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Chapter 1

Introduction

Spline functions are piecewise polynomials, a popular tool for representation of
more general functions in many applications. The spline function is uniquely
determined by a set of knots, between which the function is polynomial, the
degree of the polynomial, and a set of coefficients determining its values.

The name spline was originally applied to an instrument which helped dra-
ughtsmen and designers to draw smooth interpolating curves by hand. Splines
can be made to fit a wide variety of properties.

Splines may be created to approximate of functions and data sets, or as part
of design of a model of some physical or engineering phenomenon.

The approximating properties of splines are already well-studied in the lit-
erature, with methods including, but not limited to: direct interpolation, i.e.
forcing the spline to agree at certain interpolation points, variation-diminishing
spline approximation, which uses the values of the function to be approximated
as the coefficients of the new spline, or least squares approximation, which at-
tempts to minimise the distance between the spline and the function at some
given data points.

All these approximation methods attempt to impose conditions on the spline
function itself. However, there exists a piecewise linear function related to the
spline, known as the control polygon, which converges to the spline as the knots
are refined. Thus, we can attempt to enforce the interpolation conditions on this
control polygon, giving rise to a whole new family of approximation problems.

It is of interest to measure some properties of these approximation problems,
for example the speed of convergence to the function, and how these compare
with the more well-studied spline approximation methods. This will be the main
aim of the following thesis.
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Chapter 2

Spline functions

In the introduction, we introduced a number of terms relating to spline func-
tions, which we will now define more precisely. The spline functions are defined
by the degree of the piecewise polynomial pieces, p, as well as the intersections
of the polynomials, known as knots, and usually defined as a vector t. These
all specify a space of functions called a spline space, with order p and an
associated knot vector t.

The spline space is spanned by a vector basis of functions. One such basis
is known as the B-spline basis. This basis spans the space of polynomials of
degree p, and it is relatively easy to construct algorithms evaluating the splines
and to construct spline operators which either interpolate or approximate other
non-polynomial functions. Also, because these operators are relatively simple,
it is possible to prove certain properties of stability and accuracy.

2.1 The basis functions, spline formulation

Definition 1. Representation of a spline. A spline g is represented as a linear

combination of B-splines Bj,p(x) such that g(x) =
∑n

j=1 cjBj,p(x).

The B-splines Bj,p(x) can be calculated and defined recursively, as shown
by de Boor in [3] and others. He described these as normalized B-splines, using
the notation Ni,k(t) for what we will annotate Bj,p(x).

Given a knot vector τ = [τ1, τ2, . . . , τn+p+1] which is nondecreasing, then
define

Bj,0(x) =

{

1, τj ≤ x < τj+1

0, otherwise.
(2.1)

Now for any p ∈ N, Bj,p(x) is given by the recurrence relation

Bj,p(x) =
x − τj

τj+p − τj

Bj,p−1(x) +
τj+1+p − x

τj+1+p − τj+1
Bj+1,p−1(x). (2.2)
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The knot vector of the spline thus defines the boundaries of the subintervals of
the piecewise polynomials. Each B-spline Bj,p is only non-zero on the interval
[τj , τj+p+1], and on any interval [τµ, τµ+1] there are only p+1 non-zero B-splines,
{Bj,p}

µ
j=µ−p [3].

The cjs in the definition of a spline function are called the function’s coeffici-
ents. As we now have a basis for the spline space, by varying cj in R, we can
make the following definition:

Definition 2. The spline space. The spline space Sp,τ is defined to contain

functions defined as follows:

Sp,τ :=







n
∑

j=1

cjBj,p|cj ∈ R for 1 ≤ j ≤ n







. (2.3)

From [6] we cite some definitions about knot vectors, which will be important
when describing knot vectors for our interpolation problems later.

Definition 3. Properties of the knot vector. A knot vector is said to be p + 1-
extended if

1. n ≥ p + 1.

2. tp+1 < tp+2 and tn < tn+1.

3. tj < tj+p+1 for j = 1, 2, . . . , n.

A p + 1-extended knot vector for which t1 = tp+1 and tn+1 = tn+p+1 is called

p + 1-regular.

Finally, from [5] we note a couple of important facts; this basis spans the
space of polynomials of degree p and the basis functions Bj,p are linearly inde-
pendent on [τp+1, τn+1) for a p + 1-extended knot vector. Therefore, that if we
are to solve an interpolation problem with a unique function from a spline space
on [a, b], then we need to choose a knot vector such that [a, b] ⊂ [τp+1, τn+1].

2.2 Algorithm for calculating splines

If we wish to calculate the value of a spline function at x ∈ [a, b], we must first
determine its location in the knot vector - thus we must find an integer µ such
that τµ ≤ x < τµ+1. Then, as stated in section 2.1, only the p + 1 B-splines
{Bj,p}

µ
j=µ−p are non-zero, so the sum in definition 1 simplifies to

µ
∑

j=µ−p

cjBj,p(x).

The recursive formula defining the B-splines suggests a recursive algorithm for
calculating exactly these p + 1 B-splines. This recursion can be represented as
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a succession of matrix multiplications, which is very convenient for computer
calculations. We now describe the algorithm following the arguments in [6].

Assume you have a spline space Sp,τ and let µ be the integer such that
τµ ≤ x < τµ+1 and p + 1 ≤ µ ≤ n. For each positive integer k ≤ p, define the
matrix Rk(x) by

Rk(x) =













τµ+1−x

τµ+1−τµ+1−k

x−τµ+1−k

τµ+1−τµ+1−k
0 · · · 0

0
τµ+2−x

τµ+2−τµ+2−k

x−τµ+2−k

τµ+2−τµ+2−k
· · · 0

...
...

. . .
. . .

...

0 0 · · ·
τµ+k−x

τµ+k−τµ

x−τµ

τµ+k−τµ













.

