protein-bound metal ions, the geometry of ligand binding and redox 

changes in electron transfer mechanisms. Class Ia and Ib RNRs use a di-metal oxygen 

cluster for a generation of a stable tyrosyl radical, and is well suited for EPR 

investigations.           

 In the presence of a magnetic field, the magnetic moment of unpaired electrons will 

align either parallel or antiparallel to the field, corresponding to the two spin states of the 

electron, with different energies. Transitions between these two energy levels can be 

induced by providing electromagnetic radiation with energies corresponding to the energy 

difference between these two levels. In EPR spectroscopy, the absorption of microwave 

radiation is observed due to the excitation of electrons from one electronic spin to another. 

The energy is determined by the resonance conditions; hence, the splitting of the two 

energy levels can be described as a function of the applied magnetic field:  

E = g B = hv 

Where h is Planck’s constant, v is the frequency of the applied field (microwave), g is the 

electron g-factor,  is the Bohr magneton, and B is the external magnetic field.  

 The microwave radiation is absorbed due to a population difference in the energy 

levels involved, where the number of unpaired electrons in the lower energy level is 

greater than the number of electrons in the higher energy level. Thus, more transitions 

occur from the lower energy level state, resulting in a net absorption. In standard EPR, a 
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signal may be achieved by gradually increasing the magnetic field while applying 

electromagnetic radiation with a constant energy, hv, until the resonance condition is 

fulfilled. Amplitude modulation of the magnetic field with a fixed frequency results in the 

first derivative of the absorbed continuous wave (CW) EPR spectra. The EPR signal 

intensity is proportional to the population difference, which is dictated by the Boltzmann 

distribution. The amount of the studied species, such as free radical, can be determined by 

quantitation of the spin concentration through double integration of the EPR spectra. EPR 

measurements can be performed at different wavebands, most commonly at 9.6 GHz (X-

band), but also at higher magnetic field and microwave frequencies (HF-EPR), such as 95 

GHz (W-band), and at 285 GHz, important for separation of small g-tensor anisotropies. 

 The electron responds to the magnetic field, in addition to the surrounding field of 

atoms and molecules. The positions and splitting of the lines in the spectrum depend on the 

direction of the external field, relative to the molecular axes, called anisotropy. The 

symmetry of a spin center is reflected in its EPR signal g-anisotropy. Three g-values can 

result in splitting of the EPR signal, while the hyperfine couplings arising from the 

interaction of the unpaired electron with nearby nuclei spins, further split the fine structure 

of the spectra. 

Resonance Raman spectroscopy 
Resonance Raman (rRaman) spectroscopy is another powerful tool used to study 

the structure of metal ion environments in metalloproteins, as well as ligation modes of 

amino acid residues. In rRaman, the wavelength of the exciting laser is adjusted to 

correspond to a specific electronic transition in a molecule in order to increase the 

intensities of certain Raman bands. This makes the technique sensitive to changes in 

molecular bonding and conformations of specific structures, and can provide information 

about vibrational characteristics of metal centers and radicals. In RNR, the vibrational 

characteristics of tyrosyl radicals are sensitive to the presence of exchangeable hydrogens 

in the proximity of the phenoxyl oxygen. Therefore, the tyrosinate oxygen vibrational 

mode,  , is sensitive to the presence of a hydrogen bond. rRaman spectroscopy is a 

valuable tool for detection of changes in out-of-plane bond angles, as well as proximal 

electronic changes affecting the tyrosyl radical state. 
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The RNR class Ib R2F subunit 
For decades, the nature of the di-metal oxygen cluster and Y• cofactor in the small 

subunit of class I RNRs has triggered the curiosity of many scientists. Extensive 

characterization of these cofactors has been executed, gaining knowledge about metal-ion 

cluster identities, 3D structures, magnetic-optical properties, and reaction mechanisms. The 

bacterial class Ib R2F subunit is unique because of its ability to utilize different metal-ion 

clusters to generate a stable Y•, generating an active FeIII
2-Y• cofactor or MnIII

2-Y• 

cofactor. In the case of M. tuberculosis, the unusual and simultaneous presence of two R2F 

subunits was confirmed by Harvey Rubin and coworkers in 1997 (68). This led us to 

perform a biochemical and biophysical characterization of the second, putative R2F 

subunit R2F-1, in order to find out whether it could resemble the previously confirmed 

features of the well characterized R2F-2 subunit (Paper I). Despite the wide knowledge 

about the generation and nature of the FeIII
2-Y• cofactor, a thorough understanding of the 

generation of the MnIII
2-Y• cofactor is still not reached. Further complexity is also 

provided in the latter case, where the presence of an additional protein, NrdI, is needed as 

an electron donor for cofactor assembly. This encouraged us to investigate this protein-

protein association further, employing the crystal complex of NrdI-Fe2-NrdF from B.

cereus (Paper II). This gave additional knowledge about the structure of the metal ion 

coordination environment in R2F, in addition to the work published by Boal et al. (97) in 

2010, including the crystal complex of NrdI-MnII
2-NrdF from E. coli. We have also shown 

insight into the mode of interaction between the different proteins in the active 2 2 

holoenzyme formation. In contrast to NrdI, which provides electrons used for generation of 

the MnIII
2-Y• cofactor in R2F, Trxs function as electron donors for the catalytic subunit 

R1. NrdH-redoxins have been shown to function as specific reductants of the active site of 

R1 in class Ib RNRs. Since the class Ib RNR operon in B. cereus lacks the nrdH gene, we 

carried out a characterization of BC3987, proposing a model for the reaction mechanism in 

these Trx-like proteins (Paper III). 
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M. tuberculosis has two active R2F subunits 
The R2F-2 subunit of the class Ib RNR from M. tuberculosis was first shown to be 

active when assayed with the catalytic subunit almost two decades ago (68). The same 

study showed the presence of a Y• cofactor by EPR spectroscopy. Extensive EPR 

investigations of the R2F-2 subunit were later carried out by Gräslund and coworkers (159-

161), confirming similar features as previously observed in the class Ib R2F subunit from 

S. typhimurium (162). In contrast, the alternate M. tuberculosis R2F-1 subunit has been 

suggested to be unable to substitute for R2F-2 in the active class Ib RNR, despite the high 

sequence identity level. In Paper I, we have shown that iron-reconstituted R2F-1, 

containing the FeIII
2-Y• cofactor, shows similar specific activity as compared to R2F-2, 

when assayed with R1. These results are the first to demonstrate catalytic activity of the 

second putative R2F-1 subunit in M. tuberculosis, consistent with previously reported 

activity for R2F-2 (68). Both nrdF1 and nrdF2 genes have been shown to be expressed at 

similar levels in aerobic conditions (69), however, loss of the nrdF1 gene has no 

significant effects on the cell viability or virulence (71). Therefore, the results from Paper 

I, confirming R2F-1 activity with R1, raise questions about the biological role of R2F-1, 

and hence, the aspect of a simultaneous presence of two active small RNR subunits in M.

tuberculosis. One explanation could be changes in affinity for metal ion incorporation 

among the two subunits, during distinct growth conditions. For example, R2F-2 could be 

preferred as the active MnIII
2-Y• cofactor generating subunit in Mycobacteria living in 

their natural habitats, such as soil or water, whereas R2F-1 could act as the preferred 

subunit responsible for generation of an active FeIII
2-Y• cofactor used for nucleotide 

reduction during mammalian lung infection. Further investigations are required in order to 

elucidate the biological role of R2F-1. M. tuberculosis is the first species shown to 

simultaneously express two active class Ib RNR R2F subunits. 

Spectroscopic characterization of R2F-1 
In agreement with similar specific activity shown for R2F-1 and R2F-2, and based 

on conserved metal coordinating -and tyrosine residues present in both subunits, X-band 

EPR spectra of R2F-1 and R2F-2 presented in Paper I reveal nearly identical features. Not 

surprisingly, the EPR spectra of the R2F-1-FeIII
2-Y• and the R2F-2-FeIII

2-Y• strongly 

resemble the spectrum of R2F-2-FeIII
2-Y• previously characterized by Gräslund and 



39 

coworkers (159), which was also characterized by HF-EPR. Based on the latter results, we 

assume that the Y• in R2F-1 has the same g-tensor components as R2F-2. EPR spectra 

simulations reveal nearly identical anisotropic hyperfine coupling parameters (hfc), and the 

dihedral angle, , describing the orientation of the -carbon of the tyrosine ring plane, for 

the Y•  in R2F-1 and R2F-2 is estimated to be around 75°. This is similar to the -angle in 

the previously characterized M. tuberculosis R2F-2 and S. typhimurium (162). 

Additionally, rRaman spectroscopy indicates the absence of a hydrogen bond to the 

tyrosyl-oxygen radical in R2F-1 and R2F-2. The findings in Paper I suggest that R2F-1 and 

R2F-2 both can function as radical generating subunits in the class Ib RNR in M.

tuberculosis, with similar activity, supported by nearly identical spectroscopic features of 

their FeIII
2-Y• cofactors. 
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B. cereus NrdF and the NrdI-NrdF crystal 
complex 

In Paper II, we have investigated the structural mode of binding between NrdF and 

NrdI in the class Ib RNR form B. cereus, as well as examined the structural features 

suggested to play a role upon active MnIII
2-Y• cofactor generation in NrdF. Six crystal 

structures were obtained for this purpose: two structures of Fe2-NrdF in complex with 

NrdI, Fe2-NrdF, MnII
2-NrdF, and two structures of apo-NrdF.    

 The B. cereus NrdI-Fe2-NrdF crystal complex reveals structural similarity as 

compared to the E. coli NrdI-MnII
2-NrdF crystal complex (97) (with an RMSD value of 

1.42 Å calculated for the monomeric NrdI-NrdF complexes) (Figure 12A), suggesting 

similar binding of NrdI to NrdF in class Ib RNRs. The similar overall interaction between 

NrdI and NrdF is also supported by the high level of conservation of the amino acids lining 

the NrdI-NrdF interface (Figure 12B), a general attribute for all class Ib RNRs. These 

charged and polar residues are suggested to form a hydrophilic solvent channel, connecting 

the FMN cofactor in NrdI with the di-metal site in NrdF, proposed to serve in the 

channeling of a hydrophilic oxidant (O2
-) needed for generation of the active MnIII

2-Y• 

cofactor (Figure 12C). The core interface is likely essential for recognition between NrdFs 

and NrdIs, suggesting that the NrdI-NrdF complex is important for generation of the 

hydrophilic channel preceding electron transfer. We propose that amino acid differences 

outside the conserved core region are important for the small variations observed in the 

NrdI-NrdF binding in E. coli and B. cereus, where the association is much stronger in E. 

coli than in Bacillus species (18,87,95,98). The conserved core interface region is not 

present in bacterial class Ia NrdB, neither in the eukaryotic R2s.  
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Figure 12. Structure of the NrdI-NrdF complex. (A) Alignment of the overall B. cereus and E. coli 
(PDBid:3N39) (97) NrdI-Fe2-NrdF and NrdI-MnII

2-NrdF structures, respectively. (B) Alignment of 
the conserved hydrogen bonding network in the NrdI-NrdF core interface, and the (C) solvent 
channel connecting the FMN cofactor in NrdI with the di-metal cluster in NrdF, in B. cereus and E.
coli. B. cereus NrdI is shown in yellow, NrdF is shown in pink, while the E. coli structure is shown 
in grey. The FMN cofactor, as well as the residues in the active site of NrdF are shown as sticks 
and colored by atom type. Fe (B. cereus) and MnII (E. coli) ions are shown as orange and purple 
spheres, respectively. 
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Flexibility of the metal ion coordination environment 
In the E. coli and B. cereus complexes, the proposed solvent channel is structurally 

conserved, extending from NrdI to the vicinity of metal site 2 in NrdF. However, in the B.

cereus NrdI-Fe2-NrdF crystal complex, the channel is prevented from accessing the Fe2-

NrdF metal site due to structural differences in the metal coordination environment, as 

compared to the E. coli NrdI-NrdF complex crystallized with manganese. The access 

seems to be blocked by the bidentate coordination to metal site 2 by Glu161 (B. cereus 

numbering), observed in both NrdI-Fe2-NrdF crystal structures (Figure 13), where one of 

the structures contain alternative Glu161 conformations, likely due to the lower iron 

occupancy (50%, as compared to 90% for the first structure). The same Glu161 

coordination is also observed for the B. cereus Fe2-NrdF structure presented in Paper II (as 

well as the two apo-NrdF structures), where Glu161 coordinates to Fe2 in a mono -or 

bidentate fashion (monomers B and A, respectively).  

 

Figure 13. Structures of the Fe2-NrdF and MnII
2-NrdF active sites in B. cereus and E. coli 

(PDBid:3N39) (97), showing differences in the Glu161 (B. cereus numbering) conformation. The 
bidentate coordination of Glu161 to Fe2 in B. cereus occupies the terminal part of the solvent 
channel. In contrast, the E. coli Glu158 bridges both metals in a μ-1,3 fashion, opening up for a 
water ligand thought to be part of the ordered water network connecting FMN in NrdI to the di-
metal site in NrdF (See Figure 12C). The B. cereus residues are shown as pink sticks, while the E.
coli residues are shown in grey. 

 

This feature is consistent with other class Ib NrdF crystal structures, showing the same 

channel-blocking Glu161 coordination mode. In contrast, crystal structures of the E. coli 

NrdI-MnII
2-NrdF crystal complex and the MnII

2-NrdF structure, as well as the B. cereus 

MnII
2-NrdF structure from Paper II (the latter showing conformational flexibility), show an 

unusual Glu161 coordination, involving bridging of both metals in a μ-1,3 fashion (Figure 
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13). This conformation differs from other class Ib NrdF structures, where Glu coordinates 

to metal site 2 alone. In the case of the B. cereus and E. coli Mn-containing NrdF 

structures, the Glu161 conformation opens up for a water coordinating to the Mn2 site and 

the extended ordered water network connecting the FMN cofactor to the NrdF metal site, 

facilitating transport of O2
-. These findings indicate that the movement of Glu161 can be 

linked to the metal type present in the metal ion site of NrdF, showing flexibility of the 

Glu161 conformation. The flexibility in key coordinating residues of the NrdF di-metal site 

suggests that different active site geometries can serve as starting points for 

metallocofactor activation, where Glu161 seems to specifically distinguish between the 

different Fe -or Mn containing structures. Similar NrdI binding to NrdF in the B. cereus 

and E. coli NrdI-Fe2-NrdF and NrdI-MnII
2-NrdF complexes, respectively, suggests the 

same general binding interface in all class Ib RNRs, independent of metal ion type bound 

in NrdF. 

Assembly of the class Ib holoenzyme 
In Paper II, we further report that NrdI-NrdF binding likely affects the formation of 

the NrdF-NrdE holoenzyme. The B. cereus NrdI-NrdF complex supports similar binding 

between these two proteins in all class Ib RNRs. Based on a structural alignment of the 

latter structure with the E. coli class Ia 2 2 holoenzyme structure (78) (see Figure 6A), we 

suggest that binding of NrdI to NrdF introduces steric clashes disturbing 2 2 holoenzyme 

formation. Since studies also support an active 2 2 holoenzyme stoichiometry for the 

class Ib RNR assembly, the results from Paper II indicate that activation of the MnIII
2-Y• 

cofactor must occur in an initial stage, prior to NrdF-NrdE interaction in the active R2-R1 

complex. Consequently, NrdI would dissociate prior to NrdF binding to NrdE, not 

interfering with the binding of these subunits. This requirement could possibly explain the 

inhibitory effect of NrdI present during activity assays performed with Fe-NrdF and NrdE 

from E. coli, in which a tight association between NrdI and NrdF has been reported (18). 

This association has been shown to be weak in Bacillus species, and a similar inhibitory 

effect of NrdI has not been observed. Hence, the weaker NrdI-NrdF binding in Bacillus 

likely makes NrdF more accessible for NrdE binding. Consequently, these studies also 

indicate differences in binding strength and the mode of interaction among different 

species. Moreover, the presence of NrdI does not influence the binding of NrdH-redoxin to 

NrdE (87,95,98). Further studies are required in the investigation of the class Ib RNR 
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interactions. The conserved binding interface between NrdIs and NrdFs, as well as NrdFs 

and NrdEs, could be of great importance related to the development of antimicrobial drugs 

and class Ib RNR inhibition. 
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B. cereus BC3987 – a small thioredoxin 
NrdH-redoxins, as well as the B. cereus BC3987 redoxin, lack the acidic residue 

similar to Asp26 in E. coli and A. aceti Trx, believed to participate in deprotonation of the 

C-terminal cysteine. A phylogenetic analysis performed in Paper III revealed the presence 

of several conserved residues preceding the C-X-X-C active site motif in Trx-like proteins. 

These often include highly conserved Asp, Thr and Ser residues, shown to affect the 

catalytic activity, or proposed to do so. The Cp9, NrdH and BC3987 redoxins all contain a 

conserved threonine residue, Thr8 (BC3987 numbering), four amino acid residues 

preceding the active site motif. In Paper III, we have investigated how hydrogen bonding 

by Thr8 to the deprotonated thiol affects the C-terminal cysteine pKa value, making the 

second nucleophilic attack on the substrate possible by these Trx-like proteins. This has 

been performed through a comparison of the wild type BC3987 with a Thr8Ala mutant 

protein. 

