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1 Background  

1.1 Liver transplantation 
Dr. Thomas E. Starzl was the first surgeon to perform a successful deceased donor liver 

transplant procedure in 1963.1 From being considered an experimental procedure in 1983 

by the National Institute of Health, the number of liver transplantations increased steadily 

during the next decades.2 Liver transplantation, the replacement of the native, diseased 

liver by a normal graft, is now accepted as a successful therapeutic option for patients with 

end-stage liver disease. Liver transplantation is indicated for acute liver failure, chronic 

liver failure, cirrhosis, cholestatic and non-cholestatic liver disorders, and metabolic 

disorders causing cirrhosis among others. It is also indicated for hepatocellular carcinoma 

and other selected hepatic malignancies.  

Oslo University Hospital is the only solid organ transplantation centre in Norway. In 

2011 86 liver transplantations (LTx) and three combined liver and kidney transplantations 

were performed at this centre. In Scandinavia, more than 300 annual liver transplantations 

are performed, and more than 5500 in Europe.3 In the 1970s, the overall 1-year survival 

was approximately 30%.4 Advances in surgical techniques, organ preservation, anaesthesia 

and immunosuppressive therapy have improved the long-term survival. The patient 

survival in the Nordic countries was 85% (1 year) and 66% (10 years) and the graft 

survival 83% (1 year) and 61% (10 years) in the years 2000 to 2009.3 

 

1.2 Immunology in allograft transplantation 
Allogeneic transplantation is transplanting an organ between genetic different individuals 

within the same species. The immune response protects the body against foreign attacks 

(i.e. bacteria, virus and cancer). In cases of allograft transplantation, the immune system 

recognizes the graft-antigens as foreign, and triggers a massive immune response with 

attempt to destroy the graft. Without adequate immunosuppressive therapy this response 

will result in either a hyper acute, acute or a chronic rejection.  

Foreign antigens are recognized by the naïve T-lymphocyte through HLA (human 

leukocyte antigen) molecules present on an antigen presenting cell (APC). The HLA is the 



�

    ���

major histocompatibility complex (MHC) in human, and its function is to present foreign 

peptide antigens (derived from infectious agents or an allograft) at the surface of the APC. 

The antigen presentation by the APC to the T-cell triggers activation and proliferation of 

the T-cell through three specific signals (Figure 1). The first interaction between the T-cell 

and APC is binding of the HLA-antigen complex to the T-cell receptor (TCR:CD3 

complex) (signal 1). Co-stimulating molecules on the APC (CD80 and CD86) binds to 

CD28 on the T-cell and induce a stimulatory signal to the T-cell (signal 2). These signals 

activate three signal transduction pathways: the calcium-calcineurin pathway, the mitogen 

activated protein (MAP) kinase pathway and the nuclear factor-κB (NF-κB) pathway, 

which activates the transcription factors nuclear factor of activated T cells (NFAT), 

activating protein 1 (AP-1) and NF-κB, respectively. This in turn results in mRNA 

synthesis and expression of interleukin-2 (IL-2), CD154 and CD25. CD154 stimulates the 

APC, while IL-2 binds to the IL-2 receptor (CD25) on the T-cell (signal 3). This signal, in 

collaboration with cytokines, activates the mechanistic target of rapamycin (mTOR) 

pathway, leading to an activation of the cell cycle and proliferation of the T-cell. 

 

 
 

Figure 1. APC antigen presentation and T-cell activation (schematic and simplified). Site 

of action of immunosuppressive drugs are indicated. For abbreviations see page 5. 
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1.3 Immunosuppressive therapy in liver transplantation 
Immunosuppression is the prevention or interference with the development of the normal 

immunologic response. After liver– and other solid organ transplantation the recipient 

needs life-long immunosuppressive therapy to avoid an immunological mediated rejection 

of the transplanted graft. The balance between adequate immunosuppression (preventing 

rejection episodes) and avoiding adverse effects is delicate. Under-immunosuppression 

increases the risk of graft rejection episodes, while over-immunosuppression increases the 

risk of opportunistic infections, malignancies and drug-specific adverse effects. The 

immunosuppressive regimens combine drugs with different modes of action. In general, 

the immunosuppressive drugs used after solid organ transplantation can be classified as 

follows: 

- Anti-proliferative agents (azathioprine and mycophenolic acid) 

- Glucocorticoids (prednisolone and methylprednisolone) 

- Calcineurin inhibitors (cyclosporine and tacrolimus) 

- mTOR inhibitors (sirolimus and everolimus) 

- Monoclonal antibodies (basiliximab, daclizumab, alemtuzumab and 

belatacept) 

- Polyclonal antibodies (anti-thymocyte globulin) 

 

In Norway the current immunosuppressive protocol after liver transplantation is a triple 

regimen consisting of corticosteroids, mycophenolic acid and low dose calcineurin 

inhibitor (tacrolimus), while a quadruple regimen is used in renal transplantation (IL-2 

receptor antagonist is added). The rationale behind a multiple regimen is that synergistic 

effects of the drugs are achieved, and the doses of the individual drugs might be reduced, 

resulting in a lower risk of dose-dependent drug specific adverse effects. The risk of 

rejection is highest in the immediate phase after transplantation, therefore a more intensive 

therapy is required during the first days post-transplant with further tapering of the drugs 

according to protocol.5 The immunosuppressive therapy is a life-long treatment, and the 

lowest effective dose of each drug should be used in order to maintain an active immune 

response against infections and to keep side effects at a minimum.  

The glucocorticoid methylprednisolone is administered intravenously pre–, peri– 

and post-operative, and the first day after surgery. Glucocorticoid treatment is switched to 

per oral prednisolone from day two, and then tapered (see Table 1). In the case of an acute 
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rejection episode methylprednisolone (i.v.) is administered. Mycophenolic acid 

(mycophenolate mofetil, MMF) is administered per orally in doses of 1 g twice daily. 

Tacrolimus doses are adjusted according to the whole blood concentration of the drug 

according to the TDM protocol shown in Table 1. In cases of steroid resistant rejection 

episodes anti thymocyte globulin (ATG) is administered intravenously. 

 

 
 

Table 1. Standard triple immunosuppressive protocol after adult (>16 years) liver 

transplantation at Oslo University hospital (per June 2012). Doses given as daily doses. 

Solu-Medrol™ (Pfizer), Prograf™ (Astellas), CellCept™ (Roche) 

 

1.4 Glucocorticoids 
Glucocorticoids are a group of steroid hormones (corticosteroids) synthesized in the 

adrenal cortex. The biosynthesis of glucocorticoids in the adrenal cortex is regulated by the 

adrenocorticotropic hormone (ACTH) from the pituitary, which in turn is regulated by the 

corticotropin releasing hormone (CRH) from the hypothalamus. The synthesis and 

secretion of CRH and ACTH is regulated through negative feedback from the 

glucocorticoids on the hypothalamic-pituitary-adrenal axis (HPA-axis), controlling the 

circulating levels of corticosteroids. The endogenous ligand of the glucocorticoid receptor 

(GR) is cortisol. The metabolic and regulatory effects of glucocorticoids are mediated 

mainly via genomic mechanisms. They influence the balance of carbohydrates (reduced 

uptake and utilization, increased gluconeogenesis), proteins (increased catabolism, reduced 

anabolism) and redistribution of fat. They have anti-inflammatory and immunosuppressive 

Day Glucocorticoids Tacrolimus Mycophenolic acid
post-transplant Methylprednisolone (Solu-Medrol™) (Prograf™) Mycophenolate mofetil (CellCept™)

Prednisolone (generic)
Transplantation Methylprednisolone i.v.:

40 mg at start                   
500 mg before reperfusion

40 mg post-operative
1 80 mg (methylprednisolone i.v.) Starting dose: 0.1 mg/kg/day 1 g x 2
2 80 mg (prednisolone p.o.) further dose adjustment
3 70 mg according to concentration:
4 60 mg
5 50 mg
6 40 mg 5-15 ng/mL
7 30 mg

8-30 20 mg
31-60 15 mg 5-10 ng/mL
61-90 10 mg 5-10 ng/mL
91-180 7.5 mg 5-10 ng/mL

181-360 5 mg 5-8 ng/mL
>360 0 mg (tapering) 3-8 ng/mL 0.5 g x 2



�

    ���

effects. Glucocorticoids exert their effect on several inflammatory and immunological 

mediators and cells, the vascular system and the HPA-axis. They suppress pro-

inflammatory cytokines (e.g. IL-1β, IFN-α), induce anti-inflammatory cytokines (e.g. 

TGF-β, IL-10) and anti-inflammatory cytokine receptors (e.g. TGF-βR, IL-10R). The 

glucocorticoid also reduce the expression of interleukins (IL-1, IL-2, IL-6, IL-12), 

interferon γ (IFN-γ), tumour necrosis factor α (TNF-α), which results in suppression of 

activated T-cells. The production of eicosanoids and immunoglobulin G is also inhibited. 

Furthermore, glucocorticoids reduce the migration of immune cells to the site of 

inflammation by repression of adhesion molecules. Dendritic cells are switched to IL-10 

production instead of IL-12 by administration of glucocorticoids, which limits the 

differentiation of Th0 to Th1 cells. Glucocorticoid might also have apoptotic effects, which 

is suggested as the mechanism of intravenous methylprednisolone pulse therapy. In 

allograft transplantation the glucocorticoids inhibit the differentiation and antigen 

presentation of macrophages and dendritic cells, and thereby inhibit the initiation of an 

immune response.6 

Glucocorticoids are administered in a wide range of conditions, ranging from those 

that require anti-inflammatory or immunosuppressive treatment (asthma, allergy, 

rheumatoid arthritis, systemic lupus erythematosus, and rejection prophylaxis after organ 

transplantation) and malignancies (leukaemia) to substitution therapy (Addisons disease). 

