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ABSTRACT 

Individual differences in pharmacokinetics may cause extensive variability in drug efficacy, 

toxicity and adverse drug reactions, and represent a major concern in drug development. The 

overall aim of this thesis was to evaluate the hepatic transport and metabolism in in vitro 

models used in assessments of drug pharmacokinetics and toxicity, and to investigate the 

contribution of membrane transporters and metabolizing enzymes to in vivo pharmacokinetic 

variability. 

 

In plated primary human hepatocytes, uptake kinetics studies of OATP1B1/1B3-mediated 

transport showed an extensive and variable decrease in OATP1B1/1B3 activity and increased 

passive diffusion over time in two-dimensional (2D) culture. In three-dimensional (3D) 

bioreactor cultures of primary human hepatocytes, OATP1B1 activity was observed for at 

least 7 days, while CYP3A4 activity was observed at day 3 and 4 in culture. The activity data 

were in agreement with immunohistochemical stainings which showed OATP1B1 and 

CYP3A4 protein expression for at least 9 days in culture. In bioreactor cultures of 

differentiated HepaRG cells, the observed CYP3A4 activity was comparable to primary 

human hepatocytes, while OATP1B1 activity could not be detected later than day 2. In 2D 

cultures of hepatocytes derived from human embryonic and induced pluripotent stem cells, 

OATP1B1 and CYP activities were very low compared to plated cryopreserved human 

hepatocytes, but moderate activity of the hepatic transporters NTCP and BSEP was observed. 

Finally, an in vivo study investigating the relationship between expression of OATP1B1, 

MDR1 and CYP3A4 and the pharmacokinetics of atorvastatin in 21 obese patients with 

paired biopsies from liver and intestinal segments showed a significant positive correlation 

between OATP1B1 expression and oral clearance (CL/F) of atorvastatin, while no association 

was observed with CYP3A4 or MDR1.  

 

In conclusion, plated primary human hepatocytes are a useful in vitro model for 

OATP1B1/1B3-mediated uptake studies, but only for a restricted period of time in culture. 

The preserved OATP1B1 and CYP3A4 activity in bioreactor cultures of primary human 

hepatocytes allows long-term in vitro studies of hepatic drug clearance and toxicity in this 

system. Differentiated HepaRG cells cultured in the same 3D system represents a useful in 

vitro tool for long-term studies of slowly metabolized drugs, but the low OATP1B1 activity is 

a major limitation of this model compared to human hepatocytes. Furthermore, stem-cell 
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derived human hepatocytes represent a potential alternative to human hepatocytes, but 

additional refinements of the derivation process are required in order to obtain fully functional 

human hepatocytes applicable in drug disposition and metabolism studies in vitro. Finally, the 

in vivo study shows that uptake transporters could be more important than metabolizing 

enzymes for the pharmacokinetic variability of certain drugs.  
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1 INTRODUCTION 

1.1 Drug development and adverse drug reactions 

In drug development, the goal is to improve health and survival of patients through 

development of safe and efficient drugs for treatment or prevention of disease. In addition to 

the positive health aspect, development of agents with limited or no susceptibility of inducing 

adverse drug reactions (ADRs) might have a direct impact on market penetration and risk of 

market withdrawal. 

 

Interpatient variability in drug response, including drug efficacy, ADRs and toxicity, is a 

major concern in drug development. Approximately 90% of the new molecular entities 

(NMEs) that enter clinical trials fail due to inadequate safety, unfavourable pharmacokinetic 

profile or limited efficacy.1 Furthermore, despite the comprehensive pre-clinical and clinical 

investigations of NMEs, 34 drugs were withdrawn from the market between 1990 and 2005 

due to safety concerns, of which the majority was due to hepatotoxicity and pharmacokinetic 

drug-drug interactions (DDIs).2 For example, troglitazone, an antidiabetic and anti-

inflammatory drug, was withdrawn from the market due to hepatotoxicity.3,4 Mibefradil, a 

calcium channel blocker used in the treatment of hypertension and chronic angina pectoris, 

showed great efficacy in monotherapy, but was withdrawn from the market due to its potent 

inhibition of drug-metabolizing enzymes. Combined use of mibefradil substantially increased 

plasma concentrations and toxicity risk of a variety of drugs such as beta blockers, digoxin, 

terfenadine, cyclosporine, tacrolimus and simvastatin.5-10 Furthermore, co-administration of 

terfenadine, a non-sedating antihistamine, and drugs such as macrolide antibiotics and 

imidazole antifungals caused QT interval prolongation and subsequent cardiac arrhythmia in 

patients, which led to withdrawal of terfenadine.11-14 Moreover, the lipid-lowering agent 

cerivastatin was withdrawn from the market due to reports of fatal rhabdomyolysis both after 

monotherapy and after co-administration of certain drugs, e.g. gemfibrozil.15  

 

The withdrawal of these drugs around the turn of the century emphasized the importance of 

determining the pharmacokinetic profiles and potential toxicity of NMEs. Most importantly, 

this knowledge is essential to ensure patient safety and optimal drug therapy. Moreover, 

withdrawal of drugs from the market, as well as attrition of drugs during the clinical phase of 

drug development, has enormous economic implications for the pharmaceutical industry. A 
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single clinical trial can cost up to $100 million, and for every new drug approved, the costs 

for discovering, developing and launching a new drug, along with the prospective drugs that 

fail, range between $4 billion and $12 billion per drug.16 Consequently, reducing late-stage 

drug attrition and avoiding withdrawal of drugs from the market are of great value in drug 

development. 

 

To predict pharmacological complications potentially resulting in ADRs, determination of the 

pharmacokinetic profile and potential toxicity of new drug candidates is important at an early 

stage of drug development when determining whether a compound should be included in 

further clinical trials, and if so, which pharmacokinetic studies that should be performed. 

Furthermore, individualized drug treatment is a visionary goal of modern medicine, and in 

order to treat each patient with an optimal drug at an optimal dose, a detailed understanding of 

pharmacokinetic processes underlying the variability in drug response is required. Such 

knowledge requires robust and human relevant in vitro models for assessment of 

pharmacokinetic profiles and toxicity of new drug candidates as well as drugs on the market. 

1.2 Pharmacokinetic variability 

Variability in pharmacokinetics, which refers to the processes of drug absorption, distribution, 

metabolism and excretion, is a major cause of interpatient variability in drug response. 

Factors associated with pharmacokinetic variability are for example age, weight, body mass 

index (BMI), organ function, disease state and protein binding. Furthermore, interindividual 

variability in the expression or activity of membrane transporters and metabolizing enzymes 

may impact the pharmacokinetic profile of drugs interacting with the current protein(s). 

Variability in protein expression and activity could be determined by genetic factors, 

primarily polymorphisms in the gene encoding the protein, or by environmental factors, i.e. 

foods, pollutions and drugs. Co-administration of drugs or other xenobiotics affecting the 

same disposition pathway may impact the pharmacological profile of these substances 

through transport and/or enzyme inhibition or by induced expression of certain transporters 

and/or enzymes. 

1.2.1 Drug transport 

Passive diffusion through the membrane has been viewed as dominant in the disposition of 

most drugs, but it is now well recognized that carrier-mediated transport has a significant 
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impact on drug absorption, distribution and excretion.17 Drug transporters are membrane 

proteins expressed in several tissues throughout the body including the intestine, liver, kidney 

and brain, where they facilitate the transport of compounds in or out of cells. Indirectly, by 

facilitating transport into intestine and liver cells, membrane transporters also affect drug 

metabolism.  

 

Two major gene superfamilies play a prominent role in the transport of drugs across 

biological membranes: the solute carrier (SLC) superfamily and the ATP-binding cassette 

(ABC) superfamily.17 The members of the SLC superfamily are facilitated transporters or ion-

coupled secondary transporters, frequently associated with uptake of compounds from the 

blood into tissues or organs such as the liver and kidney, or in the absorption from the 

gastrointestinal tract into the circulation. The SLC superfamily include 48 subfamilies of 

which the most investigated are the organic anion transporting polypeptide (OATP, SLCO) 

family and the organic cation transporters (OCT) and organic anion transporters (OAT) 

included in the SLC22 subfamily, as well as the more recently identified multidrug and toxin 

extrusion (MATE, SLC47A) family which is involved in drug excretion from the kidney and 

liver.17 

 

The human OATP family are encoded by the SLCO genes and consists of 12 members.18,19 

The OATPs are expressed in multiple tissues including the intestine, liver, kidney and brain, 

where they mediate the transport of a wide variety of substrates, e.g. bile salts, hormones and 

steroid conjugates.20-23 The OATP-mediated uptake is pH dependent and generally 

accompanied by bicarbonate efflux.24 OATP1B1 and OATP1B3 belong to the OATP1B 

subfamily and are expressed predominantly in the basolateral membrane of human 

hepatocytes20,21,25 where they serve as bidirectional facilitated diffusion transporters.26 

OATP1B1 and OATP1B3 have an overlapping substrate spectrum and play a key role in the 

hepatic uptake of many drugs, e.g. HMG-CoA reductase inhibitors (statins), angiotensin II 

receptor antagonists, angiotensin-converting enzyme inhibitor and anticancer agents.23,27-31 

Several OATP1B1/1B3-mediated DDIs involving the agents mentioned above have been 

reported,32-36 e.g. substantially increased statin exposure and increased risk of toxicity during 

co-administration of the OATP1B1/1B3 inhibitor cyclosporine A.37,38 Furthermore, several 

single nucleotide polymorphisms (SNPs) and haplotypes of SLCO1B1, the gene encoding 

OATP1B1, have been associated with altered transport activity of OATP1B1.39-42 Individuals 
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carrying the c.521T>C allele (existing in haplotypes *5 and *15) have shown impaired 

hepatic uptake and markedly increased plasma concentrations of OATP1B1 substrates,43-49 

e.g. pravastatin and rosuvastatin. Increased statin plasma concentration enhances the risk of 

statin-induced myopathy in patients carrying these specific alleles. Although the relatively 

low frequencies of haplotypes *5 and *15 (2% and 16% in Caucasians, respectively)50, these 

variants may have an effect in many individuals due to the large number of patients on statin 

treatment.  