Cysteine pKa values can be adjusted through hydrogen 
bonding 

The BC3987 wild type and Thr8Ala mutant structures were obtained at high 

resolution, revealing the typical / /  Trx fold, as also seen for the E. coli (122), C.

ammoniagenes (163), and M. tuberculosis (157) NrdH structures. The C-P-P-C active site 

motif differs from what is typically observed in Trxs and Grxs. As seen from the crystal 

structures of BC3987, a Thr53 residue is also found in the proximity of the active site 

motif, possibly acting as a hydrogen bond donor. It is clear from the structure that the Gln9 

amide proton is within hydrogen bonding distance to the Cys15 S -atom. In contrast, the 

Thr8 residue in the vicinity of the active site motif of the wild type structure shows a 

different rotamer (Figure 14A), as compared to the previously reported structures of NrdH-

redoxins from E. coli and C. ammoniagenes. In BC3987, the hydroxyl group of Thr8 is 

pointing away from the buried Cys15 S -atom, stabilized by a nearby water molecule. In 

the M. tuberculosis NrdH structure, Thr8 is present in two alternative conformations, 

corresponding to the conformations present in both E. coli and C. ammoniagenes NrdH 

(40% occupancy), as well as B. cereus BC3987 (60% occupancy). In order to investigate 

whether this Thr8 residue, as well as the Thr53 hydroxyl group, could contribute in 
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lowering of the buried cysteine pKa value through hydrogen bonding, QM/MM modeling 

including the whole protein was performed. Two models of the reduced active site were 

obtained; Model I, where Thr8 has the same rotamer as seen in the BC3987 crystal 

structure, pointing away from the buried Cys15 S -atom; and Model II, where the 

conformation of Thr8 resembles the rotamers seen in the NrdH-redoxin structures from E.

coli and C. ammoniagenes, pointing towards the buried Cys15 S -atom (Figure 14B). 

 

 

Figure 14. The BC3987 active site environment. (A) Crystal structure of the oxidized active site 
environment, displaying the C-X-X-C disulfide bridge, Thr8 and Thr53 side chains, and the Gln9 
amide. (B) The reduced active site environment from QM/MM Model II, where the Thr8 side chain 
has been rotated to resemble the rotamer observed in E. coli and C. ammoniagenes NrdH-redoxins. 
The Gln9 amide proton and Thr8 hydroxyl group appears to form hydrogen bonds to the C-
terminal Cys15 side chain, while the N-terminal Cys12 side chain hydrogen bonds to the Cys15 
amide proton. 

 

Both models suggest that the N-terminal Cys12 side chain is hydrogen bonded to the 

Cys15 amide proton, likely explaining the lowered pKa value of this thiol, making it 

suitable to perform the initial nucleophilic attack on the substrate disulfide bond. From 

both models, it is also clear that the buried Cys15 thiolate can make a hydrogen bond to the 
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Gln9 amide proton. While the predicted contribution from Thr53 is small in both models, 

Model II reveals an additional hydrogen bond to the buried cysteine thiolate from Thr8. 

The calculated pKa values from Model II for Cys12 and Cys15 are 7.1 and 6.4, 

respectively, whereas the Cys15 pKa value calculated from Model I is higher (8.0). These 

results are compatible with the experimental results from Paper III, where the pKa values of 

the active site cysteines were estimated using reduced samples of wild type BC3987 and 

the Thr8Ala mutant, compared with oxidized references. The pH-titration experiments 

indicate that the N-terminal Cys12 pKa value is the same for the wild type and mutant 

proteins, with a pKa value of 7.2. In contrast, the wild type BC3987 appears to have a 

lowered pKa value for the C-terminal Cys15 thiolate of 5.1, indicating that BC3987 has two 

thiolates with titratable pKa values of 7.2 and 5.1, similar to the values calculated from 

Model II (pKa values of 7.1 and 6.4). The Thr8Ala mutant, however, was shown to be 

unstable, leading to protein precipitation at pH values below 5.4, indicating that the Cys15 

thiolate behaves differently as compared to the wild type.  Paper III also reveals that the 

wild type BC3987 Trx is a more efficient insulin disulfide reductant as compared to the 

Thr8Ala mutant. Based on these results, we suggest that the lowered pKa value of the 

buried cysteine can be explained through hydrogen bonding to the Thr8 side chain and the 

Gln9 amide proton. These studies are contrary to what is proposed based on the structural 

investigation of the M. tuberculosis NrdH structure (157), suggesting that the Thr8 OH 

group can only face the disulfide of the active site motif in the oxidized form, due to lack 

of space to accommodate the Cys15 thiol group in the reduced form. Based on our results 

suggesting that the deprotonated thiolate form of Cys15 is stabilized by Thr8 and Gln9, we 

propose a reaction mechanism (see Figure 7 in Paper III) for BC3987. This mechanism is 

likely also with respect to other Trx-like proteins lacking the acidic residue analogous to 

the E. coli Trx Asp26. The B. cereus BC3987 redoxin has also been shown to promote 

high catalytic activity in the B. cereus and B. anthracis Mn-reconstituted class Ib RNR 

(87). 
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FUTURE PERSPECTIVES 
 

In order to explain additional aspects regarding the RNR system, studies of the M.

tuberculosis and B. cereus class Ib RNR is ongoing in our group. B. cereus contains three 

annotated FNRs and one TrxR. While the role of TrxR in transferring electrons from 

NADPH to Trx has been thoroughly studies, the targets of the reducing power provided by 

the FNRs are not fully established. Preliminary results indicate that one of these FNRs can 

act as an electron donor for the class Ib RNR protein NrdI. Other FNRs might function as 

unspecific reductases with other protein partners, such as nitric oxide synthase (NOS). The 

relationship between the different proteins participating in the class Ib RNR system, such 

as FNRs, flavodoxins, NrdF and NrdE needs further investigations in order to map the 

network. Activity assays, as well as extensive thermodynamic characterization using 

isothermal calorimetry (ITC) are useful tools for describing the interactions between these 

accessory proteins, as well as NrdF and NrdE in combinations with allosteric effectors and 

substrates.           

 A broader understanding of the structural basis of the interactions and specificity 

between the above mentioned redox partners is further needed. The crystal structure of the 

NrdI-NrdF complex in Paper II provided interesting knowledge about the association 

between these proteins. However, such knowledge should also be addressed for other 

protein partners in the system, in order to understand how these proteins recognize and 

associate with each other. We are currently working on crystallization trials with several of 

the above mentioned proteins, where crystallization of protein complexes has been 

considered crucial. Co-crystallization of different protein complexes will be supplemented 

with standard biochemical analysis, as well as spectroscopic studies such as UV-vis, 

rRaman and EPR spectroscopy.        

 Although the M. tuberculosis R2F-1 subunit has been biochemically and 

spectroscopically characterized in Paper I, there is no crystal structure of R2F-1 available 

in the PDB database. A crystal structure of R2F-1 would provide useful information about 

this protein, when compared to the M. tuberculosis R2F-2 subunit and other class Ib small 

subunits. It is also of interest to investigate whether the two small subunits of the M.
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tuberculosis class Ib are able to generate active MnIII
2-Y• cofactors. Comparisons of the 

class Ib RNR proteins to the eukaryotic RNR system will be performed, including studies 

involving the p53R2 subunit (66). 
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ABSTRACT: Class Ib ribonucleotide reductases (RNRs) use a dimetal-tyrosyl radical (Y•) cofactor in their NrdF (β2) subunit
to initiate ribonucleotide reduction in the NrdE (α2) subunit. Contrary to the diferric tyrosyl radical (FeIII2-Y•) cofactor, which
can self-assemble from FeII2-NrdF and O2, generation of the MnIII2-Y• cofactor requires the reduced form of a flavoprotein,
NrdIhq, and O2 for its assembly. Here we report the 1.8 Å resolution crystal structure of Bacillus cereus Fe2-NrdF in complex with
NrdI. Compared to the previously solved Escherichia coli NrdI-MnII2-NrdF structure, NrdI and NrdF binds similarly in Bacillus
cereus through conserved core interactions. This protein−protein association seems to be unaffected by metal ion type bound in
the NrdF subunit. The Bacillus cereusMnII2-NrdF and Fe2-NrdF structures, also presented here, show conformational flexibility of
residues surrounding the NrdF metal ion site. The movement of one of the metal-coordinating carboxylates is linked to the metal
type present at the dimetal site and not associated with NrdI-NrdF binding. This carboxylate conformation seems to be vital for
the water network connecting the NrdF dimetal site and the flavin in NrdI. From these observations, we suggest that metal-
dependent variations in carboxylate coordination geometries are important for active Y• cofactor generation in class Ib RNRs.
Additionally, we show that binding of NrdI to NrdF would structurally interfere with the suggested α2β2 (NrdE-NrdF)
holoenzyme formation, suggesting the potential requirement for NrdI dissociation before NrdE-NrdF assembly after NrdI-
activation. The mode of interactions between the proteins involved in the class Ib RNR system is, however, not fully resolved.

Ribonucleotide reductases (RNRs) catalyze the conversion
of ribonucleotides to their corresponding deoxyribonu-

cleotides in all living organisms, providing the essential building
blocks required for DNA replication and repair.1,2 Class I RNRs
consist of two homodimeric subunits: α2 and β2. Nucleotide
reduction is initiated through the reversible one-electron
oxidation of a conserved cysteine residue to a thiyl radical in
the α2 subunits, initiated by a dinuclear metallocofactor and
tyrosyl radical positioned in the β2 subunits.

3 Three subclasses
of the class I enzymes have been characterized based on their
metal ion composition and sequence: Ia, Ib, and Ic.4 The class
Ia RNRs are found in eukaryotes, some viruses, and some
prokaryotes such as Escherichia coli (Ec) (the latter also
containing the class Ib RNR), supplying deoxyribonucleotides
during normal aerobic growth.3,5 Enzyme activity requires a μ-
oxo-bridged diferric tyrosyl radical (FeIII2-Y•) cofactor localized
in the β2 subunit (NrdB/R2).

6 The cofactor can be formed by
self-assembly from apo-NrdB in the presence of FeII and O2,
forming the Y• required for dNDP formation in the α2 subunits

(NrdA/R1).7 The class Ic RNR has so far been well
characterized only in the obligate intracellular pathogen
Chlamydia trochomatis. Subsequent studies have shown that
its β2 subunit utilizes a stable, heterodinuclear MnIVFeIII

cofactor to initiate catalysis.8−11 Class Ib RNRs are the primary
sources of dNTPs for a wide variety of prokaryotes, such as
Mycobacterium tuberculosis (Mt), Corynebacterium ammoniagenes
(Ca), Bacillus anthracis (Ba), Bacillus subtilis (Bs), and Bacillus
cereus (Bc).12 The class Ib enzymes consist of the α2 (NrdE/
R1E) and β2 (NrdF/R2F) subunits,

13 where the active form in
both class Ia and class Ib is believed to comprise an α2β2
stoichiometry.14,15 The metallocofactor required for activity in
class Ib RNRs has for several decades been known to consist of
an FeIII2-Y• cofactor, assembled in vitro similarly to the class Ia
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enzymes.16,17 However, recent studies have shown that the class
Ib NrdF can also utilize an active MnIII2-Y• cofactor for
nucleotide reduction.18−20 The MnIII2-Y• cofactor can only be
generated from the dimanganese(II) site (MnII2) in a self-
assembly process in the presence of O2 and the flavodoxin-like
protein NrdI.18 NrdI is found in all organisms with genomes
coding for the class Ib RNR21 and contains a flavin
mononucleotide cofactor (FMN), demonstrated to be able to
act as a two-electron reductant.22,23 It has been proposed that
NrdI, in its fully reduced hydroquinone form (NrdIhq,
containing FMNH−), reacts with O2 providing the oxidant,
H2O2 or O2•−, required for generation of the active MnIII2-Y•
cofactor.24−26 Studies have shown that the MnIII2-Y• cofactor
can be formed both in vitro and in vivo,20,24 and that the
manganese form of the enzyme has a higher specific activity
compared to the iron form, as in the case of Ba,27 Bc,28 and
Bs,29 all showing a 10-fold difference. It is still not understood
how the in vitro process of cofactor assembly using identical
metal coordinating ligands, but different metals and oxidants,30

is controlled in vivo. Structural studies of Ec NrdF both in the
FeIII2 and MnIII2 forms, as well as of the crystal structure of the
MnII2-NrdF in complex with NrdI, give insight into Y•
generation in NrdF.25 The metal-binding residues are identical
in most class Ia and Ib RNRs, where the dimetal clusters are
coordinated by four carboxylates and two histidines.31 The
coordination environment in structures of Ec MnII2-NrdF and
NrdI-NrdF complexes revealed an unusual structural feature
involving Glu158 (Ec numbering), showing bridging of both
metals in a μ-1,3 fashion.25 This carboxylate conformation
observed in the Ec structures is different from other reported
RNR class I structures, where the corresponding Glu
coordinates to metal site 2 alone. In these structures, Glu
occupies the site of a Mn2 water ligand thought to be part of an
ordered water network facilitating transport of the reactive
oxidant from the NrdI flavin cofactor to the NrdF metal site,
required for the generation of the MnIII2-Y• cofactor.18

Here, we present the first crystal structure of the Bc class Ib
NrdF in complex with the flavoprotein NrdI. In this 1.8 Å
resolution crystal structure, the Bc NrdF is in the Fe2 form, and
the Glu161 (Bc numbering) coordinates to only metal site 2, as
seen for most class Ib NrdF structures. This is in contrast to
what was observed in the Ec MnII2-NrdF and NrdI-MnII2-NrdF
structures, where Glu bridges both metals in a μ-1,3 fashion
opening up for an ordered water network to the FMN site. In
both the Bc NrdI-Fe2-NrdF and Fe2-NrdF structures, this water
network and channel is blocked by the bidentate coordination

of Glu161 only to the Fe2 site. However, in the Bc MnII2-NrdF
crystal structure, also presented here, Glu161 shows variations
in this carboxylate conformation, with one conformation
bridging both metals in a μ-1,3 fashion, revealing the water
network. The carboxylate variations in the different NrdI-NrdF
complexes, as well as NrdF structures, indicate that flexibility in
coordinating amino acids is possible, almost in a gating fashion,
and is likely important for metal cofactor and tyrosyl radical
generation.

■ RESULTS AND DISCUSSION

In this work, we present six crystal structures of the Bc class Ib
RNR small subunit NrdF, including two structures of NrdF in
complex with NrdI (NrdI-NrdF-1 and -2), Fe2-NrdF, MnII2-
NrdF, and two structures of apo-NrdF (apo-NrdF-1 and -2).

Overall Structure of the Bc Fe2-NrdF, Mn2-NrdF, and
NrdI-NrdF Complex. Both the 2.1 Å (NrdI-NrdF-1) and 1.8
Å (NrdI-NrdF-2) resolution crystal structures of Bc NrdI-NrdF
were obtained by co-crystallizing NrdF with an equimolar
amount of NrdI. The asymmetric unit contains one monomer
of NrdI in complex with one monomer of NrdF, in which the
overall architecture strongly resembles the Ec NrdI-NrdF
structure reported earlier by Boal et al.25 The overall structure
of the 2.1 Å resolution Bc NrdI-NrdF protein complex is shown
in Figure 1A and C, while a structural alignment of the Bc and
Ec NrdI-NrdF complexes is shown in Figure 1B and
Supplementary Figure S1. Structural similarity between the Bc
and Ec monomeric NrdI-NrdF complexes has been calculated
to an RMSD value of 1.42 Å, while structural similarity between
the dimeric NrdI-NrdF structures have an RMSD of 1.78 Å.
The RMSDs for the Bc and Ec NrdF and NrdI structures
individually (from the crystal complexes) are 1.23 and 1.05 Å,
respectively. This shows that the NrdF and NrdI bind similarly
to each other in Ec and Bc, but with some small structural
variations (see below). The final model for NrdI-NrdF-1
consists of residues 1−290 out of 322 in NrdF and residues 1−
117 out of 119 in NrdI and are refined to final Rwork/Rfree values
of 17.7%/23.3%. The NrdI-NrdF-2 structure consists of
residues 1−290 in NrdF and 1−118 in NrdI and are refined
to final Rwork/Rfree values of 16.7%/20.9%. Both the NrdI-NrdF
and the different NrdF structures show well-defined electron
density for the modeled residues. The 2.1 and 1.9 Å resolution
crystal structures of Bc Fe2-NrdF and MnII2-NrdF, respectively,
contain two molecules in the asymmetric unit, with the final
models consisting of residues 1−287 out of 322 in monomers A

Figure 1. Structure of the NrdI-NrdF complex. (A) The overall structure of the Bc NrdI-Fe2-NrdF complex and (B) alignment of the Bc and Ec
(PDB id: 3N39) NrdI-Fe2-NrdF and NrdI-MnII2-NrdF complexes, respectively. (C) The dimeric Bc NrdI-Fe2-NrdF complex, represented by the
monomeric Bc NrdI-Fe2-NrdF (asymmetric unit) shown with its symmetry equivalent molecule. The FMN cofactor in NrdI and the residues in the
active site of NrdF are represented as sticks and colored by atom type in Bc and colored gray in Ec. Fe ions are shown as orange spheres (Bc), and
MnII ions are shown as purple spheres (Ec).
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and B for both structures. The structures are refined to final
Rwork/Rfree values of 18.5%/23.5% and 21.0%/26.0%, respec-
tively. The two Bc apo-NrdF structures belong to different
crystal forms. Apo-NrdF-2 (2.0 Å) belongs to space group P21
as the Bc Fe/Mn-NrdF structures and contains residues 1−
287/1−288 for the two monomers with final Rwork/Rfree values
of 20.8%/26.0%. Apo-NrdF-1 (2.2 Å) belongs to space group
C2, also consisting of two monomers, and was refined to final
Rwork/Rfree values of 17.6%/24.3%. The overall structure of Bc
NrdF in the different NrdI-NrdF and NrdF structures
presented here are very similar (Supplementary Figure S2A).
However, residues 26-31 in NrdI-NrdF-1 and monomer B of
apo-NrdF-1 have a more helical conformation compared to the
other structures (Supplementary Figure S2C and D). Due to a
different crystal packing, 13 more residues of the flexible C-
terminal end were built into the electron density of monomer A
of apo-NrdF-1 (Supplementary Figure S2B), with the two
resulting monomers containing residues 1−300/1−287,
respectively. These additionally built in residues point into
the area where interaction with NrdE is suggested,14 indicating
that the flexible C-terminal could become ordered through
interaction with NrdE.
Structure and Coordination Environment of the

Crystal Complex Metal Cluster Site. The overall structure
of the metal cluster coordination site in the Bc NrdI-NrdF
structure strongly resembles other class Ib NrdF struc-
tures,13,19,30,32,33 except for the Ec MnII2-NrdFs

25 and the Bc

MnII2-NrdF presented in this paper. Both Bc NrdI-NrdF
complex structures have been obtained with iron in the NrdF
dimetal sites (Figure 2). For the NrdI-Fe2-NrdF-1 structure
modeled with 90% iron occupancy, the Fe sites are four- and
five-coordinated, respectively, with an Fe−Fe distance of 3.9 Å,
Glu195 in a μ-1,3 coordination, and Glu161 bidentate to Fe2
(Figure 2A, C, and E). The coordination and the long Fe−Fe
distance is consistent with previously reported ferrous (FeII)
iron NrdF/B structures.13,19,30,32,33 The Fe omit map shown in
Figure 2C and D and the anomalous difference map at 1.0 Å
wavelength confirm the presence of metals in the di-Fe sites
(Figure 2E and F). In the 1.8 Å NrdI-Fe2-NrdF-2 structure,
similar coordination and Fe−Fe distance is observed; however,
additional alternative conformations are modeled for Glu195,
Glu93, and Glu161 (Figure 2B, D, and F). This could partly be
due to the lower iron occupancy in the di-Fe sites (50%). The
X-ray doses absorbed by the different crystals in this study
(Table 1) are within the recommended Henderson limit of 20
MGy to avoid considerable radiation damage of protein
crystals.34 Nevertheless, X-ray induced radiation damage of
metal sites occurs on a much shorter time scale.35 Studies on
RNR have shown a fast reduction of the oxidized metal ion
states;36,37 however, the structures presented here are
considered to already be in the reduced states, and therefore
X-ray induced changes are limited.