Prednisolone (Figure 2) is a synthetic glucocorticoid and plays an important role in 

rejection prophylaxis after solid organ transplantation. Prednisolone is well absorbed after 

administration and the oral bioavailability is reported to be 60-100%. Time to reach 

maximum concentration (Tmax) for prednisolone is approximately 1.5 hours.6 Prednisolone 

is bound in plasma to corticosteroid binding globulin (CBG) with high affinity and low 

capacity, and to albumin with low affinity and high capacity. A non-linear reduction in 

prednisolone protein binding from 95% to 60-70% when the serum concentration increases 

from 200 to 800 ng/mL is reported.7 Prednisolone is mainly eliminated by hepatic 

metabolism and renal excretion. It is degraded in the liver and conjugated mainly with 

glucuronic acid and to a lesser degree with sulphates. Cortisol is metabolized to 5α-

tetrahydrocortisol and 5β-tetrahydrocortisol by 5α-reductase and 5β-reductase, 

respectively. The latter also converts cortisone into tetrahydrocortisone. These metabolites 

are excreted into the urine. 8 
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Figure 2. Molecular structure of prednisolone. 

 

The two enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD) 1 and 2 play an 

important role in the pre-receptor regulation of glucocorticoid and mineralocorticoid 

receptor activation. They catalyse the interconversion between the hormonally active 

cortisol (hydroxysteroid) and inactive cortisone (ketosteroid), see Figure 3.9 These two 

enzymes possess different catalytic activities, 11β-HSD1 is mainly a NADP(H) dependent 

reductase (dehydrogenase in vitro) with its catalytic site in the ER-lumen (endoplasmatic 

reticulum). The co-factor NADP(H) is generated in the same cell compartment by the 

hexose 6-phosphate dehydrogenase (H6PDH) and is crucial for the reductase activity of 

11β-HSD1.10 The 11β-HSD2 is a dehydrogenase using NAD as a co-factor with its 

catalytic site facing the cytosol.11,12 The biological activity of glucocorticoids relates to the 

presence of a hydroxyl group at position C11 (e.g. cortisol) of the steroid structure. 

Oxidation of this group to an 11-keto group inactivates the steroid (e.g. cortisone). 

Synthetic glucocorticoids like prednisolone and prednisone are also substrates for 11β-

HSD.13 The 11β-HSD1 enzyme is expressed in liver, lungs, gonads, pituitary, adrenal 

cortex, central nervous system and adipose tissue and supplies the glucocorticoid receptor 

with cortisol.14,15 The function of 11β-HSD2 is to protect the mineralocorticoid receptor 

(MR) against high circulating concentrations of cortisol, and this enzyme is expressed in 

kidneys, colon, salivary glands and placenta.16-20 
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Figure 3. Interconversion between prednisolone (active) and prednisone (inactive) via 

11β-hydroxysteroid dehydrogenase 1 and 2 (11β-HSD1 and 2). 

  

The enzymes 11β-HSD1 and 2 belong to the short-chain dehydrogenase/reductase. They 

share 21% homology, and are encoded by two different genes, HSD11B1 and 

HSD11B2.21—23 Increased and decreased 11β-HSD1 activity has been associated with the 

pathophysiology of common diseases. Cushing’s syndrome (i.e. glucocorticoid excess) can 

cause symptoms of metabolic syndrome (central obesity, glucose intolerance and 

hypertension). Animal studies performed in transgenic rodents, with over-expression of 

11β-HSD1 in liver and adipose tissue, show increased local glucocorticoid concentrations 

and features of metabolic syndrome.24,25 Conversely, inhibition of 11β-HSD1 increases 

insulin sensitivity in humans.26 The 11β-HSD1 is regulated by both hormonal and 

nutritional factors, but there is evidence that genetic factors can contribute to inter-

individual variation in 11β-HSD1 activity. A polymorphism in the intronic enhancer 

(rs12086634) is associated with lower 11β-HSD1 transcriptional activity in vitro.27 

Polymorphisms in the HSD11B1 gene (rs846910 and rs12086634) have been associated 

with type 2 diabetes and hypertension.28-30 Two other HSD11B1 variants (rs846910 and 

rs12086634) are associated with increased levels of 11β-HSD1 mRNA and activity in 

adipose tissue.31 Malavasi et al described that the allelic variant of rs13306421 gave higher 

11β-HSD1 expression and activity in vitro.31,32  

 The 11β-HSD2 enzyme plays an important role in regulating mineralocorticoid 

action, by inactivating cortisol, which has mineralocorticoid action, to cortisone. Thus, 

11β-HSD2 protects the mineralocorticoid receptor (MR) against high circulating 

concentrations of cortisol. Inhibition or absence of this enzyme results in high local 

concentrations of cortisol in mineralocorticoid tissues, which again leads to hypertension 

and hypokalaemia. A previous study found that 16% of patients with essential 
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hypertension had an elevated cortisol/cortisone ratio, suggesting that a defect in 11β-HSD2 

could be involved.33 The single polymorphism G534A in the HSD11B2 was reported by 

Brand et al.34 Further studies of this variant could not report any correlation between the 

G534A polymorphism and hypertension.35-37 Thus the importance of variants in the 

HSD11B2 in essential hypertension is controversial. The rare syndrome of apparent 

mineralocorticoid excess (AME) is caused by inactivating mutations in the HSD11B2 

gene, and more than 30 mutations have been described.38-40  

 The glucocorticoid receptor (GR) is a cytosolic receptor, belonging to the nuclear 

hormone receptor super family and is encoded by the NR3C1 gene. The endogenous ligand 

for GR in human is cortisol, but it is also the target for synthetic glucocorticoids used 

pharmacologically. Its primary mechanism of action is regulation of gene transcription. 

The binding of glucocorticoids to the glucocorticoid receptor induces a series of cellular 

events that results in activation or repression of a network of glucocorticoid responsive 

genes and produces a cellular response.41 After entering the cell, the glucocorticoid (GC) 

binds to the ligand binding domain of GR and forms a GC-GR complex, with a 

conformational change in the GR revealing a DNA binding domain. The GC-GR 

complexes form homodimers and translocates into the nucleus. The complex binds to a 

glucocorticoid responsive element (GRE) in the promoter area of anti-inflammatory genes 

(e.g. lipcortin, inhibitor of κB, IκB), and induces the expression of these, a process called 

transactivation.6 By transrepression the glucocorticoids suppress the expression of pro-

inflammatory genes (e.g. interleukin 1, interleukin 2 and pre-opiomelanocortin) via 

activating protein 1 (AP-1), nuclear factor-κB (NF-κB) and interferon regulatory factor 3 

(IRF3).6,42 The repression of negatively regulated target genes is mediated by negative 

glucocorticoid responsive elements (nGREs).43 In addition to these genomic mechanisms 

of action, the glucocorticoids exert a non-genomic action which is independent of the GR 

interaction. The glucocorticoid may directly interact with the cell membrane, and change 

the properties of the membrane and membrane associated proteins.44 

 Alternative splicing of the NR3C1 gene generates two glucocorticoid isoforms (the 

functional GRα and GRβ with no hormone binding ability), where GRα is the predominant 

one, and is expressed in the cytoplasm of most cells. 45,46 A polymorphism in codon 363 in 

the glucocorticoid receptor gene has been associated with increased cortisol suppression 

and insulin response to exogenous glucocorticoids. 47 Other sequence variants in the 

NR3C1 gene are associated with glucocorticoid resistant syndromes.48,49 
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1.5 Tacrolimus 
In addition to cyclosporine A, tacrolimus (Figure 4) is a widely used calcineurin inhibitor 

(CNI) after solid organ transplantation, and now the preferred CNI in standard 

immunosuppressive protocols. Tacrolimus is a macrolide lactone type calcineurin inhibitor 

first isolated from soil containing the bacteria Streptomyces tsukubaensis. Tacrolimus 

forms a complex by binding to the immunophilin FKBP (FK506 binding protein), which 

inhibits the calcium dependent phosphatase calcineurin.50,51 The tacrolimus-FKBP 

complex inhibits T-lymphocyte signal transduction and proliferation through inhibition of 

the calcineurin mediated de-phosphorylation of the transcription factor NFAT. This 

supresses the transcription of interleukin 2 (IL-2) and inhibits the signal 1 and T-cell 

activation.52 

In organ transplantation, two distinct peroral formulations are available: once daily 

(AdvagrafTM, Astellas) and twice daily (PrografTM, Astellas; plus generic) tacrolimus. The 

twice daily formulation is approved for rejection prophylaxis after kidney, liver and heart 

transplantation while the once daily formulation is approved after kidney and liver 

transplantation. A topical formulation (ProtopicTM, Astellas) is approved for the treatment 

of atopic dermatitis.  

 

 
Figure 4. Molecular structure of tacrolimus. 