 

The members of the ABC superfamily are primary active efflux transporters using energy 

released from ATP hydrolysis to transport substrates out of cells.51 The ABC superfamily is 

divided into 7 subfamilies named ABCA to ABCG. The most important proteins involved in 

drug transport are multidrug resistance protein 1 (MDR1, ABCB1) and breast cancer 

resistance protein (BCRP, ABCG2), as well as members of the multidrug resistance-

associated protein (MRP, ABCC) family.17 

 

MDR1 (P-glycoprotein, P-gp) is a well-known membrane transporter expressed in several 

human tissues including the luminal membrane of the small intestine and blood-brain barrier, 

and the apical membrane of hepatocytes and kidney proximal tubule epithelia.52,53 The tissue 

distribution and broad substrate specificity indicate that MDR1 plays a major role in 

protecting the body against xenobiotics, namely by excretion of cytotoxic agent into the 

gastrointestinal tract, bile and urine, as well as participating in the function of the blood-brain 

barrier and hence protecting the central nervous system. In the intestine, MDR1 can affect the 

absorption of drugs such as digoxin and paclitaxel by transporting them back into the 

lumen,54,55 while in the liver, MDR1 is responsible for the biliary efflux of several drugs, e.g. 

statins.56 Several MDR1-mediated DDIs have been reported, e.g. increased plasma 

concentrations and/or reduced clearance of digoxin during co-administration of the MDR1 

inhibitors quinidine and ritonavir.57-59 A number of different SNPs have been identified in the 

ABCB1 gene, but inconsistent results have been reported with regard to their effect on MDR1 

phenotype and drug pharmacokinetics of MDR1 substrates.60 With regard to atorvastatin, 

minor effects have been observed in patients carrying the ABCB1 haplotypes c.1236T-

c.2677T-c.3435T and c.1236C-c.2677G-c.3535C carriers (55% greater area under the 

concentration versus time curve (AUC) in TTT/TTT individuals compared to CGC/CGC 

individuals61). However, Niemi (2010) states that given the high allele frequencies of the TTT 
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and CGC haplotypes (34% and 43% in Caucasians, respectively61), these haplotypes might 

play some role in the variability of atorvastatin pharmacokinetics at the population level.62  

 

Table 1. Examples of substrates, inhibitors and inducers of membrane transporters involved in drug transport.  

Transporter 
(gene) 

Substrates Inhibitors Inducers 

OATP1B1 
(SLCO1B1) 

Estradiol-17β-D-
glucuronide*, estrone-3-
sulfate*, bosentan, 
enalapril, methotrexate, 
repaglinide, statins, 
valsartan 

Estrone-3-sulfatea, 
rifampicin, cyclosporine 
A, ritonavir 

Rifampicin 

OATP1B3 
(SLCO1B3) 

Estradiol-17β-D-
glucuronide*, 
cholecystokinin 8*, 
digoxin, fexofenadine, 
statins, valsartan 

Estrone-3-sulfatea, 
cyclosporine A, 
rifampicin, ritonavir 

Chenodeoxycholic acid 

MDR1, P-gp 
(ABCB1) 

Digoxin*, atorvastatin, 
fexofenadine, indinavir, 
loperamide, paclitaxel, 
vincristine 

Cyclosporine A, quinidine, 
rifampicin, verapamil 

Rifampicin*, 
carbamazepine, phenytoin, 
ritonavir 

NTCP  
(SLC10A1) 

Taurocholate*,  estrone-3-
sulfate, micafungin, 
rosuvastatin 

Bromosulfophthalein, 
cyclosporine A, 
furosemide, ritonavir, 
rifampicin, propanolol 

Dexamethasone 

BSEP  
(ABCB11) 

Taurocholate*, 
micafungin, pravastatin, 
vinblastine 

Ritonavir, cyclosporine A, 
rifampicin, troglitazone, 
bosentan, glibenclamide, 
vinblastine 

Chenodeoxycholic acid 

Adapted from17, 67-71. 
*) Often used as probe agents in phenotyping of the respective transporters 
a) Selective OATP1B1 inhibitor, compared to OATP1B3, at 30 μM67 
Abbreviations: BSEP, bile salt export pump; MDR, multidrug resistance protein; NTCP, sodium-taurocholate 
cotransporting polypeptide; OATP, organic anion transporting polypeptide; P-gp, P-glycoprotein 
 

 

Vectorial transport is asymmetrical transport across a monolayer of polarized cells, and is 

important in the transfer of endogenous substances and xenobiotics across epithelial or 

endothelial barriers, e.g. in the intestinal absorption and in the hepatobiliary and urinary 

excretion of drugs from the blood to the lumen. The sodium taurocholate cotransporting 

polypeptide (NTCP, SLC10A1), a member of the SLC superfamily, is expressed 

predominantly in the basolateral membrane of human hepatocytes and is generally known as 

the key transporter for hepatic uptake of bile salts.63 The ABC transporter bile salt export 
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pump (BSEP, ABCB11) is expressed in the canalicular membrane of human hepatocytes 

where it mediates the biliary secretion of bile salts.64 Together, NCTP and BSEP mediate the 

hepatobiliary excretion of bile salts, and hence, drug inhibition of these transporters may 

cause cholestasis. As discussed previously, troglitazone was withdrawn from the market due 

to hepatotoxicity. Troglitazone sulphate has been reported to inhibit BSEP-mediated efflux of 

taurocholate, suggesting that troglitazone sulphate induces cholestasis by inhibition of 

BSEP.65,66  

 

Drug transport kinetics 

Drugs cross cell membranes either by passive or active transporter-mediated processes. The 

total transport of a compound into the cell, Utotal, can be expressed as: 

  (1) 

, where Uactive and Upassive represent the active transporter-mediated uptake and the passive 

diffusion of the compound across the membrane, respectively. Active transporter-mediated 

uptake is saturable, and the Michaelis-Menten model can be applied to evaluate the uptake 

kinetics of carrier-mediated drug transport through membranes. The initial uptake rate of the 

transporter-mediated uptake, V0_active, at a given substrate concentration [S], is given by the 

following equation: 

   (2) 

, where Vmax is the maximum velocity of the transport process and Km is the Michaelis 

constant. The uptake kinetics of an actively transported compound following the Michaelis 

Menten kinetics is illustrated in Figure 1.  

 

Figure 1 The uptake kinetics of an actively transported compound following the Michaelis-Menten kinetics. Km, 

Michaelis constant; [S], substrate concentration; V0, initial uptake rate; Vmax, maximum velocity. 
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The passive diffusion of a compound across a membrane is a non-saturable process, and the 

initial velocity of the unidirectional passive diffusion, V0_passive, at a given substrate 

concentration [S], is expressed as: 

   (3) 

, where P represents a constant describing the passive diffusion. Combining equation 1, 2 and 

3 gives an expression of the total initial velocity, V0_total, of a transport process, including 

active and passive transport, at a given substrate concentration [S]: 

  (4) 

This is the extended Michaelis-Menten equation, which can be applied to evaluate uptake of 

compounds into whole cells or expression systems (the conventional two-step approach).72,73 

Characterization of concentration-dependent uptake is performed under initial rate conditions 

and in the time-linear range. Equations 2, 3 and 4 (the active, passive and total uptake, 

respectively) are illustrated in Figure 2 for compounds exhibiting low and high passive 

diffusion compared to active transporter-mediated uptake.  

 

Figure 2 Total (red line), active (green line) and passive (blue line) uptake of a drug exhibiting low passive 

diffusion (A) and high passive diffusion (B). [S], substrate concentration; V0, initial uptake rate. 

 

The intrinsic clearance of the transporter-mediated uptake process, CLact,uptake, is defined as 

the capacity of a membrane transporter to mediate the active transport of a compound across 

the membrane, and is calculated by the following equation:  

 

, where Vmax is the maximum velocity of the transport process and Km is the Michaelis 

constant, assuming first order kinetics. 
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1.2.2 Drug metabolism 

In drug metabolism, drugs are chemically altered to more hydrophilic chemicals to facilitate 

their elimination from the body. Most drugs are hydrophobic compounds that, in the absence 

of metabolism, would not be efficiently eliminated, and thus would accumulate in the body, 

potentially causing toxicity. Drug-metabolizing reactions are classified into phase I and phase 

II. Phase I reactions involves oxidation, reduction or hydrolysis of the drug, and are primarily 

mediated by the cytochrome P450 (CYP) family of enzymes. Phase II reactions involve 

covalently binding of an endogenous compound, most often glucuronide acid, glutathione or 

sulphate, to the phase I metabolite. Examples of phase II enzymes are uridine diphospho-

glucuronosyltransferases (UGTs) and glutathione-S-transferases (GSTs). The phase II 

conjugation produces a more polar metabolite and promotes excretion of the drug from the 

tissue, normally via efflux transporters.  

