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Abstract

Nanoparticles are vastly studied drug delivery systems aiming at altering or improving the 

pharmacokinetics and pharmacodynamics of both low and high molecular weight drugs. 

Among the different materials used in the preparation of nanoparticulate drug delivery 

systems, polysaccharides offer several benefits, such as versatility, biodegradability and 

biocompatibility. Nanoparticles based on polysaccharides are thus promising drug delivery 

systems. In the formulation of new drug delivery systems, the understanding of the 

mechanisms and parameters affecting their properties is essential.  

The considerations summarized above laid the grounds for this thesis with the overall aim of 

investigating parameters that could affect the preparation and physicochemical 

characteristics of nanoparticles based on the polysaccharides chitosan and pectin for 

potential applications in drug delivery. The main results obtained are reported in four papers 

that cover the development of a method for the estimation of the nanoparticle compactness, 

the preparation and characterization of nanoparticles based on chitosan or pectin, and the 

colloidal stability of the nanoparticles. Moreover, initial studies on the potential 

mucoadhesive properties of selected chitosan and pectin based nanoparticles are reported in 

this thesis summary. 

The results presented demonstrate that both chitosan and pectin nanoparticles could be 

prepared by ionotropic gelation in the presence of sodium chloride, while chitosan 

microparticles and a macroscopic pectin network were formed in the absence of sodium 

chloride. The nanoparticle characteristics could easily be adjusted by changing the solvent 

salinity, the type and concentration of polysaccharide, and the crosslinker to polysaccharide 

ratio applied in the particle preparation. The main differences between the chitosan and the 

pectin nanoparticles were their positive and negative charge, respectively, and that the 

chitosan nanoparticles were generally smaller and more compact than the pectin 

nanoparticles. Both the chitosan and the pectin nanoparticles studied were mainly found to 

be colloidally stable after one week of storage. The chitosan nanoparticles interacted more 

strongly with mucin than the pectin nanoparticles in vitro, indicating a stronger ability to 

adhere to the body’s protective mucus gel layer. 

The findings in this thesis offer a decent platform for further studies on the applicability of 

polysaccharide based nanoparticles for drug delivery applications. 
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1 Background
The term “drug delivery” refers to approaches or systems for administering a 

pharmaceutical active ingredient to achieve a therapeutic effect in humans or animals. These 

approaches or systems aim to improve treatment efficacy, safety and/or patient compliance 

and may involve the use of different medical devices, administration routes and drug 

formulations. Firstly, different medical devices can aid access to secluded parts of the 

human body, exemplified by the use of inhalators for improved drug delivery to the inner 

parts of the lungs. Secondly, different administration routes can be used for direct drug 

delivery to the site of action for local treatment, or for systemic drug delivery. The buccal 

administration route may for instance be used both for direct topical delivery of miconazole 

in the treatment of oral fungal infections [1, 2], and for systemic uptake of insulin in the 

treatment of Type I and Type II diabetes [3, 4]. Finally, different drug formulations or drug 

delivery systems (DDSs) may be used to modify the release profile, absorption, distribution, 

degradation or elimination of the active ingredient in the body to improve drug treatment. 

Conventional DDSs are associated with a number of limitations when it comes to 

facilitating drug absorption, accessing the target site and timing the therapeutic effect [5, 6]. 

As further addressed below, nanoparticles offer new possibilities in the search for the 

“ideal” DDS; a system that is able to deliver the correct amount of drug to the desired site of 

action, at the correct rate and time, without any undesirable side-effects.  

Polysaccharides are commonly used materials in the design of DDSs because they are 

generally regarded as biocompatible and biodegradable, and can possess other desired 

properties, such as the ability to adhere to the body’s mucosal linings. Polysaccharide based 

nanoparticles may hold the positive features of both nanoparticles and polysaccharides, and 

are suitable for both parenteral and mucosal administration of drugs [7-11].  

The work presented in this thesis is an initiating study on nanoparticles based on the 

mucoadhesive polysaccharides chitosan and pectin for potential use as DDSs for mucosal 

administration. The work has particularly aimed at investigating the challenges connected to 

preparation of ionically crosslinked nanoparticles at relatively high polysaccharide 

concentrations and the estimation of the nanoparticle compactness. 
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2 Introduction

2.1 Nanoparticles in drug delivery

2.1.1 Nanoparticles as drug delivery systems

Nanoparticles can be defined as particles of various shapes having a size in the range 1 to 

1000 nm. They can be comprised of both inorganic and organic constituents. This work, 

however, will focus on nanoparticles build up by organic materials, such as lipids, proteins, 

synthetic polymers and polysaccharides, with emphasis on the latter. Nanoparticles can act 

as drug delivery systems, having the drug entrapped in the interior structure, adsorbed to the 

surface, or covalently attached to the precursor materials [6, 11]. Since nanoparticles fall 

into the size range of macromolecular structures and proteins found inside living cells, they 

may take advantage of existing cellular machinery to deliver drugs [12].  

One fundamental property of nanoparticles renders them different from their bulk materials, 

and that is the large surface-to-volume ratio [13]. This property may be exploited in 

formulation of hydrophobic drugs, for which an increase in surface area will increase the 

drug dissolution rate and enhance absorption [14]. The nanoparticles can also be taken up 

directly by cells in the mucosa through endocytosis [15, 16]. The composition of the 

nanoparticles may further enhance drug permeation and absorption, for instance by 

transiently opening tight junctions to facilitate paracellular drug or particle absorption [17]. 

In a study of solid-lipid-nanoparticles loaded with the biopharmaceutical classification 

system Class II drug cyclosporine A, a significant improvement in systemic drug levels was 

found if compared to drug nanocrystals after oral administration in pigs [18, 19]. This 

illustrates both the effect of the nanoparticle size and the composition on the bioavailability 

of the hydrophobic drug.  

Certain pharmaceuticals such as proteins and peptides are easily degraded when 

administered orally and are often rapidly eliminated after intravenous injection [20, 21]. The 

incorporation of such pharmaceuticals in nanoparticles has therefore been exploited to 

protect them against premature physiological degradation and elimination [8, 16]. Cui et al. 

found for instance that PLGA (poly(D,L-lactide-co-glycolide)) nanoparticles containing 

hypromellose phthalate can protect insulin from the gastrointestinal environment, illustrated 
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by significantly reduced serum glucose levels after oral administration in rats, if compared 

with insulin solution [22]. 

Several physicochemical parameters may influence the biodistribution of nanoparticles after 

administration [23]. The penetration of nanoparticles through the protective gel layer 

covering the body’s mucosal linings is for instance dependent on the size and surface 

characteristics [24, 25]. Studies have shown that nanoparticles smaller than approximately 

200 nm can effectively diffuse through this gel layer, and that polystyrene nanoparticles 

coated with the uncharged hydrophilic polymer polyethylene glycol (PEG) penetrate more 

easily than uncoated polystyrene nanoparticles [26-28] . 

Similar effects of size and surface characteristics have been found for the in vivo 

distribution and circulation of nanoparticles after intravenous injection. Coating the 

nanoparticles with PEG can for instance reduce the degree of opsonisation and clearance of 

the nanoparticles through the reticuloendothelial system in the liver, spleen and bone 

marrow, leading to longer circulation times and possibly enhanced deposition at the desired 

site [29, 30]. Rigid, spherical particles with a size of 100-200 nm are usually considered 

having the highest potential for prolonged circulation, as they  are sufficiently large to avoid 

uptake in the liver and sufficiently small to avoid filtration in the spleen [29]. However, 

deformable soft nanoparticles of larger sizes may exhibit similar potentials [29]. 

Nanoparticles in the size range 100-200 nm are also attractive for passive targeting to 

tumors through the enhanced permeability and retention effect [30].   

The surface of the nanoparticles can also be modified with ligands for targeted delivery, for 

example by incorporation of folate to target human cancer cells with an over-expression of 

folate receptors [12, 29]. There is also increasing  interest in stimuli-responsive 

nanoparticles that can target or release the drug at a desired site or time upon exposure to 

various stimuli, such as physiological changes in pH or an externally applied magnetic field 

[13, 31, 32]. 

As shortly commented above, the fate of the nanoparticles in the human body is highly 

dependent on the physicochemical properties size, surface characteristics and 

deformability/compactness. These properties may also affect other important factors, such 

as the drug release profile [33-35] and the toxicity profile of the delivery system. It has for 

instance been reported that cationic nanoparticles can cause hemolysis and blood clotting, 
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while neutral and anionic nanoparticles are rather nontoxic [36]. The toxicity profile of the 

DDS is also linked to the properties of the precursor materials themselves [36]. The 

precursor materials and their possible degradation products should hence be biocompatible, 

and preferably biodegradable or able to be eliminated from the body to avoid accumulation 

and possible long-term toxicity. The size, charge and compactness of the nanoparticles also 

affect the colloidal stability in suspension [37-39], which can be of importance in the 

development of a final drug product suitable for commercialization.  

2.1.2 Nanoparticles andmucosal administration

Much effort has been put into developing nanoparticles for the mucosal administration of 

drugs (e.g., by the oral, buccal and nasal administration routes), aiming for either enhanced 

systemic uptake or improved effect locally. These mucosal routes can be advantageous as 

they are less invasive than parenteral routes and do not require the production of sterile 

DDSs. However, these routes have a natural degrading and protective function which 

complicates the drug formulation development. 

2.1.2.1 The mucus barrier 

The mucosal epithelial linings in the body consist of tightly bound cells and are covered 

with a mucus gel layer for protection against the external environment. This protective layer 

is mainly composed of crosslinked and entangled mucin fibers forming a viscoelastic 

hydrogel consisting of typically 90-98% water [24, 25]. The pore size of the mucus network 

depends on the mucosal site and disease state, and can be in the range 50-1800 nm [40]. The 

mucus gel also contains other proteins, enzymes, antibodies, carbohydrates, lipids, salts, 

bacteria, cells and cellular debris, and is continuously cleared and replaced by the body [24]. 

The protective character of the mucus layer makes a natural barrier for drug penetration to 

the underlying cells for local therapeutic effects or systemic absorption. Therefore, DDSs 

that are able to either penetrate into or adhere to the mucus are widely studied for 

prolonging the retention time of the drug in close proximity to the site of action or 

absorption. Prolonged retention time may lead to a sustained drug delivery and reduced 

dosage frequency, and possibly improve patient compliance. A schematic representation of 

possible interactions between DDSs and the mucus layer is given in Figure 2.1. The figure 

illustrates the possibilities of interaction by polymer entanglements between polymer chains 

in the DDS and the mucin fibers, and the penetration of nanoparticles through the pores of 

the mucus gel network. More specific interactions between the DDS and the mucin fibers 
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may also contribute to the mucoadhesion, such as hydrophobic associations, electrostatic 

interactions and covalent bonds [24, 25].  

The penetration of nanoparticles through the protective mucus layer is dependent on the 

particle size: it must be sufficiently small so that the particles can diffuse through the pores 

in the mucus mesh. Due to specific interactions with the mucus, conventional mucoadhesive 

nanoparticles generally penetrate the upper mucus layer only and do not easily reach the 

underlying epithelia [24, 25, 27, 28, 41]. A more novel approach to improve drug delivery at 

mucosal sites is to overcome the mucosal barrier by preparing mucus-inert nanoparticles 

that mimic the surface properties of viruses capable of diffusing in mucus as fast as in water 

[24, 25]. Hence, coating nanoparticles with uncharged and hydrophilic PEG of low-

molecular weight has been found to increase the extent of mucus penetration with respect to 

uncoated hydrophobic nanoparticles [26, 27].  