 

The rate of absorption and bioavailability of orally administered tacrolimus are highly 

variable, and the bioavailability is poor (mean 25%, range 4-93%).53 Maximum blood 

concentration is normally reached between 0.5 and 1 hour after dose.54 Tacrolimus is 

substrate of both CYP3A4, CYP3A5 and P-glycoprotein, where CYP3A4 and CYP3A5 is 
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responsible for extensive first-pass metabolism in the liver and upper small intestine, while 

efflux pump P-glycoprotein will transport the drug back into the intestinal lumen.55-57 The 

main route of elimination for tacrolimus and its metabolites is the biliary route, where up 

to 95% of the administered dose was excreted into the faeces as metabolites (only trace 

amounts of unchanged drug were detected in urine and faeces).58  

Cytochrome P450 (CYP) is a heme containing family of metabolic enzymes, which 

mainly catalyses oxidation of organic substances (endogenous and exogenous). CYP 

enzymes are the major enzymes involved in drug metabolism and bioactivation, and are 

important in phase I metabolism. The CYP3A subfamily consists of several isoforms: 

CYP3A4, CYP3A5, CYP3A7 and CYP3A43, which have overlapping substrate 

specificities, where CYP3A4 and CYP3A5 are most abundant in adults.59,60 CYP3A is 

involved in the metabolism of more than 50% of the drugs on the market and accounting 

30% of hepatic CYP and more than 70% of small intestinal CYP. In adults CYP3A4 shows 

highly variable expression with 10 to 100-fold differences between individuals in liver and 

up to 30-fold in the intestines.60 The intestinal CYP3A content is reported to be present at 

10-50% of the content in liver.60,61  

In general the CYP3A5 isoform is expressed in lower levels than CYP3A4, but it 

shows genetic variability. In expressers the CYP3A5 might constitute 6-99% of the total 

CYP content in the liver.62 The wild type allele is assigned CYP3A5*1, while the 

CYP3A5*3 allele is the most abundant and functionally important variant.63,64 Only 

individuals carrying the CYP3A5*1 allele produce high levels of full length CYP3A5 

mRNA and thereby express functional CYP3A5 protein.65 The CYP3A5*3 allele, with 

allele frequencies of 85-95% among Caucasians, causes a splicing defect and thereby lack 

of functional CYP3A5 protein.65,66 Individuals carrying the CYP3A5*1 allele have 3-fold 

higher CYP3A protein levels than CYP3A5*3 homozygotes.65 The CYP3A5 expression 

(*1/*1 and *1/*3) has clinical impact, because it leads to more extensive metabolism of 

CYP3A substrates and higher dose requirements. CYP3A4 activity and CYP3A5 genotype 

is reported to explain 56-59% of the variability in tacrolimus dose requirements and 

clearance, while hematocrit explains 4-14% after renal transplantation.67 

Tacrolimus is extensively metabolised by the CYP3A4/5 in liver and intestines, 

forming the main metabolite 13-O-demethyl-tacrolimus.68,69 Renal transplant recipients 

carrying CYP3A5*3/*3 required a lower dosage of tacrolimus than CYP3A*1 carriers.70 

Prednisolone is also a substrate for the CYP3A4/5 enzymes.71 
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P-glycoprotein (P-gp) is a member of the ATP-binding cassette super family and encoded 

by the multi-drug resistance gene (MDR1 or ABCB1). P-gp is an adenosine triphosphate 

(ATP) dependent efflux pump and plays an important role in absorption, distribution and 

response of a drug. This transporter has a wide range of substrates, including 

glucocorticoids and tacrolimus and is often co-located with CYP3A4. P-gp is expressed in 

a variety of tissues including the adrenal glands, blood-brain-barrier, kidneys, liver, lungs, 

stomach, jejunum and colon.60 The mRNA levels increase longitudinally along the 

intestine. The inter-individual variability in P-gp expression was more than eight-fold in 

intestinal biopsies from renal transplant recipients.72 Diarrhoea is also a frequent adverse 

effect of the combination of tacrolimus and mycophenolic acid. An effect on P-gp has been 

reported in cases of diarrhoea, where the P-gp content may be reduced in the intestines. In 

cases of severe and prolonged diarrhoea, reduced P-gp activity in the intestines may be the 

most important explanation for the frequent and significant increase in tacrolimus 

exposure.73 

 

1.6 Mycophenolic acid 
Mycophenolate mofetil (MMF, CellCeptTM, Roche and generic) is the 2-morpholinoethyl 

ester of mycophenolic acid (MPA). MPA (Figure 5) is also available as the enteric coated 

sodium salt (EC-MPS, MyforticTM, Novartis). Mycophenolic acid is the active moiety of 

both MMF and EC-MPS. As rejection prophylaxis, it is approved after kidney, liver and 

heart transplantation. 

 

 
 

Figure 5. Molecular structure of mycophenolic acid. 

 

After oral administration, mycophenolate mofetil (MMF) is rapidly hydrolyzed by 

esterases to MPA, and absorbed in the upper gastrointestinal tractus. The oral 

bioavailability was reported to be 94% in healthy volunteers and 81% in renal transplant 
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recipients.74,75 MPA is highly bound to plasma albumin, approximately 97-99%.76-78 

Maximum plasma concentration after MMF administration usually occurs between 1 and 2 

hours, while EC-MPS has lag-time of 0.25 to 1.25 hours.79,80 

MPA is conjugated to glucuronic acid by UDP-glucuronosyltransferases (UGTs) in 

the liver, intestine and kidneys, and more than 90% of the administered dose is excreted in 

the urine as the inactive metabolite 7-O-MPA-glucuronide (MPAG).80-82 MPAG is secreted 

into the bile by the multidrug resistance-associated protein 2 (MRP-2) in the hepatocytes.83 

In the intestines the MPAG is hydrolyzed back to MPA and reabsorbed. This enterohepatic 

circulation contributes 37% (range 10-61%) of the total MPA exposure.74 MPAG is mainly 

formed by UGT1A9 in liver, kidney and GI, but other UGTs are also involved.81,82 Uridine 

5'-diphospho-glucuronosyltransferase (UGT) is a family of phase II conjugating, 

metabolizing enzymes, which are responsible for glucuronidation of endogenous and 

exogenous compounds, normally making them more water-soluble and more easily 

eliminated. There are two main families of UGT-enzymes, UGT1 and UGT2, where 

UGT1A, UGT2A and UGT2B are subfamilies. The pharmacologically active acyl-

glucuronide (AcMPAG) is formed by UGT2B7, and is suggested as a contributor to the 

gastrointestinal toxicity related to MPA.82,84,85 Additionally, another minor metabolite has 

been identified, the phenolic 7-O-glucoside (MPAGl), which is pharmacologically 

inactive.86 See figure 6 for a summary of the metabolic pathway of MPA.  

 
Figure 6. Pharmacokinetics of mycophenolic acid. 

Free mycophenolic acid (fMPA), uridine diphosphate-glucuronosyltransferase (UGT), 7-

O-glucuronide (MPAG), acyl glucuronide (AcMPAG), 7-O-glucoside (MPAGl) 
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UGT1A9 shows a large degree of sequence variability, which alters the expression and 

enzyme activity.87 An increased glucuronidation capacity is observed in individuals 

carrying the c.-2152C>T (rs17868320) and c.-275T>A (rs6714486) variants, which gives 

lower MPA exposure and an increased risk of graft rejection.87-93 The sequence variants 

UGT2B7*2 (rs7439366), UGT1A9 c.-440>T (rs2741045) and c.-331T>C (res2741046) are 

associated with reduced glucuronidation activity and increased concentrations of MPA, 

while UGT2B7*2 and UGT1A8*2 are associated with increased and reduced MPA related 

side effects, respectively.94-98  

MPA is a selective and reversible inhibitor of inosine monophosphate 

dehydrogenase (IMPDH). IMPDH catalyses the oxidation of inosine-5’-monophosphate 

(IMP) to zanthosine-5’-monophosphate (XMP), which is the rate-limiting step in the de 

novo synthesis of guanine and deoxyguanine (figure 7). While other cells more efficiently 

recirculate purines from a salvage pathway, T- and B-lymphocytes are relative dependent 

on the de novo synthesis for proliferation. This gives mycophenolic acid a potent cytostatic 

effect on lymphocytes.99  

 
Figure 7. The de novo synthesis of guanine and deoxyguanine nucleotides. Phosphoribosyl 

pyrophosphate (PRPP), inosine monophosphate (IMP), mycophenolic acid (MPA), IMP 

dehydrogenase (IMPDH), nicotinamide adenine dinucleotide (NADH), reduced form of 

NADH (NAD+) dixanthosine monophosphate (XMP), guanosine mono-/di-/triphosphate 

(GMP, GDP, GTP), deoxyguanosine di-/triphosphate (dGDP, dGTP), ribonucleic acid 

(RNA) and deoxyribonucleic acid (DNA). 
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Two distinct isoforms of IMPDH have been reported (IMPDH 1 and 2), where MPA is a 

fivefold more potent inhibitor of the type 2 isoform (IMPDH2), which predominates in 

activated lymphocytes, but both IMPDH 1 and 2 mRNA are induced after lymphocyte 

activation.100-102 IMPDH 1 and 2 are encoded by the IMPDH1 and IMPDH2 genes, 

respectively.102 Intra- and inter-individual variability in the IMPDH activity (basal, without 

inhibitor) and the degree of enzyme inhibition under MPA therapy has been 

described.103,104 Furthermore, activation of lymphocytes increases the IMPDH activity and 

changes the immune status, resulting in variable IMPDH activity and MPA response.103-105 

Sequence variants in the IMPDH 1 and IMPDH 2 genes can add further variability 

between individuals, resulting in an altered pharmacodynamic response. Two IMPDH1 

single nucleotide polymorphisms (SNPs: rs227893 and rs2278294) were reported by Wang 

et al. that were significantly associated with the incidence of biopsy proven acute rejection 

(BPAR) in the first year after renal transplant recipients receiving MPA therapy.105 The 

presence of a IMPDH2 3757 T>C variant allele (rs11706052) is associated with an 

increased IMPDH activity in MMF-treated renal transplant patients, and triples the odds 

for BPAR within 12 months after renal transplantation.106,107 Large inter-individual 

variation of IMPDH enzyme activity pre-transplant has been observed.108 The IMPDH2 

3757 T>C variant has been reported to explain 8% of the inter-patient variability in 

IMPDH activity.106  

 

1.7 Principles of therapeutic drug monitoring 
The main purpose of therapeutic drug monitoring (TDM) is to individually adjust the dose 

of a drug to improve the outcome of the therapy. Criteria for drugs considered for 

therapeutic drug monitoring are as follows: 

- Narrow therapeutic window (small changes in dose and exposure can result in 

toxicity or loss of efficacy) 

- Failure of drug treatment has serious consequences for the patient 

- Relationship between dose and blood concentration is poorly predictable 

- The clinical effect is difficult to quantify 

- Considerable pharmacokinetic and pharmacodynamic variability between 

individuals 

- The observed variable is associated with pharmacological effect and clinical 

outcome 



�

    ���

- Therapeutic range of the measured variable must be established 

- Assays for monitoring must be available 

- Cost and benefit must be reasonable 

 

There are several approaches for monitoring of drug therapy. It can be based on 

individualization before the therapy is started (pharmacogenetics, demographic and clinical 

information) or after (the pharmacokinetic or pharmacodynamic approach). TDM is a 

valuable tool for establishing the optimal drug concentration short-term after therapy 

initiation and in cases of drug interactions.  