Bc Fe2-NrdF Coordination Environment. The crystal
structure of the dimeric Bc Fe2-NrdF has been modeled with

Figure 2. Metal ion sites in the two Bc NrdI-Fe2-NrdF complex structures. (A, C, and E) The metal site in NrdI-Fe2-NrdF-1 and (B, D, and F) the
metal site in NrdI-Fe2-NrdF-2. The Fe ions are shown as orange spheres, and the coordinating amino acids and Tyr100 are represented as sticks and
colored by atom type. In panels C and D, the 2Fo−Fc electron density map (gray) is contoured at 1σ, while the Fo−Fc map is shown as green mesh
(3σ) and red mesh (−3σ). The omit map surrounding the Fe ions is contoured at 6σ (salmon). The Fe ions are modeled with 90% (C) and 50%
(D) occupancy. For panels E and F, anomalous maps are included, contoured at 3.5σ (brown).
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full metal occupancy at the dimetal sites. The higher B-factor of
the Fe1 sites in Fe2-NrdF could indicate lower occupancy. The
di-Fe sites in the ferrous soaked NrdF structure have higher
coordination compared to the NrdI-Fe2-NrdF structures
(Figures 2, 3, and 4A). For monomer A, contrary to NrdI-
Fe2-NrdF-1, Glu195 has moved to a μ-(η1-η2) coordination
opening up for a water coordinating to Fe1 instead of a water
molecule hydrogen-bound to Tyr100, the residue responsible
for tyrosyl radical (Y•) generation in Bc. This results in the Fe
sites becoming five- and six-coordinated, respectively, differing
from what has been observed by circular dichroism and
magnetic circular dichroism on RNR protein solutions.2,38 The
μ-(η1-η2) coordination of Glu195 (Bc numbering) in Bc Fe2-
NrdF is also observed in Ec FeII2-NrdB (without the water
coordinating to Fe1) and in EcMnII2-NrdF structures, while the
FeII2-NrdF structures from Ca, Salmonella typhimurium (St),

Mt, and the MnII2-NrdF structures from Ca, Ec, and Bs all show
the μ-1,3 coordination (Figure 4B).13,25,30,32,33 In monomer B
of Bc Fe2-NrdF, Glu161 coordinates to Fe2 in a monodentate
way instead of bidentate, resulting in both di-Fe sites being five
coordinated (Figure 3A−D).

Bc MnII
2-NrdF Coordination Environment and Glu161

Movement. The Bc MnII2-NrdF structure has been modeled
with full occupancy at the dimetal sites (except for Mn2 in
monomer A with 90% occupancy) (Figure 3E−H) and shows
higher coordination for the dimetal site than in the Bc Fe2-
NrdF with both Mn-sites being six-coordinated similar to what
is observed in Ec. In the Bc MnII2-NrdF structure, Glu161
shows great flexibility. Two and three alternative conformations
have been modeled at the Glu161 site in monomers A and B,
respectively. In monomer A, one coordinates to metal site 2
alone, in a bidentate fashion (33%) as seen in the Bc Fe2-NrdF

Table 1. Data Collection and Refinement Statistics

Bc MnII2-NrdF Bc Fe2-NrdF Bc NrdI-NrdF-1 Bc NrdI-NrdF-2

Crystal Data
space group P21 P21 C2221 C2221
a, b, c (Å) 61.9/49.2/98.5 62.0/49.3/98.5 59.3/125.0/142.6 59.5/124.7/141.3
α, β, γ (deg) 90.0/107.2/90.0 90.0/107.2/90.0 90.0/90.0/90.0 90.0/90.0/90.0
crystal size (μm3) 40 × 100 × 200 40 × 100 × 200 75 × 75 × 200 100 × 100 × 200

Data Collection
X-ray source ESRF-ID29 ESRF-ID29 ESRF-ID29 SLS-PXII-X10SA
wavelength (Å) 0.9724 0.9724 0.9763 0.9999
flux (photons/s) 1660 × 109 1600 × 109 75 × 109 225 × 109

beam size (μm2) 30 × 50 30 × 50 30 × 50 100 × 100
total exposure (s) 19 30 150 120
absorbed X-ray dose (MGy) 7.4 11.3 2.4 1.0
resolution range (Å) 47.0−1.9/2.0−1.9 47.0−2.1/2.2−2.1 62.5−2.1/2.2−2.1 53.7−1.8/1.9−1.8
temperature (K) 100 100 100 100
completeness (%)a 90.4/92.9 88.7/84.9 98.5/98.9 98.2/99.3
redundancya 2.1/2.1 2.8/2.7 3.9/3.9 4.1/4.1
I/σ(I)a 11.3/2.1 5.7/2.7 8.6/2.8 11.3/2.9
RSym

a,b 10.7/37.9 10.1/30.1 9.5/43.7 5.9/45.0
Refinement Statistics

Rwork (%)
c 18.4 21.0 17.7 16.7

Rfree (%)
d 23.4 26.0 23.3 20.9

Model Content
amino acids 574 574 407 408
Fe ions (occupancy) - 4 (100%) 2 (90%) 2 (50%)
Mn ions (occupancy) 4(100,90,100,100%) - - -
Cl− ions - - 1 5
water molecules 166 61 117 196
FMN cofactors - - 1 1

molecules per asu 2 2 1 + 1 1 + 1
solvent content (%) 40.1 42.7 54.2 50.8
unmodelled residues 288−322 (both

monomers)
288−322 (both
monomers)

291−322 (NrdF), 117−119
(NrdI)

291−322 (NrdF), 118−119
(NrdI)

volume not occupied by model (%) 28.8 30.7 45.2 43.0
Model Analysis

mean overall isotropic B-factor (Å2) 19.8 19.5 32.9 32.1
Ramachandran plot: ratio in most favored/
other allowed regions/generously allowed
regions (%)

96.9/3.1/- 96.9/3.1/- 92.7/6.5/0.8 95.9/3.5/0.5

estimated overall coordinate error based on
Rwork/maximum likelihood (Å)

0.19/0.11 0.33/0.15 0.18/0.12 0.11/0.084

RMSD bonds (Å)/angles (deg) 0.019/1.90 0.017/1.78 0.019/2.04 0.020/1.90
PDB code 4BMU 4BMT 4BMP 4BMO
aThe value before the slash is for all data, and the value after the slash is for the data in the highest resolution shell. bRSym = Σ|I − ⟨I⟩|/ΣI cRwork = Σ
(|Fo| − |Fc|)/Σ|Fo| dRfree is the Rwork calculated on the 5% reflections excluded for refinement.
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structures, while the other major conformations (67%) bridge
both metals similar to the μ-1,3 coordination observed in the Ec
NrdI-MnII2-NrdF and MnII2-NrdF structures (Figure 4B). This
opens up for a water coordinating to the Mn2 site and an
extended water network (as discussed below). The μ-1,3
coordination of this Glu residue was not reported for the Bs
MnII2-NrdF structure (PDB id: 4DR0)33 and thereby not
supporting a direct Fe to Mn induced movement of Glu158 (Ec
numbering) as observed in Ec and now in Bc. However,
although Glu164 (Bs numbering) is reported to coordinate only
to Mn2 in a bidentate fashion, some negative density can be
seen in the difference map at the modeled Glu164, and some
positive density where an alternative conformation for Glu164

bridging both metals in a μ-1,3 fashion would be positioned,
supporting flexibility at the Glu161 (Bc numbering) site. In the
Ec structures, the main-chain between Phe162 and Glu158 (Ec
numbering) has an altered conformation between the Fe and
Mn structures, while in the Bc structures, the main-chain
between Phe165 and Glu161 (Bc numbering) is more similar,
resulting in an incomplete μ-1,3 coordination of Glu161 in Bc
MnII2-NrdF (Supplementary Figure S3). The observed differ-
ence could be due to the fact that the Ec structures are co-
crystallized with MnII, while the Bc crystals have been soaked
with MnII, thereby allowing less structural adjustments in Bc.
This further indicates that the Glu161 movement is linked to
the Mn substitution. The movement of Glu161 in Bc from a

Figure 3.Metal ion sites in Bc Fe2-NrdF and MnII2-NrdF. (A and C) Monomer A in in Bc Fe2-NrdF, (B and D) monomer B in Bc Fe2-NrdF. (E and
G) Monomer A in Bc MnII2-NrdF and (F and H) monomer B in Bc MnII2-NrdF. The Fe ions are shown as orange spheres, Mn ions as purple
spheres, and the coordinating amino acids and Tyr100 are represented as sticks and colored by atom type. The 2Fo − Fc electron density map (gray)
is contoured at 1σ and the Fo − Fc map is shown as green mesh (3σ) and red mesh (−3σ), whereas the omit map (salmon) surrounding the Fe or
Mn ions is contoured at 6σ (C, D, G and H). Glu161 coordinates to Fe2 in a bidentate fashion in monomer A and in a monodentate fashion in
monomer B of Fe2-NrdF (A−D). In Mn2-NrdF, two and three different conformations are observed for Glu161 in monomers A and B, respectively,
varying between a bidentate mode coordinating to Mn2 alone and a conformation bridging both metals (E−H).
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bidentate coordination of metal site 2 to a μ-1,3 coordination is
further associated with a rotation of Phe165 (Figure 4A and
Supplementary Figure S3), which is also observed in Ec
between the FeII2-NrdF and MnII2-NrdF/NrdI-MnII2-NrdF
structures.25 Moreover, if the flexibility of Glu161 in the Bc
MnII2-NrdF structures is influenced by a minor iron
contamination, as previously reported in work by Tomter et
al.,38 an inhomogeneous metalation in metal site 2 would even
stronger support a metal-type-dependent movement of Glu161.
The redox state and the pH of the metal ion cluster is also
known to influence the conformation of the coordinating
residues.6,39 The metal cluster environments in the two Bc apo-
NrdF structures are shown in Supplementary Figures S4 and
S5. The trends for Glu195 and Glu93 coordination seem more
unclear, while Glu161 coordination appears to give important
insight into the distinction between the Fe- and Mn-NrdF/
NrdI-NrdF structures (Figure 4A and B). In both Bc NrdI-Fe2-
NrdF complex crystals, Glu161 coordinates bidentate to iron
site 2 alone, opposite to what is seen in the Ec NrdI-MnII2-NrdF
structure, where the corresponding carboxylate ligand bridges
both metals in a μ-1,3 fashion (Figure 4B). It has been
proposed that the latter conformation allows greater access of a
manganese-bound water ligand, hydrogen-bonded to an
ordered water network facilitating oxidant transport from the
NrdI FMN cofactor.25 The μ-1,3 coordination of Glu161 is

observed in both the EcMnII2-NrdF structure and the BcMnII2-
NrdF structure (major conformation in monomer A), the latter
presented here. The Bc MnII2-NrdF and Bc Fe2-NrdF structures
presented here are therefore important toward a more
generalized understanding of the metal-ion-dependent move-
ment of this Glu residue with respect to NrdF activation. These
observations support greater flexibility of the residues
surrounding the class Ib NrdF metal sites and that variations
in the carboxylate conformations seem to be linked to the
metal-type present at the dimetal site, rather than induced by
NrdI binding to NrdF, as also supported by NrdI-NrdF binding
studies in Ba apo, Fe-, and Mn-NrdF.27

NrdI-NrdF Interface Solvent Channel. In the Ec and Bc
NrdI-NrdF complexes, the proposed solvent-accessible channel
extends from the vicinity of the metal site 2 in NrdF to the
FMN cofactor of NrdI (Figure 5). This channel is structurally
conserved in Bc and Ec NrdF with identical side-chain
geometries of the lining residues Ser157/154, Tyr166/163,
Ser162/159, Asn267/264, Lys263/260 and main-chain CO
for Glu195/192, Ser196/Ala193 (Bc/Ec numbering). In the
interface between NrdF and NrdI, the water network is slightly
altered, due to Tyr 197 in Ec replacing Val200 in Bc; however,
FMN is also slightly shifted. Unlike observed in the Ec MnII2-
NrdF structures with Glu158 in a μ-1,3 coordination, the
solvent channel modeled in the Bc NrdI-NrdF complex is

Figure 4. Overlay of metal sites in different NrdF crystal structures. (A) Metal sites in the different Bc NrdF crystal structures. (B) Metal sites in class
Ib β2 structures from different organisms. The Mn ions and Fe ions are colored as purple and orange spheres, respectively, and the coordinating
amino acids, as well as Tyr100 and Phe165, are represented as sticks and colored by atom type. Structures compared in panel B (A chains) are; Bc
NrdI-Fe2-NrdF-1, Ec NrdI-MnII2-NrdF complex (PDB id: 3N39),25 Bc MnII2-NrdF, Ec MnII2-NrdF (PDB id: 3N37),25 Ec FeII2-NrdF (PDB id:
3N38),25 Bs MnII2-NrdF (PDB id: 4DR0),33 Ca MnII2-NrdF (PDB id: 1KGP),30 Ca FeII2-NrdF (PDB id: 1KGO),30 Mt FeII2-NrdF (PDB id:
1UZR),32 and St FeII2-NrdF (PDB id: 1R2F).13
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prevented from accessing the Fe2-NrdF site largely due to the
bidentate coordination mode of Glu161 to Fe2, blocking the
channel (Figure 5). Only in the case of the Ec NrdI-MnII2-NrdF
structure does Glu158 allow full access of the solvent channel
directly to the vicinity of the MnII2 site. A similar water network
is also seen around the Mn2 site in the BcMnII2-NrdF structure
(Figure 3E and G). The NrdI-NrdF channel modeled for the Bc
complex, and compared to the Ec complex, is shown in Figure
5A and B, respectively. Different Glu161 conformations
observed for the Ec NrdI-MnII2-NrdF and Bc NrdI-Fe2-NrdF
complex structures indicate that variations in the NrdF active

site geometries might be present during active cofactor
formation. The different geometries are likely not affected by
NrdI binding to NrdF in protein complex formation. Highly
similar NrdI-NrdF interfaces in both complexes are observed
(see below), regardless of metal ion bound in the NrdF active
site.