Then the p+1 non-zero B-splines at x, Bp,µ(x) := [Bp,µ−p, Bp,µ−p+1, . . . , Bp,µ]
are given by

Bp,µ(x) = R1(x)R2(x) · · ·Rp(x). (2.4)

The algorithm to calculate a vector of length p + 1 containing these B-splines
now follows almost directly from (2.4); starting with the R1-matrix, we multiply
from the right with R2(x) to produce B2,µ(x), then R3(x) to produce B3,µ(x)
etc. up to Bp,µ(x). Multiplying this by the coefficient vector [cµ−p, cµ] then
given the spline value f(x).

2.3 The control polygon

The main attempt to approximate a function by imposing conditions on the
function known as the control polygon of the spline. We must therefore define
exactly how to calculate this function.

The control polygon is a piecewise function, linear between the knot aver-

ages of the spline’s knot vector.

Definition 4. The knot averages. Given a spline space Sp,t with degree p and

knot vector t = [t1, t2, . . . , tn+p+1 such that ti ≤ ti+1], the vector of knot averages

t⋆ are defined as

t⋆i :=
ti+1 + · · · + ti+p

p

Note that for a p + 1-regular knot vector, t⋆1 = t1 and t⋆n = tn+1. Let us now
define how to calculate the control polygon Γp,t.

Definition 5. The control polygon. Assume we have a spline f with coefficients

c, degree p and knot vector t. Let x ∈ [τ⋆
1 , τ⋆

n], and let i be the integer in [1, n]
such that x ∈ [τ⋆

i , τ⋆
i+1]. Then

Γp,t(f)(x) :=

(

t⋆i+1 − x

t⋆i+1 − t⋆i

)

ci +

(

x − t⋆i
t⋆i+1 − t⋆i

)

ci+1. (2.5)
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This function is piecewise linear, and is linear on the intervals [τ⋆
i , τ⋆

i+1].
From [6] we have the following theorem about the control polygon.

Theorem 1. Let f be a spline and Γp,t its control polygon as defined in def-

inition 5. Also, assume that t is a p + 1-regular knot vector, and define h :=
maxi ti+1 − ti as the maximum distance between two knots in the knot vector.

Then there exists some constant K ∈ R such that

|Γp,t(f)(x) − f(x)| ≤ Kh2 max
y∈[τ1,τn+p+1]

|D2f(y)| (2.6)

for all x ∈ [τ⋆
1 , τ⋆

n ].

As the spline f is piecewise continuous, we know that |D2f(y)| ≤ C, and
the control polygon converges to the spline as h goes to 0. This suggests that
interpolating via the control polygon may give an accurate interpolation method.

2.4 Knot insertion

We saw in the previous section that by inserting knots into the knot vector τ

and producing a knot vector with smaller h, the control polygon will converge
towards the spline function. We will now outline the calculations required to
convert one set of coefficients c valid on a knot vector τ to a new set of coef-
ficients d associated with a new knot vector t ⊃ τ . This new knot vector is
associated with an m-dimensional spline space Sp,t.

This can be done by exploiting the triangular formulations of the B-splines.
In [6] the authors show how to produce a knot insertion matrix Aτ

t
of dimension

m × n and with entries αi,j such that di =
∑n

j=1 αi,jcj , which converts the
coefficients c to the higher-dimension coefficients d.

This matrix is built up by using the Rk-matrices of section 2.2 on the knot
vector τ , evaluated in the knot vector values ti+1, . . . , ti+p. If αi,j is the ith row
and jth column of Aτ

t
, and µ is the integer such that τµ ≤ ti < τµ+1, then the

ith row of Aτ

t
is the transpose of the following vector:

(αi,µ−p, · · · , αi,µ) = (R1(ti+1) · · ·Rp(ti+p)). (2.7)

The algorithm for calculating knot insertion thus involves going systematically
through the t vector to calculate the m rows. There exist simpler algorithms
for the insertion of few knots, however.
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Chapter 3

Existing approximation

methods

There already exists literature on a number of spline approximation methods,
attempting to form hypotheses and prove certain properties of the methods.
Error measures and shape-preserving properties have been particular fields of
interest. In order to compare the method of approximation by the control
polygon to the already existing methods, we shall now outline some well-known
methods described in [6] and some of the knowledge that has been obtained
about these methods.

3.1 Variation-diminishing spline approximation

The variation-diminishing spline approximation was introduced by Schoenberg
in [1] and also studied in [2, 4] among others.

Definition 6. The variation-diminishing spline approximation. Assume we

have a spline space Sp,τ with associated B-spline basis Bj,p. Let τ ⋆ be the knot

averages as defined in section 2.3. Let x ∈ [τp+1, τn+1]. Then the variation-

diminishing spline approximation f(x) of a function g is given such that

f(x) :=
n

∑

j=1

g(τ⋆
j )Bj,p(x).

Thus, the coefficients cj are set equal to g(τ⋆
j ).

The term variation-diminishing has a specific meaning in the literature,
relating to the shape of the approximation. Following [7], we define the var-
iation-diminishing property by first introducing a notation for the number of
sign changes, letting S−(f, X) be defined as the number of sign changes as f

traverses a subset X of the real line. Zeros of f(x) are not counted as changes
in sign.
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We define a variation-diminishing transformation T on a family of func-
tions F defined on X into a family of functions G defined on X1 to be such
that

S−(Tf, X1) ≤ S−(f, X)

It can be proved that the method defined in 6 is variation-diminishing on an
interval X . From [6] we know that

S−(f, X) ≤ S−(c),

where c is the coefficient vector of the spline. Since cj = g(τ⋆
j ), if cj−1 and cj

have different signs, then there is at least one sign change in g between τ⋆
j−1 and

τ⋆
j by the intermediate value theorem. Therefore

S−(c) ≤ S−(g, X),

and hence
S−(f, X) ≤ S−(g, X).