A simple definition of pharmacokinetics is what the body does to the drug. This 

includes the time course of absorption, distribution, metabolism and elimination of the 

administered drug. Several factors are known to affect the pharmacokinetics of a drug: 

absorption, tissue and body fluid mass and volume, genetic factors, elimination (e.g. renal 

function) drug metabolism and drug interactions. Pharmacokinetic monitoring is the most 

widespread form of TDM and is based on measurements of blood concentrations of the 

drug. These measurements are based on either single point concentrations (C0 or C2) or 

drug exposure (area under the time-concentration curve, AUC). The trough concentration 

(C0) is the drug concentration at the end of a dosing interval just before the next dose, 

while the C2 is the drug concentration two hours after administered dose. A full AUC is 

considered as the best marker for drug exposure. Compared to a single point measurement 

a full AUC requires several sampling time points to cover the dosing interval (normally 12 

hours), which is both time- and labour-consuming. The use of single point measurements 

assumes that there is a correlation between e.g. C0 and the AUC, and that C0 can predict the 

exposure. Abbreviated AUC (e.g. AUC0-2) and limiting sampling strategies (normally 3 

time points and a mathematical algorithm) have been proposed as an alternative to a full 

AUC, but they are still time-consuming. C0 is therefore the most common variable to 

measure in terms of pharmacokinetic monitoring. For cyclosporine A (CsA) the C2 

concentration correlates better with drug exposure, and is an established way for 

monitoring monitor CsA. A newer strategy in therapeutic drug monitoring is the use of 

population pharmacokinetics combined with Bayesian estimators. 

Pharmacodynamics is defined as what the drug does to the body, and refers to the 

relationship between drug concentration at the site of action and the efficacy. 

Pharmacodynamic monitoring uses biological surrogate or end-point markers for effect 

(e.g. target enzyme activity), and reflect the biological response of the drug more closely to 
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the site of action than the pharmacokinetic approach. Factors that may affect the 

pharmacodynamics of a drug are drug receptor status, genetic factors, pharmacodynamic 

drug interactions and tolerance.  

 

1.8 Therapeutic drug monitoring of immunosuppressive 

drugs 
The goal of the monitoring of immunosuppressive therapy after solid organ transplantation 

is a treatment individualized to each patient. This therapy is a delicate balance in order to 

avoid over- or under-immunosuppression. Overexposure of immunosuppressive drugs 

increases the risk of drug related adverse effects, opportunistic infections or malignancies, 

while underexposure might cause acute or chronic rejection and graft loss. Both cases 

might result in impaired quality of life and high costs. The optimal dosing of 

immunosuppressive drugs can be achieved by therapeutic drug monitoring. The risk of 

rejection episodes after transplantation is highest short-term after transplantation.5 

Reaching the recommended target concentrations of the immunosuppressive drugs as 

shortly as possible after transplantation is crucial for optimal, clinical outcome. 

The maintenance immunosuppressive therapy after liver transplantation consists of 

prednisolone, tacrolimus and mycophenolic acid. These drugs are associated with a broad 

range of adverse effects. Glucocorticoids (e.g. prednisolone) have a large number of side 

effects: risk of infection, diabetes mellitus, hypertension, dyslipidaemia, weight gain, 

osteoporosis, Cushingoid symptoms, glaucoma, suppression of the adrenal cortex, growth 

retardation in children, skin atrophy and neurological side effects like insomnia, irritability, 

psychosis and mood changes.6 The most abundant side effects of tacrolimus are 

nephrotoxicity, diabetes mellitus, tremor, headache, alopecia, diarrhoea, nausea and 

vomiting.62 Drug-specific adverse effects related to mycophenolic acid include leukopenia, 

diarrhoea, nausea, vomiting and an increased risk of CMV-infection (cytomegalovirus).77 

Today, the rejection rate in liver transplant recipients is relatively low (see section 

1.1). One of the main purposes of therapeutic drug monitoring nowadays is to optimize the 

therapy to improve quality of life, reduce the drug related toxicity and to reach the lowest 

dose possible while maintaining the optimal protection against graft rejection. 

In the standard immunosuppressive regimen after liver transplantation, only tacrolimus is 

subject for routinely therapeutic drug monitoring. Tacrolimus pharmacokinetics is highly 
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variable between individuals. The established TDM of tacrolimus is based on single point 

pharmacokinetic measurements, by measuring the pre-dose concentration (i.e. 

concentration at the end of the dosing interval, right before the next dose = C0) in whole 

blood. The recommended target trough concentration, according to the protocol at our 

transplantation centre, is 5-15 ng/mL (1-30 days post-transplant), 5-10 ng/mL (31-180 days 

post-transplant), 5-8 ng/mL (181-360 days post-transplant) and 3-8 ng/mL a year post-

transplant. In patients with elevated creatinine, the clinicians aim at the lower end of the 

recommended concentration range (5-15 ng/mL) in the early post-operative period, in 

order to manage the renal function of the patient, due to tacrolimus nephrotoxicity. 

Several of the marketed immunosuppressive drugs have a narrow therapeutic 

window, which increases the risk of complications in cases of clinical relevant drug 

interactions. When a drug interaction is likely to occur, monitoring might be of value to 

evaluate whether individual dose adjustments are necessary. As described in section 1.5 

tacrolimus is mainly metabolized by the CYP3A enzyme, hence inhibition or induction of 

CYP3A4-mediated metabolism is a clinically important drug interaction for tacrolimus. 

Some relevant interactions of clinical importance are caused by grapefruit juice and co-

administration of antifungal drugs. Grapefruit juice contains an array of furanocoumarins 

responsible for the inhibition of CYP3A,109 which increases the oral bioavailability of 

tacrolimus. This drug interaction is sometimes used intentional to improve the uptake of 

orally administered tacrolimus. Due to the immunosuppressive state of the transplanted 

patients, antifungal drugs are frequently administered. The antifungal drugs fluconazole, 

itraconazole and ketoconazole increase the exposure of tacrolimus through inhibition of 

CYP3A with variable potency.110 Co-administration of ketokonazole almost doubles the 

bioavailability of tacrolimus.111 In cases of this drug interaction, close monitoring is 

essential for dose adjustment after initiation and discontinuation of these drugs. The human 

pregnane X receptor (PXR), encoded by NR1I2, regulates the expression of the CYP3A and 

MDR1 genes.112,113 Glucocorticoids induce CYP3A expression through PXR in 

hepatocytes and enterocytes.112 Induction of CYP3A expression increases the metabolism 

of CYP3A substrates, which results in increased dose requirements of these drugs (e.g. 

tacrolimus). The clinically relevant drug interactions between tacrolimus and other 

frequently administered drugs after transplantation and the potential complications 

highlight the importance of controlling the tacrolimus levels and dosing.  

 Several studies have demonstrated that patients carrying the CYP3A5*1 allele 

require higher doses of tacrolimus than the CYP3A5*3 carriers to reach the same blood 
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concentrations.114-116 Renal transplant recipients with at least one CYP3A5*1 allele 

achieved only half the dose-normalized tacrolimus blood concentrations compared to 

CYP3A5*3/*3 homozygotes, with a significant delay in reaching target blood 

concentrations in the CYP3A5*1 carriers.115 CYP3A5 genotyping in renal transplant 

recipients is predictive of the tacrolimus dose, and may help determine the initial daily 

dose of tacrolimus needed by the individual patient for adequate immunosuppression.117 

These findings might indicate that an individualized immunosuppressive therapy based on 

pharmacogenetics is promising after solid organ transplantation.  

Considerable inter-individual variability in the pharmacokinetic parameters of 

MMF has been reported.118 Considering the correlation between MPA plasma 

concentration and risk of acute rejection and the variability in MPA pharmacokinetics, 

individualizing the dose regimen of MMF may improve clinical outcome. Higher MPA 

plasma concentrations are correlated with a reduced risk of acute rejection in renal 

transplant recipients, hence controlling this variability is of clinical importance.119 In the 

same study, the pharmacokinetic-pharmacodynamic relationship was investigated showing 

a significant relationship between MPA AUC0-12h and the risk of rejection and that pre-

dose concentrations of MPA (C0) has less predictive value of acute rejection than AUC0-

12h. A therapeutic range of MPA AUC0-12h between 30 and 60 mg*h/L has been 

suggested.120 The value of therapeutic drug monitoring of MPA has been widely discussed, 

but single point C0 measurements are performed by several centres, despite poorer 

correlation with clinical outcome than AUC. As therapeutic drug monitoring by full AUC 

sampling is both time and labour consuming in daily routine, another approach has arisen. 

Two large multicentre trials (APOMYGRE and FDCC) investigated a potential benefit in 

clinical outcome in renal transplant recipients, by individualizing MMF dosing by using 

three-point limited sampling strategies.121,122 The APOMYGRE-trial demonstrated, by 

using a Bayesian estimator, that there was a significantly lower incidence of biopsy proven 

acute rejections in the concentration-controlled group than the fixed-dose group. The 

FDCC-trial found no difference in the incidence of treatment failure between the 

concentration-controlled group and the fixed-dose group. The lack of difference in MPA 

exposure between the concentration-controlled group and the fixed-dose group may partly 

be explained by failure to apply MMF dose changes based on target MPA exposure. 

Although conflicting results in these studies, the results in the APOMYGRE-trial showed 

that clinical outcome after renal transplantation might be improved by individualizing 

MMF dosing.  
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As described in section 1.8, sequence variants in the UGT1A9 gene might describe 

some of the pharmacokinetic variability of MPA. Although further documentation is 

needed, determination of UGT1A9 genotype might prove valuable as a supplement in 

further individualization of MPA treatment. Further discussion of this topic is presented in 

section 4.3. 