 

The CYP enzymes responsible for metabolism of xenobiotics are expressed primarily in the 

liver and intestines, and to less extend in the lung, kidney and central nervous system. CYP 

enzymes are located in the endoplasmic reticulum of cells where they carry out the 

nicotinamide adenine dinucleotide phosphate-oxidase (NADPH)-dependent oxidation of a 

diversity of substrates. The superfamily of CYP enzymes comprises 57 genes which have 

been organized into families (denoted by the first identification number, e.g. CYP3) and 

subfamilies (denoted by letters, e.g. CYP3A).74 The individual isoenzymes within each 

subfamily are further denoted by numbers, e.g. CYP3A4. CYP enzymes are in general 

promiscuous in their capacity to bind and metabolite substrates, and thus, there is significant 

overlapping substrate specificity among CYP enzymes. The human isoenzymes CYP1A1, 

CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5 are 

considered of particular importance in drug metabolism.75  

 

Estimates suggest that the metabolism of approximately 40-50% of all drugs on the market 

involves CYP3A-mediated oxidation.76 For the majority of individuals, the human CYP3A 

isoform CYP3A4 are the most abundant CYP enzyme expressed in the liver and intestine,77-80 

and the main drug-metabolizing enzyme in human. Consequently, a large number of clinical 

DDIs involving CYP3A4 agents have been reported,81 e.g. significantly increased plasma 

concentration of cyclosporine A in the presence of the CYP3A4 inhibitor ketoconazole,82,83 or 

significantly reduced plasma concentrations of midazolam in the presence of the potent 
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CYP3A4 inducer rifampicin.84,85 Although CYP3A4 expression and activity is characterized 

by large interindividual variability, the contribution of genetic factors has remained unclear.79, 

86-88 Several SNPs in the gene encoding CYP3A4 have been reported, but no clear association 

between SNPs and altered phenotype has been shown. However, recently, an SNP 

(rs35599367, C>T) with corresponding allele name CYP3A4*22 (frequency of 5-7% in 

Caucasian) was discovered.89 Carriers of the  CYP3A4*22 variant allele are associated with 

reduced hepatic CYP3A4 expression and activity89-91 and lower dose requirements of 

CYP3A4 substrates such as certain statins and calcineurin inhibitors compared to 

CYP3A4*1/*1 carriers.91,91-94 The CYP3A isoform CYP3A5 is closely related to CYP3A4 and 

show significant overlap in substrate specificity, although the substrate affinity may differ.86 

CYP3A5 is a polymorphic protein expressed at significant levels in 10-40% of Caucasians, 

and may represent as much as 50% of the total CYP3A content in these individuals.86,95  

 

Table 2. Examples of substrates, inhibitors and inducers of CYP enzymes important for drug metabolism.  

Metabolizing 
enzyme 

Substrates Inhibitors Inducers 

CYP1A2 Phenacetin*, caffeine, 
clozapine, naproxen, 
propranolol, olanzapine, 
theophylline 

Furafylline*, cimetidine, 
ciprofloxacin, fluvoxamine 

Omeprazole*, 
lanzoprazole*, coffee, 
phenobarbital, phenytoin, 
rifampicin, ritonavir, 

CYP2B6 Bupropion*, efavirenz, 
ketamine, sertraline, 
tramadol 

Clopidogrel*, sertraline Phenobarbital*, phenytoin, 
rifampicin, ritonavir, statins 

CYP2C9 Diclofenac*, tolbutamide*, 
fluoxetine, ibuprofen, 
rosuvastatin, valsartan, 
warfarin 

Sulphenazole*, amidorone, 
fluconazole 

Rifampicin*, barbiturates, 
bosentan, carbamazepine, 
ritonavir, statins 

CYP2C19 Mephenytoin*, fluoxetine*, 
omeprazole*, amitriptyline, 
clopidogrel, ranitidine 

Ticlopidine*, clopidogrel, 
fluoxetine, omeprazole  

Rifampicin*, artemisinine, 
barbiturates, carbamazepine, 
ritonavir 

CYP2D6 Bufuralol*, 
dextromethorphan*, 
amphetamine, carvediol,  
codeine, metoprolol, 
paroxetine 

Quinidine*, bupropion, 
fluoxetine, haloperidol 

None identified 

CYP3A4/3A5 Midazolam*, testosterone*, 
atorvastatin, carbamazepine, 
claritromycin, cyclosporine 
A, erythromycin, felodipine,  
tacrolimus, verapamil 

Ketoconazole*, 
itraconazole*, 
clarithromycin, ritonavir, 
saquinavir, verapamil,  

Rifampicin*, barbiturates, 
bosentan, carbamazepine, 
dexamethasone, phenytoin, 
ritonavir, statins, St. John’s 
wort 

Adapted from70,96. 
*) Often used as probe agents in phenotyping of the respective enzymes 
Abbreviations: CYP; cytochrome P450 
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1.3 Transporter and enzyme contribution to pharmacokinetic variability in vivo 

For the majority of drugs, systemic exposure is determined by an interplay between 

presystemic transporters and enzymes expressed in the intestine and liver (Figure 3).97  

Furthermore, membrane transporters contribute to the tissue-selective distribution of many 

drugs, and indirectly affect drug metabolism by controlling the access to metabolizing 

enzymes in certain organs. The contribution of specific transporters and/or enzymes to drug 

disposition and clearance is difficult to estimate due to the significant interplay between these 

proteins. Such estimates are necessary for the prediction of the extent to which variability in 

activity of certain transporters and/or enzymes will affect drug concentrations in plasma and 

tissues. 

1.3.1 Transporter and enzyme interplay 

There is considerable overlap in substrate specificity and tissue distribution among membrane 

transporters and metabolizing enzymes throughout the body.97 Recently, a significant 

substrate overlap between hepatic uptake transporters and enzymes has been recognized,97 

e.g. between CYP3A4 and OATPs.98,99 However, the interactive nature of CYP3A and MDR 

is the most extensively studied interplay between enzymes and transporters.97,100-102 CYP3A 

and MDR1 act as a coordinated barrier for xenobiotics.102-104 However, clinical studies have 

demonstrated that the role of intestinal MDR1 extends beyond simply limiting absorption of 

the parent drug.100-102 In the intestine, where the drug enters the enterocytes from the luminal 

side, MDR1 is controlling the access of the drug to the enzyme through repeated cycles of 

absorption and efflux, giving CYP3A multiple opportunities to prevent the intact xenobiotic 

from entering the bloodstream. That is, after penetration into enterocytes, molecules that 

escape metabolism may be transported back into the lumen via MDR1 or other apical efflux 

transporters thereby allowing re-entry into enterocytes and increased chance of metabolic 

conversion by CYP3A.82,105 In contrast, in the liver, where the drug enters the hepatocytes 

from the basolateral side and encounters CYP3A prior to MDR1-mediated efflux into the 

biliary canaliculi, drugs will not re-enter the cells because it would be against a concentration 

gradient, thus less metabolites are formed and more parent traverses the membrane. 
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Figure 3. Selected membrane transporters involved in first pass transport of drugs and xenobiotics. The systemic 
drug exposure is determined by an interplay between these transporters and phase I and II enzymes expressed in 
the intestine and liver. The membrane transporters outlined in bold text are considered especially important for 
drug transport.17  Abbreviations: ASBT, apical sodium-dependent bile acid transporter; BCRP, breast cancer 
resistance protein; BSEP, bile salt export pump; MATE, multidrug and toxin extrusion; MCT, monocarboxylic 
acid transporter; MDR, multidrug resistance protein; MRP, multidrug resistance-associated protein; NTCP, 
sodium-taurocholate cotransporting polypeptide; OAT, organic anion transporter; OATP, organic anion 
transporting polypeptide; OCT, organic cation transporter; OST, organic solute transporter; PEPT, peptide 
transporter. 
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1.3.2 Contribution of transporters and enzymes in hepatic drug clearance 

As discussed above, drugs may be substrates of several transporters and/or enzymes which 

work in concert to eliminate the drugs from the body. Thus, it is of importance to determine 

which processes that are important for in vivo systemic exposure and tissue distribution, and 

to assess the rate-limiting step(s) in drug elimination. Sugiyama and co-workers have 

characterized the interplay of enzymes and transporters to understand the importance of 

parameters that determine the intrinsic drug clearance in the intestine, liver and kidney.106 The 

hepatic elimination of drugs is mediated mainly by four intrinsic processes; basolateral uptake 

into the hepatocytes, sinusoidal efflux from the hepatocytes into the blood, biliary secretion 

and hepatic metabolism. Thus, the overall hepatic intrinsic clearance, CLint,all,h, can be 

described by the following equation:73,106-108 

 

,where PSinf, PSeff and CLint,h represent the basolateral uptake intrinsic clearance (CLact,uptake + 

CLdiff), the sinusoidal efflux intrinsic clearance (CLact,efflux + CLdiff), and the sum of biliary 

efflux clearance and metabolic intrinsic clearance (CLint,bile + CLint,m), respectively. 

Depending on the drug, each of these processes can be rate-limiting for the overall hepatic 

clearance. Theoretically, for highly lipophilic compounds which mainly cross the membrane 

by passive diffusion, both PSinf and PSeff reflect passive diffusion (CLdiff). In this case, PSinf is 

assumed to be equal to PSeff, and CLint,all,h approximates CLint,h. For these compounds, total 

hepatic clearance can be described by the traditional organ clearance model incorporating 

blood flow, extend of protein binding and CLint,h.109 However, most anionic drugs, and some 

hydrophobic organic cations, exhibit poor membrane permeability and require active transport 

across the cell membrane, both in and out of hepatocytes. For these compounds, CLint,all,h is 

directly affected by the transporter activity of the uptake transporters (PSinf). Furthermore, 

when PSeff is negligibly compared to CLint,h (PSeff << CLint,h), CLint,all,h approximates PSinf, 

and a change in CLint,bile or CLint,m does not directly affect the overall hepatic intrinsic 

clearance. On the other hand, when PSeff is considerably higher than CLint,h (PSeff >> CLint,h), 

all intrinsic processes (PSinf, PSeff, CLint,bile and CLint,m) affect the total hepatic intrinsic 

clearance. For such drugs, variability in both transporter and enzyme activities due to 

polymorphisms or interactions with co-administrated drugs could cause interindividual 

variability in drug pharmacokinetics.  
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Atorvastatin, one of the most prescribed lipid-lowering agents, shows low oral bioavailability 

and is a substrate for OATP1B1, MDR1 and CYP3A4.39,110-113 Atorvastatin is administered in 

the pharmacodynamic active acid form, but is partly interconverted in vivo to an inactive 

lactone metabolite.111 Although the lactone form is inactive towards HMG-CoA reductase, its 

systemic levels have been linked as a marker of myotoxicity of atorvastatin treatment.114-116 

Both atorvastatin acid and lactone exhibit highly variable pharmacokinetics.110,114,117 The acid 

form is the primary substrate for OATP1B1,37,56 while the lactone form exhibits higher 

affinity for CYP3A4.118 A recent in vitro study by Neve et al. (2013) showed that CYP3A4-

mediated metabolism of atorvastatin acid was dependent on OATP1B1 uptake and influenced 

by MDR1 efflux, while the metabolism of atorvastatin lactone was not affected by OATP1B1 

or MDR1-mediated transport.119 Given its extensive CYP3A4 metabolism, as well as 

OATP1B1 and MDR1-mediated transport, atorvastatin is a suitable model drug for 

investigating the contribution of hepatic and intestinal expression of these proteins to the 

interindividual variation in drug pharmacokinetics in vivo.  