In [6], the authors describe a number of other well-known properties of this
approximation, which we will quickly outline.

Proposition 1. Preservation of bounds. Let g be a function from [a, b] ∈ R to

R such that

gmin ≤ g(x) ≤ gmax for all x ∈ [a, b]

Let V g be the variation-diminishing spline approximation of f in the spline space

Sp,t. Then V g obeys

gmin ≤ V g(x) ≤ gmax for all x ∈ [a, b]

The value of the spline is bounded by its coefficients, and as the coefficients
are direct evaluations of the function at the knot averages, this means the value
of the spline is bounded by the maximum value of the function.

Proposition 2. Preservation of monotonicity. Let g be a function from [a, b] ∈
R to R such that if x0 < x1 then g(x0) ≤ g(x1). The function g is then called an

increasing function. Let V g be the variation-diminishing spline approximation

of f in the spline space Sp,t with t a p + 1-extended knot vector. Then V g is

also an increasing function, and

V g(x0) ≤ V g(x1)

Also, if g is a function such that f x0 < x1 then g(x0) ≥ g(x1) for all x0, x1 ∈
[a, b]. g is then called a decreasing function. If V g is defined as above, then

V g is a decreasing function.

Again, the direct control on the coefficients is the main property required to
prove this, as a spline is increasing if the coefficients are increasing.
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Proposition 3. Preservation of convexity. Let g be a function from [a, b] ∈ R

to R such that

f ((1 − λ) x0 + λx1) ≤ (1 − λ)f(x0) + λf(x1)

for all x0, x1 ∈ [a, b] and for all λ ∈ [0, 1]. The function g is then called a convex

function on [a, b] Now, let V g be the variation-diminishing spline approximation

of f in the spline space Sp,t with t a p + 1-extended knot vector. Then V g is

also a convex function on [a, b].

We see that the variation-diminishing spline approximation has some very
nice shape-preserving properties, and that these can be proved directly because
the coefficients are determined by direct evaluation. This may be useful to
remember as we now attempt to describe interpolation by imposing conditions
on the control polygon; we now no longer determine the coefficients directly,
but by linear interpolations between data points.

3.2 Spline interpolation

Spline interpolation approximation methods are a class of methods where the
data set {xi, g(xi)} with i ∈ [1, n] ∩ N is directly interpolated. The general
problem formulation is, given a degree p and a set of knots τ , find an f ∈ Sp,τ ,
such that is, f(xi) = g(xi) for all i in the data set.

Note that this description is invariant of degree and knot vector. The clas-
sic implementation of spline interpolation, with origins in mechanical models,
requires cubic polynomial pieces and interpolation at the knots themselves. As
the spline is only defined for [τp+1, τp+n], this gives only n conditions on the
spline, while n + p− 1 conditions are required to determine the spline uniquely.
Thus, constraints on the derivative at the end points are usually added.

In [6], two such methods are introduced and described: the cubic Hermite
spline interpolation method, with Hermite boundary conditions

f ′(x1) = g′(x1) f ′(xn) = g′(xn)

and a method with the natural boundary conditions

f ′′(x1) = 0 f ′′(xn) = 0.

These have some remarkable properties, as they are functions which minimize,
in some sense, the integral of the second derivative. The Hermite interpolation
method is a minimizer among all functions in C2[a, b] which interpolate the
original function g at the points xiand obey the Hermite boundary conditions
at x1 and xn, while the natural boundary condition minimizes among all C2

functions which interpolates g at the data points.
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3.2.1 Error bounds

For any approximation method S, the error |Sg(x)−g(x)| is a natural quantity
to measure. If we now let g be a continuous function from [a, b] into R with n

continuous derivatives - that is, g is a member of the continuity class Cn([a, b])
- we can cite from the existing literature some theorems about whether

max
g∈Cn([a,b])

max
x∈[a,b]

|Sg(x) − g(x)| (3.1)

is bounded by some expression.(3.1) will be referred to in the following as ||Sg−
g||∞, the supremum norm of Sg − g. Hall & Meyer showed in [8] that for
g ∈ C4([a, b]), cubic Hermite spline interpolation obeys the following inequality

||Sg − g||∞ ≤ C||g(4)||∞h4,

and more generally that for r = 0, 1, 2, 3

||(Sg − g)(r)||∞ ≤ C||g(4)||∞h4−r

where the C is not dependent on f or h. Hall & Meyer also found exact numerical
values for these Cs, and showed that these also held if the boundary conditions
were taken to be f ′′(a) = g′′(a) and f ′′(b) = g′′(b). The bound on ||Sg − g||∞
depends on h4, and one may therefore expect that when one halves the maximum
mesh size, one should expect an approximation error 1

16 the size of the error in
the old approximation.

This also suggests a way to estimate the error bound of other approximation
methods by numerical analysis. If we are approximating a known function g(x),
we can produce approximations with varying h, and then measure the error
|f(x)−g(x)| and find whether it is proportional to hq where q is some exponent
to be determined in the numerical experiments.

However, despite the improvement in error bounds, the shape properties of
the variation-diminishing spline approximation rarely hold when a function is
approximated by spline interpolation. There is an example in [6] of a Hermite
spline interpolation which is negative for some values in [a, b], even though f is
nonnegative in the entire interval, so the preservation of bounds does not hold.
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Chapter 4

Control polygon

approximation

In this chapter, we will describe and specify the equations involved in the prob-
lem of creating a control polygon which interpolates a given data set {xi, yi}
of size n, in order to produce a spline approximation. As this determines an
n-dimensional spline space, the knot vector τ will be of size n + p + 1.

Also, we will look at what equations arise when inserting more knots in the
knot vector; as described in section 2.3 this will mean the control polygon will
be closer to the spline. Even when the knot vector is expanded for the control
polygon calculation, we will have to restrict ourselves to the subspace of splines
valid on the original knot vector τ in order to find a unique solution to the
interpolation problem.