As MPA inhibits the IMPDH in lymphocytes, measuring IMPDH activity in these 

cells might serve as a surrogate marker for MPA-induced immunosuppression. The 

pharmacokinetic approach to therapeutic drug monitoring of MPA uses the plasma 

concentration as the marker for the clinical effect. Pharmacodynamic monitoring measures 

the pharmacological effect more closely at the drug target, and will predict the efficacy and 

toxicity of MPA more directly. Pharmacodynamic monitoring of MPA is further discussed 

in section 4.8. 

Glucocorticoid therapy is a cornerstone in the immunosuppressive regimens after 

organ transplantation. As mentioned in section 1.8 these drugs have a broad range of 

serious side effects. Despite the serious side effect profile of glucocorticoids and the long-

term therapy, no concentration monitoring or individualized dosing is performed after 

adult solid organ transplantation. Several studies aiming to avoid or withdraw steroids in 

the immunosuppressive regiment have been published with positive results, but the results 

are conflicting.123-126 Knight et al. reported that steroid avoidance or withdrawal decreases 

the risks of various side effects, but increases the risk of acute rejection.127,128 In the 

APOMYGRE-study mentioned above, they demonstrated a significant reduction in 

treatment failure in the concentration-controlled group (of MPA) combined with steroid 

withdrawal.121 

Although the single point pharmacokinetic monitoring as performed today is a 

valuable tool in therapeutic drug monitoring, it is only a surrogate marker for the drug 

exposure and predicted efficacy of the drug. The primary end-point of immunosuppressive 

therapy is the degree of immunosuppression and avoidance of graft rejection. 

Pharmacodynamic monitoring is measuring the biological response to a drug, which in 

addition to pharmacokinetic monitoring offers an improved method for optimization of 

drug dosing. As a supplement to established TDM, monitoring of immune status can give 

an indication whether the patient has a low, moderate or strong immune response, and 

identify patients at risk of acute rejection, infection or cancer. Rejection episodes, 

infections and cancer development are important sources of morbidity and mortality in 

immunosuppressed patients. An FDA approved commercial analysis kit has been marketed 
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(ImmuKnow®, CylexTM Inc., Columbia, MD), which is an immune cell function assay and 

quantifies intracellular ATP (adenosine triphophate) in stimulated CD4 positive 

lymphocytes. Although the predictive value of this kit has been debated, a meta-analysis 

performed by Rodrigo et al. concludes that the ImmuKnow test is a valuable tool to predict 

the risk of further infections in adult liver transplant patients, but the identification of the 

risk for rejection is inconclusive.129  
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2 Objectives of the thesis 

2.1 Overall objective 
The liver plays a crucial role in the pharmacokinetics of immunosuppressive drugs. The 

overall objective of this thesis was to investigate the pharmacokinetics, pharmacodynamics 

and pharmacogenetics of the immunosuppressive drugs used after liver transplantation; 

glucocorticoids, mycophenolic acid and tacrolimus. Furthermore, the aim was to describe 

the intra– and inter–individual variability of these drugs in liver transplant recipients and to 

study which underlying factors contribute to the large variability in the clinical effect of 

these drugs.  

 

2.2 Objective paper I 
This paper aimed to develop a reliable LC-MS/MS assay for quantifying six relevant 

glucocorticoids (prednisolone, prednisone, cortisol, cortisone, methylprednisolone and 

dexamethasone) used after solid organ transplantation. An in-depth validation study should 

be performed according to the U.S. Food and Drug Administration guidelines.130 

Furthermore, the matrix effects should be assessed and the clinical application 

demonstrated. 

 

2.3 Objective paper II 
The objective of this second paper was to investigate the pharmacokinetics of prednisolone 

and prednisone in the first weeks following liver transplantation. The impact of the 

metabolizing enzymes 11β-hydroxysteroid dehydrogenase 1 and 2 on the pharmacokinetics 

of prednisolone and prednisone should be studied. Furthermore, the study aimed to 

investigate the ratio between prednisolone and prednisone as a potential marker in 

therapeutic drug monitoring. Additionally, the pharmacokinetics of methylprednisolone 

and endogenous cortisol and cortisone should be described. 
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2.4 Objective paper III 
The aim of this study was to examine the pharmacokinetics, –dynamics and –genetics of 

mycophenolic acid early after liver transplantation, with respect to IMPDH activity and 

UGT1A9, IMPDH1 and IMPDH2 sequence variants. Furthermore, the study aimed to 

describe the pharmacokinetics and pharmacogenetics of the calcineurin inhibitor 

tacrolimus in the same patient population. By genotyping both donors and recipients for 

sequence variants in the CYP3A5 gene, the association between CYP3A5 genotype and the 

tacrolimus pharmacokinetics should be investigated.  
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3 Methods 

3.1 Study design and patient recruitment 
The study population reported in paper II and III were recruited at Oslo University 

Hospital in the period between February 2008 and July 2009. Sixteen liver transplant 

recipients were included. The inclusion criteria were liver transplant recipients at ages 

above 18 years, immunosuppressive therapy according to the standard protocol after liver 

transplantation, consisting of a triple regimen with prednisolone, mycophenolic acid and 

tacrolimus and no former use of these immunosuppressants. The study was performed in 

accordance with the Declaration of Helsinki and approved by the Regional Committee for 

Medical Research Ethics. Informed written consent from the study participants was 

obtained.  

The study period included the first three weeks following liver transplantation. Full 

12-hour pharmacokinetic profiles were obtained on up to four follow-up days for each 

patient. The first follow-up day was between day one and five post-transplant, the second 

between day six and ten, the third between day 11 and 17, while the fourth dosing interval 

was after day 17. The four follow-up days are reported as period I, II, III and IV, 

respectively. All four follow-up days were completed in 8 and 9 of the 16 recipients for 

tacrolimus and mycophenolic acid, respectively. Two of the recipients had complications 

with the central venous catheter, which resulted in only two and three intervals for these 

patients. Because of medical conditions at the inclusion time one patient missed the first 

period. Four of the patients were recovering fast and were discharged from the hospital 

prior to period IV. One of the patients started anti-thymocyte globulin (ATG) treatment 

during one of the follow-up days, and these samples were unsuitable for the IMPDH-assay, 

due to eradication of T-lymphocytes. For the tacrolimus study, one of the patients was 

excluded from the pharmacokinetic analysis due to administration of once-daily tacrolimus 

(Advagraf), which was not in accordance with the study protocol. Lastly, one of the 

intervals was excluded due to assay failure (IMPDH) and another one because of 

inappropriate timing of tacrolimus and MMF dose.  
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3.2 Sampling and pre-analytical preparation 
Samples were collected peripherally pre-transplant (pre-Tx) and from a central venous 

catheter at four follow-up days in four distinct periods during the three weeks after surgery. 

Biological samples consisted of whole blood for genotype analyses, isolated CD4+ 

lymphocytes for gene expression analyses and IMPDH activity measurement, whole blood 

for tacrolimus concentration assessment and plasma for quantification of mycophenolic 

acid and glucocorticoid concentrations. The venous blood samples were drawn into tubes 

containing EDTA (ethylene diamine tetraacetic acid). Each follow-up day was a twelve 

hour dosing interval with thirteen samples (pre-dose, 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 4, 5, 6, 8, 

10 and 12 hours post-dose). CD4+ lymphocytes for IMPDH activity, plasma and whole 

blood for drug concentration measurements were collected at all time points. Pre-

transplant, samples were drawn for genotyping and basal IMPDH activity. In addition, 

whole blood from the respective liver donors was collected for genotype determination.  

At the sampling days, a large effort had to be made isolating and providing the right 

biological material for the separate analyses. Whole blood collected pre-Tx for genotyping 

was frozen at -70 °C directly after sampling. After freezing an aliquot of whole blood for 

tacrolimus analysis at -20 °C, the remaining sample was centrifuged at 1500 g in 12 

minutes to separate the plasma in aliquots for glucocorticoid and MPA analyses. The 

plasma samples were frozen at -20 °C until analysis. 

For the IMPDH activity assay, CD4+ lymphocytes were isolated from whole blood 

using paramagnetic monodisperse beads coated with anti-CD4 monoclonal antibodies 

(Dynabeads® M-450 CD4, Life Technologies). EDTA (ethylenediaminetetraacetic acid) 

whole blood was incubated with beads, plasma removed and the captured cells were 

washed with phosphate buffered saline (PBS) sequentially. The plasma from the samples 

was subjected to 0.1 μm filtration. To restore the intracellular MPA concentration, the 

isolated lymphocytes were re-incubated in the micro-filtrated original plasma or drug-free 

plasma, depending on whether the inhibited or the basal IMPDH activity was to be 

measured. After lysis of the cell membranes the cell nuclei from the isolated lymphocytes 

were counted using a Coulter Counter® (Beckman Coulter, Inc.), which was set at a 

diameter range of 3 to 10 μm. The remaining suspension was frozen at -20 °C until 

analysis. 
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3.3 Pharmacokinetic analyses 
The pharmacokinetic variables and parameters for glucocorticoids (paper II), tacrolimus 

(paper III), mycophenolic acid (paper III) were derived from plasma (MPA and 

glucocorticoids) and whole blood (tacrolimus) as follows. Maximum concentration (Cmax), 

pre-dose concentration (C0) and time to reach Cmax (Tmax) were read directly from the 

concentration versus time curves. The elimination rate constant (ke) was estimated by log–

linear regression of the terminal part of the concentration–time profile. Elimination half–

life is calculated as ln2/ke. By using the linear trapezoidal rule the area under the 

concentration–time curve (AUC0-12h) was calculated. AUC12-∞ was extrapolated by C12 

divided by ke. Total AUC0-∞ is the sum of AUC0-12h and AUC12–∞, minus the contribution 

from previous dose of tacrolimus or mycophenolic acid (C0/ke). The apparent total 

clearance from plasma after an oral dose (Cl/F) was determined from the dose divided by 

the AUC0-∞. Apparent volume of distribution (VD/F) was calculated as (Cl/F)/ke. The data 

are based on single-compartmental pharmacokinetics. The pharmacokinetic data of 

tacrolimus, glucocorticoids and MPA were normalized to dose per bodyweight (dose/BW).  