1.3.3 Transporter and enzyme interplay in DDIs 

Due to the considerable overlap in substrate specificity and tissue distribution, DDIs may 

involve inhibition and/or induction of several transporters and/or enzymes in multiple tissues 

at the same time (Figure 3), and the consequences of co-administration of drugs in terms of 

changes in plasma- and tissue concentrations could be difficult to interpret. Co-administration 

of rifampicin, which has been reported to induce the expression of CYP1A2, CYP2A6, 

CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP3A4, CYP3A5, MDR1, MRP2, MRP3, MRP4 

and OATP1B1 through activation of the nuclear receptor PXR,68,120 can affect the 

pharmacokinetic profile of drug substrates of these transporters and enzymes in multiple 

ways. With regard to inhibition, Niemi et al. (2003) showed that AUC of repaglinide, a 

substrate of both OATP and CYP3A, increased 8.1-fold upon co-administration of the OATP 

inhibitor gemfibrozil, while a 1.4-fold increase in AUC was observed in the presence of the 

CYP3A inhibitor itraconazole. However, AUC of repaglinide increased almost 20-fold upon 

concomitant administration of both gemfibrozil and itraconazole, suggesting that transporter 

and enzyme interplay may give rise to synergistic inhibitory effects.121  
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1.4 Human in vitro liver models for evaluation of drug transport and 

metabolism 

The liver is the most important organ in drug metabolism and excretion, and hepatic CYP 

enzymes and membrane transport proteins are recognized as major determinants of 

pharmacokinetic variability of many drugs.17,75,97 Thus, detailed characterization of the 

isolated hepatic transport and metabolism processes of NMEs are needed at an early state of 

drug development, as well as knowledge of the total hepatic drug clearance which reflects the 

interplay between transporters and metabolizing enzymes. In animals, the expression and 

function of drug transporters and metabolizing enzymes do not always reflect the situation in 

human.122-124 Thus, human liver in vitro models expressing functional transporters and 

enzymes reflecting the hepatic in vivo situation are needed for reliable predictions of in vivo 

drug metabolism, disposition and clearance. Furthermore, in vitro models with maintained 

hepatic functions over an extended period of time are desirable to enable studies of potential 

long-term toxicity. To determine the contribution of single transporters and enzymes to total 

hepatic clearance and to characterize the mechanism of transporter- or enzyme-mediated 

DDIs, specific inhibitors are required. Although much effort has been made to identify 

specific inhibitors for important membrane drug transporters,98,99,125-128 selective inhibitors 

have not been identified for most transporters. In these cases, transfected in vitro systems 

over-expressing certain transporters and/or enzymes are probably the best alternative. 

1.4.1 Transfected in vitro systems  

Recombinant transporters that are stably or transiently expressed in cell lines, e.g. HEK293 

cells,129 can be used to determine whether a drug is substrate or inhibitor of a certain 

transporter. A drug substrate is sensitive (victim) to DDIs, while a drug inhibitor (perpetrator) 

may affect the kinetic profile of co-administered drugs. Single-transfected cell lines, or 

Xenopus leavis oocytes injected with cDNA encoding an uptake transporter of interest,23 are 

mainly used to determine drug interaction with uptake transporters. For the assessment of 

drug efflux, membrane vesicles prepared from transfected cells are commonly used.130 Due to 

the inverted configuration, influx rather than efflux is determined, which enables assessment 

of substrate or inhibitor interaction with the target efflux transporter. However, hydrophobic 

compounds exhibit high degree of binding to cell membranes and highly membrane-

permeable drugs undergo extensive passive uptake into vesicles masking the active transport, 

limiting the use of membrane vesicles.  
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With regard to metabolizing enzymes, human recombinant CYP enzymes expressed in e.g. 

Escherichia coli or baculovirus infected cells can be used to identify compounds that are 

substrates or inhibitors of specific CYP enzymes and thus may act as victim or perpetrator 

drugs in DDIs.131,132  

 

Apart from recombinant systems expressing a single transporter or enzyme, double or 

multiple-transfected cell lines can be used to investigate the interplay between certain 

transporters and/or enzymes. Double-transfected, polarized cell lines that stably express 

canalicular and biliary transporters can be used for the assessment of hepatic vectorial 

transport from the blood to the bile.122,133,134 Furthermore, Neve et al. (2013) recently 

developed a transfected HEK293 cell line expressing both an uptake transporter (OATP1B1), 

a metabolizing enzyme (CYP3A4) and an efflux transporter (MDR1), allowing studies of the 

interplay between these three proteins.119 Similarly, a stable MDCK cell model has been 

developed expressing OATP1B1, CYP3A4 and MRP2, as well as the phase II enzyme 

UGT1A1.135 Transfected systems may not reflect the relative amount of transporters and 

enzymes expressed in vivo, but combined with quantitative protein analysis of the relevant 

transporters and enzymes for accurate scaling of the in vivo situation,99 these multiple-

transfected models represent new valuable screening tools in drug discovery and 

development. However, compounds may be substrates of additional transporters or enzymes 

not expressed in these models, and, in the case of DDIs, undergo disposition or clearance by 

compensatory pathways if inhibition of the “regular” pathway is present. Thus, multiple-

transfected cell lines may not predict the true in vivo situation.  

1.4.2 Human hepatocytes 

Freshly isolated primary human hepatocytes, plated or in suspension, represent the current 

standard in vitro model for evaluation of hepatic drug disposition, metabolism, clearance and 

toxicity in the pharmaceutical industry.136 Primary human hepatocytes are derived from intact 

liver tissue, and, at the time of isolation, these cells express a complete set of enzymes and 

transporters involved in hepatic drug clearance.137-141 However, their spontaneous 

dedifferentiation and loss of enzyme and transporter expression in 2D culture is a major 

concern and limits its application.141,142  
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Restricted tissue availability and inter-donor variability further limits the utility of fresh 

primary human hepatocytes. A considerable improvement of hepatocyte cryopreservation 

protocols, allowing storage, transport, scheduling of experiments and repeated experiments 

using hepatocytes isolated from the same donors, has been achieved during recent years.143 

Cryopreserved human hepatocytes have been reported to exhibit both CYP, UGT and 

transporter activities,137,144-147 and is now a routinely used model in studies of hepatic drug 

disposition, metabolism, clearance and toxicity.136 However, as in non-frozen primary human 

hepatocytes, a rapid loss of enzyme and transporter expression is observed when these cells 

are cultured in 2D models.141  

 

Unfortunately, the polarity of hepatocytes in vivo is rapidly lost upon isolation, leading to the 

inability to assess a potential canalicular efflux. However, the polarity can be regenerated 

when hepatocytes are cultured in a sandwich configuration between two layers of gelled 

collagen.148,149 Hoffmaster et al. (2004) reported that the expression and function of several 

canalicular and biliary transporters are retained in sandwich-cultured human hepatocytes 

(SCHH),150 and for some compounds, good correlations have been demonstrated between in 

vitro and in vivo biliary clearance.151 However, the metabolic capacity of this model has been 

questioned. 

1.4.3 HepaRG cells 

HepaRG is a human hepatoma cell line derived from a human hepatocellular carcinoma.152 

When seeded at low density, HepaRG cells acquire an elongated undifferentiated 

morphology, actively proliferating until they reach confluency after approximately ten 

days.152,153 HepaRG cells exhibit an epithelial phenotype at an early stage in culture, but after 

reaching confluency, the bi-potent property allows them to undergo two distinct 

differentiation programs leading to the formation of typical hepatocyte-like colonies 

surrounded by epithelial cells, including bile-canalicular structures.152-154 Maximum cell 

differentiation is reached after two weeks exposure to dimethyl sulfoxide. The differentiated 

hepatocyte-like HepaRG colonies exhibit both morphological and functional characteristics of 

mature hepatocytes, including important functions for drug metabolism and disposition, e.g. 

activity of CYP and UGT enzymes and polarized expression of certain canalicular and biliary 

transporters.155-158 Furthermore, differentiated HepaRG cells have been reported to maintain 

expression and activity of these enzymes and transporters over several weeks in 2D 
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culture.156,159,160 However, the expression levels of hepatic uptake transporters have been 

reported to be considerably lower in HepaRG cells than in primary human hepatocytes, while 

the observed expression of efflux transporters are comparable to or higher than in human 

hepatocytes, with a few exceptions.156-158,160,161 The lack of donor variability, no limitations 

by donor tissue availability and less variation in functional activities, especially in CYP 

activities, are advantages of HepaRG cells compared to primary human hepatocytes, and 2D 

cultured HepaRG cells have been evaluated as a valuable in vitro tool for prediction of CYP 

induction and CYP inhibition in vivo.162,163 However, the lack of genetic variability is a 

limitation of this in vitro model.  

1.4.4 Human pluripotent stem cell-derived hepatocytes 

Human embryonic stem cell-derived hepatocytes (hESC-Hep) and human induced pluripotent 

stem cell-derived hepatocytes (hiPSC-Hep) represent potential alternatives to human primary 

hepatocytes as in vitro liver models. Human embryonic stem cells (hESCs) are cells derived 

from the inner cell mass of a blastocyst, an early-stage embryo.164 hESCs are characterized by 

two distinct properties; their pluripotency and their ability to replicate indefinitely. 

Pluripotency refers to the ability to differentiate into all three embryonic germ layers, 

endoderm, ectoderm and mesoderm, and further on, to all somatic germ cells. Research on 

hESCs is controversial because derivation of hESCs involves destruction of embryos, and is 

prohibited or restricted in some countries.165 In 2006, Yamanaka et al. (2006) demonstrated 

that it is possible to reprogram a mature adult cell to the state of an embryonic stem cell by 

transfection of certain stem cell-associated genes into non-pluripotent cells.166 These cells are 

termed induced pluripotent stem cells (iPSCs). In 2007, two independent research teams 

reported a successful derivation of iPSCs from human adult cells.167,168 Human iPSCs 

(hiPSCs) are an important advance in stem cell research as pluripotent stem cells now can be 

derived from any individual and without the ethically controversial use of embryos.  