4.1 Formulation of the interpolation problem

Assume we have an interpolation problem with n known data points g(xi) = yi.
We wish to interpolate this data set with a spline f in a spline space Sp,τ of
dimension n, degree p, and knot vector τ . We have a number of interpolation
choices, but the following discussion will concern a method of interpolation by
the control polygon Γp,t(f), where t is a knot vector that includes, but is not
limited to, the knots in τ , and Γp,t(f) is as defined in section 2.3.

If we insert more knots and produce a new knot vector t ⊇ τ , we find that f

is also a member of the higher-dimensional space Sp,t with the control polygon
Γp,t(f). Now let tj be a sequence of knot vectors such that tj+1 ⊃ tj and t1 ⊃ τ ,
and let fj be a sequence of functions in Sp,τ such that Γp,tj (fj)(xi) := yi. In
theorem 1, we cited that as the distance between knots of a spline is reduced,
the control polygon will converge to the spline. As j → ∞, the distance hmax :=
maxi t

j
i+1− t

j
i will converge to 0, and fj will therefore converge towards a spline

function f̂ such that f̂(xi) := yi.

11



4.2 The linear equation system

Let us now see how we can find an f with conditions on the control polygon in
Sp,t as discussed in the previous section, that is

Γp,t(f)(xi) := yi. (4.1)

We must first express the value of the control polygon at any x ∈ [t⋆1, t
⋆
m] in terms

of the coefficients of f in Sp,t. Let these coefficients be known as d = {di}, with
i = 1, . . . , m. Let ν ∈ [1, m] such that x ∈ [t⋆ν , t⋆ν+1], then there exists a λ ∈ [0, 1]
such that x = t⋆ν + λ

(

t⋆ν+1 − t⋆
)

. Then, as the control polygon is defined to be
linear between (t⋆ν , dν) and (t⋆ν+1, dν+1), we get the following expression for the
value of the control polygon at x:

Γp,t(f)(x) = (1 − λ)dν + λdν+1.

Now, let νi be such that xi ∈ [t⋆νi
, t⋆νi+1

]. There then exists an associated λi :=
xi−t⋆

νi

t⋆
νi+1−t⋆

νi

, and we can rewrite the interpolation problem (4.1) as

(1 − λi)dνi
+ λidνi+1 = yi.

This can be written in matrix form as

Ld = y (4.2)

with the entries of the matrix L set to be Li,νi
= 1 − λi and Li,νi+1 = λi. The

L matrix is an n × m-matrix, and thus this is an overdetermined system if we
were to solve it on the entire spline space spanned by t.

However, we also wish to restrict ourselves to the spline space Sp,τ , where
the spline f is expressed as follows:

f = BT
τ
c

where BT
τ

is the B-spline matrix of multiplied R-matrices and c are the coeffi-
cients. We must now convert this expression for f into the higher-dimensional
spline space with knot vector t.

We refer back to 2.4 and the knot insertion matrix Aτ

t
from τ to t, which

has the property that Aτ

t
c = d.

We thus have in the higher spline space that

f = BT
t

Aτ

t
c

with Aτ

t
c = d.

As we found in (4.2), the interpolation problem can be expressed as Ld = y,
and we can now bring these problems together, forming the following linear
problem for the coefficients c in the n-dimensional spline space Sp,τ :

LAτ

t
c = y. (4.3)

As LAτ

t
is an n×n-matrix, we are left with a linear problem which has exactly

one solution if LAτ

t
is nonsingular, and otherwise no solutions (apart from the

trivial y = 0).
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Chapter 5

Numerical analysis of specific

approximation problems

In this chapter, we will describe more specific implementations of the interpo-
lation problems described in chapter 4, and describe some properties of these
implementions, including accuracy, convergence speed, and shape preservation.
We will describe both quadratic and cubic spline approximations.

5.1 Norms and error measures

First, we need to define what we mean by the error in an approximation method.
The simplest measure is to look at |f(x)−g(x)| at points x ∈ [τp+1, τn+1], which
is the interval on which the spline f is defined. We thus get a maximum metric

d(f, g) = sup{|f(x) − g(x)| : x ∈ [τp+1, τn+1]}.

A good estimate of this metric, assuming the function g is sufficiently continuous,
can be found numerically by sampling f and g at a number of points xj in the
interval [τp+1, τn+1]. Let e := maxxj+1 − xj , then |d(f, g) − (maxj f(xj) −
g(xj))| ≤ maxx∈[τp+1,τn+1] |f

′(x)|e. Now, if f is a C2-continuous function, then
there exists some C ∈ R such that C > |f ′(x)| for all x in [τp+1, τn+1] and
hence |f ′(x)|e converges to 0 as e converges to 0. Thus, |d(f, g)− (maxj f(xj)−
g(xj))| also converges to 0, and maxj |f(xj) − g(xj)| should be a sufficiently
good estimate of d(f, g).

In the remaining sections of this chapter, the measure of the quantity

max
j

|f(xj) − g(xj)|

at 1, 000 different points xj will be taken to be our estimate of the error of the
approximation method to a specific function g.

13



5.2 Quadratic splines

First, we shall examine the case of p = 2 and approximate some common poly-
nomial and trigonometric functions with a number of conceivable methods.

5.2.1 The simplest method

The naive interpolation method would be to simply let τ = t and force the
interpolation conditions on the control polygon Γp,τ (f). This means that the
knot insertion matrix A is simply the identity matrix. We also need to choose
our interpolation points xi ; given that the control polygon is piecewise linear
between the knot averages, it seems natural to interpolate at these knot averages.
Thus, any linear polynomial will be interpolated exactly, up to the machine’s
numerical precision.