 

3.4 Statistical analyses 
The statistical analysis, calculation and figure preparation were carried out using SPSS 

18.0 (SPSS Inc., Chicago, IL) and Microsoft Excel (Microsoft Corp., WA). All continuous 

variables were reported as median and range, unless otherwise stated. To compare changes 

in pharmacokinetic parameters and variables between the four periods Related-Samples 

Wilcoxon Signed Rank Test was used. Statistical bivariate correlation was investigated by 

Spearman’s rank correlation coefficient. In paper III the Kruskal Wallis Test was used in 

order to test whether there were differences in MPA pharmacokinetics between the three 

groups of UGT1A9 genotypes. P-values less than 0.05 were considered statistical 

significant.  

 

3.5 Paper I 
To investigate glucocorticoid pharmacokinetics in clinical samples, an LC-MS/MS 

(tandem mass spectrometry coupled to high performance liquid chromatography) assay for 

quantifying prednisolone, prednisone, cortisol, cortisone, methylprednisolone and 
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dexamethasone was developed. The LC-MS/MS method was validated according to the 

bioanalytical guidelines published by U.S. Food and Drug Administration, validating 

stability, precision, accuracy, sensitivity, selectivity and linearity. 130 Additionally, matrix 

effects were validated both qualitatively and quantitatively. Quantification of plasma 

concentrations in plasma were performed by reversed phase chromatography, coupled to 

positive electrospray ionization with multiple reaction monitoring in the mass 

spectrometer. The chromatographic column in use was a Luna C18, 3 μm, 150 mm x 4.60 

mm (Phenomenex, Torrance, CA), with a gradient elution with methanol and 2 mmol/L 

ammonium acetate with 0.1% formic acid (v/v). Sample preparation and pre-treatment 

consisted of protein precipitation with acetonitrile with isotope labelled internal standards, 

followed by liquid/liquid extraction with dichloromethane, evaporation under nitrogen (40 

°C, 15 min) and re-constitution in methanol. The assay was developed using a HPLC 

(Alliance HT 2795, Waters, Manchester, UK) coupled to a tandem mass spectrometer of 

the triple quadropole type (Micromass Quattro Micro, Waters, Manchester, UK) using 

positive electrospray ionization (ESI+) with multiple reaction monitoring (MRM). Data 

were processed using the MassLynxTM and QuanLynxTM software supplied by Waters. 

Linear least-squares regression of peak area was used for calibration of each analyte, with 

1/(analyte concentration)2 weighting of the calibration curve. 

 

3.6 Paper II 
Determination of plasma concentrations of prednisolone, prednisone, cortisol, cortisone 

and methylprednisolone in the liver transplant population were determined by the validated 

LC-MS/MS method presented in paper I. The pharmacokinetic analyses were performed 

according to section 4.3. In addition, the ratio between active and inactive glucocorticoids 

(i.e. prednisolone and prednisone) was calculated as the AUC0-∞, C0 or Cmax of 

prednisolone divided by that of prednisone. 

 

3.7 Paper III 
Quantification of mycophenolic acid concentrations in plasma was performed by a LC-UV 

(HP series 1100 and HP Chemstation, Agilent Technologies, CA) assay published earlier, 

and used in the daily routine in our laboratory.131 This is a reversed phase LC-method, 

using a Zorbax SB-C18 column, 3.5 μm, 74 x 4.6 mm with a Zorbax Eclipse XDB-SB-C8 
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guard cartridge, 5 μm, 12.5 x 2.1 mm (Agilent Technologies, CA). Isocratic elution with a 

mobile phase containing 30% acetonitrile and 40 mM phosphoric acid (pH 2.1) was 

performed. Protein precipitation with acetonitrile is used as sample purification. For 

detection the UV-absorption is measured. 

Determination of inosine monophosphate dehydrogenase (IMPDH) activity was 

performed in isolated CD4+ cells and quantified by HPLC with UV-detection (HP Series 

1100, Agilent Technologies, Palo Alto, CA), expressed as the XMP (xantosine 

monophosphate) production rate (pmol/106/cells/min).131 The lymphocytes were isolated 

from whole blood by utilization the use of of paramagnetic beads coated with anti-CD4 

antibodies. To restore the intracellular concentration of MPA after the sequential washing 

steps, the cells were incubated in micro filtrated plasma from the original sample. 

Additionally, at four time points the MPA was washed out and restored in drug free 

plasma, to measure the basal IMPDH activity. Inosine 5’-monophosphate (IMP) is the 

substrate for IMPDH. Together with nicotinamide adenine dinucleotide (NAD), which is 

the co-factor for IMPDH, IMP was added to the lysate of the CD4+ cells, and IMPDH 

activity was quantified as the xanthosine 5’monophosphate (XMP) production rate 

(pmol/106cells/min). The concentration of XMP was determined by HPLC after hydrolytic 

cleavage to xanthine, using a Chromolith Performance column, 100 x 4.6 mm (Merck, 

KgaA, Darmstadt, Germany) coupled in series with a Nucleosil C18 column, 5 μm, 150 x 

4.6 mm (Supelco Inc., Bellefonte, PA). The mobile phase contained methanol 4% in o-

phosphoric acid with pH 1.8, where the analytes were eluted using isocratic flow. 

Concentration assessment of the calcineurin inhibitor tacrolimus was carried out by 

an LC-MS/MS assay developed, validated and published from our laboratory.132 Instead of 

using the reported standards and quality controls in this method, a commercial kit was used 

(Mass Trak Immunosuppressants Kit, Waters, Manchester, UK). Whole blood samples 

were cleaned up by protein precipitation with 0.1 mol/L zinc sulphate and acetonitrile 

containing internal standard. The prepared samples were analysed with reversed phase 

chromatography on a Luna C18(2) cartridge 3μm, 20 x 2.0 mm with a guard cartridge C8 

4.0 x 2.0 mm (Phenomenex, Torrance, CA), using mobile phases containing 2.0 mmol/L 

ammonium acetate and 0.1% formic acid (v/v) in methanol and water, respectively. The 

mass spectrometer was set in the positive electrospray mode with multiple reaction 

monitoring.  
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Samples for clinical biochemistry variables were collected and analysed as a part of the 

standard post-transplant follow-up on a daily basis in the study period. The biochemical 

parameters alanine aminotransferase (ALAT), aspartate aminotransferase (ASAT), total 

bilirubin and albumin were analysed in heparin plasma on the Modular Analytics analyser 

(F. Hoffmann- La Roche Ltd, Basel, Switzerland).  

Genotyping of CYP3A5, UGT1A9, IMPDH1 and IMPDH2 was performed by PCR 

and melt curve analysis with hybridization probes on the LightCycler® 480 instrument 

(Roche Applied Science, Penzberg, Germany) after DNA extraction from EDTA anti-

coagulated blood using the MagNA Pure instrument (Roche Applied Science, Penzberg, 

Germany). The following sequence variants were determined: 

CYP3A5 (rs 776746; g.12083A>G, A=CYP3A5*1 and G=CYP3A5*3) 

UGT1A9 (rs17868320, c.-2152C>T) 

UGT1A9 (rs2741046, c-440C>T) 

UGT1A9 (rs2741045, c-331T>C) 

UGT1A9 (rs6714486, c.-275T>A) 

IMPDH1 (rs2278293, c.579+119G>A) 

IMPDH1 (rs2278294, c.580-106G>A) 

IMPDH2 (rs11706052, c.819+10T>C) 

In order to investigate the pharmacodynamics of mycophenolic acid, the IMPDH activity 

was examined as follows. The pre-dose, minimum and maximum enzyme activities were 

read directly from the IMPDH activity versus time curve, and called A0, Amin and Amax, 

respectively. The time points for Amin and Amax were assigned Tmin and Tmax. The 

maximum IMPDH inhibition was calculated by the formula (1-Amin/A0) x 100%. 
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4 Results and discussion 

4.1 Paper I 
This paper presents a quantitative assay for determination of prednisolone, prednisone, 

cortisol, cortisone, methylprednisolone and dexamethasone in plasma samples. The 

validation results are in accordance with the bioanalytical guidelines published by U.S. 

Food and Drug Administration. 130 According to these guidelines the assay intra-day and 

inter-day precision should have coefficients of variation lower than 15% (20% at the lower 

limit of quantification, LLOQ), and the accuracy between 85% and 115% (80-20% at 

LLOQ). The inter-day accuracy range was 92.1% to 104.1%. The inter-day imprecision for 

the six analytes was between 4.0% and 15.6%, with poorest performance for 

dexamethasone (15.6%). An isotope labelled internal standard specific for dexamethasone 

may be required to obtain a more precise quantification of this compound. The lower limits 

of quantification, LLOQs (i.e. the lowest concentration with CV<20% and accuracy within 

80-120%), were sufficient for application in pharmacokinetic studies, ranging from 1.5 to 

4.0 μg/L, covering the low concentrations in a dosing interval. 

A frequent problem in mass spectrometry is matrix effects. Matrix effects are 

changes in the ionization efficiency in the presence of co-eluting components in the 

electrospray interface, either from the biological matrix (e.g. phospholipids), sample 

components (e.g. salts, surfactants), xenobiotics or additives in the mobile phase.133,134 

This results in either ion suppression or ion enhancement. It has been demonstrated that the 

main cause of ion suppression is a change in the droplet solution properties in the presence 

of non-volatile solutes in the electrospray ionization of the analytes.135 The chemical 

properties of the compounds are important for causing ion suppression. Molecules with 

high molecular weight are likely to suppress smaller molecules, while polar compounds are 

more prone to ion suppression than non-polar.136 Matrix effects have an impact on the 

performance of the mass spectrometer, and might affect the accuracy, precision and the 

lower limit of quantification of the assay. This emphasizes the need for investigation of 

matrix effects when developing mass spectrometry assays. According to the FDA 

bioanalytical validation guidelines, the validation of matrix effects are mandatory, but no 

procedure has been specified.130 There are two established methods for evaluation of the 
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significance of the matrix effects: post-extraction addition and post-column infusion, 

which are quantitative and qualitative approaches, respectively.136-138 In mass spectrometry 

matrix effects are unavoidable, but an adequate sample preparation and chromatography 

and the use of isotope labelled internal standard may minimize their impact. Paper I 

presents validation of matrix effect using both approaches. The results from the matrix 

effect validation in this paper show that there is substantial ion suppression, but this is 

corrected by the internal standards and does not affect the performance of the assay. 