 

Figure 2.1 – Schematic representation of the interaction of DDSs with the mucus layer. Upper left: 
mucoadhesive nanoparticles penetrating into the luminal mucus layer and sticking to the mucin fibers 
through hydrophobic associations or electrostatic interactions. Lower left: mucus-inert nanoparticles 
penetrating to the more stagnant mucus layer. Upper right: a mucoadhesive tablet sticking to the surface 
of the mucus layer. [25] 

 

  



Introduction 

12 
 

To summarize, the potential advantages of nanoparticulate systems for improved delivery of 

drugs include 1) sustained maintenance of drug concentrations within the therapeutic 

window, 2) facilitation of administration of easily degradable agents, such as peptides and 

proteins, 3) decreased dosage frequency and possibly less invasive dosing, promoting 

patient compliance, 4) reduction of harmful side effects due to targeted delivery to a 

particular cell type or tissue, and 5) reduced manufacturing costs due to a reduction in the 

amount of drug needed or reduced microbiological requirements of the DDS [42]. These 

advantages must of course be balanced against 1) accumulation and toxicity of the materials 

or their degradation products, 2) unwanted rapid or burst release of the drug from the DDS, 

3) increased discomfort of the DDS, and 4) expense of the DDS due to sophisticated 

manufacturing procedures or expensive materials [42]. 

2.2 Polysaccharide based nanoparticles for mucosal administration

2.2.1 Polysaccharides

Polysaccharides are linear or branched long-chained molecules composed of repeating sugar 

units adjoined by glycosidic bonds. They are highly abundant in nature and generally have 

low processing costs [11]. They can be of algal, plant, microbial or animal origin, and are 

widely used in formulation of both conventional and novel DDSs. Common examples of 

polysaccharides used in drug delivery are alginate, chitosan, hyaluronic acid, pectin and 

cellulose derivatives, such as hydroxyethyl cellulose and carboxymethylcellulose. 

Polysaccharides come in a wide range of molecular weights and chemical compositions, and 

can be divided into polyelectrolytes or non-polyelectrolytes, depending on the presence of 

ionizable functional groups. Due to a large number of reactive groups, most typically 

hydroxyl groups, they can easily be modified chemically and biochemically. This feature 

can be exploited in drug delivery, e.g., by conjugating drugs to the polysaccharides for 

sustained release, or by attaching ligands for targeting to a desired site.  

Polysaccharides are hydrophilic in nature and may form macroscopic hydrogels at 

sufficiently high concentrations (above the overlap concentration) in the presence of cross-

linkers or other substances inducing polymer-polymer interactions [7, 43]. The 

conformation of the polysaccharides in solution and the gelling properties are dependent on 

the balance between solvent-solute, solute-solute and solvent-solvent interactions, and is 

thus usually dependent on the solvent properties and the presence of co-solutes. 
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Polysaccharides are generally regarded as biocompatible, biodegradable and non-

immunogenic, and hence safe materials for drug delivery. However, some conflicting results 

have been reported for the polysaccharide chitosan [44]. Another drawback of 

polysaccharides for drug delivery purposes is the potentially significant batch-to-batch 

variation due to their natural origin. 

The degradation of polysaccharides in vivo is generally due to hydrolytic and enzymatic 

cleavage of the glycosidic bonds, and is highly dependent on the site of administration. 

Polysaccharides like pectin and chitosan are for instance enzymatically degraded by the 

bacteria in the colon, but to a small extent in the small intestine [17, 45, 46]. Hence, DDSs 

based on chitosan and pectin for possible drug targeting to the colon have been investigated 

[46-49]. Furthermore, polysaccharides, such as hyaluronic acid can be used for active 

targeting to cells expressing carbohydrate-binding cell-surface receptors [10, 50]. Several 

polysaccharides, like alginate and chitosan also possess mucoadhesive properties that can be 

exploited in mucosal delivery of drugs [51]. 

2.2.2 Preparation of polysaccharide based nanoparticles

Polysaccharide based nanoparticles can be prepared by different preparation methods, which 

can be divided into four categories: (1) covalent crosslinking, (2) ionic crosslinking, (3) 

polyelectrolyte complexation, and (4) self-assembly [11]. The different methods are briefly 

introduced below. The drug can either be physically entrapped during nanoparticle 

formation, covalently attached to the precursor materials, or absorbed or adsorbed to the 

nanoparticles post-preparation. Nanoparticles are often unstable in suspension, and as a final 

step, the nanoparticles are therefore often freeze-dried (in the presence of a suitable 

cryoprotectant) to extend their shelf-life [52]. The nanoparticles can be resuspended in a 

proper medium before administration. Another approach for extending the shelf-life is 

spray-drying into a microparticulate powder [52], which can be suitable for direct 

administration by inhalation or compression into tablets.  

Covalent crosslinking 

Nanoparticle preparation by covalent crosslinking involves the introduction of covalent 

bonds between the polysaccharide chains. This enables preparation of relatively robust 

nanoparticles, but is often avoided due to possible undesired side-reactions with the active 

ingredient and the toxicity of the crosslinker agents employed [7, 53]. However, 
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biocompatible crosslinkers like natural di- and tricarboxylic acids have been used to prepare 

biodegradable chitosan nanoparticles by the aid of the water soluble condensation agent 

carbodiimide [11, 54]. The condensation reaction involves the carboxylic groups of the 

natural acids and the amine groups of chitosan.  

Ionic crosslinking 

Ionic crosslinking (also called ionotropic gelation) is usually considered more advantageous 

than covalent crosslinking due to milder conditions and simpler experimental procedures. 

Under appropriate experimental conditions (i.e., suitable pH and dilute concentrations of 

precursor materials), nanoparticles can be prepared by ionically crosslinking 

polyelectrolytes with multivalent ions of opposite charge [11, 52, 53]. Nanoparticles based 

on alginate can for instance be prepared by crosslinking the ionized carboxyl groups on the 

alginate chains with Ca2+-ions in aqueous media [55]. The most widely studied 

nanoparticles prepared by this method are perhaps chitosan nanoparticles crosslinked with 

tripolyphosphate (TPP), which was first reported by Calvo et al. in 1997 [11, 56]. TPP is a 

generally recognized as safe (GRAS) substance by the Unites States Food and Drug 

Administration (FDA) [57] and is negatively charged over a wide pH range. It can thus 

electrostatically interact with the protonated and positively charged amine groups of 

chitosan to form nanogels or nanoparticles. The crosslinking process can also be 

accompanied by other secondary inter-chain interactions, such as hydrogen bonding 

between chitosan’s hydroxyl groups [7]. Parameters that potentially affect preparation of 

nanoparticles by ionic crosslinking includes the ionic strength of the solvent [58], the type 

[11] and molecular weight [59, 60] of polysaccharide, the polysaccharide concentration [61, 

62], the crosslinker to polysaccharide ratio [63, 64], the pH [65, 66], and the mixing 

conditions [67, 68]. Ionically crosslinked nanoparticles can be considered less robust than 

covalently crosslinked nanoparticles, due to differences in bond strength [69]. 

Polyelectrolyte complexation 

Polysaccharides with a polyelectrolyte character can form complexes with oppositely 

charged polymers through intermolecular electrostatic interaction. Chitosan is widely used; 

being one of the few positively charged polysaccharides. Other polysaccharides require 

chemical modification with for example oligo- or polyamines to obtain extensive positive 

charge. A common example of polyelectrolyte complexation is the interaction of chitosan 
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with negatively charged alginate [11]. Chitosan can also form polyelectrolyte complexes 

directly with negatively charged macromolecular drugs, such as nucleic acids [10, 70]. The 

mechanism for particle formation involves non-covalent, electrostatic interactions, but 

nanoparticles prepared by this mechanism may be more robust than ionically crosslinked 

particles due to the large portion of the polysaccharides involved in the complex formation 

[7]. 

Self-assembly 

Polysaccharides with an amphiphilic character can spontaneously form nanoparticles in the 

form of micelles or polymer aggregates in an aqueous environment. The micelle formation 

takes place at concentrations above the critical micellar concentration. The underlying 

mechanism consists of inter and intra molecular associations between hydrophobic parts on 

the polysaccharide chains to minimize the interfacial free energy [11]. The particles can 

exhibit a core-shell structure with a hydrophobic core and a hydrophilic shell. 

Polysaccharides are generally hydrophilic, but can naturally possess some hydrophobic parts 

or be hydrophobically modified to facilitate self-assembly. Chitosan has for instance been 

modified with the long-chained acid linolenic acid to increase the amphiphilic character of 

the polysaccharide [71]. There has been some debate of the suitability of such self-

assembled nanoparticles for drug delivery purposes, due to the possible loss of particle 

integrity upon dilution after administration [72]. 

The nanoparticle preparation may also be a mixture of the different methods. Nanoparticles 

can for instance be prepared by covalent crosslinking and subsequently coated with a 

polysaccharide of opposite charge through polyelectrolyte complexation on the particle 

surface.  

2.2.3 Polysaccharide based nanoparticles as drug delivery systems

This work focuses on the polysaccharides chitosan and pectin due to these materials’ 

intrinsic mucoadhesive properties and their ability to form nanoparticles in the presence of 

oppositely charged multivalent ions. Moreover, the difference in polyelectrolyte character of 

chitosan (positive) and pectin (negative) can facilitate incorporation of both negatively and 

positively charged drugs, thus enhancing the versatility of the polysaccharide based 

nanoparticulate DDSs. 
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2.2.3.1 Chitosan and chitosan based nanoparticles 

Chitosan is obtained by deacetylation of the naturally occurring polysaccharide chitin, a 

structural component in the exoskeleton of arthropods and in the cell wall of fungi and yeast 

[17]. The main commercial sources of chitin and chitosan are crab and shrimp shells. 

Chitosan is composed of -1,4-linked glucosamine and N-acetyl-D-glucosamine units, and 

is mainly characterized by the amount of deacetylated units and by its molecular weight. 

The degree of deacetylation (DDA) usually ranges from 70 to 95%, while the molecular 

weight varies widely from 10 to 1000 kDa [73].  

The pKa value of chitosan has been reported to be approximately 6.3 6.6, and is affected by 

the DDA [17, 74, 75]. Chitosan is thus readily soluble in an acidic environment due to 

protonation of the amine groups and exhibits a polyelectrolyte character in solution. The use 

of acidic solvents can be avoided by utilizing water soluble quaternized or salt derivatives of 

chitosan. Several other derivatives of chitosan have also been synthesized to modulate its 

physical and biochemical properties [17, 76]. Thermosensitive chitosan derivatives have for 

instance been prepared by grafting poly(N-isopropyl-acrylamide) onto the chitosan chains 

[77]. Chitosan can be depolymerized and thermally degraded by hydrolytic cleavage, and is 

enzymatically degraded in the human body by lysozyme and in the colon by bacterial 

enzymes [17, 78].  

Chitosan is generally regarded as biocompatible and biodegradable, exhibiting low 

cytotoxicity [17, 79]. Hence, chitosan is a suitable material for DDSs, but it is far from 

being an inert excipient. It may give an immunogenic response and has, among more, been 

found to exhibit antibacterial, antifungal, antioxidant and anticancer activity [53, 79-81]. 