We recall that in the variation-diminishing spline approximation, which we
described in section 3.1, the coefficients cj are set equal to g(τ⋆

j ). The definition
of the control polygon now gives that Γp,τ (f)(τ⋆

j ) = g(τ⋆
j ), which is exactly

the interpolation problem defined in section 4.1 with t = τ and interpolation
points xi = τ⋆

i . This means that this simple method will be identical to the
variation-diminishing spline approximation method.

The linear polynomials are interpolated exactly, as the control polygon of a
linear spline is exactly the linear spline. However, there are small errors in the
interpolation of quadratic polynomials. An approximation of g(x) = x2 +2x+1
on a 3-regular knot vector with 11 internal knots uniformly spaced in the interval
[0, 1], gives an error which is plotted in figure 5.1.

5.2.1.1 Approximation of polynomials

We will try to systematically analyse the error ||f −g|| in this approximation on
a number of polynomial functions. The numerical estimate maxj |f(xj)−g(xj)|
as outlined in section 5.1 with the xjs uniformly distributed [τp+1, τn+1] will be
the measure of the error; we also define jmax to be the integer value such that
|f(xjmax) − g(xjmax)| = maxj |f(xj) − g(xj)|, and xmax := xjmax .

To estimate what kind of error bound we will be expecting to find, we will
cite a theorem from [6]. Let g ∈ Cp+1[a, b] and assume we have a spline space
Sp,τ . There is a there exists an f ∈ Sp,τ such that

d(f, g) ≤ Dph
p+1||Dp+1g||∞,[a,b] (5.1)

where Dp is a constant depending only on p.
As we are only looking at a subspace of functions in Sp,τ , and that we

found in figure 5.1 that only linear polynomials are reproduced faithfully by
this method, it seems that the error is not bounded by ||D3g||∞. We thus first
attempt to determine whether there is a linear relationship between ||g

′′

|| and
||f − g|| in this error bound.

The results of these experiments and other information about the polyno-
mials are shown in table 5.1.
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Figure 5.1: Measuring the error f −g(x) when approximating g(x) = x2 +2x+1
with the simplest approximation method, with x ∈ [0, 1].

g g
′′

||f − g|| xmax

x2 + 2x + 1 2 2.5 × 10−3 0.88
2x2 + 2x + 1 4 5.0 × 10−3 0.84
3x2 + x + 1 6 7.5 × 10−3 0.88
3x2 + 6x + 2 6 7.5 × 10−3 0.68

2x3 + 7x2 − 4x − 2 12x + 14 3.1 × 10−2 0.90
3x3 + 7x2 − 4x − 2 18x + 14 3.8 × 10−2 0.90
−8x3 + 4x2 + 4x + 1 −48x + 8 4.4 × 10−2 0.90

2x4 + 6x3 − 3x2 + 4x + 1 −24x2 + 36x − 6 9.3 × 10−3 0.75
x4 + 2x3 − 6x2 + 10x − 4 12x2 + 12x − 12 1.3 × 10−2 0.10
3x4 − 4x3 + 7x2 − 3x − 1 36x2 − 24x + 14 2.7 × 10−2 0.90

Table 5.1: Error measures for certain polynomial functions with their deriva-
tives.
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||g
′′

|| |g
′′

(xmax)| ||f − g||
2 2 2.5 × 10−3

4 4 5.0 × 10−3

6 6 7.5 × 10−3

6 6 7.5 × 10−3

26 25 3.1 × 10−2

32 30 3.8 × 10−2

40 35 4.4 × 10−2

7.5 7.5 9.3 × 10−3

12 11 1.3 × 10−2

26 22 2.7 × 10−2

Table 5.2: Measuring the numerical values of the errors and certain second
derivatives.

The hypothesis of a linear relationship between ||g
′′

|| and |f − g| is tested
in table 5.2 and the error is plotted against ||g

′′

|| in figure 5.2. We see that the
relationship is not exactly linear; for example the errors obtained for 2x3+7x2−
4x − 2 and 3x4 − 4x3 + 7x2 − 3x − 1 are different, though both have the same
norm for the 2nd derivative. However, if we plot the error against |g

′′

(xmax)|
as shown in figure 5.3, the relationship seems to be linear (ignoring rounding
errors arising from measurements taken to 2 significant figures).

Given that the location of the maximum error can not be known with cer-
tainty before doing the calculation, it is natural to use ||g

′′

|| as a proxy; we know
that |g

′′

(xmax)| < ||g
′′

|| by definition. However, when analysing the numerical
data, it seems useful to be aware of the difference.

5.2.1.2 Estimating the effect of mesh size

Having first examined the effects of the ||Dqg||∞,[a,b] condition on the error
bound, it seems natural to investigate the effect of changing h = maxi τi+1 − τi.

We do this by defining a sequence h1, · · · , h6 where h1 = 1
10 and hi = hi−1

2 .
Then, if ||f − g|| ≤ C|h|q, where C is dependent on other factors kept constant
in the experiment, we should see that

||fi − gi||

||fi−1 − gi−1||
=

(

|hi|

|hi−1|

)q

. (5.2)

As
(

|hi|
|hi−1|

)

= 1
2 for all elements in the sequence, we can solve for q if this

brings a similar result for all elements of the sequence. Using the polynomial
2x4+6x3−3x2+4x+1, and otherwise keeping the experiment as in section 5.2.1.1

we obtain the data shown in table 5.3. The observed values of ||fi−gi||
||fi−1−gi−1||

are

very close to 1
4 , which implies that q = 2 in this case. We can thus hypothesise

that the error bounds for these methods will be on the form

||f − g|| ≤ Dhq||Dqf ||∞,[a,b]. (5.3)
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Figure 5.3: Plotting the error ||f − g|| against |g
′′

(xmax)|

17



i
||fi−gi||

||fi−1−gi−1||

2 2.51 × 10−1

3 2.50 × 10−1

4 2.50 × 10−1

5 2.50 × 10−1

6 2.50 × 10−1

Table 5.3: Observations of ||fi−gi||
||fi−1−gi−1||

for varying items of the sequence hi =
hi−1

2 . All simulations were performed with uniform knot vectors.