 

Because of their plasticity and potentially unlimited capacity for self-renewal, hESCs and 

hiPSCs present useful tools in both research and regenerative medicine. As mentioned above, 

both hESCs and hiPSCs have the potential to differentiate into various cell types, and several 

publications have described the differentiation of hESCs and hiPSCs into hepatocyte-like 

cells.169-182 These hepatocyte-like cells display characteristic hepatic morphology and express 

liver markers such as albumin, hepatic nuclear factor 3β, α1-antitrypsin, liver fatty acid 
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binding protein and cytokeratin 18.169,175,183 Furthermore, the cells accumulate glycogen and 

secrete albumin and urea, typical features for hepatocytes,170,171,174,175 and exhibit GST 

expression and activity that closely resemble that of human hepatocytes.180 Moreover, 

expression and activity of certain CYP enzymes have been reported in both hESC-Hep and 

hiPSC-Hep.169-172,174-177,179 However, a detailed evaluation of both CYP and transporter 

activities in these cells is warranted.  

 

The field of human pluripotent stem cell-derived hepatocytes is rapidly taking significant 

steps forward, and new and more efficient differentiation protocols are constantly being 

developed. Thus, hopefully, both hESC-Hep and hiPSC-Hep will play important roles in 

studies of drug metabolism and disposition in vitro in the future. 

1.4.5 Cell culturing systems 

Up until recently, human hepatocytes, as well as HepaRG cells and stem cell-derived 

hepatocytes, have primarily been cultured in 2D monolayers. However, as mentioned above, a 

major disadvantage of human hepatocytes in 2D culture is their spontaneous dedifferentiation 

and rapid loss of enzyme and transporter expression.141,142 This prevents the possibility of 

long-term studies which is of particular importance in toxicity testing and in investigations of 

slowly metabolized drugs. Thus, novel cell culture systems with improved conservation of 

hepatocyte functions allowing predictive long-term in vitro pharmacokinetic or toxicological 

studies are warranted.   

 

In 1994, Gerlach et al. introduced the multicompartment bioreactor technology for dynamic 

3D perfusion culture of human liver cells.184 This technique uses interwoven hollow-fiber 

capillary membranes that provide independent, decentralized medium and gas exchange to the 

cells located between the capillaries (Figure 4). When cultured in a perfused 3D bioreactor, 

human liver cells retain in vivo-like properties and are arranged in tissue-like structures.185-187 

Zeilinger et al. (2002) showed that liver-specific functions such as urea and albumin 

synthesis, glucose metabolism and CYP activities were all maintained for at least 14 days in 

bioreactor culture.187 Recently, Zeilinger et al. (2011) reported preserved activity of CYP 

enzymes important for drug metabolism for up to 23 days in a miniaturized bioreactor.188 

However, the maintenance of transporter activities in human hepatocytes cultured in this 

system has not been investigated.  
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Differentiated HepaRG cells have been reported to exhibit CYP and UGT activities over 

several weeks in the perfused 3D bioreactor.162,190 Furthermore, HepaRG cells predicted well 

the CYP inhibition and induction observed in vivo.162 Although polarity of transporter 

expression and formation of tissue-like structures including bile canaliculi have been 

demonstrated using immunocytochemistry,162 an evaluation of the transporter activities in 

HepaRG cells cultured in a bioreactor is still warranted.  

 

 

Figure 4. Schematic view of the miniaturized bioreactor. Three independent bundles of hollow fiber membranes 
are interwoven in two layers, serving for perfusion of the cells cultured in the space between the fibers. The 
upper panel shows the spatial arrangement of the three independent capillary bundles seen from above. The 
lower panel depicts a cross-section with cellular clusters among fibers and mass exchange between medium 
capillaries of different layers.189 This figure is reproduced from Hoffman et al. (2012),189 with permission from 
the publisher (John Wiley and Sons). 
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As mentioned above, hESCs and hiPSCs have the potential to provide a stable and unlimited 

supply of human hepatocytes, and much effort has been made to differentiate hESCs and 

hiPSCs toward the hepatic lineage, primarily using 2D cultures systems. Although the results 

are encouraging, several factors still limit the general use of stem cell-derived hepatocytes in 

drug discovery, including satisfactory levels of drug metabolizing enzymes.191 Sivertsson et 

al. (2012) have reported improved hepatic differentiation of hESCs, evaluated by a global 

transcriptional analysis, in the perfused 3D bioreactor as compared to in 2D culture 

systems.192   
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2 AIM OF THE THESIS 

The overall aim of this thesis was to evaluate the hepatic transport and metabolism in in vitro 

models used in assessments of drug pharmacokinetics and toxicity, and to investigate the 

contribution of membrane transporters and metabolizing enzymes to in vivo pharmacokinetic 

variability.  

 

Specific aims were as follows: 

- evaluate the activity of OATP1B1/1B3 in plated primary human hepatocytes over time 

in culture (paper I). 

- evaluate the activity of OATP1B1 and CYP3A4 in fresh primary human hepatocytes 

and differentiated cryopreserved HepaRG cells cultured in a 3D bioreactor system 

(paper II). 

- determine the expression and function of important membrane transporters and  CYP 

enzymes in hESC-Hep and hiPSC-Hep compared to cryopreserved human primary 

hepatocytes (paper III). 

- investigate the impact of OATP1B1, MDR1, and CYP3A4 expression in liver and 

intestine on interpatient pharmacokinetic variability of atorvastatin in obese subjects 

(paper IV). 
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3 SUMMARY OF PAPERS 

Paper I 

OATP1B1/1B3 activity in plated primary human hepatocytes over time in culture. 

The aim of the present study was to evaluate the activity of OATP1B1 and OATP1B3 in 

plated primary human hepatocytes over time in culture. The uptake kinetics of the 

OATP1B1/1B3 substrate [3H]-estradiol-17β-D-glucuronide ([3H]-E17βG) was determined in 

cells from five donors. An extensive and variable decrease in OATP1B1/1B3 activity and/or 

increase in passive diffusion were observed over time. Already after 6 hours in culture, the 

OATP1B1/1B3 activity was not possible to determine in liver cells from one donor, while 

after 24 hours, the uptake activity was not measureable in one additional donor. In the other 

three donors, the decrease in CLact,uptake (Vmax/Km) values ranged from 15% to 86% after 24 

hours in culture compared to the values measured at 2 hours. Visual examination of 

OATP1B1 protein expression by confocal microscopy showed localization to the plasma 

membrane as expected, and an extensive decrease in OATP1B1 expression over time in 

culture supported the decline in activity. The significant reduction in SLCO1B1 and SLCO1B3 

gene expression over time also supported the loss of OATP1B1/1B3 activity. In conclusion, 

plated primary human hepatocytes are useful as an in vitro model for OATP1B1/1B3-

mediated uptake studies, but the culture time may substantially change the uptake kinetics. 

 

Paper II 

Evaluation of OATP1B1 and CYP3A4 activities in primary human hepatocytes and HepaRG 

cells cultured in a dynamic three-dimensional bioreactor system. 

The aim of the present study was to investigate the OATP1B1 and CYP3A4 activities in fresh 

primary human hepatocytes and differentiated cryopreserved HepaRG cells when cultured in 

a 3D bioreactor system. The OATP1B1 activity was determined by loss from media 

experiments of [3H]-E17βG and atorvastatin for up to 7 days in culture. Atorvastatin 

metabolite formation was determined at day 3 to 4 to evaluate the CYP3A4 activity. Overall, 

the results showed that freshly isolated human hepatocytes inoculated in the bioreactor 

retained OATP1B1 activity for at least 7 days, while in HepaRG cells, no OATP1B1 activity 

were observed beyond day 2. The activity data were in agreement with immunohistochemical 

stainings, which showed that OATP1B1 protein expression was preserved for at least 9 days 

in fresh human hepatocytes, while OATP1B1 was almost absent in HepaRG cells after 9 days 

in culture. Fresh human hepatocytes and HepaRG cells exhibited similar CYP3A4 activity in 
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bioreactor culture, and immunohistochemical stainings supported these findings. Comparisons 

of activity and gene expression of OATP1B1 and CYP3A4 in fresh suspensions of primary 

human hepatocytes and HepaRG cells were in agreement with data obtained in bioreactor 

culture. In conclusion, freshly isolated human hepatocytes cultured in a 3D bioreactor system, 

preserves both OATP1B1 and CYP3A4 activities, allowing long-term in vitro studies on drug 

disposition and toxicity. 

 

Paper III 

Drug metabolizing enzymes and transporter protein profiles of hepatocytes derived from 

human embryonic and induced pluripotent stem cells. 

In this study, the expression and function of important CYP enzymes and membrane 

transporters in hESC-Hep and hiPSC-Hep were compared to cryopreserved human primary 

hepatocytes (hphep) and HepG2 cells. Overall, CYP activities in hESC-Hep and hiPSC-Hep 

were much lower than in hphep cultured for 4 h, but CYP1A and 3A activities were 

comparable to levels in hphep cultured for 48 h (CYP1A: 35% and 26% of 48 h hphep, 

respectively; CYP3A: 80% and 440% of 48 h hphep, respectively). Importantly, in hESC-Hep 

and hiPSC-Hep, CYP activities were stable or increasing for at least one week in culture 

which was in contrast to the rapid loss of CYP activities in cultured hphep between 4 and 48 h 

after plating. With regard to transporters, in hESC-Hep and hiPSC-Hep, pronounced NTCP 

activity (17% and 29% of 4 h hphep, respectively) and moderate BSEP activity (6% and 8% 

of 4 h hphep, respectively) was observed, but only low OATP1B1 activity (both 2% of 4 h 

hphep). Analyses of gene expression and immunocytochemistry supported the observed CYP 

and transporter activities and showed expression of additional CYP enzymes and transporters. 

In conclusion, the stable expression and function of CYP enzymes and transporters in hESC-

Hep and hiPSC-Hep for at least one week opens up the possibility to reproducibly perform 

extensive, long-term studies, e.g. chronic toxicity testing, in a stem cell-derived hepatic 

system. 