NrdF Interface with NrdI. The overall structure compar-
ison of Ec and Bc NrdI-NrdF shows that the overall interaction
between NrdF and NrdI is similar in the two organisms;
however, the binding of NrdI to NrdF in Bc is slightly rotated
compared to NrdI-NrdF binding in Ec (Supplementary Figure
S1). The amino acids lining the Bc and Ec NrdI-NrdF interface
show a high level of conservation. This is a general attribute for
all class Ib RNRs, supported by the high sequence similarity33

at the interface region, supporting invariable NrdI binding to
the NrdF surface for class Ib RNRs. The charged and polar
residues lining the NrdI-NrdF interface in both Ec and Bc
complex structures create a hydrophilic environment consistent
with channeling of a hydrophilic oxidant: H2O2 or O2•− for
generation of the active MnIII2-Y• cofactor in class Ib RNRs.
One variation between the two complex structures of NrdI-
NrdF in Bc and Ec is the distance between the NrdI flavin plane
to the NrdF interface, which is 0.4 Å closer (based on whole
structure alignment as measured from N5 of FMN), for the Bc
structure, creating a narrower interface (Figure 1B). A
comparison of the Bc and Ec NrdI-NrdF structures, showing
an ordered and identical hydrogen bonding network between
conserved residues lining the core interface in both structures,
is shown in Figure 6A and B. This core interface is likely
essential for recognition between NrdFs and NrdIs in class Ib
RNRs. Frequently, proteins involved solely in electron transfer
do not interact in a well-defined orientation,40 and therefore,
the observation of a conserved binding-core between NrdI and
NrdF supports that the complex is important for more than
pure electron transfer, as it also generates a channel for the
transfer of H2O2 or O2•−. Outside this core region, however,
residues in the protein interface are not conserved, probably
leading to a small rotation of NrdI relative to NrdF as observed
between the Bc and Ec NrdI-NrdF structures (Supplementary
Figure S1). While the core region governs recognition, amino
acid differences outside the core must be important for the
variations observed in NrdI-NrdF binding in Ec and the Bacillus
species, where the association is much stronger in Ec than in
Bacillus.18,22,27,28 The conserved core interface region on the
NrdF surface, as observed in the Bc and Ec NrdI-NrdF complex
structures, is not present in the class Ia R2/NrdB, as shown in
the structural alignment of the Bc NrdF and Ec NrdB
structures41 (Supplementary Figure S6). The structural differ-
ences in NrdBs, compared to NrdFs, do not support binding to
NrdI, as observed in the class Ib NrdI-NrdF complex
structures.25 Moreover, the conserved class Ib NrdF interface
region is also absent in eukaryotic class Ia R2 structures, as
observed in mouse R239 and human p53R2.42

Spectroscopic Similarity between NrdI and NrdI-NrdF.
Single-crystal light absorption measurements performed on
crystals of Bc NrdI and Bc NrdI-NrdF show similar flavin
spectra, indicating little or no influence on the NrdI FMN
cofactor upon NrdF binding. Figure 6C shows the spectra
obtained from the two crystals (Bc NrdI and Bc NrdI-NrdF)
both containing NrdI in its oxidized (NrdIox) form. The light
absorption spectrum of a crystal depends on crystal orientation
relative to the incident beam, causing small variations in the
shapes of different peaks.43 High structural similarity is

Figure 5. NrdI-NrdF solvent channel. (A) The Bc NrdI-Fe2-NrdF
complex structures showing the hydrophilic channel connecting the
active site in Fe2-NrdF with the FMN cofactor in NrdI, calculated
using a 1.4 Å probe radius, and (B) structural alignment of the Bc and
Ec (PDB id: 3N39) NrdI-Fe2-NrdF and NrdI-MnII2-NrdF complexes,
respectively, showing a closer view of the solvent channel (Bc; blue
mesh, Ec; cyan mesh) connecting the NrdF and NrdI cofactors. Bc
NrdI is shown as a yellow ribbon diagram and Bc Fe2-NrdF as a green
ribbon diagram, whereas the FMN cofactor in Bc NrdI and the
residues in the active site of Bc Fe2-NrdF are represented as sticks and
colored by atom type. The Ec structure is shown in gray. Fe ions are
shown as orange spheres (Bc), while MnII ions are shown as purple
spheres (Ec). The Glu161 conformation in the Bc structure occupies
the terminal part of the solvent channel, as modeled for the Ec
structure, preventing the solvent channel in Bc from accessing the Fe2-
NrdF site.
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observed between NrdI from the Bc NrdI-NrdF crystal complex
and Bc NrdI (PDB id: 2X2O)23 (RMSD calculated to 0.37 Å)
and between Fe2-NrdF and NrdF from the Bc NrdI-NrdF
crystal complex (RMSD calculated to 0.54 Å).
Investigation of the Possible NrdI-NrdF-NrdE Inter-

face. Given that NrdI is required for MnIII2-Y• cofactor
generation,24 it is important to gain information about how
NrdI-NrdF assembly effects NrdF-NrdE holoenzyme forma-
tion. A model of the α2β2 holocomplex structure was first
proposed by Uhlin and Eklund in 199414 for the class Ia RNR.
Complementarity was shown between the α2 (NrdA) dimer
and the upper part of the heart-shaped structure of the β2
(NrdB) dimer, and a model was constructed with the 2-fold
axes of the dimers superimposed. The proposed holoenzyme is
believed to form a compact complex, where the binding surface
of the NrdB dimer contains a region of high conservation.14 A
high extent of amino acid conservation in the corresponding
region has also been addressed for various class Ib NrdF
structures, through a sequence alignment study performed by
Boal et al.33 Also, high amino acid sequence conservation was
shown for the NrdI-NrdF interface. The Bc NrdI-NrdF
complex interface supports NrdI binding in the same general
location on all NrdFs, as suggested previously.33 In this study,
we report that binding of NrdI to NrdF can disturb the α2β2

holocomplex formation in class Ib RNRs, contrary to what was
previously suggested by Zhang et al.29 The NrdI-NrdF complex
assembly in Bc introduces steric clashes in the binding site
between α2 and β2 in the proposed holocomplex assembly,
possibly preventing the suggested holoenzyme complex
formation. A structural alignment of the Bc NrdI-NrdF
structure with the Ec α2β2 holoenzyme structure, generated
using the original class Ia α2β2 holocomplex coordinates, is
shown in Figure 7. The two aligned dimeric class Ia and Ib R2
structures share a structural homology with an RMSD of 2.6 Å.
These findings could possibly indicate the role of a different
holocomplex interaction for the class Ib RNRs, which, contrary
to the class Ia RNRs, require an additional binding partner,
NrdI, for MnIII2-Y• cofactor assembly. However, recent studies
of Ec RNR support the active prokaryotic form of the enzyme
with an α2β2 stoichiometry.15,44 Conversely, another likely
possibility supporting the α2β2 holoenzyme structure by Uhlin
and Eklund is that the activation of the MnIII2-Y• cofactor
occurs in an initial stage prior to R1-R2 interaction in the α2β2
complex. This would result in NrdI dissociation prior to α2β2
holoenzyme formation, thereby preventing structural clashes
between the respective binding partners. The structural
requirement of NrdI dissociation prior to NrdE binding to
NrdF could be supported by, as well as further explain, previous

Figure 6. NrdI-NrdF protein−protein interface and single-crystal light absorption spectra. Comparison of the conserved hydrogen bonding network
in the NrdI-NrdF core interface in the (A) Bc and (B) Ec (PDB id: 3N39) NrdI-NrdF crystal structures. NrdF residues are colored green, while NrdI
residues are colored yellow. (C) Single-crystal light absorption spectra of Bc NrdI (dashed) and NrdI-NrdF (solid). Typical features of the oxidized
state of the flavin cofactor are observed for the NrdIox crystal and similar features are in the NrdI-NrdF crystal, regardless of the interaction with
NrdF. A weaker signal is observed for the NrdI spectrum, largely due to crystal thickness.

Figure 7. Ec class Ia α2β2 holoenzyme complex. The holoenzyme complex, shown from two different views (A and B), was generated by alignment of
the R2 dimer (β2) with the R1 dimer (α2),

14 overlaid with the class Ib Bc NrdI-Fe2-NrdF complex. NrdI protrudes into the α2β2 interface, interfering
with binding to the R1 dimer.
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activity and binding studies in Ec, Bc, and Ba. In Ec, a tight
association between NrdI and NrdF has been reported,18 and if
NrdI needs to dissociate before NrdE can bind, this could
explain the observed lower RNR specific activity of Fe-NrdF-
NrdE in the presence of NrdI, resulting in an inhibitory effect,
compared to a 4-fold higher specific activity in the absence of
NrdI.18 In contrast, in the case of Bacillus species, where the
interaction between NrdF and NrdI has been shown to be
weak,22,27 NrdI does not inhibit FeIII2-Y• cofactor generation
(in Ba and Bc)28 or RNR enzymatic activity (in Ba27 and Bc28),
indicating that the weaker NrdI-NrdF association in Ba and Bc
makes NrdF more accessible for NrdE binding. Additionally,
the removal of NrdI after activation of Mn-NrdF by NrdI does
not increase specific activity in Ba and Bc or influence the
binding of NrdH-thioredoxin to NrdE.27 However, this type of
investigation has not been reported for the Ec Mn-containing
RNR, which might result in higher in vitro specific activity
proceeding from NrdI removal, as a result of NrdI’s tight
association with NrdF. The α2β2 holoenzyme model by Uhlin
and Eklund could then be valid also for class Ib. Whether the
differences between Ec and Bacillus species could be related to
the presence of the additional class Ia RNR in Ec should be
further investigated. The conserved NrdI binding to NrdF
could be of great importance in the development of
antimicrobial drugs, depending on the organisms degree of
NrdI-NrdF affinity. Moreover, an alteration in the NrdF
interface responsible for binding of NrdI as well as NrdE could
strongly affect active class Ib RNR activation and holoenzyme
assembly. An overlay of Bc NrdI-NrdF with the St R1-R2
crystallographic complex from Uppsten et al.45 also results in
some clashes (Supplementary Figure S7A). In contrast, an
overlay of the Bc NrdI-NrdF structure and the inactive α4β4 Ec
structure46 gives no structural clashes between NrdI and NrdB
(Supplementary Figure S7B). Moreover, additional studies for
investigation of class Ib RNR interactions and active
holoenzyme formation are still required.
Conclusion. The Bc NrdI-NrdF complex structure

presented in this paper strongly resembles the previously
solved NrdI-NrdF complex from Ec,25 showing only small
variations in NrdI binding to NrdF in class Ib RNRs. The
flexibility in key coordinating residues of the dimetal sites in Bc
NrdI-NrdF and NrdF structures supports the suggestion that
different active site geometries can serve as starting points for
metallocofactor activation. However, Glu161 (Bc numbering)
seems to be a key residue in distinguishing between the Fe and
Mn activated structures. The higher tendency of Glu161 for a
μ-1,3 coordination in Mn structures, as now seen in both Ec
and Bc, in contrast to the bidentate coordination seen in Fe
structures, opens up for a water network through the proposed
and highly conserved hydrophilic channel leading to the FMN
site in NrdI. The channel and water network is blocked in the
Bc NrdI-Fe2-NrdF and Fe2-NrdF structures through the
bidentate coordination of Glu161 to metal site 2. The high
degree of amino acid sequence conservation of core residues in
the NrdI-NrdF interface supports similar NrdI-NrdF recog-
nition in all class Ib RNRs, as indicated by the same general
binding location in the crystal structures of NrdI-NrdF
complexes in Bc, Ec,25 and the modeled Bs NrdI-NrdF
complex.33 Since binding of NrdI to NrdF also occurs for
Fe2-NrdF, not requiring NrdI for activation, the presence of Mn
is not a requirement for NrdI binding. This is supported by the
Bc NrdI-NrdF complex structure, crystallized with an Fe2 site
contrary to the Ec NrdI-MnII2-NrdF crystal structure, which is

the MnII2-containing active complex. Also, NrdI-NrdF binding
seems to be conserved regardless of the structure of the metal
coordination site, where different carboxylate conformations are
observed for different crystal structures. Steric clashes
introduced by NrdI in the NrdI-NrdF-NrdE formation
presented in this study could indicate a requirement for NrdI
to dissociate before NrdE can bind to NrdF; however, further
investigation of the mechanism of class Ib active holoenzyme
formation is required.

■ METHODS
Cloning, Expression, and Purification of Bc NrdF and NrdI.

Bc ATCC 14579 NrdF (BC1355) and NrdI (BC1353) were expressed
and purified as described previously.23,38 In brief, genes were cloned
into the pET-22b plasmid (Novagen) prior to transformation into
competent Ec BL21 (DE3) Gold cells (Stratagene). Cells containing
the pET-22b-NrdF or -NrdI were grown in Terrific Broth medium
containing 100 μg/mL ampicillin. Protein expression was induced by
adding isopropyl β-D-1-thiogalactopyranoside to a final concentration
of 0.8 mM, and the culture was incubated for 12−16 h at 20 °C with
vigorous shaking before harvesting. The frozen cell paste was lysed
using an X-press,47 dissolved in 100 mM Tris-HCl, pH 7.5, 10 mM
EDTA, and cleared from nucleic acids by streptomycin sulfate (2.5%)
precipitation. Proteins were precipitated with 60% ammonium sulfate
(0.43 mg/mL), dissolved in 50 mM Tris-HCl, pH 7.5, and desalted
using a HiTrap Desalting column (GE Healthcare). Desalted protein
was applied to a HiTrap HP Q column (GE Healthcare), and the
proteins were separated with a 0−0.5 M KCl gradient. As a final
polishing step, the proteins were purified on a Superdex 200 column
(GE Healthcare).

Crystallization. All initial crystallization screening was performed
with an Orxy6 crystallization robot (Douglas Instruments Ltd.).

Crystallization of the Bc NrdI-NrdF Complex. For the NrdI-
NrdF complex, NrdF (monomer) and NrdI (both in 50 mM Tris-HCl,
pH 7.5) were mixed in an equimolar amount. Bright yellow crystals
(20 mg/mL total protein) were obtained using the sitting drop vapor
diffusion method at RT with 10% (w/v) PEG 8000, 0.2 M magnesium
chloride, and 0.1 M Tris, pH 7.0 (JCSG-plus Screen, Molecular
Dimensions Ltd.). Crystals were briefly soaked in cryoprotectant
solution (25% glycerol, 10% (w/v) PEG 8000, 0.2 M magnesium
chloride, and 0.1 M Tris, pH 7.0) and flash frozen in liquid nitrogen
(NrdI-NrdF-1). Yellow crystals (5 mg/mL total protein) were also
obtained using the same method with 2 M sodium chloride and 0.1 M
sodium citrate, pH 6.0 (ProPlex Screen, Molecular Dimensions Ltd.),
soaked in cryoprotectant solution (25% PEG 400, 2 M sodium
chloride, and 0.1 M sodium citrate, pH 6.0) and flash frozen in liquid
nitrogen (NrdI-NrdF-2). The NrdI-NrdF crystals were not soaked in
metal solutions before collecting X-ray data; however, the medium
used for expression of the genes naturally contains traces of iron.

Crystallization of Bc NrdFs. Fe2-NrdF and MnII2-NrdF crystals (8
mg/mL monomer) were obtained with 0.2 M Mg-formate, 20% (w/v)
PEG 3350, and 0.1 M HEPES, pH 7.5 (optimized from the JCSG-plus
Screen, Molecular Dimensions Ltd.) and soaked for 20 min in
cryoprotectant solution containing the mother liquor mixed with 25%
PEG 400 and Fe(NH4)2(SO4)2/sulfuric acid or MnCl2, respectively.
Also, two apo-NrdF structures have been solved from crystals obtained
with 0.04 M H3PO4, 16% PEG 8000, and 20% glycerol (apo-NrdF-1),
and with 0.2 M Mg-formate pH 5.9 and 20% PEG 3350 (apo-NrdF-2)
(JCSG-plus Screen, Molecular Dimensions Ltd.), both soaked in
cryoprotectant solution containing the mother liquor including 30%
glycerol. Finally, all NrdF crystals were flash frozen in liquid nitrogen.

Data Collection and Refinement. Crystallographic data sets
were collected at beamlines ID29 and ID14-1 at the European
Synchrotron Radiation Facility (ESRF), Grenoble, France and at PXII-
X10SA at the Swiss Light Source (SLS) at Paul Scherrer Institut,
Villigen, Switzerland. The crystallographic data for NrdI-NrdF-1, as
well as Fe2-NrdF and MnII2-NrdF, were collected at ID29 (ESRF), the
apo-NrdF-1 and apo-NrdF-2 at ID14-1 (ESRF), and the NrdI-NrdF-2
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at X10SA (SLS). Data sets were processed with MOSFLM48 and
scaled and merged using SCALA or AIMLESS,49,50 and the space
group was confirmed with POINTLESS through the CCP4 software
suite.51 The structures were solved by molecular replacement using
PHASER.52 A homologue model of Bc apo-NrdF modeled with
SWISS-MODEL53,54 from the Ca apo-R2 structure (PDB id: 3DHZ)42

was used as a search model in PHASER to solve the Bc apo-NrdF-1
structure. The Bc apo-NrdF-1 was then used as a search model to solve
the structure of apo-NrdF-2, Fe2-NrdF, and MnII2-NrdF. The NrdI-
NrdF-1 structure was solved with the coordinates of Bc apo-NrdF-1
and Bc NrdI (PDB id: 2X2O) as the starting models. Refinement for
all structures was done using restrained refinement in REFMAC,55 and
model building was performed with COOT56 in multiple cycles. For
the Bc NrdF structures, medium NCS restraints were introduced. For
some of the structures, full occupancy of the metal sites gave negative
density in the difference maps, and for these structures the metal
content was reduced. NrdI-NrdF-1 has been refined with 90% Fe,
NrdI-NrdF-2 with 50% Fe, MnII2-NrdF with one site 90% while the
remaining 100% Mn, and Fe2-NrdF with 100% Fe with high B-factors.
For the apo structures, one of the metal sites 1 in apo-NrdF-1 and two
metal sites 1 in apo-NrdF-2 have been modeled with 25% occupancy
of Fe. The absorbed X-ray doses of the different crystals during
crystallographic data collection have been calculated with the program
RADDOSE.57,58 All structure figures were prepared using PyMOL.59

All backbone root-mean-square deviation (RMSD) values were
calculated using PDBeFold (http://www.ebi.ac.uk). The final data
collection and refinement statistics are listed in Table 1 and
Supplementary Table S1. The hydrophilic complex channel lining
the Bc NrdI-NrdF interface was calculated with HOLLOW60 using a
1.4 Å probe radius. As a comparison, a corresponding channel was also
calculated for the Ec NrdI-NrdF structure.25

Single-Crystal Light Absorption Spectroscopy. Light absorp-
tion spectroscopy was carried out on single crystals (frozen as
described above) of Bc NrdI and Bc NrdI-NrdF. The experiments were
performed at beamline X10SA and SLSpectroLAB at SLS. Spectra
were recorded with an on-axis built microspectrophotometer system
with an Andor 303i Czerny−Turner spectrograph and a Newton
electron multiplying CCD (Andor Technology).61

■ ASSOCIATED CONTENT
*S Supporting Information
Supplementary table and figures. This material is available free
of charge via the Internet at http://pubs.acs.org.
Accession Codes
The coordinates and structure factors (codes 4BMO, 4BMP,
4BMQ, 4BMR, 4BMT, and 4BMU) have been deposited in the
Protein Data Bank through EMBL-EBI (http://www.pdbe.org)
and are listed in Table 1 and Supplementary Table S1.

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: h.p.hersleth@ibv.uio.no.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank B. Dalhus for access to crystallization screening at the
Regional Core Facility for Structural Biology and Bioinfor-
matics at the South-Eastern Norway Regional Health Authority
(Grants no. 2009100 and 2011040). We gratefully acknowledge
the Swiss-Ligth-Source SLS (20111245) for providing beam
time with online microspectrophotometry and help from the
team at X10SA and G. Pompidor for assistance with the on-axis
online microspectrophotometer. We gratefully acknowledge the
European Synchrotron Radiation Facility ESRF (MX10156) for
providing beam time, and the team at ID29 and ID14-1 for

their assistance. The coordinates for the E. coli class Ia α2β2
holoenzyme structure were kindly provided by U. Uhlin,
Uppsala University, Uppsala, Sweden. We acknowledge
financial support from the Norwegian Research Council
through projects 214239/F20 and 218412/F50 (K.K.A.),
MLSUiO program for Molecular Life Science research at the
University of Oslo through the PX-Oslo X-ray core facilities
and the Norwegian Cancer Society 539012 (K.K.A.) and
CMST COST Action CM1003 and financial support for
synchrotron travel from the Norwegian Research Council
through projects 138370/V30 and 216625/F50 (K.K.A.) and
from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under BioStruct-X (grant agree-
ment No. 283570) on project 1760 (K.K.A./H.P.H.).