Moreover, chitosan has mucoadhesive properties and the ability to transiently open tight-

junctions to facilitate paracellular uptake of drugs [17, 76]. Chitosan is highly suitable for 

the delivery of negatively charged macromolecular drugs through mucosal administration 

routes. This is not only due to the possibility of drug encapsulation by electrostatic 

interactions between the positively charged chitosan and the negatively charged drugs, but 

also due to chitosan’s ability to adhere to mucus and transiently opening tight-junctions. 

Chitosan based nanoparticles are perhaps the most widely studied polysaccharide 

nanoparticles. They have been studied for delivery of both low and high molecular weight 

drugs at various administration routes [53, 70, 82]. For instance, Wang et al. studied the 

potential of using nanoparticles composed of the chitosan derivative chitosan-N-acetyl-L-
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cysteine (chitosan-NAC) for systemic administration of insulin through the nasal route. 

They found that intranasal administration of chitosan-NAC nanoparticles in rats enhanced 

the absorption of insulin compared with unmodified chitosan nanoparticles and insulin 

solution [83].  

In a study aiming at direct nose-to-brain targeting of estradiol, Wang et al. found that 

estradiol-loaded chitosan nanoparticles prepared by ionotropic gelation with TPP resulted in 

significantly increased drug levels in the cerebrospinal fluid after nasal administration if 

compared to intravenously administered nanoparticles [84]. Moreover, metronidazole 

containing chitosan nanoparticles for colon-specific delivery was evaluated in vitro by 

Elzatahry and Mohy Eldin and were found to exhibit excellent mucoadhesive properties and 

the ability to control the drug release over a period of 12 hours [85].  

The versatility and positive charge of chitosan nanoparticles render them a natural choice in 

studies on polysaccharide based nanoparticles for potential use as DDSs for mucosal 

administration.  

2.2.3.2 Pectin and pectin based nanoparticles 

Pectin is a class of complex polysaccharides found in the cell wall of higher plants, and is 

widely used in the food industry as gelling and thickening agents. Pectins have a very 

complex and heterogeneous structure and consist primarily of homogalacturonan regions 

composed of repeating alpha-1,4-D-galacturonic acid units [47, 86, 87]. These so-called 

“smooth” regions are attached to “hairy regions” built up by alternating 1,2-linked alpha-D-

galactose and alpha-L-rhamnose units. The hairy regions are highly branched with neutral 

arabinan, galactan and arabinogalactan side chains. Pectins are generally divided into two 

main categories, depending on the degree of methylesterified carboxyl groups (DE): high-

methoxylated pectin (HM-pectin) with a DE above 50%; and low-methoxylated pectin (LM-

pectin) with a DE below 50%. LM-pectin can also be modified by amidation [47], resulting 

in amidated low-methoxylated pectin (AM-pectin). The pKa value of the carboxyl groups of 

pectin is around 3.5 [86], and pectins are thus negatively charged at physiological pH (~7) 

and at most mucosal sites. 

Pectins can be hydrolytically cleaved and degraded by bacterial enzymes in the colon [46, 

87]. Pectins are generally considered biocompatible and biodegradable exhibiting low-

toxicity, but as for chitosan, pectins are not completely inert excipients. They have for 
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instance been shown to exhibit mucoadhesive properties and the ability to target cancer cells 

expressing lectin receptors (which can bind to the galactose rich side chains of pectins) [10, 

46, 47]. It should be noted that pectin was previously considered a poor mucoadhesive [88], 

however, more recent studies indicate the opposite [89-91].   

Pectin nanoparticles are much less studied than chitosan nanoparticles. This may be linked 

to both the abundance of other negatively charged polysaccharides and the fact that pectin 

has a rather complex structure. However, a few promising studies can be mentioned. 

Opanasopit et al. found for instance that ionically crosslinked pectin nanoparticles have 

potential use as safe gene delivery vectors [64]: The plasmid DNA-loaded Ca-pectinate and 

Mg-pectinate nanoparticles prepared had the ability to transfect a human hepatoma cell line 

with low cytotoxicity. In another study by Sharma et al. [92], thiolated pectin nanoparticles 

where found to increase the ex vivo corneal permeation of the encapsulated drug, timolol 

maleate, if compared to a conventional solution dosage form. Moreover, Cheng and Lim 

showed that insulin can be incorporated into pectin nanoparticles crosslinked with calcium 

ions [93]. These particles were proposed for systemic delivery of insulin through the upper 

part of colon, which somewhat resembles the natural delivery route of physiological insulin 

[93]. 

Pectin based nanoparticles are promising DDSs as they, among more, may possess both 

mucoadhesive properties and targeting abilities. As opposed to chitosan nanoparticles, 

pectin based nanoparticles are negatively charged and less extensively studied in the 

literature. These considerations make pectin nanoparticles good candidates for studies on 

polysaccharide based nanoparticles for drug delivery applications.   
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3 Aim of the thesis

In the search for improved drug delivery systems, the understanding of the system’s 

preparation and physicochemical characteristics is essential. Consequently, the overall aim 

of this thesis was to study the possibility to prepare nanoparticles from chitosan and pectin 

by ionotropic gelation and to investigate their physicochemical characteristics and 

properties.  

The specific objectives of the studies were: 

 To investigate parameters that can affect the particle preparation and important 

physicochemical properties, such as the particle size, charge and compactness 

 To develop a method for the estimation of the compactness of the nanoparticles 

 To investigate the stability of the nanoparticles in suspension 

 To investigate the potential mucoadhesive properties of the nanoparticles 
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4 Summary of papers

4.1 Paper I

This paper describes a method based on the Mie theory for determining the local polymer 

concentration inside spherical nanoparticles (cNP). The method can be used to obtain vital 

information about the compactness of nanoparticles in suspension, i.e., the degree of particle 

swelling. In addition, the method can be used to calculate the number density of the 

particles, the molecular weight of the particles, and (if the number average molecular 

weight, Mn, of the polymer is known) the aggregation number of polymer chains inside the 

nanoparticles (Nagg). The calculations are based on the relationship between the size of the 

nanoparticles and the turbidity of the sample. The method was experimentally tested on 

chitosan nanoparticles prepared by crosslinking chitosan with tripolyphosphate (TPP) in 

aqueous media (0.10 M NaCl). It was found, as expected, that the compactness of the 

particles increased with the crosslinking density (i.e., the TPP concentration). 

4.2 Paper II

In this paper, several combinations of chitosan nanoparticles were prepared by ionotropic 

gelation of chitosan with TPP in aqueous media. The effects of the ionic strength of the 

solvent (0, 0.05 and 0.15 M NaCl) employed in the particle preparation on the average size 

and compactness of the particles were investigated. In addition, the effects of the chitosan 

chloride concentration (0.05 and 0.10%) and the crosslinker to polysaccharide ratio (5:95, 

10:90, 15:85 and 20:80) on the particle characteristics were studied. The chitosan-TPP 

nanoparticles were characterized by dynamic light scattering, zeta potential, and turbidity 

measurements. The compactness of the nanoparticles was estimated by using the method 

reported in paper I.  

All the investigated preparation parameters, i.e., the ionic strength of the solvent, the 

chitosan concentration and the TPP to chitosan ratio, affected the particle characteristics. If 

compared to particles prepared in pure water, smaller and more compact particles were 

formed in the presence of sodium chloride. It was also observed an increase in the average 

particle size with an increase in the chitosan concentration, however, only moderate changes 

in the average particle size were found with increasing TPP to chitosan ratios. The particle 

compactness increased with higher solvent salinity and TPP to chitosan ratios, while no 
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differences in the compactness of the particles prepared at low and high chitosan 

concentration were observed when a moderate amount of TPP was employed. 

4.3 Paper III

In this paper, the physical stability of chitosan nanoparticles crosslinked with TPP was 

investigated over a period of one month. Special emphasis was placed on changes in the 

particle size and the particle compactness. The chitosan-TPP particles were prepared at 

different ionic strengths (0, 0.05 and 0.15 M NaCl), chitosan chloride concentrations (0.05 

and 0.10%) and TPP to chitosan ratios (5:95, 10:90, 15:85 and 20:80). In the presence of 

monovalent salt, the positive zeta potential of the particles was reduced. In spite of this, the 

particles were more stable when prepared and stored under saline conditions compared to 

pure water. This could be attributed to the smaller particle sizes found in the presence of 

sodium chloride. Most of the particles prepared in saline solvents were stable with respect to 

changes in the size and the compactness of the particles. However, instability was observed 

at the highest crosslinker to polysaccharide ratios. Generally, a reduction in the zeta 

potential and an increase in the particle compactness were observed at increasing TPP to 

chitosan ratios (paper II). This combined with the size increase induced by a high 

concentration of chitosan, increased the aggregation and sedimentation tendency of the 

particles and reduced the colloidal stability of these particles. 

4.4 Paper IV

In this paper, nanoparticles were prepared by ionotropic gelation of low-methoxylated (LM) 

and amidated low-methoxylated (AM) pectin with zinc chloride (ZnCl2) in aqueous media. 

The samples were characterized by atomic force microscopy, dynamic light scattering, 

turbidimetry, zeta potential and pH measurements. Negatively charged pectin nanoparticles 

could be prepared at a pectin concentration of 0.07% and a ZnCl2 to pectin ratio of 15:85 in 

the presence of sodium chloride (0.05 M), but not in pure water. Interestingly, particles in 

the nanometer size-range could also be prepared in the absence of the crosslinker ZnCl2. 

The AM-pectin nanoparticles were much less polydisperse than the LM-pectin 

nanoparticles, and hence considered more promising as a potential drug delivery system.  

Further studies were performed to investigate the colloidal stability and the effect of the 

pectin concentration on the size, charge and compactness of the AM-pectin nanoparticles. 

These studied showed that the self-associated AM-pectin nanoparticles (prepared in the 
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absence of ZnCl2) were stable for one month of storage, while the crosslinked AM-pectin 

nanoparticles were stable for one week. This difference in colloidal stability could be 

attributed to the reduced absolute zeta potential values of the crosslinked nanoparticles. 

Increasing AM-pectin concentrations from 0.03 to 0.07% resulted in a size increase of the 

self-associated nanoparticles, but not of the crosslinked nanoparticles. This lack in size 

increase was connected with an increase in particle compactness of the crosslinked 

nanoparticles with increasing AM-pectin concentrations.  



 Experimental considerations 

23 
 

5 Experimental considerations
Experimental considerations and descriptions of the main materials and methods used in 

papers I-IV are given in this section. Further details can be found in the individual papers. 

The in vitro interaction studies between two selected nanoparticle formulations and mucin 

are, however, only described herein.  

5.1 Materials

Both chitosan and pectin possess mucoadhesive properties and the ability to gel in the 

presence of multivalent ions of opposite charge. However, chitosan is positively charged 

(below pH ~6.5) and a rather well-studied polysaccharide for preparation of nanoparticles, 

while pectin is negatively charged (above pH ~3.5) and much less studied. These 

considerations formed the basis for the choice of pectin and chitosan for preparation of 

nanoparticles with potentially similar, yet different properties.  

Table 5.1 – Materials 
Mw = Weight average molecular weight; Mn = Number average molecular weight; DDA = Degree of 
deacetylation; DE = Degree of esterification; DA = Degree of amidation; GalA = Galacturonic acid; Rha = 
Rhamnose 
* % of total carbohydrate content (data published by Smistad et. al [94]) 
# simplified structure, see [94]and section 2.2.3.2 for a more comprehensive description of the pectin structure 

Polysaccharide Specific properties Molecular structure Paper

I, II, III

 

IV

IV

Crosslinker

I, II, III

IV
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An overview of the types of polysaccharides and crosslinkers used in the different papers 

are given in Table 5.1.  