 

Paper IV 

Impact of OATP1B1, MDR1 and CYP3A4 expression in liver and intestine on interpatient 

pharmacokinetic variability of atorvastatin in obese subjects. 

In this study, we investigated the relationship between expression of OATP1B1, MDR1 and 

CYP3A4 and the pharmacokinetics of atorvastatin in 21 obese patients with paired biopsies 
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from liver and intestinal segments. The patients were also screened for the SLCO1B1 

c.521T>C variant alleles. The results showed a significant positive correlation between 

OATP1B1 protein expression in the liver and CL/F of atorvastatin (r = 0.53, p = 0.041). The 

estimated correlation indicated that approximately 30% (r2 = 0.28) of the variation in CL/F of 

atorvastatin was explained by hepatic OATP1B1 protein expression. Patients carrying the 

SLCO1B1 c.521C variant allele (homozygous, n = 4; heterozygous, n = 2) exhibited 45% 

lower CL/F of atorvastatin than the c.521TT carriers (p = 0.067). No association between 

hepatic and intestinal expression of MDR1 or CYP3A4 and atorvastatin pharmacokinetics 

was found (p > 0.149). Of note, a significant negative correlation between BMI and CYP3A4 

expression in both the liver (r = -0.77, p < 0.001) and small intestine (r = -0.56, p = 0.011) 

was observed, which was in line with a significant negative correlation between BMI and 

CL/F of atorvastatin lactone (r = -0.59, p = 0.004). In conclusion, this study suggests that 

OATP1B1 phenotype is more important than CYP3A4 and MDR1 phenotypes for the 

individual pharmacokinetic variability of atorvastatin. Furthermore, high BMI is associated 

with low CYP3A4 expression in both the liver and intestine, which decreases CL/F of 

atorvastatin lactone, a metabolite of potential importance for the risk of myotoxicity. 
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4 DISCUSSION 

4.1 Hepatic transport and metabolism in human hepatocytes 

4.1.1 OATP1B1 transport 

In paper I, we investigated the OATP1B1/1B3-mediated uptake kinetics in plated fresh 

primary human hepatocytes over time in culture. Overall, the results showed that plated 

primary human hepatocytes cultured for a restricted period of time is a useful model for in 

vitro studies of OATP1B1/1B3-mediated uptake. However, the time in culture substantially 

changes the uptake kinetics of OATP1B1/1B3 substrates, and profoundly limits the time 

possible to study OATP1B1/1B3-mediated uptake in this system. After 2 hours in culture, an 

active OATP1B1/1B3-mediated uptake was observed in all donors, but an extensive decrease 

in OATP1B1/1B3 activity, along with an increased variability between donors, was observed 

during longer culturing times. The extensive increase and variability in the passive uptake of 

E17βG into plated human hepatocytes contributed to the large variability in OATP1B1/1B3 

activity observed after longer culturing time. Additionally, the change in membrane integrity 

over time led to increased uncertainty in the Km and Vmax estimations, which affects the 

reliability of 2D cultured human hepatocytes as an in vitro model for estimations of hepatic 

uptake clearance in vivo. 

 

In the human liver, OATP1B1 and OATP1B3 are localized to the basolateral membrane of 

hepatocytes.20-22,25 However, during isolation, the polarity of the hepatocytes is rapidly lost.193 

In paper I, the protein expression of OATP1B1 studied by confocal microscopy showed that 

OATP1B1 was evenly distributed over the whole cell surface at 2 hours. The decline in 

protein expression of OATP1B1 on the cell surface over time in culture supported the present 

decrease in activity. In addition, the significant reduction in gene expression of both 

SLCO1B1 and SLCO1B3 in plated human hepatocytes also supported the loss of 

OATP1B1/1B3 activity over time in culture. These results are consistent with previous results 

by Richert et al. (2006), who reported a decrease in SLCO1B1 and SLCO1B3 expression in 

plated human hepatocytes after 24 hours in culture.141 No functional data was presented in the 

study by Richert et al. 
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In paper I, the functional data after 2 hours in culture did not reveal any obvious effects of 

the SLCO1B1 c.521T>C genotype on the Vmax or Km values. The number of individuals in 

this study is of course too low to provide any conclusive evidence in this matter. However, a 

possible explanation for the apparent lack of impact of the c.521T>C polymorphism on the 

uptake activity of E17βG might be that factors associated to cell isolation and plating provide 

greater variability per se than the genotype, e.g. collagenase treatment, differences in 

attachment status194 and/or the previously discussed inter-lot differences in passive diffusion 

of E17βG.  

 

As indicated above, the use of plated primary human hepatocytes as an in vitro tool for 

predictions of hepatic drug clearance is impaired by the rapid decrease in OATP1B1 activity 

in culture (paper I). For drugs being OATP1B1 substrates, uptake transport activity may have 

important implications on hepatic clearance, e.g. OATP1B1 phenotype is a major determinant 

of the individual variability in systemic exposure of atorvastatin after oral administration 

(paper IV). Although primary human hepatocytes cultured for longer periods still could be 

used to evaluate hepatic clearance, experiments in suspensions of freshly isolated hepatocytes 

or newly thawed cryopreserved human hepatocytes, which possess both metabolism and 

transport activities (paper II and III),137-139 will probably give more reliable predictions. 

 

In paper I, we did not explore the mechanisms behind the decline in OATP1B1 activity with 

time. A current hypothesis is however that the OATP1B1 activity will change when cells lose 

their natural cell contacts and are not organized in a 3D structure. Other culturing conditions, 

e.g. sandwich-cultures or 3D culture systems such as a bioreactor, may better retain and 

stabilize the transporter activity. This was supported by findings in paper II where freshly 

isolated human hepatocytes inoculated in the perfused 3D bioreactor system exhibited 

preserved OATP1B1 activity for at least 7 days in culture. The activity data were in 

agreement with immunohistochemical stainings which showed that OATP1B1 protein 

expression was preserved for at least 9 days in bioreactor culture. As discussed previously, for 

OATP1B1 substrates, uptake transport activity may have important implications for cellular 

drug concentrations, which in turn may affect drug metabolism and hepatotoxicity. Paper II 

showed that freshly isolated human hepatocytes cultured in a bioreactor system preserved 

functionality of OATP1B1, which, together with the sustained activity of metabolizing 

enzymes (discussed below), allows long-term preclinical investigations on hepatic drug 
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clearance and toxicity. Human hepatocytes cultured in a sandwich configuration represent a 

potential alternative to bioreactor cultures of human hepatocytes. Hoffmaster et al. (2004) 

have previously reported that the OATP1B1 protein expression is retained in SCHH for up to 

six days,150 and recently, Kimoto et al. (2013) reported similar OATP1B1 protein expression 

levels in cryopreserved human hepatocyte suspensions and SCHH at day five in culture,195 

suggesting that SCHH is another useful in vitro model for characterization of hepatic 

disposition. However, another recent study by Kimoto et al. (2012) showed that culturing of 

human hepatocytes in a sandwich configuration had a significant impact on the functional 

expression of CYP enzymes, with differential effects of specific CYP isoforms, suggesting 

that SCHH may not be considered a suitable tool for assessments of hepatic clearance.196   

 

Paper II was the first to show preserved protein expression and activity of a basolateral 

transporter, OATP1B1, in primary human hepatocytes cultured in the bioreactor system. In 

previous studies, immunohistochemical stainings have shown expression of the apical efflux 

transporters MRP2 and MDR1 in bioreactor cultures of fresh human hepatocytes for at least 

two weeks.188 In the liver, hepatic uptake of E17βG and atorvastatin is mediated by 

OATP1B1 and OATP1B3.23,25,133,197 MRP2, and to less extent MDR1, are responsible for the 

biliary efflux of E17βG, while atorvastatin is excreted via MDR1, MRP2 and 

BCRP.56,113,198,199 Formation of bile structures in hepatocytes cultured in a 3D bioreactor has 

been reported,185,186 but the organization of these bile structures is not known and the 

bioreactor technique does not allow collection of bile at this point. In the bioreactor 

experiments performed in paper II, intracellular E17βG is probably partly effluxed back into 

the medium via MRP2 (and MDR1), while atorvastatin is effluxed by MDR1, MRP2 and 

BCRP. The curve plateau that is observed in the loss from media experiments over time could 

possibly be explained by equilibrium between uptake and efflux of E17βG and atorvastatin.  

 

Lau et al. (2007) reported an acute 2.7-fold increase in elimination half-life of atorvastatin in 

vivo after oral single dose co-administration of rifampicin, a potent OATP1B1 inhibitor.42 

This was in line with our observations in the bioreactor experiments with fresh human 

hepatocytes (paper II), where AUC of atorvastatin increased 1.2-fold in the medium during 

co-administration of estrone-3-sulfate (E3S), another OATP1B1 inhibitor. Possible 

explanations for the lower interaction effect in vitro include efflux of atorvastatin back into 

the media, instead of out into the bile, and less potent OATP1B1 inhibition of E3S compared 
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to rifampicin. Nevertheless, the in vitro findings demonstrate the applicability of the 

bioreactor as a model for preclinical interaction studies. However, in vitro-in vivo 

extrapolations should be performed to determine whether the bioreactor cultures are 

preferable to suspensions of human hepatocytes, which is a more cost efficient model, for this 

purpose. 

 

In paper II, comparable OATP1B1 activities were observed in suspensions of freshly isolated 

and cryopreserved human hepatocytes, which support previous findings.137 Furthermore, in 

paper III, we determined the OATP1B1 activity in cryopreserved hepatocytes 4 hours after 

plating, and considerable OATP1B1 activity was observed in all three batches. Hence, 

cryopreserved human hepatocytes, both in suspension and platable, represent good 

alternatives to primary human hepatocytes for evaluation of OATP1B1-mediated uptake. 