■ ABBREVIATIONS

RNR, ribonucleotide reductase; Bc, Bacillus cereus; Ec,
Escherichia coli; Mt, Mycobacterium tuberculosis; Ca, Coryne-
bacterium ammoniagenes; Ba, Bacillus anthracis; St, Salmonella
typhimurium; FMN, flavin mononucleotide cofactor; ESRF,
European Synchrotron Research Facility; SLS, Swiss-Light-
Source; RMSD, root-mean-square deviation

■ REFERENCES
(1) Nordlund, N., and Reichard, P. (2006) Ribonucleotide
reductases. Annu. Rev. Biochem. 75, 681−706.
(2) Tomter, A. B., Zoppellaro, G., Andersen, N. H., Hersleth, H. P.,
Hammerstad, M., Rohr, A. K., Sandvik, G. K., Strand, K. R., Nilsson, G.
E., Bell, C. B., Barra, A. L., Blasco, E., Le Pape, L., Solomon, E. I., and
Andersson, K. K. (2013) Ribonucleotide reductase class I with
different radical generating clusters. Coord. Chem. Rev. 257, 3−26.
(3) Andersson, K. K., Ed. (2008) Ribonucleotide Reductase, Nova
Science Publishers, Inc., Hauppauge, NY.
(4) Cotruvo, J. A., and Stubbe, J. (2011) Class I ribonucleotide
reductases: Metallocofactor assembly and repair in vitro and in vivo.
Annu. Rev. Biochem. 80, 733−767.
(5) Tomter, A. B., Zoppellaro, G., Schmitzberger, F., Andersen, N.
H., Barra, A. L., Engman, H., Nordlund, P., and Andersson, K. K.
(2011) HF-EPR, Raman, UV/VIS light spectroscopic, and DFT
studies of the ribonucleotide reductase R2 tyrosyl radical from Epstein-
Barr virus. PLoS One 6, e25022.
(6) Kolberg, M., Strand, K. R., Graff, P., and Andersson, K. K. (2004)
Structure, function, and mechanism of ribonucleotide reductases.
Biochim. Biophys. Acta, Proteins Proteomics 1699, 1−34.
(7) Atkin, C. L., Thelander, L., Reichard, P., and Lang, G. (1973)
Iron and free-radical in ribonucleotide reductase - exchange of iron and
mossbauer-spectroscopy of protein-b2 subunit of Escherichia-coli
enzyme. J. Biol. Chem. 248, 7464−7472.
(8) Jiang, W., Yun, D., Saleh, L., Barr, E. W., Xing, G., Hoffart, L. M.,
Maslak, M. A., Krebs, C., and Bollinger, J. M. (2007) A manganese-
(IV)/iron(III) cofactor in Chlamydia trachomatis ribonucleotide
reductase. Science 316, 1188−1191.
(9) Hogbom, M., Stenmark, P., Voevodskaya, N., McClarty, G.,
Graslund, A., and Nordlund, P. (2004) The radical site in chlamydial
ribonucleotide reductase defines a new R2 subclass. Science 305, 245−
248.
(10) Roshick, C., Iliffe-Lee, E. R., and McClarty, G. (2000) Cloning
and characterization of ribonucleotide reductase from Chlamydia
trachomatis. J. Biol. Chem. 275, 38111−38119.
(11) Voevodskaya, N., Lendzian, F., Ehrenberg, A., and Graslund, A.
(2007) High catalytic activity achieved with a mixed manganese-iron
site in protein R2 of Chlamydia ribonucleotide reductase. FEBS Lett.
581, 3351−3355.
(12) Lundin, D., Torrents, E., Poole, A. M., and Sjoberg, B. M.
(2009) RNRdb, a curated database of the universal enzyme family

ACS Chemical Biology Articles

dx.doi.org/10.1021/cb400757h | ACS Chem. Biol. 2014, 9, 526−537535



ribonucleotide reductase, reveals a high level of misannotation in
sequences deposited to Genbank. BMC Genomics 10, 589.
(13) Eriksson, M., Jordan, A., and Eklund, H. (1998) Structure of
Salmonella typhimurium nrdF ribonucleotide reductase in its oxidized
and reduced forms. Biochemistry 37, 13359−13369.
(14) Uhlin, U., and Eklund, H. (1994) Structure of ribonucleotide
reductase protein R1. Nature 370, 533−539.
(15) Logan, D. T. (2011) Closing the circle on ribonucleotide
reductases. Nat. Struct. Mol. Biol. 18, 251−253.
(16) Jordan, A., Pontis, E., Atta, M., Krook, M., Gibert, I., Barbe, J.,
and Reichard, P. (1994) A 2nd class-I ribonucleotide reductase in
enterobacteriaceae - characterization of the Salmonella-typhimurium
enzyme. Proc. Natl. Acad. Sci. U.S.A. 91, 12892−12896.
(17) Huque, Y., Fieschi, F., Torrents, E., Gibert, I., Eliasson, R.,
Reichard, P., Sahlin, M., and Sjoberg, B. M. (2000) The active form of
the R2F protein of class Ib ribonucleotide reductase from
Corynebacterium ammoniagenes is a diferric protein. J. Biol. Chem.
275, 25365−25371.
(18) Cotruvo, J. A., and Stubbe, J. (2010) An active dimanganese-
(III)-tyrosyl radical cofactor in Escherichia coli class Ib ribonucleotide
reductase. Biochemistry 49, 1297−1309.
(19) Cox, N., Ogata, H., Stolle, P., Reijerse, E., Auling, G., and Lubitz,
W. (2010) A tyrosyl-dimanganese coupled spin system is the native
metalloradical cofactor of the R2F subunit of the ribonucleotide
reductase of Corynebacterium ammoniagenes. J. Am. Chem. Soc. 132,
11197−11213.
(20) Tomter, A. B., Zoppellaro, G., Bell, C. B., Barra, A. L., Andersen,
N. H., Solomon, E. I., and Andersson, K. K. (2012) Spectroscopic
studies of the iron and manganese reconstituted tyrosyl radical in
Bacillus cereus ribonucleotide reductase R2 protein. PLoS One 7,
e33436.
(21) Cotruvo, J. A., and Stubbe, J. (2008) NrdI, a flavodoxin involved
in maintenance of the diferric-tyrosyl radical cofactor in Escherichia coli
class Ib ribonucleotide reductase. Proc. Natl. Acad. Sci. U.S.A. 105,
14383−14388.
(22) Johansson, R., Torrents, E., Lundin, D., Sprenger, J., Sahlin, M.,
Sjoberg, B. M., and Logan, D. T. (2010) High-resolution crystal
structures of the flavoprotein NrdI in oxidized and reduced states - an
unusual flavodoxin. FEBS J. 277, 4265−4277.
(23) Rohr, A. K., Hersleth, H. P., and Andersson, K. K. (2010)
Tracking flavin conformations in protein crystal structures with Raman
spectroscopy and QM/MM calculations. Angew. Chem., Int. Ed. 49,
2324−2327.
(24) Cotruvo, J. A., and Stubbe, J. (2011) Escherichia coli class Ib
ribonucleotide reductase contains a dimanganese(III)-tyrosyl radical
cofactor in vivo. Biochemistry 50, 1672−1681.
(25) Boal, A. K., Cotruvo, J. A., Stubbe, J., and Rosenzweig, A. C.
(2010) Structural basis for activation of class Ib ribonucleotide
reductase. Science 329, 1526−1530.
(26) Cotruvo, J. A., Stich, T. A., Britt, D. R., and Stubbe, J. (2013)
Mechanism of assembly of the dimanganese-tyrosyl radical cofactor of
class Ib ribonucleotide reductase: Enzymatic generation of superoxide
is required for tyrosine oxidation via a Mn(III)Mn(IV) intermediate. J.
Am. Chem. Soc. 135, 4027−4039.
(27) Crona, M., Torrents, E., Rohr, A. K., Hofer, A., Furrer, E.,
Tomter, A. B., Andersson, K. K., Sahlin, M., and Sjoberg, B. M. (2011)
NrdH-Redoxin protein mediates high enzyme activity in manganese-
reconstituted ribonucleotide reductase from Bacillus anthracis. J. Biol.
Chem. 286, 33053−33060.
(28) Tomter, A. B. (2010) Spectroscopic Studies of the
Ribonucleotide Reductase R2-subunit from Mammals, Virus, and
Bacteria, In Faculty of Mathematics and Natural Sciences, Univeristy of
Oslo, Oslo, Norway.
(29) Zhang, Y., and Stubbe, J. (2011) Bacillus subtilis class Ib
ribonucleotide reductase is a dimanganese(III)-tyrosyl radical enzyme.
Biochemistry 50, 5615−5623.
(30) Hogbom, M., Huque, Y., Sjoberg, B. M., and Nordlund, P.
(2002) Crystal structure of the di-iron/radical protein of ribonucleo-

tide reductase from Corynebacterium ammoniagenes. Biochemistry 41,
1381−1389.
(31) Solomon, E. I., Brunold, T. C., Davis, M. I., Kemsley, J. N., Lee,
S. K., Lehnert, N., Neese, F., Skulan, A. J., Yang, Y. S., and Zhou, J.
(2000) Geometric and electronic structure/function correlations in
non-heme iron enzymes. Chem. Rev. 100, 235−349.
(32) Uppsten, M., Davis, J., Rubin, H., and Uhlin, U. (2004) Crystal
structure of the biologically active form of class 1b ribonucleotide
reductase small subunit from Mycobacterium tuberculosis. FEBS Lett.
569, 117−122.
(33) Boal, A. K., Cotruvo, J. A., Stubbe, J., and Rosenzweig, A. C.
(2012) The dimanganese(II) site of Bacillus subtilis class Ib
ribonucleotide reductase. Biochemistry 51, 3861−3871.
(34) Henderson, R. (1990) Cryoprotection of protein crystals against
radiation-damage in electron and x-ray-diffraction. Proc. R. Soc. London,
Ser. B 241, 6−8.
(35) Hersleth, H.-P., and Andersson, K. K. (2011) How different
oxidation states of crystalline myoglobin are influenced by X-rays.
Biochim. Biophys. Acta, Proteins Proteomics 1814, 785−796.
(36) Griese, J. J., and Hogbom, M. (2012) X-ray reduction correlates
with soaking accessibility as judged from four non-crystallographically
related diiron sites. Metallomics 4, 894−898.
(37) Sigfridsson, K. G. V., Chernev, P., Leidel, N., Popovic-Bijelic, A.,
Graslund, A., and Haumann, M. (2013) Rapid X-ray photoreduction
of dimetal-oxygen cofactors in ribonucleotide reductase. J. Biol. Chem.
288, 9648−9661.
(38) Tomter, A. B., Bell, C. B., Rohr, A. K., Andersson, K. K., and
Solomon, E. I. (2008) Circular dichroism and magnetic circular
dichroism studies of the biferrous site of the class Ib ribonucleotide
reductase from Bacillus cereus: Comparison to the class Ia enzymes.
Biochemistry 47, 11300−11309.
(39) Strand, K. R., Karlsen, S., Kolberg, M., Rohr, A. K., Gorbitz, C.
H., and Andersson, K. K. (2004) Crystal structural studies of changes
in the native dinuclear iron center of ribonucleotide reductase protein
R2 from mouse. J. Biol. Chem. 279, 46794−46801.
(40) Ubbink, M. (2012) Dynamics in transient complexes of redox
proteins. Biochem. Soc. Trans. 40, 415−418.
(41) Nordlund, P., and Eklund, H. (1993) Structure and function of
the Escherichia-coli ribonucleotide reductase protein R2. J. Mol. Biol.
232, 123−164.
(42) Smith, P., Zhou, B. S., Ho, N., Yuan, Y. C., Su, L., Tsai, S. C.,
and Yen, Y. (2009) 2.6 Angstrom X-ray crystal structure of human
p53R2, a p53-inducible ribonucleotide reductase. Biochemistry 48,
11134−11141.
(43) Wilmot, C. M., Sjogren, T., Carlsson, G. H., Berglund, G. I., and
Hajdu, J. (2002) Defining redox state of X-ray crystal structures by
single-crystal ultraviolet-visible microspectrophotometry. Methods
Enzymol. 353, 301−318.
(44) Rofougaran, R., Crona, M., Vodnala, M., Sjoberg, B. M., and
Hofer, A. (2008) Oligomerization status directs overall activity
regulation of the Escherichia coli class Ia ribonucleotide reductase. J.
Biol. Chem. 283, 35310−35318.
(45) Uppsten, M., Farnegardh, M., Domkin, V., and Uhlin, U. (2006)
The first holocomplex structure of ribonucleotide reductase gives new
insight into its mechanism of action. J. Mol. Biol. 359, 365−377.
(46) Ando, N., Brignole, E. J., Zimanyi, C. M., Funk, M. A.,
Yokoyama, K., Asturias, F. J., Stubbe, J., and Drennan, C. L. (2011)
Structural interconversions modulate activity of Escherichia coli
ribonucleotide reductase. Proc. Natl. Acad. Sci. U.S.A. 108, 21046−
21051.
(47) Magnusson, K. E., and Edebo, L. (1976) Influence of cell
concentration, temperature, and press performance on flow charac-
terics and disintefration in freeze-pressing of Saccharomycescerevisiae
with X-press. Biotechnol. Bioeng. 18, 865−883.
(48) Powell, H. R. (1999) The Rossmann Fourier autoindexing
algorithm in MOSFLM. Acta Crystallogr., Sect. D: Biol. Crystallogr. 55,
1690−1695.
(49) Evans, P. (2006) Scaling and assessment of data quality. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 62, 72−82.

ACS Chemical Biology Articles

dx.doi.org/10.1021/cb400757h | ACS Chem. Biol. 2014, 9, 526−537536



(50) Evans, P. R. (2011) An introduction to data reduction: space-
group determination, scaling and intensity statistics. Acta Crystallogr.,
Sect. D: Biol. Crystallogr. 67, 282−292.
(51) Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J.,
Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G.
W., McCoy, A., McNicholas, S. J., Murshudov, G. N., Pannu, N. S.,
Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., and Wilson, K. S.
(2011) Overview of the CCP4 suite and current developments. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 67, 235−242.
(52) McCoy, A. J., Grosse-Kunstleve, R. W., Storoni, L. C., and Read,
R. J. (2005) Likelihood-enhanced fast translation functions. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 61, 458−464.
(53) Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006) The
SWISS-MODEL workspace: a web-based environment for protein
structure homology modelling. Bioinformatics 22, 195−201.
(54) Kiefer, F., Arnold, K., Kunzli, M., Bordoli, L., and Schwede, T.
(2009) The SWISS-MODEL Repository and associated resources.
Nucleic Acids Res. 37, D387−D392.
(55) Murshudov, G. N., Vagin, A. A., and Dodson, E. J. (1997)
Refinement of macromolecular structures by the maximum-likelihood
method. Acta Crystallogr., Sect. D: Biol. Crystallogr. 53, 240−255.
(56) Emsley, P., and Cowtan, K. (2004) Coot: model-building tools
for molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 60,
2126−2132.
(57) Murray, J. W., Garman, E. F., and Ravelli, R. B. G. (2004) X-ray
absorption by macromolecular crystals: the effects of wavelength and
crystal composition on absorbed dose. J. Appl. Crystallogr. 37, 513−
522.
(58) Paithankar, K. S., Owen, R. L., and Garman, E. F. (2009)
Absorbed dose calculations for macromolecular crystals: improve-
ments to RADDOSE. J. Synchrotron Radiat. 16, 152−162.
(59) Delano, W. L. (2002) The PyMOL Molecular Graphics System,
DeLano Scientific, San Carlos, CA.
(60) Ho, B. K., and Gruswitz, F. (2008) HOLLOW: Generating
accurate representations of channel and interior surfaces in molecular
structures. BMC Struct. Biol. 8, 49.
(61) Owen, R. L., Pearson, A. R., Meents, A., Boehler, P., Thominet,
V., and Schulze-Briese, C. (2009) A new on-axis multimode
spectrometer for the macromolecular crystallography beamlines of
the Swiss Light Source. J. Synchrotron Radiat. 16, 173−182.

ACS Chemical Biology Articles

dx.doi.org/10.1021/cb400757h | ACS Chem. Biol. 2014, 9, 526−537537



1

Supporting Information for 

Crystal Structure of Bacillus cereus Class Ib Ribonucleotide 
Reductase Di-iron NrdF in Complex with NrdI 

Marta Hammerstad, Hans-Petter Hersleth, Ane B. Tomter, Åsmund K. Røhr,                              
and K. Kristoffer Andersson 

Department of Biosciences, University of Oslo, P.O.Box 1066 Blindern, NO-0316 Oslo, 
Norway 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2

T
A

B
L

E
 S

1.
 D

at
a 

C
ol

le
ct

io
n 

an
d 

R
ef

in
em

en
t S

ta
tis

tic
s Bc

ap
o-

N
rd

F-
1

Bc
 a

po
-N

rd
F-

2 

C
ry

st
al

 d
at

a 
 

 

Sp
ac

e 
gr

ou
p

C
2 

P2
1 

a,
 b

, c
 (Å

) 
12

1.
0/

68
.2

/8
7.

1 
69

.1
/5

3.
9/

91
.2

 
,

,
 (°

) 
90

.0
/1

06
.0

/9
0.