The hydrochloride salt of chitosan was chosen because it is embedded in the European 

Pharmacopeia and water soluble. Moreover, chitosan with a high DDA (83%) was used to 

ensure sufficient protonation and interaction with the anionic crosslinker. The crosslinker 

salt chosen for preparation of chitosan nanoparticles was the pentasodium salt of 

tripolyphosphate, which is generally recognized as safe by the FDA [57].  

Pectin with low DE was chosen since this type can easily gel in the presence of divalent 

cations [46, 95]. An amidated form of low-methoxylated pectin was also included to 

potentially adjust the properties of the nanoparticles prepared. Zinc ions have been applied 

as an alternative to calcium ions in the preparation of macroscopic pectin gels [91] and can 

also be used as an active ingredient, for instance in the treatment of bad breath [96]. The 

crosslinker chosen for the preparation of ionically crosslinked pectin nanoparticles was 

therefore zinc chloride.  

Table 5.2 – Overview of parameters used in the particle preparation 
PS = Polysaccharide; CL = Crosslinker; NP = Nanoparticle ; TPP = Tripolyphosphate 

Paper Type of
PS

Type of
CL

Solvent PS conc.

(%, w/w)

PS to CL ratio

(w:w)

Batch size
of NP

dispersion
(g)

Total
stirring
time
(min)

I

II

III

IV

IV
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5.2 Methods

5.2.1 Particle preparation by ionotropic gelation

Ionotropic gelation by crosslinking charged polymer chains with oppositely charged 

multivalent ions is a simple and fast technique for the preparation of nanoparticle 

dispersions. In this thesis, the ionotropic gelation was performed by adding a fixed amount 

of crosslinker solution drop-wise to a fixed amount of dilute polysaccharide solution under 

magnetic stirring (see illustration in Figure 5.1). The speed of crosslinker addition (pump 

speed = 25 rpm), the size of the magnetic bar (20 × 6 mm) and the magnetic stirring speed 

(550 rpm) were kept constant in all papers. The particles were prepared at different 

polysaccharide concentrations in water with varying amounts of sodium chloride, and at 

different crosslinker to polysaccharide ratios, as given in Table 5.2. The pectin nanoparticles 

were only prepared at a sodium chloride concentration of 0.05 M because the preliminary 

results (performed on LM-pectin) at high concentrations (0.15 M) were unsatisfactory. The 

batch size (and the vial size) might affect the stirring conditions and thus also the properties 

of the nanoparticles. The batch size in papers II-IV was therefore kept constant to better 

compare the different particles prepared, and accordingly the amounts of crosslinker 

solution (15 g) and polysaccharide solution (60 g) prior to mixing were also kept constant. 

Borosilicate glass vials for injection were used in all papers (50 mL in paper I; 100 mL in 

papers II-IV). It should be noted that the tubing used in paper IV had a wider inner diameter, 

resulting in a faster addition of the crosslinker solution (approximately 8 g/min vs. 3.5 g/min 

in papers I-III), which might affect the crosslinking process.  

 

Figure 5.1 – Schematic illustration of the particle preparation. 
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5.2.2 Dynamic light scattering

Dynamic light scattering is a non-invasive and well-established technique for measuring 

size and size distributions of particles in the submicron region, and can also be used to study 

the behavior of complex fluids, such as concentrated polymer solutions. A schematic 

illustration of the passage of light in DLS experiments is given in Figure 5.2.  

 

Figure 5.2 – Schematic illustration of the passage of light in DLS experiments. 

The principle of DLS size measurements relies on the fact that the Brownian motion of 

suspended particles will cause time dependent fluctuations in the intensity of the scattered 

light. These fluctuations are recorded at different scattering angles ( ) or wave vectors (q) 

and expressed in terms of autocorrelation functions. The wave vector is defined as 

q=4 nsin( /2)/ L, where L is the wavelength of the incident light in vacuum,  is the 

scattering angle, and n is the refractive index of the sample. Assuming that the scattering 

field obeys Gaussian statistics, the experimentally measured homodyne intensity 

autocorrelation function g2(q,t) in DLS measurements is directly linked to the theoretically 

amenable first-order electric field autocorrelation function, g1(t), through the Siegert 

relationship [97]: 212 )(1),( tgBtqg += , where B (  1) is an instrumental parameter and t 

is the time. The mean relaxation time ( f) and the mutual diffusion coefficient (D) of the 

particles can be derived from the autocorrelation functions. Assuming that the particles are 

compact spheres, the mean hydrodynamic radius, Rh, of the particles can be calculated from 

D using the Stokes-Einstein relationship: 

D
TkR B

h πη6
=  

where kB is the Boltzmann constant, T is the absolute temperature, and  is the viscosity of 

the solvent at the given temperature. 



 Experimental considerations 

27 
 

In this thesis, two different light scattering instruments were used: an ALV/CGS-8F 

Compact Goniometer System from ALV-GmbH, Germany (papers I-IV), and a Zetasizer 

Nano NZ from Malvern Instruments Ltd., UK (paper IV). The ALV-goniometer is equipped 

with a 22 mW He-Ne-laser, operating at a wavelength of 632.8. The intensity of the 

scattered light can be measured at 8 different angles simultaneously, and any angular 

dependency of the calculated Rh can thus easily be checked. The Zetasizer Nano NZ is 

equipped with a 4 mW He-Ne-laser (operating at a wavelength of 632.8) and uses non-

invasive back-scattering detection at a fixed angle of 173°. The fixed detection angle 

precludes the control of any angular dependency of the calculated Rh. 

In papers I-IV, the g1(t) functions obtained from the ALV goniometer were fitted to a 

stretched exponential function [ ]βτ )/(exp)(1
fettg −= , where fe is an effective relaxation 

time and  is a fitting parameter (0 <   1). The value of  gives an indication of the 

distribution width of the relaxation times and thus the size distribution (monodisperse 

samples have a  value close to 1). The mean relaxation time ( f) was calculated through the 

following relationship: 
ββ

τ
τ 1Γ= fe

f , where (1/ ) is the gamma function. In all papers, the 

relaxation times were found to be diffusive ( f ~ q-2), and the mutual diffusion coefficients 

were thus obtained from the following expression: D = 1/( f q2). Finally, the apparent, mean 

Rh of the particles was calculated using the Stokes-Einstein relationship given above. The 

average Rh values reported were obtained by calculating the arithmetic mean of multiple 

measurements (n = 3-4) on the same batch. 

In paper IV, the ALV goniometer was primarily used on representative samples to check the 

angular dependency of the Rh and to confirm that f ~ q-2. The Rh and polydispersity index 

(PDI) values reported in paper IV were thus obtained from experiments performed on the 

Zetasizer Nano NZ. The general purpose fitting method in the Zetasizer software was 

chosen for the calculation of the mean Rh values, since this fitting method gives values that 

are comparable to the ones obtained from experiments on the ALV goniometer [98]. The 

mean Rh value of each batch was calculated from multiple measurements (n > 3) by the 

Zetasizer software. The average Rh values reported were obtained by calculating the 

arithmetic mean of separate batches (n = 2-3). The PDI is a measure of the size distribution 

with values in the range 0 to 1. Monodisperse samples have a PDI value less than 0.1, while 

PDI values greater than 0.7 indicate a very broad size distribution. 
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5.2.3 Zeta potential measurements

The zeta potential is a common measure of the magnitude of the electrostatic charge of 

particles in dispersion, and is highly relevant in stability studies of nanoparticle suspensions. 

Generally, zeta potentials above an absolute value of 30 mV are considered necessary to 

ensure good colloidal stability [99-101]. 

Charged particles in aqueous dispersion are surrounded by ions in an electric double layer. 

This liquid double layer consists of an inner region (Stern layer) with relatively strongly 

bound counter-ions, and an outer region with less firmly associated ions. The zeta potential 

is the electric potential at the slipping plane (see Figure 5.3), i.e., at the surface of the 

stationary liquid double layer. 

 

Figure 5.3 – Schematic illustration of a negatively charged particle in aqueous media 

Zeta potential measurements on particle dispersions are commonly performed by 

electrophoresis, which is based on the migration of charged particles when exposed to an 

electric field. The velocity of the migrating particles can be measured by Laser Doppler 

velocimetry, in which the frequency shift or phase shift of an incident laser beam caused by 

the moving particles is used to calculate the electrophoretic mobility, UE, of the particles. 

The zeta potential ( ) can then be calculated from the Henry equation: 

)(
3

2 KafU E η
εζ=  
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where  and  are the viscosity and the dielectric constant, respectively, of the solvent at a 

given temperature. The Smoluchowski approximation to Henry’s function (f(Ka) = 1.5) was 

applied in all papers (II-IV). 

In this thesis, two similar instruments measuring the zeta potential by electrophoresis and 

Laser Doppler velocimetry were used (both from Malvern Instruments Ltd., UK): Malvern 

Zetasizer 3000HSA (papers II and III) and Zetasizer Nano NZ (paper IV).  

5.2.4 Turbidity measurements

Turbidity is a measure of a sample’s ability to hinder the passage of light. Consequently, the 

turbidity of a nanoparticle dispersion is affected by the number and the size of the particles 

present, and by the difference in refractive index between the particles and the solvent. 

Turbidity measurements can be conducted by the means of a spectrophotometer. In contrast 

to DLS measurements, where the scattered light intensity is detected, it is the transmitted 

light intensity that is detected in turbidity measurements. The turbidity can be calculated 

using the following expression (Lambert-Beer’s law): 

−=
0

ln1
I
I

L
tτ  

where L is the light path length in the sample cell, It is the intensity of the light transmitted 

through the sample, and I0 is the intensity of the light transmitted through the solvent.  

In this thesis, a temperature controlled Helios Gamma spectrophotometer from Thermo 

Spectronic, UK, was used for the turbidity measurements. 

5.2.5 Determination of the particle compactness

The determination of the compactness of nanoparticles in suspension, or the degree of 

particle swelling, can be difficult to perform experimentally. In paper I, a theoretical method 

was developed to overcome these difficulties. The method combines data from DLS and 

turbidity measurements to calculate the local polymer concentration inside nanoparticles, 

cNP, which can be used as a measure of the particle compactness. Accordingly, increasing 

cNP values correspond to higher particle compactness. 
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The cNP can be calculated through the following expression (paper I):  

( ) ( )( )−−−= NP
NP

NP
NPhNP

t wc
wc

wc
wcRc

c
cos11sin21

2
3τ  

where  is the turbidity of the nanoparticle suspension, Rh is the hydrodynamic radius of the 

particles, ct is the total polymer concentration in suspension, and 
0

)/(4
n

dcdnR
w

T

h

λ
π

= , where 

n0 is the refractive index of the solvent, T is the wave length at which the turbidity 

measurements were performed, and dn/dc is the refractive index increment of the polymer. 

The method is developed for spherical, monodisperse particles, and the total polymer 

concentration that exists in the form of nanoparticles must be known. These considerations 

could be assumed for the crosslinked nanoparticles prepared in the presence of sodium 

chloride, since f ~ q-2 indicated spherical particles, and since the relatively high crosslinker 

concentrations and ionic strength promoted polysaccharide aggregation and narrow size 

distributions (paper II and IV). It should be noted that the method is not suitable for the 

estimation of the cNP of core-shell nanoparticles with distinctly different refractive indices of 

the core and shell, since such particles will exhibit a more complex scattering profile. 