5.2.2 Changing interpolation points

Instead of interpolation at the knot averages, which for a uniform knot vector are
not uniformly spaced in most cases, we can attempt to change the xi in [t⋆1, t

⋆
m]

to obtain better interpolations. The method described in 5.2.1 was accurate at
the edges of the interval, but the error in the main part of the interpolation
interval changed, see figure 5.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 5.4: Measuring the error f − g(x) when approximating g(x) = 2x3 +
7x2 − 4x − 2 with the simplest approximation method, with x ∈ [0, 1].

Local characteristics of the function g may change this; consider figure 5.4
where the error in the approximation of g(x) = 2x3 + 7x2 − 4x − 2 is plotted.
g′′(x) has a local maximum at 1, and g′′′(x) is always positive, and hence the
error grows towards 1 - though it shrinks to 0 near the end points.

The set of knot averages of the regular knot vector with 11 internal knots in
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while the uniform interpolation points will be
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Changing the interpolation point vector reduces the maximum distance between
any x ∈ [0, 1] and the closest interpolation point xi from 1

20 to 1
22 . As illustrated

in figure 5.5 this reduced the maximum error from 3.10 × 10−2 to 2.04 × 10−2,
and in more than half of the interval the error is smaller than 10−2.

0 0.2 0.4 0.6 0.8 1
−0.035

−0.03

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

 

 
f
VDSA

(x)−g(x)

f
reg

(x)−g(x)

Figure 5.5: Comparing f − g(x) when approximating g(x) = 2x3 + 7x2 − 4x −
2 with the variation-diminishing approximation method (solid line) and the
method utilising uniform interpolation points (dashed line) for x ∈ [0, 1].

5.2.3 Spline interpolation

Now, let us consider an expanded knot vector t 6= τ , that is, augmenting τ with
extra knots to approach f closer. It is possible to produce another well-studied
algorithm by this method, namely direct spline interpolation. We shall describe
this method for general p, and then implement it for p = 2.

Consider a knot with multiplicity at least p, that is, ti = ti+1 = · · · = ti+p−1.
Then

Bi−1(ti) = 1 (5.4)
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and Bj(ti) = 0 for all j 6= i − 1. Also, t⋆i−1 = ti. Also, if Γp,τ (f)(ti) = g(ti),
then

g(ti) = ci−1. (5.5)

Thus from (5.4) and (5.5), combined with the definition of splines in definition
1 we have that

f(ti) = ci−1 = Γp,τ (f)(ti). (5.6)

Thus, the spline and the control polygon agree at knots with multiplicity p.
If we have a knot vector τ and wish to interpolate at the knot averages τ ⋆,

we must make sure that the knot averages repeat at least p times in the new
knot vector t. Assume our knot vector τ is uniform, such that τi+1 = τi + h for
all internal knots, then

τ⋆
i =

τi + τi + h + τi + 2h + . . . + τi + ph

p

τ⋆
i =

p(τi) + (
∑p

1 i)h

p

τ⋆
i =

p(τi) + (2p + (p)(p−1)
2 )h

p
,

which leads to the following expression for the knot averages in a uniform knot
vector:

τ⋆
i = τi + (2 +

(p − 1)

2
h). (5.7)

In the quadratic case, then, τ⋆
i = τi + (2 + (1)

2 h), and so these knot averages do
not intersect - except for possibly at the end points, but as the knot vector is
3-regular, we already know the spline will interpolate the function at the end
points.

Let us now attempt to approximate the cubic polynomial g(x) = 2x3 +
7x2 − 4x − 2 with this spline interpolation method. By decreasing h as in
section 5.2.1.2, we obtain table 5.4. In the table, we have divided the errors by
the errors in the previous element in the sequence, as done in section 5.2.1.2,

we see that the observed values of ||fi−gi||
||fi−1−gi−1||

are very close to 1
8 , and so the

error bound converges as h3, one order better than the VDSA algorithm in
section 5.2.1.2. This cubic relationship of the error against h is shown in the
plot in figure 5.6.

This characteristic seems to be specific for the spline interpolation method.
We can test this by inserting random knots in t. We start with a uniform knot
vector τ with h = 10−1 and interpolate in the knot averages. If we now generate
a random set of new knots using MATLAB’s random number generator - call
them t̂ - we obtain a new knot vector t = [τ , t̂].

To measure the effect of halving h, we can keep our old random knots,

but add new in the middle of each knot interval - such that ti2j =
t
i−1
j

+t
i−1
j+1

2 .
Now we are unlikely to have repeating knots, and only the control polygon will
interpolate, not the spline.
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h ||fi − gi|| || ||fi−gi||
||fi−1−gi−1||

1e − 1 9.62 × 10−5

5e − 2 1.20 × 10−5 0.125
2.5e − 2 1.50 × 10−6 0.125
1.25e − 2 1.88 × 10−7 0.125
6.25e − 3 2.35 × 10−8 0.125
3.125e− 3 2.94 × 10−9 0.125

Table 5.4: Observations of ||f − g|| for varying h using spline interpolation. All
simulations were performed with uniform knot vectors.

n ||fi − gi|| || ||fi−gi||
||fi−1−gi−1||

0 2.12 × 10−3

11 6.25 × 10−4 3.0 × 10−1

22 1.93 × 10−4 3.1 × 10−1

44 4.30 × 10−5 2.2 × 10−1

88 1.21 × 10−5 2.8 × 10−1

176 3.44 × 10−6 2.8 × 10−1

Table 5.5: Observations of ||f − g|| for inserting n random knots into the new
knot vector.

The results are shown in table 5.5. We do not get as clean a rate of conver-
gence as in the spline interpolation case - probably due to the random spacing
of the knots - but the error bound for this method seems to be of order h2, as
in the variation diminishing method.