However, as in non-frozen primary human hepatocytes, a rapid loss of transporter expression 

is observed when these cells are cultured in 2D models.141 In paper II, cryopreserved human 

hepatocytes were, however, not applied in the bioreactor system based on prior experience 

showing that non-platable cryopreserved human hepatocytes are not applicable in the 

bioreactor (data not shown). The bioreactor technique requires cell attachment to the hollow-

fiber capillary membranes, and the incapability of non-platable cryopreserved hepatocyte to 

attach to surfaces probably explains the negative findings. In future experiments, platable 

cryopreserved human hepatocytes should be applied in the bioreactor to test this hypothesis.  

4.1.2 CYP3A4 metabolism 

It is well known that isolated primary human hepatocytes exhibit significant CYP3A4 

activity.139,147,200 In paper II, suspensions of freshly isolated and cryopreserved human 

hepatocytes exhibited comparable CYP3A4 activities. In line with previous reports,141,142 the 

expression and activity of CYP3A4 are however rapidly decreasing when hepatocytes are 

cultured in 2D (paper III).  

 

In paper II, we also investigated the CYP3A4 activity (atorvastatin hydroxylation) in fresh 

primary human hepatocytes cultured in a bioreactor system. Atorvastatin was metabolized to 

both 2-OH-atorvastatin and 4-OH-atorvastatin, demonstrating an active CYP3A4 metabolism 

at day 3 to 4.111,201 Furthermore, immunocytochemical stainings showed CYP3A4 protein 

expression in primary human hepatocytes at day 9 in bioreactor culture. These findings are in 



DISCUSSION 

40 

 

agreement with previous studies on fresh human hepatocytes in bioreactor culture where 

CYP3A4 activity was observed for at least two weeks.187,188  

 

In paper II, an apparent induction of CYP3A4 in bioreactor cultures of primary human 

hepatocytes was observed, which is in agreement with the previously reported CYP3A4 

induction by atorvastatin in vitro.202-204  This suggests that primary human hepatocytes 

cultured in the bioreactor system might serve as an in vitro model for evaluation of both 

enzyme inhibition and induction, as well as identification of slowly metabolized drugs.  

 

In paper IV, we found large interpatient variability in both mRNA and protein expression of 

hepatic CYP3A4 and OATP1B1, which is consistent with previous studies.44,205-207 In 

agreement with this, large interindividual variability in CYP3A4 and OATP1B1 activities was 

observed in primary human hepatocytes in suspension, 2D and 3D cultures (paper I and II), 

which probably could be explained by interdonor variability, but maybe also by the 

hepatocyte isolation procedure. Furthermore, substantial interindividual variability in 

CYP3A4 and OATP1B1 activities was observed in platable cryopreserved human hepatocytes 

investigated in paper III, where each batch contained cells from a single donor.  Although 

pooled batches of cryopreserved human hepatocytes from several donors exhibit less inter-

batch differences (paper II), the restricted liver tissue availability along with the variability in 

quality and hepatic functions limits the utility of human hepatocytes as an in vitro model in 

drug development, and alternative hepatic in vitro models are warranted. 

4.2 Hepatic transport and metabolism in HepaRG cells 

4.2.1 OATP1B1 transport 

In paper II, OATP1B1-mediated transport of E17βG was observed in suspensions of 

differentiated cryopreserved HepaRG cells, which is supported by later reports on uptake of 

E17βG and E3S in 2D cultured HepaRG cells.158,161 However, paper II clearly showed that 

the OATP1B1 activity is lower in HepaRG cells than in suspensions of both fresh and 

cryopreserved human hepatocytes, which is in line with previous reports on SLCO1B1 

expression in 2D cultures of HepaRG cells.156,157 These findings suggest that human 

hepatocytes are superior to HepaRG cells as a model for in vitro studies of OATP1B1-

mediated transport.  
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In paper II, we also investigated the OATP1B1 activity in HepaRG cells cultured in the 3D 

bioreactor system for 9 days. OATP1B1-mediated transport was observed at day 2, but no 

OATP1B1 activity was detected beyond day 2. The activity data were in agreement with 

immunohistochemical stainings which showed that the OATP1B1 protein expression was 

almost absent in HepaRG cells at day 9 in bioreactor culture. These findings suggest that 

culturing of HepaRG cells in a 3D system, in contrast to human hepatocytes, does not 

preserve OATP1B1 activity over time. Notably, in paper II, differentiated cryopreserved 

HepaRG cells, which were recently available from the purchaser, were inoculation directly 

into the bioreactor in order to shorten the experimental period. Inoculation of undifferentiated 

HepaRG cells followed by two weeks differentiation within the bioreactor prior to 

experiments may improve hepatic functions such as OATP1B1 activity, and should be further 

investigated. In a previous study by Darnell et al. (2011) where HepaRG cells were 

differentiated in the bioreactor as described above, immunohistochemical stainings of the 

apical efflux transporters MRP2 and MDR1 showed expression of both transporters for at 

least two weeks in culture.162 However, these efflux transporters are also highly expressed in 

2D cultured HepaRG cells, in opposite to uptake transporters.156-158,160,161 Therefore, the 

conclusion that differentiation of HepaRG cells in the bioreactor system will improve 

functional expression of uptake transporters cannot be drawn from these data.   

 

In the bioreactor experiments in paper II, the OATP1B1 activity was determined by 

assessment of loss from media of the probe substrate. This approach is less sensitive 

compared to assessments of intracellular concentration due to the relatively high start 

concentration of substrate in the media. Thus, the loss from media approach may not detect 

low levels of functional transporter expression, which may explain the negative results with 

regard to OATP1B1 activity in bioreactor cultures of HepaRG cells beyond day 2. Hopefully, 

future generations of the bioreactor system will allow cell removal from the bioreactor culture 

for determination of intracellular concentrations of xenobiotics or endogenous compounds, as 

well as mRNA and protein expression levels, during the experiment run. 

4.2.2 CYP3A4 metabolism 

In paper II, suspensions of differentiated cryopreserved HepaRG cells exhibited substantial 

CYP3A4 activity. The observed CYP3A4 activity level in HepaRG cells was comparable to 

suspensions of freshly isolated human hepatocytes and cryopreserved human hepatocytes. 
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The suitability of suspended HepaRG cells as an in vitro model for studies of CYP3A4-

mediated drug metabolism was supported by the observed CYP3A4 gene expression data in 

paper II showing no significant difference between suspensions of HepaRG cells, fresh and 

cryopreserved human hepatocytes.  

 

When cultured in the bioreactor, HepaRG cells were shown to retain their CYP3A4 activity in 

terms of hydroxylated metabolites following incubations with atorvastatin at day 3 and 4 

(paper II), which is consistent with studies on HepaRG cells in bioreactor culture where 

CYP3A4 activity was observed for at least two weeks.162 Similar levels of CYP3A4 activity 

were observed in HepaRG cells and human hepatocytes when cultured in the bioreactor, 

which were consistent with the comparable CYP3A4 protein expression levels observed at 

day 9 in culture. Furthermore, a CYP3A4 induction response by atorvastatin was observed in 

HepaRG cells cultured in the bioreactor, as previously described for bioreactor cultures of 

human hepatocytes. Overall, these findings support that HepaRG cells cultured in the 

bioreactor may serve as a valuable model for studies of CYP3A4-mediated drug clearance, 

particularly of slowly metabolized drugs.  

 

As HepaRG cells cultured in 2D or 3D systems have been shown to express similar CYP 

activities,155,156,159,160,162 2D cultures may be a more convenient and less expensive in vitro 

model for long-term studies of hepatic CYP induction and metabolism. It should be noted 

though, that the limited OATP1B1 activity is a potential drawback of HepaRG cells in 

metabolism studies in cases where drugs are combined CYP/OATP1B1 substrates. The low 

functional expression of OATP1B1 and other uptake transporters in HepaRG cells156-158, 160,161 

may confound the in vitro-in vivo extrapolations. Furthermore, in an additional paper, we 

reported that the proportions of relevant hydroxylation and glucuronidation biotransformation 

pathways of two model substrates metabolized by both CYP and UGT enzymes were 

different in bioreactor culture of HepaRG cells compared to human hepatocytes.190 These 

findings reflect the differential expression levels of CYP and UGT enzymes in HepaRG cells 

and human hepatocytes, and should be considered when performing in vitro-in vivo 

extrapolations from HepaRG data.  
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4.3 Hepatic transport and metabolism in human pluripotent stem cell-derived 

hepatocytes 

4.3.1 OATP1B1 transport 

In paper III, the activity and expression of several membrane transporters important for drug 

disposition and toxicity in human pluripotent stem-cell derived hepatocytes were evaluated. 

The OATP1B1 activity in hESC-Hep and hiPSC-Hep was only about 2% of the activity in 

plated (4 h) cryopreserved human hepatocytes. These findings were consistent with low 

SLCO1B1 gene expression in hESC-Hep and hiPSC-Hep. Although a moderate OATP1B1 

staining in hiPSC-Hep was shown, there is no doubt that the currently available human 

pluripotent stem cell-derived hepatocytes are not yet an appropriate model for studies of 

OATP1B1-mediated transport.  

 

Despite almost absent OATP1B1 activity, the pronounced activity of the liver-specific uptake 

transporter NTCP in hESC-Hep and hiPSC-Hep (~15-30% of 4 h plated human hepatocytes, 

paper III) brings hope that stem cell-derived hepatocytes can serve as a model for studies on 

typical drug transporters in the future. In paper III, the positive findings of NTCP uptake in 

hESC-Hep and hiPSC-Hep were accompanied by moderate activity of the hepatic efflux 

transporter BSEP (~7% of 4 h plated human hepatocytes). The gene expression of SLC10A1 

and ABCB11 were consistent with the NTCP and BSEP activity data, respectively, and 

immunohistochemical stainings indicated membrane localization of these transporters. 

 

In the liver, NCTP and BSEP mediates the vectorial transport of bile acids across hepatocytes 

from the blood to the bile,63,64 and thus, functional NTCP and BSEP represent important liver 

functions present in both hESC-Hep and hiPSC-Hep. As described above, inhibition of NTCP 

and BSEP has been reported to mediate drug-induced cholestasis and hepatotoxicity.65,66 

Hence, hESC-Hep and hiPSC-Hep could represent a useful in vitro tool for predictions of in 

vivo hepatotoxicity caused by inhibition of bile acid transport. Importantly, the expression 

levels of NTCP and BSEP was stable or slightly increasing for at least one week in culture 

(Paper III), which enables long-term studies.  