5.2.6 Interaction studies with mucin

In order to evaluate the nanoparticles’ potential mucoadhesive properties, an in vitro 

interaction test with mucin1 was performed on two nanoparticle formulations, one made 

from chitosan and one made from AM-pectin. The nanoparticles chosen were prepared in 

0.05 M NaCl at a crosslinker to polysaccharide ratio of 15:85 (w:w) and at a polysaccharide 

concentration of 0.05% (w/w). 

The method reported by Klemetsrud et al. [98] was used, with small modifications. Shortly, 

5 mL of a 0.10% (w/w) solution of mucin in 0.05 M NaCl was added drop-wise to 10 mL of 

nanoparticle suspension under magnetic stirring. The resultant mixtures were evaluated 

visually and, if suitable, by DLS, turbidity and zeta potential measurements the following 

day. Controls were prepared by mixing the mucin solution and the nanoparticle suspensions 

with 10 and 5 mL of 0.05 M NaCl, respectively. 

                                                 
1 Water soluble mucin from bovine submaxillary glands, type I-S, used as received (Sigma-Aldrich, USA). 
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6 Main results and discussion

6.1 Preparation of nanoparticles

The first objective of this study was to investigate parameters affecting the preparation of 

nanoparticles based on the polysaccharides chitosan and pectin. The nanoparticle 

preparation method chosen was ionotropic gelation, which is considered a simple and mild 

technique suitable for scaling up [53, 68]. To assure formation of nanoparticles, the 

ionotropic gelation should be performed at dilute polysaccharide concentrations [52], 

avoiding extensive polymer chain overlap  and hence formation of larger particles or a 

macroscopic gel. The conformation and the extent of chain overlap of polysaccharides in 

solution are dependent on the type and concentration of polysaccharide, the solvent 

properties and the thermodynamic conditions. For the polyelectrolytes chitosan and pectin, 

the conformation in aqueous media is naturally dependent on their pKa values and the pH. 

At a pH supporting ionization of the amine and carboxyl groups on chitosan and pectin, 

respectively, the polysaccharide chains will have an extended conformation in pure water 

due to charge repulsion between the ionized groups [87, 102]. 

 
Figure 6.1 – Proposed conformation of charged polysaccharide chains in (a) pure water, and (b) 0.05 M 
NaCl, and crosslinked polysaccharide chains in (c) water and (d) 0.05 M NaCl. Junction zones are given 
in red. 
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The easiest way to minimize the overlap between the polysaccharide chains is to reduce the 

polysaccharide concentration below the overlap concentration. The major drawback of 

doing this is that the total batch volume will increase with respect to the amount of particles 

formed. This may pose problems considering both the sensitivity limitations in the 

characterization techniques and an eventual up-scale of the particle preparation. This is 

especially the case if working with charged polyelectrolytes in pure water, having an 

extended conformation in solution.  

Another way of reducing the extent of overlap of the polysaccharide chains is to add 

monovalent salt. Monovalent salts present in sufficient amounts can reduce the electrostatic 

repulsion between the charged groups, thus promoting contraction of the polysaccharide 

chains and reduced chain overlap [103]. In this way, a smaller total batch volume will be 

required to obtain the same amount of nanoparticles. Furthermore, if the particles are 

prepared at an ionic strength similar to that of physiological fluids they are more likely to 

maintain their integrity when administered to the patient. Increasing the ionic strength 

during the particle preparation can, however, be a drawback in cases where a significant 

ionic interaction between the carrier and the encapsulated substances is required during the 

particle preparation. A schematic representation of the proposed conformation of charged 

polysaccharide chains in pure water and in the presence of 0.05 M NaCl is given in Figure 

6.1, along with the proposed effects on the ionic crosslinking process.  

  
 Figure 6.2 – The average Rh of chitosan nanoparticles one day after particle preparation. Connection 
lines between the symbols are given in order to guide the eyes. Samples in which particle sedimentation 
was observed are omitted from the figure. The standard deviations of Rh are equal to or smaller than the 
size of the symbols. 
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In paper II and IV, the preparation of ionically crosslinked chitosan (paper II) and pectin 

(paper IV) nanoparticles was investigated in detail. With the effects on the polysaccharide 

conformation kept in mind, it was initially hypothesized that the nanoparticle preparation 

would be greatly affected by the ionic strength of the solvent. Additionally, two preparation 

parameters that were both easily adjustable and likely to affect the particle characteristics 

were investigated: the polysaccharide concentration [61, 62, 67] and the crosslinker to 

polysaccharide ratio [60, 62, 64].  

Preliminary experiments indicated that the formation of pectin nanoparticles was more 

sensitive to changes in the preparation parameters than the chitosan nanoparticles. 

Accordingly, different experimental set-ups for the preparation of the chitosan and the 

pectin nanoparticles were chosen. The main differences in the preparation parameters were 

the sodium chloride concentration and the crosslinker to polysaccharide ratio, which were 

varied in the paper on chitosan nanoparticles (paper II), but kept constant in the paper on 

pectin nanoparticles (paper IV). Moreover, the effect of chitosan concentration was 

investigated in paper II, while the pectin concentration was (initially) kept constant in paper 

IV. 

It was found that chitosan particles in the nanometer size range could be prepared in the 

presence of sodium chloride (see Figure 6.2). In pure water, however, the chitosan particles 

formed were mostly microparticles, and at high chitosan and crosslinker concentrations 

large aggregates that immediately sedimented were formed rather than the desired  

 
Figure 6.3 – The average Rh of self-associated and crosslinked pectin nanoparticles at a concentration of 
0.07% pectin one day after particle preparation. The PDI values are also given. 
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nanoparticles. In the study on pectin particles (paper IV), a partially crosslinked, 

macroscopic polymer network was formed in pure water, while in the presence of sodium 

chloride both non-crosslinked and crosslinked nanoparticles were formed (see Figure 6.3). 

The self-association of pectin into nanoparticles in the presence of monovalent anions and 

cations can be seen in the atomic force microscopy (AFM) images given in Figure 6.4.  The 

self-association can be due to promotion of hydrogen bonding or hydrophobic associations 

[87, 95] at higher ionic strengths. 

From the studies performed in paper II and IV it can be concluded that nanoparticles based 

on chitosan and pectin can be prepared by ionotropic gelation in the presence of sodium 

chloride, which assumingly reduce the extent of polysaccharide chain overlap and promotes 

formation of small crosslinked nanoparticles rather than large clusters or a macroscopic 

polymer network. A more comprehensive presentation of the effects of the preparation 

parameters on the physicochemical characteristics of the nanoparticles is given in the 

following section. 

 

Figure 6.4 – AFM images of dried LM- and AM-pectin samples in 0.05 M NaCl, at a pectin 
concentration of 0.07%, with and without ZnCl2. The images were obtained by scanning in lines (fast 
scanning direction) from the bottom to the top (slow scanning direction), as indicated by the arrows. 
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6.2 Particle characteristics

One of the major objectives in this thesis was to characterize the nanoparticles’ 

physicochemical properties, with special emphasis on particle size, charge and compactness. 

These properties may influence the nanoparticles’ suitability as a drug delivery system, as 

already mentioned in the Introduction section. The particles prepared in this thesis were 

composed of two different polysaccharides and varied in size, charge and compactness, thus 

giving a decent platform for further studies on their suitability as drug delivery systems. The 

main observations and differences found for the nanoparticles prepared are presented in the 

following three sub-sections. The results presented were obtained one day after particle 

preparation, unless otherwise described. 

6.2.1 Size and size distribution

Preliminary experiments indicated that the particle preparation of pectin nanoparticles was 

rather sensitive to the ionic strength and the crosslinker concentration. Therefore, the pectin 

nanoparticles were prepared at fixed sodium chloride and crosslinker concentrations. The 

chitosan nanoparticles could, however, be prepared in a broad range of sodium chloride 

concentrations and crosslinker to chitosan ratios.  

In Figure 6.2 (page 32) one can clearly observe that the presence of monovalent salt reduced 

the size of the chitosan particles from micrometers to nanometers in diameter. As discussed 

in section 6.1, this can be explained by a reduction in the electrostatic repulsion between the 

polymer chains leading to a contracted conformation in solution prior to crosslinking. As 

can be seen in Figure 6.5, the size of the chitosan nanoparticles was not significantly 

affected by an increase in the sodium chloride concentration up to 0.10 M. However, upon 

further increase to an isotonic concentration of 0.15 M NaCl the particle size increased 

slightly. It has previously been shown that an increase in the ionic strength of the media 

favors inter-chain association of chitosan molecules in solution [104], which may explain 

the observed size increase. The observed raise in the number of polymer chains inside the 

nanoparticles (Nagg) with an increase in the sodium chloride concentration (paper II) 

supports this explanation. It should be noted that the batch size of the nanoparticle 

dispersions prepared at 0.10 M NaCl was smaller than the ones prepared at 0.05 and 0.15 M 

NaCl, which may have affected the particle characteristics slightly. A reduced batch size, 

but constant stirring conditions, induces higher sheer stress on the system which can both 

reduce and increase the aggregation tendency of polymers during the crosslinking process 
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[105, 106], and it is hence difficult to conclude if the reduction in batch size can explain the 

slightly smaller sizes observed. 

The  values obtained from the DLS measurements give an indication of the distribution 

width of the relaxation times and thus the particle size distributions (monodisperse samples 

have a  value close to 1). The  values obtained for the particles studied in paper II were 

significantly higher at 0.15 M NaCl if compared to 0.05 M NaCl, which means that an 

increase in the ionic strength resulted in narrower particle size distributions. Since a narrow 

size distribution is of great importance in the development of a drug delivery system, the 

particles prepared at high sodium chloride concentrations may be preferred. Moreover, it 

can be beneficial that the particles are prepared at physiological ionic strengths, which may 

reduce the loss of particle integrity after administration, as already mentioned in section 6.1. 

Thus, the chitosan particles prepared at the isotonic salt concentration of 0.15 M NaCl may 

be preferred in future studies on chitosan nanoparticles for possible drug delivery 

applications. 

 

Figure 6.5 – The average Rh of chitosan nanoparticles prepared at three different TPP to chitosan ratios 
as a function of the NaCl concentration. Connection lines between the symbols are given in order to 
guide the eyes. The deviations of Rh are approximately within the size of the symbols. 
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The effects of the chitosan concentration on the average Rh of chitosan nanoparticles 

prepared in the presence of sodium chloride are given in Figure 6.6. As can be seen from the 

figure, the particle size goes through a maximum with increasing crosslinker to chitosan 

ratios at a high chitosan concentration. In contrast, at a low chitosan concentration, no 

effects on the particle size were observed at low to moderate TPP to chitosan ratios, but a 

small drop in the particle size was observed at the highest ratio (Figure 6.6). In the 

crosslinking process, two opposing mechanisms are occurring simultaneously: 1) inter-

crosslinking between different polymer chains and entities supporting a size increase, and 2) 

intra-crosslinking within the same polymer coil or particle leading to particle contraction 

and a size decrease. The variations in the particle size with increasing TPP to chitosan ratios 

may thus be explained by a sensitive relationship between these two mechanisms, which in 

some cases lead to a net cancellation and a constant particle size and in other cases a small 

decrease or increase in the particle size (Figure 6.6). It was also observed a tendency 

towards narrower particle size distributions (higher  values) with increasing TPP to 

chitosan ratios. 

The average Rh of the chitosan nanoparticles prepared were smaller (approximately 70 to 

220 nm) than the self-associated and the crosslinked pectin nanoparticles (approximately 

230 to 360 nm), see Figure 6.6 and Figure 6.3, respectively.  