5.2.4 Intermediate methods

A method that now suggests itself is to augment τ with exactly 1 knot at
each knot average point τ⋆

i , which should then be an intermediate method be-
tween the variation-diminishing spline approximation algorithm and the spline
interpolation algorithm. We still let p = 2, which means the knot averages for a

h ||fi − gi|| || ||fi−gi||
||fi−1−gi−1||

1e − 2 9.62 × 10−5

5e − 3 1.20 × 10−5 0.125
2.5e − 3 1.50 × 10−6 0.125
1.25e − 3 1.88 × 10−7 0.125
6.25e − 4 2.35 × 10−8 0.125
3.125e− 4 2.94 × 10−9 0.125

Table 5.6: Observations of ||f −g|| for varying h using the intermediate method.
All simulations were performed with uniform knot vectors.
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Figure 5.6: Measuring |fi−gi(x)| when approximating g(x) = 2x3+7x2−4x−2
with a spline approximation method for different values h ∈ [1×10−5, 1×10−1].

uniform knot vector τ , as shown in the discussion in 5.2.3, are exactly τi+2+ 1
2h;

this means the augmented knot vector t will be uniform with spacing h
2 .

Performing the same experiment and approximating g(x) = 2x3+7x2−4x−2

with uniform, 3-regular knots with varying spacing hi such that hi = hi−1

2 , we
find the error bounds shown in table 5.6.

Interestingly, however, with uniform knots, this intermediate method also
ends up with reproducing almost exactly the same spline coefficients c; the
difference between the coefficients of this spline interpolation method and this
method is of size around 10−13, and the two methods have almost exactly the
same error measures, as can be seen by comparing tables 5.4 and 5.6. It seems
as though obtaining a spline which interpolates at the knot averages τ ⋆, we
only need to include 1 repetition of the knot averages, and not 2 as theoretically
suggested at the start of section 3.2.
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5.3 Cubic splines

Many of the experiments in section 5.2 have a natural analogue in the spline
space S3,t of cubic splines. We will now show the results of error measurements
with uniform knot vectors, but with cubic splines.

5.3.1 Variation-diminishing approximation

We start by attempting to measure the errors of the variation-diminishing
method, where the value of the knot averages τ ⋆ are slightly different - they are
now the averages of τi, . . . , τi+3 rather than τi, . . . , τi+2. We again use a p + 1-
regular and uniform knot vector, with spacing h between the internal knots, so
this time the end points a and b are repeated p+1 = 4 times at each point, and
we vary h from 1

10 to 1
320 by halving h.
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Figure 5.7: Measuring |fi−gi(x)| when approximating g(x) = 4x4 +2x3 +7x2 +
4x−2 with the variation -diminishing spline approximation method for different
values h ∈ [1 × 10−4, 1 × 10−1].

Despite increasing the degree of the spline, there is no corresponding increase
in the degree of |h| in the error bound of this method. The results of an exper-
iment of interpolating the quartic polynomial g(x) = 4x4 + 2x3 + 7x2 + 4x − 2
are shown in figure 5.7. We see that if h is halved, the error is roughly 1

4 of the
previous level, and we can hypothesise that the error bound is of the form

||f − g|| ≤ Dh2||D2f ||∞,[a,b] (5.8)

which is the same as that we observed with quadratic splines.
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hi ||fi − gi||
hi

hi−1

1e − 1 9.58 × 10−2

5e − 2 2.71 × 10−2 0.28
2.5e − 2 7.21 × 10−3 0.27
1.25e − 2 1.86 × 10−3 0.26
6.25e − 3 4.73 × 10−4 0.25
3.125e− 3 1.19 × 10−4 0.25

Table 5.7: Observations of ||f − g|| for varying h using variation-diminishing
approximation for g(x) = 4x4 + 2x3 + 7x2 + 4x − 2. All simulations were
performed with uniform knot vectors.

hi ||fi − gi||
hi

hi−1

1e − 1 3.00 × 10−5

5e − 2 1.88 × 10−6 0.0625
2.5e − 2 1.17 × 10−7 0.0625
1.25e − 2 7.33 × 10−9 0.0625
6.25e − 3 4.58 × 10−10 0.0625
3.125e − 3 2.86 × 10−11 0.0625

Table 5.8: Observations of ||f − g|| for varying h using spline approximation for
g(x) = 4x4 + 2x3 + 7x2 + 4x − 2. All simulations were performed with uniform
knot vectors.
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Figure 5.8: Measuring |fi−gi(x)| when approximating g(x) = 4x4 +2x3 +7x2 +
4x−2 with the spline interpolation method for different values h ∈ [1×10−4, 1×
10−1].
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hi ||fi − gi|| ||fi − gi||
1e − 1 9.58 × 10−2 8.29 × 10−2

5e − 2 2.71 × 10−2 2.52 × 10−2

2.5e − 2 7.21 × 10−3 6.96 × 10−3

1.25e − 2 1.86 × 10−3 1.83 × 10−3

6.25e − 3 4.73 × 10−4 4.69 × 10−4

3.125e− 3 1.19 × 10−4 1.19 × 10−4

Table 5.9: Observations of ||f − g|| for varying h using variation-diminishing
approximation (column 2) and an intermediate method with two extra knots
(column 3) for g(x) = 4x4 +2x3 +7x2 +4x− 2. All simulations were performed
with uniform knot vectors.

5.3.2 Spline interpolation

Now, let us look at spline interpolation in the knot averages. We have from (5.7)

in section 5.2.3 that τ⋆
i = τi + (2 + (p−1)

2 h) for the internal knots of a uniform
knot vector. As p = 3 is odd, this works out to be τ

i+2+
(p−1)

2

.