Ideally, each analyte should have its respective isotope labelled internal standard 

for optimal quantification. Addition of compounds to the assay affected the data sampling 

and resolution, resulting in fewer data points for each chromatographic peak. As a 

compromise the compounds with similar retention time and molecular structure had a 

common internal standard (prednisolone-cortisol, prednisone-cortisone). Dividing the data 

sampling into time segments further improved the resolution. Another problem with 

introducing more internal standards is the interferences between compounds in a narrow 

m/z (mass over charge) range with closely resembling molecular weight, chemical 

properties and fragmentation patterns.  

This assay presents some limitations. The sample preparation (liquid liquid 

extraction) is quite laborious and time consuming, and includes some use of organic 

extraction solvents. The sample volume required for analysis is relatively large (500 μL). 

Smaller volumes were tested, but to achieve adequate signal intensity in the mass 

spectrometer this volume was necessary. In addition, the extracted sample had to be 

evaporated under nitrogen for further up-concentration and improvement in signal 

intensity. The analysis run time for each sample is 12 minutes, which in daily routine 

analysis is relative long. This was required to achieve chromatographic separation of 

analytes with similar m/z and fragmentation to avoid analytical interferences and cross-

talk. With more sensitive instrumentation, this method might have been optimized, with 

shorter run-time, smaller sample volumes and potential for automation. Retrospectively, 

another extraction procedure (e.g. solid phase extraction) might have been chosen to avoid 

organic solvents. 

So far, quantification of these glucocorticoids is not performed on a routinely basis, 

but for research purposes only. In pharmacokinetic studies, the assay determines all 

relevant concentrations in a dosing interval after administrations of these glucocorticoids. 

For this application, the assay performance was satisfactory. 
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4.2 Paper II 
The glucocorticoid pharmacokinetics of 16 liver transplant recipients was studied with up 

to four 12-hour dosing intervals (period I-IV) within the first three weeks after 

transplantation. The intra- and inter-individual variability in prednisolone and prednisone 

pharmacokinetics was large in this liver transplant population. There were significant 

increases in dose per body weight (dose/BW) adjusted AUC0-∞ from period I to period II, 

III and IV for both prednisolone (median 5222, 6957, 8665 and 7660 μg*h/L/(mg/kg), 

respectively) and prednisone (495, 824, 897 and 782 μg*h/L/(mg/kg), respectively). The 

median dose/BW adjusted C0 for prednisolone were 336, 258, 544 and 252 μg/L/(mg/kg) 

in period I, II, III and IV, respectively. The elimination half-lives of prednisolone were 

stable in the four periods, ranging from 3.2 to 3.6 hours. Median volume of distribution 

(VD) of prednisolone was 78, 50, 49 and 47 L in period I to IV, respectively. The 

increments in exposure were reflected in a significant reduction in apparent clearance 

(Cl/F) of prednisolone between the same periods (median 14.8, 11.5, 9.6 and 8.8 L/h, 

respectively). The median elimination rate was constant during the follow-up periods, and 

hence the elimination half-life. As Cl = VD*ke one can assume that the body weight 

adjusted apparent volume of distribution (VD/F) declined in a similar manner as the 

apparent clearance (Cl/F). These findings might indicate that the variable AUC0-∞ may be 

caused by changes in bioavailability or the distribution volume.  

In a previous study, large inter-individual variability in prednisolone 

pharmacokinetics was also found in young patients with systemic lupus erythematosus 

(SLE).139 Full 9-hour PK profiles were analysed in 8 SLE patients. Mean prednisolone 

dose/BW adjusted AUC0-9 were 4361 ng*h/L/(mg/kg) (range 1136-9580). They also 

demonstrated a correlation between prednisolone pharmacokinetics and clinical effect. 

Prednisolone Cl/F and VD were significantly lower in cushingoid patients than non-

cushingoid. Another pharmacokinetic study of prednisolone was performed in lung 

transplant recipients.140 Prednisolone exposure in 52 lung transplant recipients was 

measured by six hours AUC. This study population show wide inter-individual variation, 

with a significant increase in AUC/mg in patient with cystic fibrosis (511±82 

nmol*h/L/mg) compared to non-cystic fibrosis patients (349±27 nmol*h/L/mg). 

Furthermore, they reported that female patients had a significantly higher AUC0-6 than 

male patients. Taken all this together, the pharmacokinetics of prednisolone is highly 

variable between individuals in several patient populations, including the liver transplant 
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population reported in this paper. In addition, there are differences in prednisolone 

pharmacokinetics between genders. This may indicate a need for a more individualized 

dosing of glucocorticoids. 

A non-linear reduction of prednisolone protein binding from 95% to 60-70% when 

the serum concentration increases from 200 to 800 μg/L has been reported.7 Prednisolone 

is bound in plasma to corticosteroid binding globulin (CBG) with a high affinity and low 

capacity, and to albumin with low affinity and high capacity.6 This results in a saturation of 

the CBG and a higher free fraction of the drug when total concentration increases. An 

elevated free concentration will result in an increased elimination. The glucocorticoid 

doses administered the following days post-transplant resulted in maximum concentrations 

in this non-linear range of CBG binding in this study, which complicates the interpretation 

of the pharmacokinetic data. Measurements of the free concentration of the glucocorticoids 

could add further information, in order to investigate whether the increases in dose-BW-

adjusted AUC also is a result of an increased clearance due to a potential increase in free 

fraction. Although the free fraction was not measured, one may assume that reduced 

protein binding contributed to the higher VD/F and Cl/F and thereby to the lower dose-BW-

adjusted AUC0-∞ and Cmax in the first period after transplantation. According to this 

interpretation, one might speculate if a moderate initial dose of prednisolone, which gives 

concentrations within the linear range of CBG binding, could be equally effective with a 

reduced incidence of adverse effects due to lower unbound concentration. 

As the plasma proteins albumin and CBG are both synthesized in the hepatocytes, 

the protein synthesis is dependent of the liver function after transplantation. Table 2 

summarizes biochemical parameters in the study population, where the median albumin 

concentrations were below the lower reference limit in the four follow-up periods, with a 

gradually increase with time. The increasing albumin concentrations with time after 

transplantation might reflect the ability of the liver to synthesize protein, and may also 

affect the CBG synthesis. Increasing concentrations of CBG will affect the capacity to bind 

glucocorticoids and thereby the free fraction and clearance. In this study the CBG levels 

were not monitored, but it could add further information. One might speculate if the CBG 

concentrations could be a part of the explanation why the dose-adjusted exposure of 

prednisolone and prednisone increased during the post-operative phase. 
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 Follow-up period 

 I II III IV 

Albumin (g/L) 29 

(20-36) 

30 

(23-37) 

32 

(28-40) 

36 

(25-40) 

Total bilirubin (μmol/L) 17 

(4-137) 

15 

(7-55) 

12 

(7-67) 

11 

(7-34) 

Aspartate aminotransferase 

(IU/L) 

75 

(29-487) 

43 

(19-74) 

18 

(8-62) 

17 

(10-37) 

Alanine aminotransferase 

(IU/L) 

363 

(72-1136) 

178 

(50-428) 

81 

(22-270) 

35 

(20-198) 

 

Table 2. Biochemical parameters (serum) in period I-IV in the study population (n=16). 

Data given as median (range). Reference intervals in serum: albumin (36-48 g/L), total 

bilrubin (5-25 μmol/L) aspartate aminotransferase (women: 10-35 IU/L, men: 10-45 IU/L) 

and alanine aminotransferase (women: 10-45 IU/L, men: 10-70 IU/L).141 

 

The median ratio of the AUC of prednisolone versus prednisone was stable through the 

four periods (range 9.2 to 10.1). Compared to the median ratio, one of the sixteen patients 

had a consistently higher ratio in period I, II and III (missed period IV), with ratios of 15.2, 

24.2 and 52.7. The latter was in the presence of methylprednisolone administration. In this 

case an intravenous bolus dose (500 mg) of methylprednisolone influenced the relationship 

between prednisolone and prednisone by suppressing the plasma concentration of 

prednisone, resulting in an increased AUC0-∞ ratio (52.7). This phenomenon was seen at all 

follow-up days where methylprednisolone was administered. This patient also had a 

consistently higher ratio than median, even in the absence of methylprednisolone. The 

marked reduction in prednisone concentration coincided with high methylprednisolone 

concentrations. One explanation may be a saturation of 11β-HSD2, perhaps combined with 

an unsaturated 11β-HSD1, factors that would indicate nonlinear kinetics and increasing 

risk of adverse effects. The mechanism behind this finding and the impact of it should be 

investigated. In cases of extremely and consistently high prednisolone/prednisone ratio, 

one can speculate if genetic variants in HSD11B1 or HSD11B2, the genes encoding 11β-

HSD1 and 11β-HSD2, could be involved. This needs further investigation. 