  
Figure 6.6 – The average Rh of chitosan nanoparticles prepared in the presence of NaCl as a function of 
TPP to chitosan ratio. Connection lines between the symbols are given in order to guide the eyes. The 
standard deviations of Rh are equal to or smaller than the size of the symbols. 
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Moreover, the particles based on LM-pectin were smaller than the ones based on AM-

pectin. This may be due to the fact that the AM-pectin used had a higher Mw than the LM-

pectin, promoting enhanced polymer chain entanglements and a size increase. Gan et al. 

[61] found for instance in their work on ionically crosslinked chitosan nanoparticles that an 

increase in the molecular weight of the polysaccharide resulted in formation of larger 

particles. However, the chitosan nanoparticles prepared in this work were smaller than the 

pectin nanoparticles (compare Figure 6.6 and Figure 6.3), despite the considerably higher 

Mw of chitosan. This can indicate two things, firstly that the pectin has a higher tendency of 

inter-chain association by other mechanisms than polymer chain entanglements (possibly 

hydrophobic associations of the methoxyl-esterified carboxyl groups), and secondly that the 

chitosan nanoparticles are more densely packed than the pectin nanoparticles. The results 

presented in section 6.2.3 on the effects on the particle compactness can verify the latter 

hypothesis. 

Similar to the  value, the PDI value (ranging from 0 to 1) gives a measure of the particle 

size distribution. The major practical difference is that high PDI values correspond to wide 

size distributions in stead of narrow distributions. In the studies on pectin nanoparticles it 

was found that the self-associated LM-pectin nanoparticles had a bimodal size distribution, 

and an apparent PDI value close to 1. In contrast, the crosslinked LM-pectin nanoparticles 

had a unimodal size distribution and a PDI value of approximately 0.6. Both the self-

associated and the crosslinked AM-pectin nanoparticles had unimodal size distributions and 

lower PDI values (  0.3) when compared to the LM-pectin nanoparticles. If analyzing the 

DLS data in paper IV in the same manner as for the chitosan nanoparticles, the  value 

obtained was approximately 0.9. This means that a PDI value of 0.3 corresponds to a  

value of approximately 0.9. Consequently, the AM-pectin nanoparticles and the chitosan 

nanoparticles prepared at the same sodium chloride concentration (0.05 M) exhibited similar 

size polydispersities, with the chitosan nanoparticles exhibiting  values in the range 0.85-

0.94 and the AM-pectin nanoparticles an approximate  value of 0.9. 

In paper II, it was found that larger particles were formed at a concentration of 0.10% 

chitosan if compared to 0.05%. This was observed at all ionic strengths and TPP to chitosan 

ratios studied. This concentration-induced size increase has been reported in several 

previous studies on chitosan-TPP nanoparticles [61-63, 67] and was expected given the 

greater likelihood of contact between polysaccharide chains at higher concentrations. 
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Of the two different types of pectin, AM-pectin was considered more promising due to the 

narrower particle size distributions observed. Further studies on the effects of the AM-pectin 

concentration on the particle characteristics were therefore performed. Figure 6.7 depicts the 

average Rh of the self-associated and the crosslinked AM-pectin nanoparticles as a function 

of AM-pectin concentration.  From the figure it can be observed an increase in the particle 

size of the self-associated AM-pectin nanoparticles with increasing pectin concentrations. 

This is in agreement with the above mentioned enhancement in inter-chain interactions and 

aggregation tendency at higher polymer concentrations. The particle size of the crosslinked 

AM-pectin nanoparticles, however, was slightly reduced when the pectin concentration 

increased from 0.03% to 0.05%, but found to be constant upon further increase to 0.07% 

pectin. Such peculiar effects on the particle size were also observed for the chitosan 

nanoparticles at increasing TPP to chitosan concentrations, and accordingly, the findings 

can be explained by a sensitive relationship between the two opposing crosslinking 

mechanisms occurring, i.e., intra-particle and inter-particle  crosslinking. No significant 

differences in the PDI values of the AM-pectin nanoparticles were observed in the AM-

pectin concentration range studied (PDI  0.3; corresponding to a  value of approximately 

0.9). 

To summarize the above: both the chitosan and the pectin nanoparticles prepared in the 

presence of sodium chloride were in the nanometer size range, and the results demonstrate 

the possibility of adjusting the particle size and size distribution by changing either the type 

of polysaccharide, the polysaccharide concentration, the ionic strength of the solvent and/or 

the crosslinker to polysaccharide ratio applied in the particle preparation. 

 

Figure 6.7 – The average Rh of self-associated and crosslinked AM-pectin nanoparticles as a function of 
AM-pectin concentration. Connection lines between the symbols are given in order to guide the eyes. The 
ZnCl2 to pectin weight ratio was 15:85. 
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6.2.2 Charge

As can be seen from Figure 6.8, all the chitosan nanoparticles were positively charged, 

which is in accordance with several previous studies on chitosan-TPP nanoparticles [58, 60, 

107, 108]. In contrast to the positively charged chitosan nanoparticles, the self-associated 

and the crosslinked pectin nanoparticles were negatively charged (see Figure 6.9). The pH 

of the dispersions were around or below the pKa value of the amine groups of chitosan 

(~6.5), and around or above the pKa value of the carboxyl groups of pectin (~ 3.5), thus 

stimulating ionization and the observed positive and negative zeta potentials, respectively.  

The TPP anions will, as a result of the crosslinking process, neutralize some of chitosan’s 

positive charges. An increase in the TPP to chitosan ratio was thus expected to reduce the 

average zeta potential values of the chitosan particles, and this was clearly observed for the 

particles prepared in pure water (see Figure 6.8). In the presence of sodium chloride, 

however, this effect was rather moderate in comparison. Moreover, at low to moderate TPP 

to chitosan ratios, a significant decrease in the zeta potential values was observed if 

prepared in the presence of sodium chloride (with respect to pure water). These results are 

in accordance with the proposed salt-induced screening of the electrostatic charges and are 

also in agreement with the findings of Huang and Lapitsky [58] in their recent study on 

chitosan-TPP nanoparticles. 

 

Figure 6.8 – The average zeta potential of chitosan nanoparticles as a function of TPP to chitosan ratio. 
Connection lines are given in order to guide the eyes. Samples in which particle sedimentation was 
observed are omitted from the figure. The points without error bars have standard deviations equal to or 
smaller than the size of the symbols.  
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The crosslinked pectin nanoparticles exhibited lower absolute zeta potential values than the 

self-associated nanoparticles (Figure 6.9). This is in accordance with the proposed 

crosslinking mechanism where the positively charged divalent Zn2+-ions electrostatically 

interact with negatively charged carboxyl groups, thus reducing the amount of charged 

species and the absolute value of the particles’ zeta potential.  

  

Figure 6.9 – Left: The average zeta potential values of self-associated and crosslinked LM-pectin and 
AM-pectin nanoparticles prepared at 0.07% pectin. Right: The average zeta potential values of self-
associated and crosslinked AM-pectin nanoparticles as a function of AM-pectin concentration 
(connection lines between the symbols are given in order to guide the eyes). The ZnCl2 to pectin weight 
ratio was 15:85.  

6.2.3 Compactness

The work performed in paper I describes a theoretical method for the calculation of the local 

polymer concentration inside nanoparticles (cNP) by combining data from size and turbidity 

measurements. This work enabled the calculation of the cNP as a measure of the particle 

compactness in the following papers II-IV. Increasing cNP values correspond to higher 

particle compactness. 

Figure 6.10 depicts the local polymer concentrations inside the chitosan nanoparticles (cNP) 

studied in paper II as a function of the TPP to chitosan ratio. At moderate to high TPP to 

chitosan ratios, a distinct increase in the cNP was observed with an increase in the sodium 

chloride concentration. This relates well with the proposed charge screening effect of 

monovalent salts and the resultant polymer conformation change illustrated in Figure 6.1 

(page 31). As expected, a marked increase in the cNP was also found with increasing TPP to 

chitosan ratios, whereas the cNP was found to be unaffected by the chitosan concentration at 

low to moderate TPP to chitosan ratios. Interestingly, at the highest TPP to chitosan ratio of 

20:80, the cNP increased when adjusting the chitosan concentration from 0.05% to 0.10%.  
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Figure 6.10 – Left: The local polymer concentration inside chitosan nanoparticles as a function of TPP 
to chitosan ratio. Samples in which particle sedimentation was observed are omitted from the figure. 
Right: The local polymer concentration inside crosslinked AM-pectin nanoparticles as a function of AM-
pectin concentration. The ZnCl2 to pectin weight ratio was 15:85. Connection lines between the symbols 
are given in order to guide the eyes. 

This observation can be explained by an ionic strength effect: changing the chitosan 

concentration while keeping the TPP to chitosan ratio constant will naturally lead to an 

increase in the TPP concentration, and thus the ionic strength of the solution. At some point, 

this contribution to the ionic strength may enhance the contraction tendency of the chitosan, 

resulting in higher cNP values. 

For the pectin nanoparticles studied in paper IV, the cNP was estimated for the crosslinked 

AM-pectin nanoparticles prepared at 0.05 M NaCl and a ZnCl2 to pectin ratio of 15:85. The 

cNP values of these particles as a function of the AM-pectin concentration are given in 

Figure 6.10. Interestingly, as can be seen in the figure, increasing AM-pectin concentrations 

lead to increasing cNP values. As mentioned above, this may be an effect induced by the 

proportional increase in the ZnCl2 concentration with increasing pectin concentrations, 

leading to higher ionic strengths and an enhanced salting-out effect or contraction of the 

polymer entities in solution.  

The chitosan nanoparticles were generally found to be more compact (higher cNP values) 

than the AM-pectin nanoparticles, and can partly explain why the chitosan nanoparticles 

were found to be smaller than the pectin nanoparticles, as already presented in section 6.2.1. 
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6.3 Stability in suspension

The results presented in sections 6.1 and 6.2 clearly illustrate the potential and benefits of 

preparing chitosan and pectin based nanoparticles in the presence of sodium chloride. The 

absolute zeta potential values of both the chitosan and the pectin nanoparticles prepared 

under saline conditions were, however, predominately below 30 mV. As a rule of thumb, 

zeta potential values above an absolute value of 30 mV are considered necessary for good 

colloidal stability [99-101]. The stability of the particles towards changes in the size and 

compactness were therefore studied in paper III (chitosan) and IV (pectin) over a period of 

one month. 

The average Rh and the cNP values of the chitosan nanoparticles prepared in the presence of 

sodium chloride as a function of time are given in Figure 6.11 and Figure 6.12, respectively. 

Generally, only minor changes in the Rh or the cNP (less than 10%) were observed. 

 

Figure 6.11 – The average Rh of chitosan nanoparticles prepared in the presence of sodium chloride at 
0.05% chitosan (left) and 0.10% chitosan (right) as a function of time. Connection lines between the 
symbols are given in order to guide the eyes. Samples in which particle sedimentation was observed are 
omitted from the figure. 
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The chitosan nanoparticles that were found to be unstable over time, reflected as a change in 

the Rh or cNP, or by particle sedimentation, were prepared at 1) a high TPP to chitosan ratio, 

2) a high chitosan concentration and/or 3) a high sodium chloride concentration. 