 

Overall, human pluripotent stem cell-derived hepatocytes exhibit a substantially low 

transporter expression profile compared to human hepatocytes, although improved expression 
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and activity of several drug transporters have been observed since comparable studies were 

conducted in 2009 (data not shown). Hence, additional refinements of the derivation protocol 

are required before hESC-Hep and hiPSC-Hep are applicable in studies of hepatic drug 

disposition. 

4.3.2 CYP3A4 metabolism 

In paper III, we evaluated the activity and expression of several CYP enzymes important for 

drug metabolism in hESC-Hep and hiPSC-Hep. Overall, the CYP activities in hESC-Hep and 

hiPSC-Hep were low compared to cryopreserved human hepatocytes 4 h after plating. 

However, the new generations of hESC-Hep and hiPSC-Hep presented in paper III had 

considerably higher CYP activity levels compared to earlier reports on stem cell-derived 

hepatocytes.170,179 Compared to 48 h hepatocyte cultures, the CYP3A activity in hESC-Hep 

and hiPSC-Hep investigated in paper III was at a similar level or even higher, respectively. 

Investigating the gene expression of the CYP3A enzyme family revealed that hESC-Hep and 

hiPSC-Hep expressed only low levels of CYP3A4 which is the major isoenzyme found in 

adult hepatocytes.79 However, considerable mRNA levels of the CYP3A isoenzyme CYP3A5 

were observed in both hESC-Hep and hiPSC-Hep which indicate that the observed 

midazolam metabolism was mainly due to CYP3A5 activity. Moreover, compared to previous 

reports,170,179 the CYP1A levels are also approaching levels found in plated human 

hepatocytes after 48 h in culture. However, hESC-Hep and hiPSC-Hep expressed higher 

CYP1A1 than CYP1A2 levels, which is opposite to in adult livers.208 Furthermore, the activity 

of CYP2B6 and CYP2C9 was considerably lower than in hepatocyte cultures, which 

emphasize that improved differentiation protocols are needed to obtain fully functional 

hepatocytes.   

 

In paper III, the CYP activity levels in hESC-Hep and hiPSC-Hep were in general stable or 

slightly increasing for at least one week in culture, in contrast to the extensive decrease in 

CYP activities observed in cultures of plated cryopreserved human hepatocytes. This is a 

promising feature with regard to long-term in vitro studies of e.g. chronic toxicity.  

Furthermore, the high robustness of the differentiation protocol and subsequently low inter-

batch variability of hESC-Hep and hiPSC-Hep provides a continuous, reliable supply of 

hESC-Hep and hiPSC-Hep from defined genetic backgrounds.  
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Although the new generations of hESC-Hep and hiPSC-Hep presented in paper III exhibit 

improved hepatic features compared to earlier generations of stem cell-derived 

hepatocytes,170,179 hESC-Hep and hiPSC-Hep differentiated in 2D systems seem to adapt a 

“plated” phenotype different from human hepatocytes with regard to expression of CYP 

enzymes and transporters. Thus, further improvement is required before hESC-Hep and 

hiPSC-Hep can be used in e.g. drug metabolism studies. A more hepatocyte-like CYP and 

transporter profile may be obtained through hepatic differentiation of hESC and hiPSC in a 

more tissue like environment, e.g. in the perfused 3D bioreactor system.192  

4.4 Transporters and enzymes as pharmacokinetic determinants in vivo 

4.4.1 OATP1B1 and atorvastatin pharmacokinetics  

In paper IV, we investigated the relationship between individual expression of OATP1B1, 

MDR1 and CYP3A4 in paired liver and small intestinal biopsies and the pharmacokinetics of 

atorvastatin in morbidly obese patients. The main finding was a significant correlation 

between OATP1B1 protein expression in the liver and CL/F of atorvastatin in obese patients, 

indicating that OATP1B1 phenotype determines about 30% of the individual variability in 

pharmacokinetics of atorvastatin. The importance of OATP1B1 in this matter was further 

substantiated by the almost 50% lower CL/F of atorvastatin observed in carriers of the 

SLCO1B1 c.521C variant allele, which is in line with a previous study investigating the 

impact of SLCO1B1 genetics on systemic exposure of atorvastatin.209 Our in vivo data clearly 

indicate that this mutation affects activity rather than expression of OATP1B1, which later 

has been supported by Nies et al. (2013).210 Further, when examining the data in more detail, 

no association was observed between hepatic OATP1B1 expression and kel of atorvastatin. 

The most plausible explanation would be a corresponding impact of hepatic OATP1B1-

mediated uptake on both clearance and apparent volume of distribution (Vd) of atorvastatin.  

 

No significant correlations were observed between atorvastatin pharmacokinetics and any of 

the other tested variables, e.g. CYP3A4 or MDR1 expression in liver and intestine. Thus, it 

seems evident that the hepatic expression of OATP1B1 is more important than CYP3A4 and 

MDR1 expression in small intestine and liver for the individual variability in 

pharmacokinetics of atorvastatin. These findings indicate that uptake transporters may be 

more important than metabolizing enzymes for interindividual variability in pharmacokinetics 
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and response of certain drugs. Moreover, paper IV supports that genotyping of SLCO1B1 

may be relevant to identify patients at risk of ADRs or impaired efficacy during treatment 

with certain drugs, e.g. statins. 

4.4.2 CYP3A4 and atorvastatin lactone pharmacokinetics 

The lactone metabolite of atorvastatin is pharmacologically inactive, but the level of this 

metabolite has been linked to the risk of muscular side effects.115,116,211 Due to its high 

lipophilicity, the lactone form of atorvastatin penetrates passively across cell membranes into 

peripheral tissues, where it can be converted to active atorvastatin acid by hydrolysis.111 In 

paper IV, we found no association between the OATP1B1 expression level and CL/F of 

atorvastatin lactone in the present study, which is in line with the low affinity to OATP1B1 

for the lactone form.37,56 However, regarding affinity to CYP3A4, the situation is opposite, 

i.e. atorvastatin lactone displays a much higher affinity to CYP3A4 than atorvastatin acid.118 

In accordance with this, a significant association was observed between CYP3A4 expression 

in the small intestine and the pharmacokinetics of atorvastatin lactone, but not for atorvastatin 

acid.  

 

Obesity is a rapidly growing health care problem in modern societies, and it is often 

associated with various co-morbidities and need of drug therapy (e.g. cardiovascular, 

antidiabetic and antidepressant agents).212-214 However, little is known about the effect of 

obesity on drug metabolism and transporter. Interestingly, in paper IV, we observed that the 

CYP3A4 expression in both liver and small intestine was strongly associated with BMI in the 

present population, i.e. the higher BMI, the lower CYP3A4 expression. This observation was 

in line with a significant negative correlation between BMI and CL/F of atorvastatin lactone. 

Obesity has previously been reported to be associated with reduced clearance of CYP3A4 

substrates,215 e.g. midazolam.216 CYP3A4 is quantitatively the most important enzyme in drug 

metabolism, and the low expression of this enzyme in obese patients likely implies higher 

bioavailability and lower clearance of many drugs. Thus, obese patients might be at risk of 

being over-exposed to several drugs, especially when dosed according to body weight. 

However, additional studies are required to investigate pharmacokinetic alterations and dose 

requirements in obese patients in more detail.  
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In paper IV, the significant correlation observed between CYP3A4 in the liver and intestine 

indicates that CYP3A4 expression is coordinately regulated in the liver and intestine. These 

results are inconsistent with previous studies in non-obese patients.105,205-207 However, the 

parallel decrease in CYP3A4 expression in paired biopsies from the liver and intestine with 

increasing BMI strengthens our findings that CYP3A4 are coordinately regulated in these 

tissues. The mechanisms behind this inverse relationship have not been investigated in this 

thesis, but may at least partly be due to the general inflammatory state of obese patients.217-219 

Inflammatory response involves release of cytokines which have been associated with 

suppression of several CYP enzymes including CYP3A4.220 
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5 CONCLUSION 

In conclusion, plated primary human hepatocytes were found to be a useful in vitro model for 

OATP1B1/1B3-mediated uptake studies, but only for a restricted period of time in culture. 

Longer culturing times led to an extensive and variable decrease in OATP1B1/1B3 activity 

and/or increase in passive diffusion, which limits the time possible to study hepatic uptake 

and clearance in this system. Culturing of primary human hepatocytes in a dynamic 3D 

bioreactor system resulted in preserved OATP1B1 and CYP3A4 activities for at least one 

week in culture, which allows studies of chronic hepatotoxicity and slowly metabolized drugs. 

Furthermore, differentiated HepaRG cells exhibited maintained CYP3A4 activity in 

bioreactor culture similar to primary human hepatocytes. However, OATP1B1 activity could 

not be detected later than day 2 in bioreactor culture which is a major limitation of this in 

vitro model compared to human hepatocytes, especially for in vitro-in vivo extrapolations. 

Moreover, the hESC-Hep and hiPSC-Hep presented in this thesis exhibited improved 

transporter and CYP activity levels compared to previous studies. However, the overall 

transporter and CYP activities were considerably lower than in primary human hepatocytes. 

Additional refinements of the derivation process in combination with a more physiological 

culturing environment will hopefully, in the future, generate stem cell-derived hepatocytes 

with adequate levels of hepatic functions that could be applicable in in vitro studies of drug 

metabolism and disposition.  

 

Finally, this thesis indicates that OATP1B1 phenotype is the major determinant of individual 

variability in atorvastatin pharmacokinetics, suggesting that hepatic uptake transporters are 

more important than metabolizing enzymes in the small intestine and liver for the individual 

variability in pharmacokinetics of certain drugs. Moreover, high BMI was associated with low 

CYP3A4 expression which implies higher bioavailability and lower clearance of CYP3A4 

substrates. Hence, obese patients might be at risk of overdosing of such drugs. These findings 

may be of clinical importance for drug treatment in obese patients. 
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