Therefore, we now only need to insert p − 1 of the knot averages, as they
already occur once in the knot vector - except near the end points, where the
assumption in section 5.2.3 that τi+1 = τi +h is not correct. So to obtain a knot
vector with 3 repetitions of the knot averages, our new augmented knot vector
becomes t = [τ , τ , τ , τ⋆

2 , τ⋆
n−1].

We again use the quartic polynomial g(x) = 4x4+2x3+7x2+4x−2. Plotting
the error against the mesh size h, as shown in figure 5.8, we see that this is not
a quadratic relationship; the data of errors are shown in table 5.8. Repeated
halving of h now gives a reduction of 1

16 in the error, and this method thus
seems to have an error bound of the form

||f − g|| ≤ Dh4||D4f ||∞,[a,b] (5.9)

and that spline interpolation methods in general have an error bound on the
form

||f − g|| ≤ Dhp+1||Dp+1f ||∞,[a,b]. (5.10)

5.3.3 Intermediate methods

As in the case of quadratic splines, intermediate methods with 1 repetition
(adding the two missing knot averages near the end points) or 2 repetitions of
the knot averages can also be determined. As we have now created methods
with error bounds less than h4 and h2 respectively, it may be possible through
such a method to create an error bound dependent on h3.

However, as in the quadratic case, the method which repeats the knot av-
erages exactly 2 - or p − 1 - times reproduced the spline interpolation exactly,
while inserting the two knots τ⋆

2 and τ⋆
n−1 merely improved the error bound for

large h. For small h such as h = 3.125e − 3, there is very little difference, see
table 5.9.
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t⋆i

Coefficients of the
variation-diminishing
method

Coefficients of the
intermediate method

Coefficients of the
spline interpolation
method

0 0 0 0
1
30 0.03333 0.03333 0.03333
1
10 0.09983 0.09994 0.09999
2
10 0.19867 0.19867 0.19900
3
10 0.29552 0.29552 0.29601
4
10 0.38942 0.38942 0.39007
5
10 0.47943 0.47943 0.48023
6
10 0.56464 0.56464 0.56558
7
10 0.64422 0.64422 0.64529
8
10 0.71736 0.71736 0.71855
9
10 0.78333 0.78405 0.78463
29
30 0.82300 0.82333 0.82346
1 0.84147 0.84147 0.84147

Table 5.10: Observations of ci and the knot averages for various approximations
of g(x) = sin(x).

5.4 Shape-preserving properties

Let us also look briefly at the values of the spline coefficients, this time using
the non-polynomial function sin(x). We saw in chapter 3 that having control of
the coefficients led to some shape-preserving properties. Therefore, their exact
value may be of interest when attempting to draw conclusions about the ap-
proximation method. This also allows us to look at how well the approximation
method performs when applied to non-polynomial functions.

Let us, as in most of the previous examples, take a 4-regular knot vec-
tor τ with internal knots uniformly spaced between 0 and 1. To produce
an approximation with observable errors, we will let h = 0.1. We will com-
pare the three methods described in the previous sections of this chapter, the
variation-diminishing method with τ = t, the spline interpolation method with
t = [τ , τ , τ , τ⋆

2 , τ⋆
n−1], and the intermediate method of inserting τ⋆

2 and τ⋆
n−1 to

repeat all knot averages exactly once in the control polygon.
The coefficients found in this experiment are shown in table 5.10 and the

difference between the methods are shown graphically in figure 5.9. We see
that the method of inserting knots at τ⋆

2 and τ⋆
n−1 only improves the accuracy

around that point; unlike spline interpolation which improves the accuracy for
the entire interval - likely a function of the spline interpolation being a method
where knots are inserted into t throughout the interval.

We can also conclude from table 5.10, however, that the spline coefficients
c2 and cn−1 of the intermediate method are larger than those of the variation-
diminishing method. This indicates that the shape-preserving properties of
chapter 3 do not hold for this intermediate method.
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Figure 5.9: The difference between the coefficients of two spline approximations
of sin(x), plotted against the knot averages t⋆i . Here ci are the coefficients
of the variation diminishing method. the solid line plots |ĉi − ci| for ĉ being
the coefficients of the spline interpolation method, and the difference between
the variation diminishing method and the spline interpolation method, and the
dashed line plots |c̃i − ci| for c̃ being the coefficients of the intermediate method
with interpolation at each knot average.
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Chapter 6

Conclusion

Unfortunately, the numerical experiments in chapter 5 suggest that the new
methods do not have significant advantages over the well-known existing meth-
ods. The method intended to be an intermediate method between the variation-
diminishing method and spline approximation had the same relatively poor con-
vergence rate of the variation-diminishing method, both in the quadratic and
cubic case, but lost the shape-preserving properties of this method.

From the experiments in section 5.4 it seems likely that this method, even
for higher degrees, will have incremental benefits where the knots are inserted,
but will do little to improve the exponent q in the error bound. However, in
the cubic case, it was not possible to create a method where the augmented
knot vector t included at least 1 repetition of the knot averages that were not
in the original knot vector τ , without producing a spline which interpolated the
function g exactly. This may be possible in a higher degree setting, which may
also allow for a method which has a convergence exponent between q = 2 of the
variation-diminishing method and q = p + 1 of the spline interpolation method.

In the quadratic case, we also looked at the choice of interpolation points in
the control polygon and that it improved the accuracy of the method; however,
the exponent q in the error bound remained the same, so it was merely an
incremental improvement, and may be specific to the polynomial functions we
examined. Also, it may not always be possible to pick and choose interpolation
points in order to minimise the error, and so this may not be a very practical
exercise.

Further research could be done to determine the number of calculation op-
erations required to find the control polygon implementation of spline interpo-
lation, compared to solving over the entire spline space. Another research point
into these methods could be how to choose knots τ and t, with knot insertion
matrix A and interpolation condition matrix L as described in section 4.2 such
that the linear system LAc = y has a solution.
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