Accordingly, the decreased zeta potentials found at high TPP to chitosan ratios (see Figure 

6.8), increased the possibility of particle aggregation over time. Moreover, the initial higher 

cNP values (Figure 6.10) and larger sizes (Figure 6.6) of the unstable combinations promoted 

particle sedimentation and instability. The self-associated AM-pectin nanoparticles prepared 

at a pectin concentration of 0.07% in the presence of 0.05 M NaCl were also found to be 

stable over a one month period. However, the AM-pectin nanoparticles crosslinked with 

ZnCl2 were only found to be stable after one week of storage: after one month aggregated 

flakes/flocs were observed in the samples. This increased aggregation tendency is most 

likely linked to the lower absolute zeta potential values found for these particles, if 

compared to both the self-associated AM-pectin nanoparticles and the chitosan 

nanoparticles (Figure 6.9 and Figure 6.8, respectively). 

 

Figure 6.12 – The local polymer concentration inside chitosan nanoparticles prepared in the presence of 
sodium chloride at 0.05% chitosan (left) and 0.10% chitosan (right) as a function of time. Connection 
lines between the symbols are given in order to guide the eyes. Samples in which particle sedimentation 
was observed are omitted from the figure. 
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As can be seen in Figure 6.11 and Figure 6.12, the unstable chitosan particles increased in 

size and compactness over time, except for one of the combinations that was found to be 

larger, but less compact after one week of storage. This combination was prepared at the 

most “extreme” conditions, and also exhibited the highest initial cNP value. Since 

aggregation and coalescence of nanoparticles is suppressed at sufficiently high cNP [109, 

110], it was proposed that the aggregates formed for this combination consisted of “hard 

spheres” packed together with open voids in-between the particles (paper III), which would 

explain the observed increase in size and decrease in particle compactness. This kind of 

aggregate structure was recently observed for chitosan-TPP-nanoparticles in a study of 

Huang and Lapitsky[111], and has also been proposed for other polymer systems [112].  

6.4 Interaction with mucin

In order to evaluate the nanoparticles’ potential mucoadhesive properties, the in vitro 

interaction of mucin with two selected combinations of nanoparticles was studied. The 

nanoparticles were prepared in 0.05 M NaCl, at a polysaccharide concentration of 0.05% 

and a crosslinker to polysaccharide ratio of 15:85. In Figure 6.13, it can be observed that the 

vial containing chitosan nanoparticles mixed with mucin (vial marked with C+M), was quite 

turbid if compared to the vials containing chitosan nanoparticles (vial C) and mucin solution 

(vial M). Large flocs/aggregates could be seen by the naked eye, and these structures started 

to settle if left standing. In contrast, the mixture of AM-pectin nanoparticles with mucin 

(vial P+M) was not significantly more turbid than the controls (vial M and P) if controlled 

by the naked eye. 

 
Figure 6.13 – Vials containing (C) chitosan nanoparticles, (C+M) chitosan nanoparticles mixed with 
mucin, (M) mucin solution, (P+M) AM-pectin nanoparticles mixed with mucin, and (P) AM-pectin 
nanoparticles. The samples were homogeneous without any sign of phase separation (except for sample 
C+M, in which particle sedimentation was observed after some minutes if left standing); the apparent 
turbidity increase at the bottom of the samples is merely a photographic artefact. 
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In Table 6.1, the average Rh, PDI, zeta potential and transmittance values of the AM-pectin 

samples are displayed, along with the pH of the sample. No significant difference in the Rh 

of the AM-pectin nanoparticles and the mixture of AM-pectin nanoparticles and mucin can 

be observed. Furthermore, only a slight decrease in the transmittance was found. 

Consequently, the AM-pectin nanoparticles’ potential to interact with mucin appears rather 

low from these experiments. However, Klemetsrud et al. [98] have previously shown, by 

applying a similar method, that liposomes coated with AM-pectin interact with mucin. In 

these studies, the concentration of mucin solution was higher and the pectin was not 

crosslinked at the liposome surface, thus increasing the possibility for polymer chain 

entanglement. This may explain the different results obtained, since polymer entanglement 

has been indicated as an important interaction mechanism between pectin and mucin [113-

115]. Accordingly, pectin gel beads with increasing degrees of crosslinking, and thus less 

flexible and mobile chains, have been shown to be less mucoadhesive [91]. Chitosan, on the 

other hand, interacts strongly with mucin by electrostatic interactions [116], explaining the 

observed differences between the two types of polysaccharide based nanoparticles.  

 
Table 6.1 – Overview of the sample characteristics obtained in the in vitro interaction studies between 
crosslinked AM-pectin nanoparticles and mucin (n=3). 
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7 Concluding remarks
The size, charge and compactness are important physicochemical properties of 

nanoparticulate drug delivery systems, linked to both mucus interaction and penetration [24, 

25], systemic distribution [10, 29] and drug release rates [33-35]. The particle compactness 

is, however, seldom reported in studies on polysaccharide and polymer based nanoparticles, 

probably due to experimental difficulties in estimating this parameter [117]. The particles 

prepared in this work were characterized with respect to particle size and charge by well-

known methods, while a theoretical method was developed in order to estimate the particle 

compactness (paper I). This method combines data from DLS and turbidity measurements to 

calculate the local polymer concentration inside the nanoparticles (cNP), as a measure of the 

particle compactness. The method is developed for spherical, monodisperse particles, and 

the total polymer concentration that exists in the form of nanoparticles must be known. 

These considerations could be assumed for both the crosslinked chitosan and pectin 

nanoparticles prepared in the presence of sodium chloride. This theoretically deduced 

method has also been adapted indirectly [98, 118] or directly [119] in other papers to 

discuss the compactness of polysaccharide or polymer based nanoparticulate systems. 

The results obtained in this thesis demonstrate that nanoparticles based on the 

polysaccharides chitosan and pectin could be prepared by ionotropic gelation with 

multivalent ions in the presence of sodium chloride. In pure water, however, chitosan 

microparticles or a macroscopic pectin network was formed instead of the desired 

nanoparticles. It was also found that non-crosslinked, self-associated pectin nanoparticles 

could be prepared in the absence of divalent cations (i.e., in the presence of sodium chloride 

only). All these observations can be explained by a change in the polysaccharide chain 

conformation and association in the presence of monovalent salt. Consequently, it can be 

concluded the solvent salinity is an important parameter to address in the preparation of 

nanoparticulate DDSs based on chitosan and pectin.  

It was also found that the nanoparticles’ physicochemical properties could be easily adjusted 

by varying the solvent salinity, the type and concentration of polysaccharide, and the 

crosslinker to polysaccharide ratio. Specifically, by changing the sodium chloride 

concentration of the solvent used in the particle preparation from 0.05 to 0.15 M, the 

average particle size and compactness of the chitosan nanoparticles were raised. Increasing 

the TPP to chitosan ratio, however, only moderately affected the average particle size, but 
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lead to a significant increase in the particle compactness. The chitosan concentration did not 

affect the particle compactness at low to moderate TPP to chitosan ratios, but significantly 

affected the particle size. This latter observation points out the possibility of preparing 

chitosan nanoparticles of different particle sizes, but of equal particle compactness by 

simply adjusting the chitosan concentration. Interestingly, increasing the AM-pectin 

concentrations resulted in a size increase of the self-associated nanoparticles, but not of the 

crosslinked nanoparticles. This lack in size increase of the crosslinked AM-pectin 

nanoparticles was concurrent with an increase in the particle compactness and explained by 

a sensitive relationship between intra- and inter-particle crosslinking. The main difference 

between the chitosan and the pectin nanoparticles prepared was that they exhibited positive 

and negative zeta potentials, respectively. Moreover, the chitosan nanoparticles were 

generally smaller and more compact than the pectin nanoparticles.  

Despite the reduced absolute zeta potential values of the nanoparticles prepared in the 

presence of sodium chloride, the chitosan and the pectin nanoparticles were mainly found to 

be colloidally stable after one week of storage. Several of the nanoparticle suspensions 

could also be stored for an entire month without significant changes in the average particle 

size, charge and compactness. The fact that the nanoparticles are stable in suspension for 

several days may facilitate simple screening studies because the extra preparation step of 

freeze-drying can be avoided. 

The positively charged chitosan nanoparticles interacted strongly with the negatively 

charged mucin in vitro. This indicates that the chitosan nanoparticles are likely to be 

immobilized in the more rapidly cleared upper part of the mucus layer [25], despite being 

relatively small. In contrast, the negatively charged pectin nanoparticles showed little 

interaction with mucin in vitro, and may thus possibly penetrate deeper in the mucus mesh, 

given that the pore size at the mucosal site is sufficiently large. 

The results obtained in this thesis can be used as a guide in future studies on nanoparticles 

based on chitosan and pectin, and possibly other polysaccharides with polyelectrolyte 

properties, such as alginate and hyaluronic acid. 
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8 Future perspectives
The underlying basis of this work was that nanoparticles based on mucoadhesive 

polysaccharides can possibly improve drug treatment locally or enhance the systemic 

delivery of drugs after administration to mucosal routes. There are several mucosal 

administration routes with a need for improvement in local therapy, or where the 

administration of drugs for systemic effects would be appropriate [7, 8, 24, 25, 40, 120-

124]. The nasal route is one good example studied for local delivery of vaccines, and for 

direct nose-to-brain delivery through the olfactory region [123].  

The findings in this thesis offer a decent platform for further studies on the applicability of 

polysaccharide based nanoparticles for drug delivery purposes. However, several future 

studies should be performed to obtain an improved understanding of polysaccharide based 

nanoparticles as a DDS. One of the major findings in this study was that the ionic strength 

had a tremendous effect on the particle preparation and particle characteristics, which could 

mainly be explained by a change in polysaccharide chain conformation. The influence of 

this conformational change on the encapsulation efficiency of drugs into the particles was 

out of the scope of this thesis; however, it is tempting to assume that the drug encapsulation 

process will be affected as well. It would thus be interesting to look into the possible 

impacts of the ionic strength and the particle compactness on the encapsulation and release 

rates of drugs with various charge and molecular weights. 