0 
90

0/
11

0.
9/

90
.0

 
C

ry
st

al
 si

ze
 (μ

m
3 )

50
50

10
0 

 
20

50
50

 
D

at
a 

co
lle

ct
io

n 
 

 
X

-r
ay

 so
ur

ce
 

ES
R

F 
ID

14
-1

 
ES

R
F 

ID
14

-1
 

W
av

el
en

gt
h 

(Å
) 

0.
93

34
 

0.
93

34
 

Fl
ux

 (p
ho

to
ns

/s
ec

) 
12

10
9  

12
10

9  
B

ea
m

 si
ze

 (μ
m

2 ) 
10

0
10

0 
10

0
10

0 
To

ta
l e

xp
os

ur
e 

(s
ec

) 
19

50
 

19
24

 
A

bs
or

be
d 

X
-r

ay
 d

os
e 

(M
G

y)
 

0.
74

 
0.

72
 

R
es

ol
ut

io
n 

ra
ng

e 
(Å

) 
34

.2
-2

.2
 

34
.3

-2
.0

 
Te

m
ep

er
at

ur
e 

(K
) 

10
0 

10
0 

C
om

pl
et

en
es

s (
%

)a 
99

.4
/9

9.
9 

83
.9

83
.3

 
R

ed
un

da
nc

y 
a 

3.
3/

3.
3 

2.
3/

2.
3 

I/s
d(

I)
a  

11
.1

/3
.5

 
5.

7/
2.

1 
R S

ym
ab

 
9.

8/
41

.9
 

12
.9

/4
6.

8 
R

ef
in

em
en

t s
ta

tis
tic

s 
 

 
R W

or
k (

%
)c  

17
.6

 
20

.8
 

R F
re

e 
(%

)d 
24

.3
 

26
.0

 
M

od
el

 c
on

te
nt

 
 

 
A

m
in

o 
ac

id
s 

58
7 

57
5 



3

Fe
 io

ns
 (o

cc
up

an
cy

) 
1 

(2
5%

) 
2 

(2
5%

) 
W

at
er

 m
ol

ec
ul

es
 

17
6 

14
5 

M
ol

ec
ul

es
 p

er
 a

su
 

2 
2 

So
lv

en
t c

on
te

nt
 (%

) 
49

.3
 

46
.4

 
U

nm
od

el
le

d 
re

si
du

es
 

30
1-

32
2 

(M
on

om
er

1)
, 2

88
-3

22
 (M

on
om

er
2)

 
28

8-
32

2 
(M

on
om

er
1)

, 2
89

-3
22

 (M
on

om
er

2)
 

V
ol

um
e 

no
t o

cc
up

ie
d 

by
 m

od
el

 (%
) 

39
.8

 
35

.7
 

M
od

el
 a

na
ly

si
s 

 
 

M
ea

n 
ov

er
al

l i
so

tro
pi

c 
B-

fa
ct

or
 (Å

2 ) 
25

.6
 

16
.4

 
R

am
ac

ha
nd

ra
n 

pl
ot

: r
at

io
n 

in
 m

os
t f

av
ou

re
d/

ot
he

r 
al

lo
w

ed
 re

gi
on

s (
%

) 
95

.3
/4

.7
 

96
.8

/3
-2

 

Es
tim

at
ed

 o
ve

ra
ll 

co
-o

rd
in

at
e 

er
ro

r b
as

ed
 o

n 
R

 w
or

k/
 

m
ax

im
um

 li
ke

lih
oo

d 
(Å

) 
0.

25
/0

.1
5 

0.
26

/0
.1

5 

R
m

sd
 b

on
ds

 (Å
) /

 a
ng

le
s (

) 
0.

01
8/

2.
00

6 
0.

01
5/

1.
78

 
PD

B
 c

od
e 

 
4B

M
Q

 
4B

M
R

 
 

 
a  T

he
 v

al
ue

 b
ef

or
e 

th
e 

ba
ck

sl
as

h 
is

 fo
r a

ll 
da

ta
, a

nd
 th

e 
va

lu
e 

af
te

r t
he

 b
ac

ks
la

sh
 is

 fo
r t

he
 d

at
a 

in
 th

e 
hi

gh
es

t r
es

ol
ut

io
n 

sh
el

l 
b  R

Sy
m
 =

 
|I 

- ‹
I›

|/ 
 I 

c  R
W

or
k =

 
 (|

F o
bs

|
|F

ca
lc
|)/

 
 |F

ob
s| 

d  R
Fr

ee
 is

 th
e 

R
W

or
k c

al
cu

la
te

d 
on

 th
e 

5%
 re

fle
ct

io
ns

 e
xc

lu
de

d 
fo

r r
ef

in
em

en
t



4

 

FIGURE S1. Overlay of Bc and Ec NrdI-NrdF crystal structures, based on structural alignment of  
the NrdIs. The overlays are shown in different orientations (A and B). A small rotation is observed 
for the NrdF subunit for the Bc structure as compared to the Ec structure (PDBid:3N39) 1, when the 
two NrdI subunits are kept aligned, indicating a rotational difference in the NrdI-NrdF binding in the 
two crystal structures. 
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FIGURE S2. The overall crystal structures of Bc NrdFs. (A) Overlay of all NrdF structures. (B) 13 
additional residues of the flexible C-terminal in monomer A of apo-NrdF-1 are visible in the electron 
density map, due to different crystal packing. (C) and (D) displays the crystal surface corresponding 
to residues 25-30, where NrdI-Fe2-NrdF-1 shows greater helical conformation compared to the other 
NrdF structures. The same helical conformation is also observed in monomer B of apo-NrdF-1 (D).  
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FIGURE S3. Loop alteration in the di-metal cluster vicinity in NrdF. Possible limitation in 
movement from  bidentate to μ-1,3 coordination of Glu 161 (Bc numbering) in the di-manganese 
soaked Bc MnII

2-NrdF crystal structure, compared to co-crystallized Ec MnII
2-NrdF crystal structure 

of NrdF (PDBid:3N37) 1, due to the restricted loop flexibility. 
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FIGURE S4. Active site environment in the Bc apo-NrdF-1 structure. (A) and (C) shows monomer 
A, while (B) and (D) shows monomer B. Amino acids are represented as sticks and colored by atom 
type. In monomer A, metal site 1 is modeled with 25% iron occupancy, whereas no metal occupancy 
is observed for the second metal site (A and C). No metal occupancy is observed in monomer B (B 
and D). The 2Fo-Fc electron density maps (grey) are contoured at 1 , the Fo-Fc map is shown as green 
mesh (3 ) and red mesh (-3 ), while the omit map (salmon) surrounding the Fe  ions is contoured at 
6 .  
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FIGURE S5. Active site environment in the Bc apo-NrdF-2 structure. (A) and (C) shows monomer 
A, while (B) and (D) shows monomer B. Amino acids are represented as sticks and colored by atom 
type. Metal site 1 in both monomers A (A and C) and B (B and D) have been modeled with 25% iron 
occupancy. The 2Fo-Fc electron density maps (grey) are contoured at 1 , the Fo-Fc map is shown as 
green mesh (3 ) and red mesh (-3 ), while the omit map (salmon) surrounding the Fe  ions is 
contoured at 6 .  
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Fig. S6. Residues on the surface of the class Ib Bc R2F/NrdF (from NrdI-NrdF) and class Ia Ec 
R2/NrdB (PDBid:1RIB) 2, showing differences in the core residues shown to be involved in the 
conserved hydrogen bonding network in the NrdI-NrdF core interface in the class Ib RNR. 
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FIGURE S7. The Bc NrdI-Fe2-NrdF complex overlaid with different RNR complexes. (A) The Bc 
NrdI-Fe2-NrdF overlaid with St class Ib crystallographic R1-R2 holoenzyme complex (PDBid:2BQ1) 
3, and (B) with the Ec class Ia 4 4 ring-like structure (PDBid:3UUS) 4, 5.  
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Tuning of Thioredoxin Redox Properties by
Intramolecular Hydrogen Bonds
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Abstract

Thioredoxin-like proteins contain a characteristic C-x-x-C active site motif and are involved in a large number of biological
processes ranging from electron transfer, cellular redox level maintenance, and regulation of cellular processes. The
mechanism for deprotonation of the buried C-terminal active site cysteine in thioredoxin, necessary for dissociation of the
mixed-disulfide intermediate that occurs under thiol/disulfide mediated electron transfer, is not well understood for all
thioredoxin superfamily members. Here we have characterized a 8.7 kD thioredoxin (BC3987) from Bacillus cereus that unlike
the typical thioredoxin appears to use the conserved Thr8 side chain near the unusual C-P-P-C active site to increase
enzymatic activity by forming a hydrogen bond to the buried cysteine. Our hypothesis is based on biochemical assays and
thiolate pKa titrations where the wild type and T8A mutant are compared, phylogenetic analysis of related thioredoxins, and
QM/MM calculations with the BC3987 crystal structure as a precursor for modeling of reduced active sites. We suggest that
our model applies to other thioredoxin subclasses with similar active site arrangements.
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Introduction

Thioredoxin (Trx) and glutaredoxin (Grx) are small ubiquitous

proteins acting as cysteine disulfide oxidoreductases in the cell and

belong to the thioredoxin superfamily [1–3]. Within this family

several classes of proteins have been characterized [4]. They are

involved in enzymatic reactions as hydrogen donors [5,6], in redox

signaling [7], protein folding [8], and in the defence against

oxidative stress [9]. In general, the Trx-like proteins are reduced

by NAD(P)H dependent thioredoxin reductases (TrxR) and they

usually have a C-G-P-C active site motif. Grx-like proteins

typically contain a C-P-Y-C motif and are reduced by the

tripeptide glutathione formed by NADPH utilizing glutathione

reductases.

The fundamental mechanism for electron transfer from Trx to

its substrate was proposed by Kallis and Holmgren in 1980 [10].

As a result of the lowered pKa value they observed for the N-

terminal cysteine thiol (2SH) in the Escherichia coli Trx C-G-P-C

motif, it was suggested that this thiolate (2S2) could perform the

initial nucleophilic attack on the substrate disulfide bond. To make

the second nucleophilic attack, which dissociates the mixed

disulfide intermediate, it was stated that a deprotonation of the

buried C-terminal cysteine is necessary. However, the details of

this reaction were not discussed. In the following years a number

of studies have been focused on the active site thiols and the

mechanism behind the proton abstraction from the C-terminal

cysteine. It has been suggested that the helix macrodipole [11] or

microdipoles [12] are major determinants of Trx cysteine pKa

values, however, these explanations have been challenged in later

studies [13]. The largest contributions to shifts in pKa values are

believed to be intra-protein charge-charge interactions [14],

desolvation effects [15], and hydrogen bonding to the deproto-

nated thiol [16]. A recent study points at the latter effect as the

most important [17]. The thiolate form of the N-terminal

nucleophilic cysteine positioned at the end of an a-helix, as in

Trx, is suggested to be stabilized by intra-protein hydrogen

bonding to protein backbone amide protons resulting in a lowered

pKa value [18]. Most studies indicate that the buried C-terminal

cysteine pKa value is around or higher than ,8 [10,19–21], thus

an explanation for the proton abstraction for this residue is

required. A mechanism involving the highly conserved Asp26 and

a water molecule functioning as an acid/base catalyst for the

buried cysteine has been proposed for E. coli and Acetobacter aceti

Trx [22,23], however, this mechanism is still debated [24,25].

Interestingly, other sub-classes of the Trx superfamily with Trx

functionality do not have conserved acidic amino acids analogous

to the E. coli Trx Asp26. Examples are NrdH-redoxins that reduce

the active site of the catalytic subunit NrdE of the bacterial class Ib

ribonucleotide reductase (RNR) [26–28] and Clostridium pasteur-

ianum Cp9-type thioredoxins that reduce peroxiredoxins (Prx) [29].

The small thioredoxin BC3987 from Bacillus cereus having a

significant amino acid sequence similarity with both NrdH and

Cp9-redoxins can reduce class Ib RNR in both B. cereus and B.

anthracis [30]. However, the most efficient and likely in vivo class Ib

RNR reductant in those species is TrxA [31].

Here, we discuss how intramolecular hydrogen bonds can affect

deprotonation of the active site cysteines. Substituting the

conserved Thr8 that is close to the active site with Ala has altered

the hydrogen bond network and the effect of this has been
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characterized. We have also performed a phylogenetic analysis

comparing the amino acid sequence of BC3987 to homologs

collected from a range of bacterial species to elucidate which

amino acid(s) that contribute to the perturbation of the C-terminal

buried cysteine pKa value. The crystal structure of oxidized

BC3987 was solved and we have related the results from the

phylogenetic analysis to structural features, enabling us to map

parts of the protein involved in hydrogen bonds near the active

site. Finally, because no structure of reduced BC3987 was

obtained, we have modeled the reduced active site using quantum

mechanical/molecular mechanical (QM/MM) calculations and

rationalized the experimentally observed and unusually low pKa

value of the C-terminal buried cysteine through hydrogen bonding

to the conserved Thr8 residue. Based on these results, we suggest a

general reaction mechanism for the BC3987-like category of

thioredoxins.

Experimental

Cloning, Mutagenesis, Expression, and Purification of
BC3987
Genomic DNA was isolated from Bacillus cereus ATCC 14579

using the DNEasy kit from Qiagen. The coding sequence of

BC3987 including restriction sites for XbaI and HindIII was

amplified by PCR using the forward primer 59-CCCTCTA-
GAAATAATTTTGTTTAACTTTAAGAAGGAGATATACA-

TATGAAAAAAATTGAGGTTTAT-3 and backward primer

59-AGGAAGCTTAAAAGTTATTCTATATTGAGTAGTTG-

39. The gene was cloned into the pET-22b plasmid (Novagen)

and transformed into competent BL21 (DE3) Gold cells

(Stratagene). The T8A mutation of BC3987 was generated with

the primer 59-GAAAAAAATTGAGGTTTATGCACAACCC-

GATTGTCCGCC-39 using the QuikChange Site-Directed

Mutagenesis Kit from Stratagene. A 5 mL overnight culture of

BC3987 expressing cells was diluted 1:200 in 1 litre Terrific

Broth medium containing 100 mg/mL ampenicillin and grown

until O.D. 600 nm=0.7–0.8 at 37uC. The cultures were cooled on

ice until the temperature reached 15uC and then induced by

adding IPTG to a final concentration of 1 mM and the left for

15–16 hours at 20uC in a shaker before harvesting.

Approximately 30 grams of bacteria containing BC3987 was

lysed utilizing an X-press [32] and dissolved in 100 mL 100 mM

Tris/HCl pH 7.5 containing 10 mM EDTA before centrifuga-

tion. DNA was precipitated by adding streptomycin sulfate to a

final concentration of 2.5% (w/v). BC3987 was precipitated with

60% ammonium sulfate (0.43 mg/mL). Precipitated protein was

dissolved in 50 mM Tris/HCl pH 7.5 and desalted using a

HiTrap Desalting column (GE Healthcare). The desalted protein

solution was applied to a 1 mL Resource Q anion exchange

column (GE Healtcare) and the BC3987 was eluted using a 20 mL

0–400 mM KCl, 50 mM Tris/HCl pH 7.5, gradient. As a final

polishing step the protein was purified using a Superdex 200

column (GE Healtcare).

Protein Analysis and Concentration Determination
The homogeneity of the proteins was analyzed using a Superdex

200 gel filtration column and by SDS gel electrophoresis utilizing

the PhastSystem (GE Healtcare) equipped with an 8–25%

gradient gel. Protein purity was estimated to .95% by visual

inspection of gels. The extinction coefficient of BC3987 was

determined using the Edelhoch method [33], yielding a value of

eBC3987, 280 nm=8200 M21cm21.

Insulin Reduction Assay
The thioredoxin catalyzed reduction of insulin by dithiothreitol

(DTT) probes the efficiency of Trx - insulin reduction mechanism.

First, both proteins were incubated with 10 mM DTT for 30

minutes and then passed through a HiTrap Desalting column

equilibrated with 100 mM potassium phosphate buffer pH 6.5,

2 mM EDTA. The experiments was carried out in 96-well

microtiter plates containing 160 mM insulin, 100 mM potassium

phosphate buffer pH 6.5, 2 mM EDTA, 1 mM DTT, and 10 mM
wt or T8A BC3987 [34]. A Tecan Sunrise plate reader was used to

monitor light scattering at 580 nm turbid solution of reduced

insulin.

Estimation of Active Site Cysteine pKa Values
To estimate the pKa values of the active site cysteines the

absorbance of the thiolate anion at 240 nm was followed during a

pH titration [35–37]. To prepare the reduced wt and T8A mutant

BC3987 protein and their corresponding oxidized references, the

proteins were incubated with 200 mM DTT or 100 mM diamide

for 1 hour, respectively. Excess DTT and diamide was removed

using a HiTrap Desalting column (GE Healthcare) equilibrated

with a polybuffer with pH 9.3 consisting of 1 mM of each sodium

phosphate, sodium citrate, sodium borate, and 0.1 mM EDTA.

Spectra of 10–25 mM oxidized and reduced BC3987 was recorded

with a HP 8452 diode array spectrophotometer between 200 and

600 nm and corrected for the absorbance difference between the

two cuvettes, base line drift, and finally the 240 nm absorbance

values were normalized against the 280 nm values. The pH was

varied from 9.3 to 2.8 by adding 2–4 ml of 25 mM HCl and

measured using a PHM240 pH meter (Radiometer Analytical)

equipped with a PHC 4000-8 pH electrode. The equation e240
nm=A0+ A1/(1+10x2pKa1)+A2/(1+10x2pKa2) was used to estimate

the pKa values by fitting the curves in Figure 1.