Moreover, studies investigating the fate of the nanoparticles in the human body post 

mucosal administration can highly contribute to the evaluation of their suitability as DDSs 

for local or systemic delivery. As a first step, the mucoadhesive properties of the 

nanoparticles could be evaluated further in vitro or ex vivo in the presence of a suitable 

isotonic buffer or simulated body fluid. This would be especially interesting for the AM-

pectin nanoparticles that showed few signs of interaction with mucin under the present 

experimental conditions. Evaluation of the particles’ toxicity profile in vitro using suitable 

mucosal cell lines should also be performed, before the fate and action of the DDSs were to 

be evaluated for a specific application in vivo.  
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We have developed a method based on the Mie theory for determining the local polymer concentration inside
spherical nanoparticles, thereby obtaining vital information about whether the particles are swelling in the solvent
or if they are contracted into a more compact structure. In addition, this method can be used to calculate the
number density of the particles, the molecular weight of the particles, and (if Mn of the polymer is known) the
aggregation number. The calculations are based on the relationship between the size of the nanoparticles and
the turbidity of the sample.
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Polymer nanoparticles have been the subject of a vast
number of studies, both to gain a better fundamental un-
derstanding of their properties [1] and to develop numerous
interesting applications for them [2]. Polymer nanoparticles
can be made either by covalently cross-linking polymers into
permanent particles, sometimes referred to as nanogels, or
by assembling several polymer units together by physical
interactions such as hydrogen bonds, electrostatic forces,
or hydrophobic associations. The size of the particles is
dependent on the amount of polymer they contain and on how
much they swell in the solvent they are suspended in. However,
the attractive forces that cause the particles to contract will
often induce aggregation between the nanoparticles. The
competition between intra- and interparticle associations is
often observed for stimuli-responsive systems [1,3–7] where
the attractive forces between the polymer chains can be
turned on and off by changes in external parameters such
as temperature, solvent salinity, or pH. This can make it
difficult to interpret changes in particle size, since an increase
in size can be caused by either swelling or aggregation,
and constant size can actually be the result of a cancelation
between contraction and aggregation of the particles [6].
In order to gain a proper understanding of nanoparticu-
lar systems, it is important to characterize the degree of
swelling (i.e., the local polymer concentration inside the
nanoparticles).
In addition to being helpful in the interpretation of changes

in particle size, the local polymer concentration inside the
nanoparticles is in itself important for various applications.
Polymer nanoparticles are of interest for controlled drug
delivery [8], and one of the factors that affect the release
rate of drugs from nanoparticle suspensions is the degree
of swelling of the particles, as the more open structure of
swollen nanoparticles has been observed to increase the drug
release rate from the particles [9–11]. Polymer nanoparticles
also can be used to make temperature-responsive polymeric
photosensitizers, which have been found to be dependent on
the hydration and dehydration of the nanoparticles [12,13],

*a.l.kjoniksen@kjemi.uio.no

that is, the local polymer concentration inside the nanoparti-
cles. Another application of polymer nanoparticles is water
purification, and in connection with this it has been suggested
that the degree of particle swelling can control the uptake and
release of Pb(II) ions [14].
The aggregation of polymer nanoparticles into larger

aggregates is also governed by the local polymer concentration
inside the nanoparticles [1,15–17]. Aggregate formation is
dependent on the contact time between the particles when
they collide (τc) and the time needed to establish a permanent
chain entanglement between two approaching particles (τe).
When τc � τe, aggregate formation is suppressed since
the colliding particles do not have time to stick together,
and the particles behave as elastic bodies on the collision
time scale. Tanaka [15,16] showed that τc and τe can be
estimated by

r0

〈υ〉 < τc <
r20

D
and τe ∼ a2mN3

mφ
3/2
NP

Dm

(1)

where r0 is the interaction range between the particles, 〈υ〉 is
the thermal velocity magnitude (〈υ〉 ∼ (kT /mp)1/2, where k
is Boltzmann’s constant, T is the absolute temperature, mp is
the mass of the particle), D is the diffusion coefficient of the
particles (D = kT

6πη0R
, where η0 is the viscosity of the solvent

and R is the radius of the particle), am is the length of a unit
monomer, Nm is the number of monomers, ϕNP is the volume
fraction of polymer inside the particles, andDm is the diffusion
coefficient of the monomer. Accordingly, τ e increases with the
aggregation number and with the volume fraction of polymer
inside the particles, and aggregation is therefore suppressed
when the local polymer concentration inside the nanoparticles
is high enough.
The degree of swelling of nanoparticles has been deter-

mined by separating the nanoparticles from the solvent by
filtration and comparing the weight of the swollen nanopar-
ticles with their dry mass [9]. However, separation of small
nanoparticles from the solvent can be experimentally difficult,
and this method is not very well suited for nanoparticles that
are sensitive to changes in temperature or concentration. The
local polymer concentration inside nanoparticles can also be
determined by comparing their size with the molecular weight
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of the particles [1]. Unfortunately, determining the molecular
weight of nanoparticles can be experimentally challenging.
The aggregation number of the particles is often concentration
dependent, which excludes the use of separation methods
which will dilute the system system (such as gel permeation
chromatography, size exclusion chromatography or asymmet-
ric flow field-flow fractionation), and even the determination
of the molecular weight by a traditional Zimm plot, for
which a concentration series is needed. For very low polymer
concentrations, the molecular weight can be estimated from
a single polymer concentration from either a Zimm plot for
small particles or a Guinier plot for large particles [1], but the
limitation to very low concentrations restricts the usefulness of
these techniques. A method for determining the local polymer
concentration inside nanoparticles from experiments that can
easily be conducted on nanoparticle suspensions at various
temperatures and polymer concentrations is therefore needed.
In this paper, we illustrate how the local polymer concentration
inside spherical nanoparticles, as well as their number density,
molecular weight, and aggregation number, can be determined
from the size of the nanoparticles and the turbidity of the
nanoparticle suspension.
The turbidity (τ ) of a sample containing nanoparticles can

be expressed by Lambert-Beer’s law:

τ = − 1
L
ln

(
I

I0

)
, (2)

where L is the thickness of the cell, I is the light transmitted
through the sample, and I0 is the light transmitted through
the solvent. The turbidity of the sample is dependent on the
number density of particles N (number of particles per unit
volume), the radius R of the particles, and the difference in
refractive index between the particles and the surrounding
media [18]:

τ = N π R2Qext, (3)

where Qext is the Mie extinction efficiency. For spherical
particles that do not absorb light at the considered wave-
length (λ), the Mie extinction efficiency can be expressed
as [19,20]

Qext = 2

[
1− 2

ρ

(
sin ρ − 1

ρ
(1− cos ρ)

)]
, (4)

where ρ = 4πR(m−1)
λ

, and m = nNP
n0
is the ratio between the

refractive index of the particle (nNP) and the refractive index
of the solvent (n0). The refractive index of the particle can
be expressed in terms of the refractive index increment of
the polymer (dn/dc) by nNP = n0 + (dn/dc ) cNP, where cNP
is the local polymer concentration inside a nanoparticle. This
gives us

ρ = 4π R (dn/dc) cNP
λn0

= wcNP, (5)

where w = 4πR(dn/dc)
λn0

.
For a sample with a total volume Vt , the total mass

of polymer in the nanoparticles can be expressed as mt =
NNPmNP, where mNP is the mass of polymer in a single
nanoparticle andNNP = NVt is the total number of particles in

the sample. The total polymer concentration can be expressed
as ct = mt

Vt
, and the local polymer concentration inside a single

nanoparticle with a volume VNP is

cNP = mNP

VNP
= 3mNP

4π R3
. (6)

Accordingly, the number density of particles can be
expressed as

N = 3ct

4cNPπ R3
. (7)

By combining Eqs. (3), (4), (5), and (7), we can now express
the turbidity as

τ = 3ct

2cNPR

(
1− 2

wcNP

{
sin(wcNP)

− 1

wcNP
[1− cos(wcNP)]

})
. (8)

As can be seen from Eq. (8), the turbidity is now expressed
as a function of cNP. For a sample containing spherical
nanoparticles with a relatively narrow size distribution, we
can now determine the local polymer concentration inside the
nanoparticles.
Chitosan is a nontoxic biopolymer with promising prop-

erties for various drug delivery purposes [21]. It can be
crosslinked by tripolyphosphate (TPP), which is a polyanion
that interacts electrostatically with the positively charged
chitosan [21]. By adding TPP to dilute solutions of chitosan,
we can thereby form physically cross-linked nanoparticles.We
havemeasured the hydrodynamic radius of chitosan (Protasan;
chitosan chloride) nanoparticles cross-linked by TPP in the
presence of 0.1MNaCl at different cross-linker concentrations
by dynamic light scattering (DLS). The hydrodynamic radius
of the nanoparticles is determined from DLS measurements
as described previously [5]. As can be seen from Fig. 1, when
the cross-linker concentration is increased, the radius goes
through a slight maximum before it decreases markedly at
high cross-linking densities.

0.0

100

125

150

175

R
 (

nm
)

TPP (mg/ml)
0.1 0.2 0.3

FIG. 1. Hydrodynamic radius of chitosan nanoparticles deter-
mined by DLS as a function of cross-linker concentration. The errors
are of approximately the same size as the symbols, and the line is
only a guide for the eye.
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FIG. 2. (Color online) The turbidity of suspensions of chitosan
nanoparticles at the indicated cross-linker concentrations as a function
of the local polymer concentration inside the nanoparticles calculated
fromEq. (8) using the sizes determined byDLS are represented by the
sloping (blue) lines. The horizontal (red) lines indicate the turbidities
determined from the transmittance data from Eq. (2).

Considering both the relatively high cross-linker concen-
trations used and that the presence of NaCl in the sample
will promote aggregation, it is reasonable to assume that
practically all chitosan is in the form of nanoparticles and very
little polymer is left as free polymer chains in the solution.
This assumption is corroborated by the measured correlation
functions, which exhibit only one relaxation mode with a
narrow size distribution. We therefore can assume that the
total polymer concentration in the sample is in the form of
nanoparticles, giving us ct = 1.0 mg/ml, which equals the
total chitosan concentration in the samples. We have measured
the refractive index increment of chitosan in 0.1 M NaCl to be
dn/dc = 0.157 g/ml, and the refractive index of the solvent is
n0 = 1.3337. The transmittance of the samples was measured
on a spectrophotometer at a wavelength of 633 nm, and the
turbidity was calculated from Eq. (2).
In Fig. 2, the turbidity of each sample is plotted as a function

of cNP from Eq. (8), using the hydrodynamic radii measured
by DLS. The horizontal lines indicate the turbidities calculated
from Eq. (2). The local polymer concentration inside the
nanoparticles can be determined from the intercept between
the two lines. Figure 3(a) illustrates how cNP varies with the
cross-linker density, and as expected a higher cross-linker
concentration increases the local polymer concentration inside
the particles as enhanced intraparticle cross links causes the
particles to contract.
Having determined cNP, we can now calculate the number

density of the particles by using Eq. (7). From Fig. 3(b) we
can see that the number density decreases with increasing
cross-linker concentration, indicating that the cross-linking
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FIG. 3. (a) The local polymer concentration in the chitosan
nanoparticles, (b) the number density of nanoparticles, (c) the
molecularweight of the nanoparticles, and (d) the aggregation number
of chitosan in the nanoparticles as a function of the cross-linker
concentration. The lines are only guides for the eye.

process is not only establishing intraparticle cross links within
pre-existing polymer aggregates, but in addition interparticle
cross links are binding several aggregates together, thereby
reducing the total number of particles in the sample. From
Eq. (6), we can see that mNP = 4

3π R3cNP, which gives us the
molecular weight of the particles as

MNP = 4
3π R3cNPNA, (9)

where NA is Avogadro’s number. We can now determine the
aggregation number from

Nagg = MNP

Mn

, (10)

where Mn is the number average molecular weight of the
polymer (1.2 × 105). As can be seen from Figs. 3(c) and
3(d), both the molecular weight of the particles and the
aggregation number increase as more cross linker is added
to the sample, again illustrating that higher cross-linking
densities enhances interparticle aggregation. Comparing the
various characteristics of the particles, we can see that at low
cross-linker concentrations, the contraction of the particles is
relatively modest [Fig. 3(a)] while the aggregation number
rises markedly [Fig. 3(d)]. This causes the observed increase
in size (Fig. 1). At high cross-linker concentrations, the aggre-
gation number of the nanoparticles is nearly constant, while
the local concentration inside the particles rises markedly. At
this stage both Nagg and cNP are high, and we can assume
that τc � τe. Further aggregation is therefore suppressed,
and the cross-linking process is mainly taking place inside
the existing particles, causing them to contract into smaller
particles (Fig. 1).
In summary, we have developed a method for determining

the local polymer concentration inside polymer nanoparti-
cles. The method has been tested on chitosan nanoparticles
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crosslinked by TPP and shows that as expected cNP increases
with the cross-linking density. We have also been able to
determine the number density of particles in the solution, the
molecular weight of the particles, and the aggregation number
of chitosan in the nanoparticles. The obtained results are in

agreement with what one would expect for the considered
nanoparticles.
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