Figure 1. Estimation of active site cysteines pKa values in wild
type and mutant BC3987. The pKa values of the active site cysteines
in BC3987 were estimated by pH titration resulting in pKa values 5.1 and
7.2 for the wild type and 7.2 for the T8A mutant. A cuvette containing
25 mM reduced protein in 1 mM polybuffer pH 9.3 was added 2 uL
aliquots of 25 mM HCl and the change in thiolate absorption at 240 nm
were followed with a UV-vis spectrometer.
doi:10.1371/journal.pone.0069411.g001

How Hydrogen Bonds Can Modify Thiol pKa Values

PLOS ONE | www.plosone.org 2 July 2013 | Volume 8 | Issue 7 | e69411



Phylogenetic Analysis
The NrdH amino acid sequences collected from different

bacterial divisions were obtained from the Integrated Microbial

Genomes (IMG) website [38]. All the NrdH-redoxin amino acid

sequences contain the C-[IMV]-Q-C motif and are located in a

class Ib RNR operon. Sequences homologous to the Cp9-redoxin

found in the anaerobe C. pasteurianum, often annotated as YruB

proteins after its initial discovery [39], encoding proteins in the

range of 75–80 amino acids were downloaded from the UniProt

Knowledgebase [40]. Multiple sequence alignment was performed

by MAFFT [41] before manual editing using GeneDoc 2.7

(Nicholas and Nicholas, NRBSC). Columns containing gaps and

amino acids in the ranges 1–6 and 80–87 in the alignment (Figure

S1) were excluded from the phylogenetic analysis. The program

Treefinder [42] was used to estimate the substitution model and

reconstruct a bootstrapped phylogenetic tree with 1000 replicates

at a 50% consensus level utilizing the Maximum Likelihood (ML)

algorithm. A second bootstrapped phylogenetic analysis was

performed using the Neighbour Joining algorithm included in

ClustalX 2.0 [43] using 1000 replicates.

Crystallization of BC3987
Plate formed crystals were obtained with the Index screen

(Hampton Research, CA, USA) condition 55, at room tempera-

ture. BC3987 (18 mg/mL) in 15 mM Tris/HCl pH 7.5 was

mixed 1:1 with reservoir solution (0.1 M HEPES pH 7.5, 50 mM

MgCl2, and 30% (w/v) polyethylene glycol monomethyl ether

550). Crystals of approximately 4006400630 mm3 appeared after

1–2 days. Crystals of mutant BC3987 were obtained at the same

conditions as the wild type. So far, crystals with reduced active

sites motif have not been obtained when soaking with reductants

as DTT and sodium dithionite.

X-ray Data Collection
Data were collected at the Swiss-Norwegian Beam Line (SNBL,

BM01 A) and ID29 at the European Synchrotron Radiation

Facility (ESRF), Grenoble, France at 110 K. The protein crystals

were flash frozen after 30 seconds incubation in a cryo solution

consisting of PEG 400 and reservoir solution in a 1:6 ratio. The

crystals belong to the monoclinic P21 space group and have two

protein molecules in the asymmetric unit. Data were integrated

with iMOSFLM [44] before scaling and merging with SCALA

[45].

Structure Determination and Refinement
The program PHASER [45,46] was used to solve the structure

of the wild type protein by molecular replacement using a

polylalanine search model generated from the Corynebacterium

ammoniagenes NrdH protein structure [47], PDB ID 1R7H, which

has 32% amino acid sequence identity with BC3987. Two rounds

of simulated annealing with CNS [48] were followed by several

cycles of model building using COOT [49], ARP/wARP [50],

and structure refinement in REFMAC5 [51]. The mutant BC3987

crystal structures were solved using the wild type structure as start

model. The figures were prepared with PyMOL (W. L. DeLano

(2002) PyMOL, DeLano Scientific, San Carlos, CA). The atomic

coordinates and structure factors have been deposited in the

Protein Data Bank, Research Collaboratory for Structural

Bioinformatics, Rutgers University, New Brunswick, NJ.

QM/MM Calculations Modeling the Reduced Structure
In order to model the reduced active site of BC3987 two-layer

ONIOM [52] calculations were performed. The ONIOM

procedure allows part of the protein to be treated by quantum

mechanical (QM) methods (the high level layer) while a force field

based on classical mechanics (MM) is used to describe the rest of

the protein (the low level layer). All calculations were executed

through the Bioportal (www.bioportal.uio.no) using Gaussian 03,

Revision D.02 [53], at TITAN, the computing facility at the

University of Oslo. The crystal structure of BC3987 was used as a

starting point for modeling the reduced active site. All water

molecules were deleted from the structure and hydrogen atoms

were added using GaussView 4.1 (Gaussian, Inc.). The protonated

structure was then solvated by adding a 6 Å layer of TIP3P water

molecules using the Amber tools 1.2 package [54] and subjected to

geometry optimization. In this model preparation step, the

coordinates of protein hydrogen atoms and water molecules were

geometry optimized using the Amber force field as implemented in

Gaussian 03 while keeping the non-hydrogen protein atoms

frozen.

In the resulting structure the dihedral angles of Cys12 and

Cys15 defined by the atoms N-Ca-Cb-Sc were changed by 9u and
46u, respectively, increasing the distance between the two Sc atoms

from 2.14 to 3.63 Å. The geometry optimized version of this

altered structure is from now on referred to as Model I. The
precursor of Model II has an additional modification, the

dihedral angle N-Ca-Cb-Oc of Thr8 was changed from 68.9 to

160u, making it resemble the Thr rotamer observed in E. coli
NrdH (PDBid:1H75 ) [55] and C. ammoniagenes NrdH

(PDBid:1R7H) [47].

Both models were geometry optimized at the ONIOM(R-

B3LYP/6-31+G(d,p):UFF) level using the charge equilibrium

(QEq) method [56] to assign atomic partial charges. During these

calculations, both Cys12 and Cys15 were in their thiolate forms.

The high level layer included Tyr7(C) – Gln9(Ca), the Cys12 side

chain, Pro14(C) - Cys15 Ca, including Cys15 HCa and side chain,

and the Thr53 side chain. All atoms in the high level layer were

allowed to move while the coordinates of protein atoms in the low

level layer, except Cys12 HCa, Ca, C, and O and Cys15 C and O,

were kept frozen during geometry optimization. The water

molecules within a radius of 15 Å of the Cys12 Sc-atom were

also allowed to move.

Results

Characterization of the C-P-P-C Active Site Cysteine pKa
Values
Different subclasses of the thioredoxin superfamily have

nucleophilic cysteine pKa values that correspond to their biological

function. Thus, this is an important parameter when classifying

new member of this superfamily.

When estimating the pKa values of the active site cysteines in

wild type BC3987 and the T8A mutant, DTT reduced samples

were compared with diamide oxidized references. A plot of the

thiolate extinction coefficient values plotted against the measured

pH is shown in Figure 1. Interestingly, it was observed that the

extinction coefficient difference at 240 nm (De240 nm) due to the

thiolate anion was 7–8000 M21cm21. This was a surprising result

as an expected De240 nm value of about 3500–4000 M21cm21 is

typical for a single thiolate [57–59]. One possible explanation for

this observation is that both cysteines in the reduced C-P-P-C

active site have lowered pKa values. The pH-titration curves for

wild type and T8A BC3987 in Figure 1 are similar in the pH

interval 6.5–9, indicating that the nucleophilic Cys12 pKa value is

not affected by the T8A mutation. However, in the pH range 6.5–

3 there are clear differences. First, the T8A mutant is not stable

below pH 5.4 and precipitates. Second, the wild type curve has a

How Hydrogen Bonds Can Modify Thiol pKa Values
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shoulder between pH 4 and 6.5, indicating a titratable thiolate

with a lowered De240 nm. A lowered De240 nm for the buried Cys15

can be rationalized because the absorbance maximum of thiolates

depends on the polarity of the solution, shifting to lower

wavelengths with decreasing polarity. Following the reasoning

above, the wild type BC3987 has two titratable thiolates with pKa

values 5.1 and 7.2 while the T8A mutant has one thiolate with a

pKa value of 7.2 and a second thiolate that behave different from

the wild type.

BC3987 Wild Type and the T8A Mutant Reduction of
Insulin Disulfides
In the insulin reduction assay, thioredoxin catalyze the

reduction of insulin by DTT and the light scattering of reduced

insulin is measured. As shown in Figure 2, the control reaction

with insulin and DTT is very slow compared to the wild type and

T8A mutant BC3987 catalyzed reactions. The efficiency of

thioredoxin insulin reduction is measured in this assay, and from

the curves in Figure 2 it can be concluded that the wild type

BC3987 has a different reactivity towards the substrate compared

to the T8A mutant. The lag-time before any precipitated insulin is

observed is much longer for the T8A mutant, and the slope of the

curve after the lag-period is slightly steeper for the wild type

enzyme.

Phylogenetic Analysis
The BC3987 homologs within the B. cereus group have 28–32%

sequence identity to NrdH-redoxins and 37% sequence identity to

the Clostridium novyi Cp9-redoxin homolog. Thus, it was of interest

to compare these three groups that all belong to the thioredoxin

superfamily. The analysis was performed using the method of

Maximum Likelihood with a WAG [60] substitution model, based

on the AICc criterion [61,62] with optimized frequencies,

proposed by the Treefinder program. In the phylogenetic tree

shown in Figure 3, a node separates the three groups at a 94%

consensus level. The tip-to-tip distances between the node and the

three groups, Bacillus cereus group BC3987 homologs (Blue), Cp9

homologs (Green), and NrdH-redoxins (Red) are 0.47, 0.44, and

0.50 substitutions per site, respectively.

A multiple amino acid sequence alignment of the B. cereus group

BC3987 homologs, NrdH-redoxins, and Cp9 homologs included

in the phylogenetic analysis shows that several residues are highly

conserved for all classes in addition to the cysteines in the C-x-x-C

motif (Figure S1). Using the amino acid numbering from BC3987

the Pro54, Gly65, and Phe66 are conserved for all the sequences

included in the alignment. In addition, a N-terminal [IV]-X-

[ILV]-[YF]-[ST] motif ranging from residue 4 to 8 and a [LI]

residue at position 71 seems to be conserved within all classes. The

active site motif (Figure 2, right side) has a larger variation in the

Cp9 homologous proteins (C-[PGI]-[PYWQ]-C) than the NrdH-

redoxins (C-[VMI]-Q-C), however, the Grx-like C-P-[YW]-C

motif seems to be the most common within the Cp9 group.

BC3987 and Cp9 homologous sequences have an insert at position

44 that is a Leu or Met residue that is not present in the NrdH

proteins (Figure S1). The other B. cereus group BC3987 homologs

also have this insert, supporting the co-classification with Cp9.

From these results we suggest that the Bacillus genus BC3987

homologs, Cp9 homologs, and NrdH-redoxins form three

evolutionary separated groups.

However, due to the occurrence of the same amino acid

insertion and the higher sequence identity observed for the Bacillus

genus BC3987 homolog group and the Cp9 homologs one might

expect a closer structural, and perhaps functional, relationship for

these two groups compared to the NrdH-redoxins.

Identification of Conserved Amino Acids Preceding the
C-x-x-C Site in Thioredoxin-like Proteins
In general the local environment of the active site cysteines is

considered to be very important with regard to reactivity and

redox potential of Trx. Within the 6 amino acids preceding the C-

x-x-C motif there are often highly conserved Asp, Thr, and Ser

residues that have been shown to affect the activity of the enzyme

or are suggested to do so. These residues are located on a b-strand
that folds back on the active site, thus the amino acid side chains in

position 2, 4, and 6 can point towards the buried cysteine. All

proteins in the IMG database having less than 160 amino acids

and containing either x(6)-C-G-P-C (Trxs), x(6)-C-P-[FYW]-C

(Grxs), x(6)-C-[VIM]-Q-C (NrdH-redoxins), or x(6)-C-P-P-C

motifs (PROSITE syntax used to describe motifs) and being

annotated as either Trxs, Grxs, or NrdH-redoxins, have been

analyzed with focus on the [DE]-x-[ST]-x(3) motif preceding the

active site (Table 1).

Quality of the BC3987 Crystal Structure
The BC3987 wild type and T8A mutant structures were refined

to 1.4 and 1.18 Å, respectively. In the wild type structure residues

1–76 and 3–75 are observed in chain A and B, respectively. Chain

A shows the overall highest quality with residues 1–76 visible in the

electron density map, while residues Lys35, Lys36, Phe66, Glu69,

and Gln72 in chain B lack density at a few side chain atoms. In the

T8A mutant structure, all residues 1–78 are visible in the electron

density map of the corresponding high quality chain. In the other

chain, residues 3–76 are observed, with lacking density at the side

chain atoms of Asn76. Refinement and validation statistics are

presented in Table 2.

Overall Structure of BC3987
Like E. coli and C. ammoniagenes NrdH the BC3987 have a a/b/a

Trx fold typical for all members of the Thioredoxin superfamily.

The structure has a Ca RMSD value of 1.26 Å with the E. coli

Figure 2. Insulin reduction by wild type and mutant BC3987. In
the insulin reduction assay, the rate of insulin disulfide reduction by
DTT is enhanced using 10 mM thioredoxin as a catalyst. The wild type
BX3987 thioredoxin (&) is more efficient than the T8A mutant (N). The
control experiment without thioredoxin shows that the uncatalyzed
reaction with DTT is very slow (m). The concentration of insulin and DTT
used in the assay was 160 mM and 1 mM, respectively. The turbidity of
the assay solution was monitored at 580 nm (light scattering).
doi:10.1371/journal.pone.0069411.g002
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NrdH (PDBid:1H75). Due to the insert of one Leu amino acid at

position 44 in the BC3987 protein, the a2 helix is positioned

slightly closer to the b-sheet layer compared to E. coli NrdH. The

amino acid insert not found in NrdH-redoxins (Leu44) points into

the cavity on the BC3987 surface that resembles the binding site

for TrxR described by Lennon et al. [63].

Figure 3. Phylogenetic analysis of thioredoxins similar to BC3987. Bootstrap values obtained at a 50% consensus level using the Maximum
Likelihood algorithm with 1000 replicates are shown at the branches of the tree. The evolutionary distances from the node separating the three
clusters BC3987 homologs (in blue), Cp9 homologs (in green), and NrdH-redoxins (in red) are 0.47, 0.44, and 0.50 substitutions per site, respectively.
Among the BC3987 homologs the active sites always have the -C-P-P-C- motif while the classical glutaredoxin active site motif -C-P-[YW]-C- is
prevalent for the Cp9-like proteins. For the NrdH-redoxins, all encoded in a nrdHIEF operon, the predominant active site motif is -C-V-Q-C-. Alignment
shown in Figure S1 (same color coding).
doi:10.1371/journal.pone.0069411.g003

How Hydrogen Bonds Can Modify Thiol pKa Values

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69411



The C-P-P-C Active Site Motif
The BC3987 protein has a C-P-P-C active site motif that differs

from what is typically observed for Trxs and Grxs. Additionally,

the residues Thr8 and Thr53 in the vicinity of the disulfide bridge

are possible hydrogen bond partners for the buried C-terminal

cysteine (Figure 4A). Contrary to what is seen in the NrdH-

redoxins from E. coli and C. ammoniagenes crystal structures the

Thr8 residue in BC3987 has a rotamer where the hydroxyl group

is pointing away from the buried Cys15 Sc-atom. This orientation

of Thr8 is stabilized by a hydrogen bond to a water molecule

(HOH34). The proline residues apply restrictions on the protein

backbone, making a rigid frame for the active site cysteines. Both

proline residues in the BC3987 active site have the trans-

conformation with v-angles of 177u and 176u for the Pro13 and

Pro14, respectively. These values fall within the v-angle standard

deviation observed for trans-proline residues with the UP-pucker

Table 1. Categorization of active site motifs in thioredoxin-like proteins (% of sequences)a.

x-x amino acids

Active site motifb Thioredoxin Glutaredoxin NrdH Other

G-P P-[FYW] [VIM]-Q P-P

x(6)-C-x-x-C 61.1 25.2 8.5 5.2

x(2)-[ST]-x(3)-C-x-x-C 3.0 15.1 8.5 2.7 (2.2 T, 0.5 S)

[DE]-x(5)-C-x-x-C 56.5 0 0 1.3

[DE]x[ST]-x(3)-C-x-x-C 1.5 0 0 0.3

aAnalysis of 2627 sequences. All sequences between 60 and 160 amino acids in the Integrated Microbial Genomes database (http://img.jgi.doe.gov) containing a x(6)-C-
x-x-C motif were downloaded. Sequences that were not annotated or did not have a Pfam classification as a member of the thioredoxin superfamily were deleted prior
to the analysis.
bPROSITE syntax (http://au.expasy.org/tools/scanprosite/scanprosite-doc.html#pattern_syntax) is used to describe the amino acid motifs preceeding the N-terminal
active site Cys.
doi:10.1371/journal.pone.0069411.t001

Table 2. Crystal data, data collection, and refinement statistics.

Crystal data

Wild type T8A mutant

Space group P21

Crystal parameters a = 24.7, b = 98.9, c = 25.1 a = 24.4, b = 99.1, c = 25.2

a=90, b= 91.8, c= 90 a= 90, b= 91.6, c= 90

Data collection

X-ray source ESRF, ID29 ESRF, ID29

Resolution (Å)a 33–1.4 (1.48–1.4) 24.8–1.18 (1.25–1.18)

Wavelength (Å) 0.975948 0.976273

Temperature (K) 100 100

Completeness (%)a 94.3 (93.8) 84.9 (83.1)

Redundancy (%)a 2.6 (2.6) 3.1 (3.0)

I/s(I)a 15.0 (6.1) 13.1 (4.9)

Rsym (%)b 0.03 (0.11) 0.04 (0.18)

Refinement statistics

Rcryst (%)c 18.8 14.4

Rfree (%)d 20.5 19.7

Mean overall isotropic B-factor (Å2) 19.9 20.8

Ramachandran plot: ration in most favored/other allowed
regions (%)

RMS deviation from standard bond lengths (Å)/angles (u) 0.026/2.44 0.026/2.40

Added waters 98 88

PDB code 3ZIJ 3ZIT

aValues for outer shell in parenthesis.
bRsym =S|I–ÆIæ|/SI.
cRcryst =S(|Fobs|–|Fcalc|)/S|Fobs.|.
dRfree is the Rcryst value calculated on the 5% reflections excluded for refinement.
doi:10.1371/journal.pone.0069411.t002
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[64], indicating that the motif probably is structurally relaxed. The

crystal structure of the T8A mutant resembles the wild type

structure and the C-P-P-C motifs in these structures superimpose

with a RMSD value of 0.053 (Figure 4B). A superimposition of the

oxidized C-P-P-C motif in BC3987 and the corresponding

reduced C-P-P-C motifs found in Tryparedoxin-II (TXN-II) from

Crithidia fasciculate (PDBid:1FG4) and Poplar Trx h1(PDBid:1TI3,

model 3) is shown in Figure 4C. The RMS values calculated for all

C-P-P-C atoms except Cys-Cb/Sc are 0.32 and 0.22 Å with

Tryparedoxin II and Trx h1, respectively, indicating that the

disulfide redox state does not influence the active site conforma-

tion notably.

QM/MM Modeling of the Reduced Active Site Motif
Based on the results from the Cys pKa titration experiments and

the different Thr rotamers observed in the crystal structures of

BC3987 and the NrdH-redoxins one might speculate that the

conserved Thr8 could contribute to lower the buried cysteine pKa

value through hydrogen bonding. In the structure it is apparent

that the Gln9 amide proton is within hydrogen bonding distance

to the Sc-atom of Cys15, however, a Thr8 with a rotamer as

observed in E. coli and C. ammoniagenes NrdH-redoxins could also

act as a hydrogen bond donor to this atom. Additonally, it was of

interest to examine if the variable Thr53 could form a hydrogen

bond to the buried cysteine thiolate when BC3987 was in the

reduced form.

To be able to investigate the effects of Thr8 and Thr53, a QM/

MM modeling approach including the whole protein was chosen.

The largest part of the protein (the low layer, cartoon represen-

tation in Figure 5A) was modeled by a classical force field, while

hybrid density functional theory was used to describe the active

site and its immediate surroundings (the high layer, ball-and-stick

representation in Figure 5A). Geometrical restraints were applied

on the active site to mimic the limited conformational difference

between red-ox states observed in Tryparedoxin-II and Poplar Trx

h1 (Figure 4C). From the two models of the reduced active site,

Model I with Thr8 having the rotamer observed in the BC3987

crystal structure (Figure 5B) and Model II where the conformation

of Thr8 resemble the corresponding Thr residue in NrdH-

redoxins (Figure 5C), there are several differences. Hydrogen

bonding distances within the active site in Model I and II have

been summarized in Table 3. Additionally, the pKa values of the

cysteines in both geometry optimized structures were estimated

using the program PROPKA 2.0 [17], and the perturbations

caused by the individual hydrogen bonds are also shown in

Table 3.

In both models the nucleophilic Cys12 side chain is hydrogen

bonded to the Cys15 amide proton, rationalizing the perturbed

pKa value of this thiol. It is also clear that the amide protein of

Gln9 can form a hydrogen bond to the buried Cys15 thiolate in

both Model I and II. A limited perturbation of the variable Thr53

residue on the Cys12 pKa value is predicted, the effect being

similar in magnitude for both models. Indeed, an additional

hydrogen bond from Thr8 to the buried cysteine thiolate can be

observed in Model II (Figure 5C), resulting in calculated pKa

Figure 4. Structure of BC3987 active site. (A) The active site and
immediate surroundings in BC3987. Thr8 and Thr53 can possibly form
hydrogen bonds to the Sc-atom of Cys15 upon reduction of the
disulfide bridge. The |2Fo–Fc| map is contoured at 1.5 s. (B) The wild

type (in brown) and T8A (in blue) crystal structures have CPPC active
sites that superimpose with a RMS value of 0.053 Å. This verifies that
the mutation does not disturb the CPPC active site. (C) Comparison of
C-P-P-C motifs in oxidized BC3987 (in brown), reduced Tryparedoxin,
TXN-II, (in green), and reduced Trx h1 (in grey). From this superimpo-
sition, it is suggested that the cysteine side chains and not the
backbone undergo the largest structural rearrangement upon reduc-
tion of the active site.
doi:10.1371/journal.pone.0069411.g004
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values of 7.1 and 6.5 for Cys12 and Cys15, respectively. The

corresponding values for Model I are 7.1 and 8.0, indicating that

Model II is most compatible with experimental observations and

supporting the hypothesis that Thr8 is involved in the stabilization

of the Cys15 thiolate. With respect to computed energies, the high

layer B3LYP energy is 8.7 kcal/mol lower for Model II compared

to Model I, however, the total ONIOM energy for Model II is

11.8 kcal/mol higher than for Model I. This indicates that effects

from the protein low layer disfavor Model II compared to Model I,

while the active site electronic structure in Model II is stabilized by

the hydrogen bond between Thr8 and Cys15.

Discussion

The thioredoxin BC3987 found in B. cereus ATCC 14579 is

conserved among all the members of the B. cereus group, including

Figure 5. QM/MM models of the BC3987 active site. (A) QM/MM geometry optimized structure of BC3987 showing the quantum mechanical
and molecular mechanics regions in ball-and-stick and cartoon representation, respectively. (B) Active site (Model I) where the Thr8 residue has the
rotamer observed in the crystal structure. The Cys12 side chain is hydrogen bonded to the Cys15 amide proton. The Gln9 amide proton is a possible
hydrogen bond donor to the buried Cys15 thiolate. (C) In this structure (Model II) the Thr8 side chain was rotated to resemble the rotamer observed
in E. coli and C. ammoniagenes NrdH-redoxins prior to geometry optimization. The Thr8 hydroxyl group and Gln9 amide proton appear to form
hydrogen bonds to the buried Cys15 side chain while the Cys12 side chain is hydrogen bonded to the Cys15 amide proton. The link atoms
connecting the MM and QM layer in B and C are colored pink.
doi:10.1371/journal.pone.0069411.g005

Table 3. Hydrogen bond distancesa to active site thiolates and their estimated perturbation DpKa
b on the pKa values.

Donor atom Thr53-Oc Thr8- Oc Gln9-Namide Cys15-Namide Estimated pKa

Model I Cys12 4.38 Å – – 3.70 Å 7.1

20.19b – – 21.74b

Cys15 4.20 Å – 3.68 Å – 8.0

20.49b – 21.07b –

Model II Cys12 4.41 Å – 5.26 Å 3.80 Å 7.1

20.14b – 20.08b 21.70b

Cys15 – 3.09 Å 3.71 Å – 6.4

– 21.60b 21.66b –

Experiment Cys12 7.2

Cys15 5.1

aHydrogen bonding distances obtained from the geometry optimized structures Model I and Model II.
bThe perturbation of the thiolate pKa values due to hydrogen bonding were calculated using the program PROPKA 2.0 (http://propka.ki.ku.dk/).
doi:10.1371/journal.pone.0069411.t003
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B. anthracis, B. mycoides, B. pseudomycoides, B. thuringiensis and B.

weihenstephanensis. It has been shown that BC3987 can function as

an electron donor to class Ib RNR [30]. However, subsequent

studies using the corresponding enzymes from B. anthracis showed

that the BC3987 homolog is 6–7 times less effective than Trx1 in

reducing RNR and that Trx1 is 60 fold abundant compared to the

BC3987 homolog [31]. Thus, it is most likely that Trx1 is the

in vivo electron donor to class Ib RNR in both B. anthracis and B.

cereus.

The protein showing the highest amino acid identity (37%) to

BC3987 does not belong to a member of the Bacillus genus, but is a

small Trx (NT01CX_2375) found in the anaerobe C. novyi. This

protein has 58% sequence identity with the C. pasteurianum

thioredoxin Cp9 that is encoded in an operon between a NADH

dependent TrxR and a Prx (Figure 6A), functioning as an electron

transporter between these two proteins [29]. The NT01CX_2375

gene is found in an identical operon structure as Cp9 with flanking

TrxR and Prx. These three proteins have been found to be present

at relatively high levels in C. novyi spores [65]. B. cereus ATCC

14579 has a gene (BC2114) encoding a protein that has 54%

sequence identity to the C. novyi Prx, however, this gene is not

colocated with any TrxR or Trx genes. Thus, one possible

substrate for BC3987 is the putative Prx BC2114. Aside, it should

be mentioned that several non-bacterial Prxs with,50% sequence

identity to BC2114 have been characterized, and that some of

them are reduced by redoxins with C-P-P-C active site motifs as

found in BC3987 [66,67].

In order to relate BC3987 to the Cp9-redoxins found in C.

pasteurianum/novyi and NrdH-redoxins, a phylogenetic analysis of a

collection of sequences representing these proteins were carried

out. The tree shown in Figure 2 indicates that the BC3987

homologs found among the members in the Bacillus cereus group

form a separate cluster from the NrdH-redoxins and the proteins

homologues to the C. pasteurianum/novyi Cp9 thioredoxin. A

slightly shorter evolutionary distance is observed between the

clusters represented by BC3987 and the C. pasteurianum/novyi Cp9
compared to that formed by NrdH-redoxins. The amino acid

deletion at position 44 in the NrdH-redoxins was not taken into

account while performing the phylogenetic analysis, thus, this

deletion increase the evolutionary distance of the NrdH-redoxins

to the other two groups further. The role of BC3987 as a part of

Prx-mediated defense against reactive oxygen species in B. cereus is

currently investigated in our laboratory.

The only two cysteine residues in the protein are found in the

active site, and the observation that the change in the molar

extinction coefficient De240 nm was about twice of the expected

value for one thiol/thiolate pair indicate that both active site

cysteines have lowered pKa values. Similar observations have been

made for the B. subtilis thiol-disulfide oxidoreductases ResA and

StoA where a water molecule bound to a Glu residue can

hydrogen bond to the C-terminal buried cysteine and lower its

pKa value [68,69]. The mechanism for lowered thiol pKa values in

C-x-x-C active sites involved in redox chemistry is discussed

below.

In Figure 3 it is shown that the C-x-x-C motifs among

established and putative Trxs have substantial variation. The

typical Trx active site motif is C-G-P-C as seen in Table 1 where a

large number of thioredoxin superfamily members have been

analyzed and compared, also including the six amino acids

preceding the C-x-x-C motif.

About 92% of the typical Trxs included in the survey have an

acidic Asp or Glu residue in the sixth position preceding the C-G-

P-C motif, and it has been proposed that this residue acts as a

general acid/base catalyst for proton transfer during reduction and

oxidation of the disulfide bridge [22]. For E. coli Trx, this residue,
which is located 5.6 Å away from the buried C-terminal active site

cysteine, has been demonstrated to be essential for catalytic

efficiency [21]. It has also been suggested that a Ser or Thr residue

four residues in front of the C-x-x-C motif, [ST]-x(3)-C-x(2)-C,

influence Trx activity by interacting directly with the previously

discussed Asp residue [70] or the buried Cys residue [71]. Yet, less

than 5% of the C-G-P-C type Trxs included in our survey has a

Ser or Thr residue in this position (Table 1), indicating that such

an arrangement is not a general feature for this type of Trxs. None

of the Grxs or NrdH-redoxins have an Asp or Glu in the sixth

position. However, the [ST]-x(3)-C-x(2)-C motif is observed in 60

and 99.5% of Grxs and NrdH-redoxins (Table 1), respectively. As

we have shown in this work, mutation of the Thr8 residue in the

forth position preceding the C-P-P-C motif decrease the catalytic

efficiency of the enzyme (Figure 2).

In the structures of the oxidized NrdH-redoxins from E. coli and
C. ammoniagenes the hydroxyl O- atom of the Thr residue in T-x(3)-

C-V-Q-C motif is oriented towards the buried Cys-Sc with

distances of 3.4 and 3.8 Å, both being potential hydrogen bonding

partners with the cysteine thiol/thiolate when the active sites are in

their reduced states.

In BC3987, which has a 6V-Y-T-Q-P-D-C-P-P-C15 motif, Thr8

is a potential hydrogen bond donor to Cys15-Sc. However, in the

BC3987 crystal structure the side chain of this residue is hydrogen

bonded to a water molecule resulting in a rotamer where the Thr

hydroxyl group points away from the buried Cys15 as shown in

Figure 3A, different from what observed in the E. coli and C.
ammoniagenes NrdH-redoxins. Considering the similarity of the

Thr8 environment with those of Thr7 in the E. coli and C.
ammoniagenes NrdH-redoxins, a low energy barrier between the two

rotamers seems likely. In addition, the Thr53 residue, not

conserved within the NrdH and Cp9-redoxin families, was found

in the vicinity of the active site. Thus, there are two potential

Figure 6. Overview of operon organization of Cp9-redoxins,
NrdH-redoxins, and BC3987. (A) The gene encoding the Cp9-
redoxin is located between a thioredoxin reductase (cp34) and a
peroxiredoxin (cp20). (B) The classical class Ib RNR operon where the
NrdH-redoxin is found in front of the genes encoding the flavodoxin-
like protein NrdI, the catalytic subunit NrdE and the radical/metal
cofactor containing NrdF protein. (C) The organization of class Ib RNR
genes in the Bacillus cereus group where the putative NrdH-redoxin
(BC3987) is located elsewhere in the genome.
doi:10.1371/journal.pone.0069411.g006
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hydrogen bond donors to the Cys15 Sc-atom in addition to the

Gln9 amide protein.

The modeling studies of the reduced active site provided

information on its possible hydrogen bond arrangements. Two

models were examined using QM/MM calculations, one where

Thr8 had the rotamer present in the BC3987 crystal structure

(Model I, Figure 5B) and one where the Thr8 side chain had been

rotated to resemble the conformation found in E. coli and C.
ammoniagenes NrdH-redoxins (Model II, Figure 5C). The experi-

mentally observed lowered pKa values for the buried cysteine

thiol, can be explained through hydrogen bonding from the Gln9

amide protein and the Thr8 side chain. Showing that the E. coli
and C. ammoniagenes NrdH-redoxin Thr8 rotamer is capable to

form a hydrogen bond to the buried cysteine has important

implications for all Trxs having the [ST]-x(3)-C-x-x-C motif. Such

an interaction can result in a stabilization of the buried cysteine

thiolate in the active site at physiological pH values, making a

simple reaction mechanism like the one presented in Figure 7

plausible. In this mechanism, the initial nucleophilic attack is

carried out by the solvent exposed Cys12 that is stabilized in its

deprotonated thiolate form due to hydrogen bonding to the Cys15

amide protein (Figure 7A). This primary activation of the

nucleophilic cysteine could be general to all Trxs. To break the

resulting mixed disulfide intermediate the buried Cys15 needs to

be deprotonated to perform the second nucleophilic attack. We

suggest that Cys15 is already in its deprotonated form, stabilized

by hydrogen bonding to Thr8 and Gln9 (Figure 7B). Thus, this

mechanism offers an elegant explanation of the deprotonation of

the buried cysteine in Trxs that lack an analog to the Asp26

residue in E. coli Trx.

In summary it has been shown that BC3987 appears to be a

closer relative to Trxs that reduce peroxiredoxins than NrdH-

redoxins that provide electrons to the catalytic subunit of class Ib

ribonucleotide reductases. The observation that the reduced form

of BC3987 seems to possess two cysteine residues in the active site

with lowered pKa values have been explained through intra-

protein hydrogen bonding patterns. Disturbing the hydrogen

bonding networks by removing a highly conserved Thr residue

near the buried Cys resulted in decreased efficiency for the

BC3987 thioredoxin.

Supporting Information

Figure S1 Multiple alignment of amino acid sequences of

NrdH-redoxins (in red), Cp9/NT01CX_2375 homologs (in

green), and BC3987 homologs (in blue). The columns containing

the conserved Thr/Ser residues in position 8, and the gaps in the

NrdH-redoxin sequences in position 44, are marked with arrows

and with orange background.

(PDF)

Acknowledgments

We would like to thank Dr. Hans-Petter Hersleth and Dr. Camilla
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Figure S1. Multiple alignment of amino acid sequences of NrdH-redoxins (in red), Cp9/ 

NT01CX_2375 homologs (in green), and BC3987 homologs (in blue). The columns 
containing the conserved Thr/ Ser residues in position 8, and the gaps in the NrdH-redoxin 
sequences in position 44, are marked with arrows and with orange background.   

The corresponding species and accession numbers of the sequence names are as follows: 
CA_NRDH; Corynebacterium ammoniagenes (O69271), MC_NRDH; Mycobacterium 
tuberculosis (NP_217569), NF_NRDH; Nocardia farcinica (YP_120522), CJ_NRDH; 
Corynebacterium jeikeium (YP_250251), BRS_NRDH; Brucella abortus (YP_001932759), 
RL_NRDH; Rhizobium leguminosarum (YP_769836), PD_NRDH; Paracoccus denitrificans 
(YP_001607868), VS_NRDH; Vibrio sp. (ZP_01066345), YP_NRDH; Yersinia pestis 
(YP_001873486), EC_NRDH; Escherichia coli (ZP_03083809), ST_NRDH; Salmonella 
enteric (YP_002115761), SP_NRDH; Streptococcus pyogenes (NP_269480), STP_NRDH; 
Streptococcus pneumonia (YP_002037786), LL_NRDH; Lactococcus lactis 
(YP_001032827), EF_NRDH; Enterococcus faecalis (NP_814257), RX_YRUB; Rubrobacter 
xylanophilus (YP_644383), CPER_YRUB; Clostridium perfringens (ZP_02953769), 
CB_YRUB; Clostridium beijerinckii (YP_001307271), CN_YRUB(NT01CX_2375); 
Clostridium novyi (YP_878448), CPAS_YRUB; Clostridium pasteurianum (P23171), 
CT_YRUB; Clostridium thermocellum (YP_001036667), TP_YRUB; Thermotoga petrophila 
(YP_001245300), FN_YRUB; Fervidobacterium nodosum (YP_001410364), TM_YRUB; 
Thermosipho melanesiensis (YP_001305804), PM_YRUB; Petrotoga mobilis 
(YP_001568453), BSP_YRUB; Bacillus sp. (ZP_01860678), BW_YRUB; Bacillus 
weihenstephanensis (YP_001646612), BC3987; Bacillus cereus (NP_833706), BAA_NRDH; 
Bacillus anthracis (YP_030147), BC_YRUB; Bacillus cereus subsp. Cytotoxis 
(YP_001375918), SA_YRUB; Staphylococcus aureus (YP_185957). 
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Figures 1 and 2 were accidentally switched. The image appearing as Figure 1 belongs with
the title and legend for Figure 2, and the image appearing as Figure 2 belongs with the title
and legend for Figure 1. The titles and legends are in correct order.
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