Given the broad range of serious adverse effects and toxicity, long-term 

glucocorticoid treatment is problematic. Individual patients differ in the response to the 
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same dose of prednisone.142 In order to individualize glucocorticoid therapy a potential 

predictor of the risk of side effects could be of value. One of our hypotheses is that the 

ratio between the active prednisolone and inactive prednisone might be a potential marker 

in therapeutic drug monitoring to predict an increased risk of drug-related side effects of 

prednisolone. This study was too small and not powered and designed to establish 

significant association between ratio and side effects. The purpose was to describe the 

pharmacokinetics in this liver transplant population short-term after transplantation and to 

investigate relationship between the active and inactive forms of the glucocorticoids. As 

described in section 1.4 the expression of 11β-HSD 1 and 2 is tissue specific. A limitation 

of this ratio is that it is based on plasma concentration measurements, which does not 

necessarily reflect the prednisolone and prednisone concentrations in the various tissues. 

Whether a high or a low plasma ratio might be associated with a risk of adverse effects, 

rejection episodes or the glucocorticoid effects should be investigated. Furthermore, 

variability in the pharmacodynamics of glucocorticoids should be investigated with respect 

to the glucocorticoids receptor. Single nucleotide polymorphisms in the NR3C1, encoding 

the glucocorticoid receptor, might be a factor contributing to pharmacodynamic 

variability.143 As prednisolone is substrate for both CYP3A4, CYP3A5 and P-glycoprotein, 

genetic variants altering the expression and function of these may impact the prednisolone 

pharmacokinetics. Furthermore, synthetic glucocorticoids induce gene expression of 

CYP3A and P-gp by activation of the human pregnane X receptor (PXR). Miura et al. 

investigated the influence of polymorphisms in CYP3A5, ABCB1 (P-glycoprotein) and 

NR1I2 (PXR) genes on the prednisolone pharmacokinetics in 95 renal transplant 

recipients.144 They found that patients carrying the NR1I2 7635GG or 7635AG allele had 

significantly lower AUC0-24 and Cmax values than patients having the 7635AA allele. 

Furthermore, no significant differences in prednisolone pharmacokinetics between the 

CYP3A5*3 and CYP3A5*1 genotypes were revealed. There were no significant differences 

in prednisolone exposure between the different ABCB1 genotypes. However, the 

combination of the ABCB1 3455CC and CYP3A5*3/*3 genotypes revealed significant 

differences in mean Cmax of prednisolone, but not for the AUC0-24. Further explorations in 

the genetics affecting the pharmacokinetic variability of glucocorticoids should be 

performed in order to individualize glucocorticoid therapy. 

To our best knowledge, this is the first study investigating the relationship between 

prednisolone and prednisone pharmacokinetics. The results in this study indicate a 

potential for individualization of glucocorticoid dosing after liver transplantation. 



�

    ���

However, there are examples of extreme intra-individual day-to-day variability in the early 

post-transplant phase, which highlight the challenges for implementation into clinical 

practice. In future studies, the relationship between appropriately timed concentration 

measurements and the effects of glucocorticoid treatment must be addressed.  

 

4.3 Paper III  
Tacrolimus 

The AUC0-12h for tacrolimus increased significantly from follow-up period I (day 1-5 post-

transplant) to period II (day 6-10), III (day 11-17) and IV (> 17 days). Median trough 

concentrations (C0) were 5.2, 6.5, 8.5 and 8.5 μg/L in the four periods. From period I to 

period III and IV the tacrolimus doses were doubled. The dose/BW-adjusted AUC0-12h 

increased significantly from period I to period II, III and IV. Within two weeks after 

transplantation, four patients experienced an episode of acute rejection. The pooled (period 

I-IV) median tacrolimus C0 were 6.5 μg/L and 7.9 μg/L in the non-rejection group and 

rejection group, respectively. The median tacrolimus AUC0–12h (pooled period I-IV) was 

comparable between the non-rejection group (106 μg*h/L) and the rejection group (107 

μg*h/L).  

In this study population one of the patients was heterozygous expresser of 

CYP3A5*1/*3, while 14 patients were non-expressers (CYP3A5*3/*3). The CYP3A5 

expresser was transplanted with liver graft from a donor heterozygous for CYP3A5*1/*3, 

while the other donors carried the CYP3A5*3/*3 genotype. The recipient carrying the 

CYP3A5*1/*3 variant had lower dose/BW-adjusted AUC0-12h and C0, but not outside the 

range of the non-expresser group. 

According to recently published work by De Jonge et al. the CYP3A5 genotype 

contributes to approximately 30% of the variability in tacrolimus dose requirement and 

clearance in renal transplant recipients.67 Furthermore, they describe that hematocrit 

explains additional 4-14%. In our study, the hematocrit was not investigated in terms of 

pharmacokinetic variability. Tacrolimus is most importantly metabolized by CYP3A in the 

hepatocytes. The metabolic capacity of the transplanted liver is affected by the graft 

function, which may be variable after transplantation. Lock et al. showed that the initial 

graft function after liver transplantation influences the pharmacokinetics of tacrolimus, and 

is a predictor of tacrolimus trough levels the first week after transplantation.145 An 

impaired hepatic CYP3A metabolism due to a delayed graft function post-transplant may 
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affect the systemic exposure of tacrolimus. When the metabolic capacity of the liver is 

impaired, the intestinal CYP3A4 might be of higher importance. In addition to the impact 

of graft function, the CYP3A5 genotype in liver and intestines affect the tacrolimus 

exposure and can cause variability in the tacrolimus pharmacokinetics. Recipients with a 

CYP3A5*1 carrying liver graft have a reduced concentration/dose ratio, and require a 

higher dose to reach the target concentration.146 A liver transplant recipient might receive a 

graft from a donor with a different CYP3A5 genotype, which changes the recipient’s 

metabolism post-transplant. Different CYP3A5 variants in the liver and the intestines make 

genotyping of the recipient inconclusive because the major contributor to tacrolimus 

metabolism is the hepatic CYP3A4/5. Ji et al. recently investigated the combined effect of 

the CYP3A5 genotypes in liver and intestines on the tacrolimus pharmacokinetics after 

liver transplantation.147 They found that in the early phase after transplantation, the 

CYP3A5 genotype in the native intestines was more important than the genotype in the 

transplanted liver. With time post-transplant the recipient-donor effect on the dose 

requirement changed. The benefit of pre-transplant CYP3A5 genotyping was demonstrated 

in renal transplant recipients, where the initial tacrolimus dosing was adjusted according to 

CYP3A5 genotype.148 The increased dose requirement to achieve the target trough 

concentration of tacrolimus carrying the CYP3A5*1 allele and the fact that this genotype 

explain a major part of the variability in tacrolimus pharmacokinetics, makes genotyping 

an attractive approach for further individualization of tacrolimus dosing. However, this is 

more complex in the liver transplant population since the genotype of the graft (the liver) is 

of particular importance.  

The efflux pump P-glycoprotein functions as an absorption barrier to orally 

administered drugs.149 Goto et al. investigated the relationship between the intestinal 

MDR1 mRNA expression and the CYP3A5 genotype in the grafted liver in 38 liver 

transplant recipients. They found that recipients with a high MDR1 intestinal expression 

combined with the CYP3A5*1 genotype had an increased tacrolimus dose requirement the 

first week after transplantation. 146 Thus, intestinal MDR1 mRNA expression and CYP3A5 

genotypes explain some of the varibility in tacrolimus pharmacokinetics. As described in 

section 1.8, the expression of the CYP3A and MDR1 genes is regulated by the human 

pregnane X receptor, which is activated by glucocorticoids. Due to high doses of 

prednisolone early after transplantation, induction of MDR1 and CYP3A expression may 

contribute to the relatively low tacrolimus exposure observed in the first follow-up periods 
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described in this paper. When the prednisolone doses are tapered, this induction is reduced, 

and tacrolimus exposure will increase. 

Another source of variability in the tacrolimus pharmacokinetics is the 

administration of grapefruit juice. A prospective study performed in 120 liver transplant 

recipients by Liu et al. demonstrated that co-administration of grapefruit juice increased 

the bioavailability of tacrolimus.150 In our study 0, 4, 5 and 3 patients were administered 

grapefruit juice (200 mL twice daily) in follow-up period I, II, III and IV, respectively. As 

described in section 1.8, grapefruit juice inhibits CYP3A5, and is used to increase the oral 

bioavailability of tacrolimus, hence the concentration/dose ratio. This will affect both the 

AUC0-12h and dose/body weight adjusted AUC0-12h observed in this study.  

 

Mycophenolic acid 

The medians of MPA AUC0-12h and C0 were stabile in the four follow-up periods, ranging 

from 21.9 mg*h/L to 27.8 mg*h/L and 1.2 mg/L to 1.6 mg/L, respectively. Medians of 

dose/BW-adjusted AUC0-12h and C0 were in the range 1.83-2.25 mg*h/L/(mg/kg) and 

0.094-0.116 mg/L/(mg/kg). The recommended target range of MPA AUC0–12h is suggested 

to be 30-60 mg*h/L in renal transplant recipients.120 According to this target range, 

although this study presents data from liver transplant recipients, 67%, 69%, 53% and 60% 

of the patients fell below the lower limit of the suggested target in period I, II, III and IV, 

respectively. The AUC0-12h was in the range 8.6-57.4 mg*h/L, with median in each period 

ranging from 21.9 to 27.8 mg*h/L. 

The pre-dose IMPDH activity (A0) showed high inter-individual variability, 

ranging from 2.2 to 41.2 pmol/106cells/min between individuals, with medians of 12.7, 

10.1, 11.4 and 6.4 pmol/106cells/min in period I, II, III and IV, respectively. Median 

minimum IMPDH activity (Amin) in the study population was between 2.3 and 2.9 

pmol/106cells/min (range 0.0-12.1) in the four follow-up periods. The median IMPDH 

inhibition spanned 63% and 77% (range 10-100%) in the four periods. The median pre-

transplant IMPDH activity was 14.9 pmol/106cells/min (range 9.4-40.6). Three of the 

patients showed a maximum IMPDH activity 4-fold higher within the dosing interval than 

the pre-dose concentration. One of these patients was heterozygous for the IMPDH1 SNPs 

rs227893 and rs2278294 and the IMPDH2 variant rs11706052, while one was 

homozygous for both IMPDH1 variants. The third patient was heterozygous for rs227893 

and rs11706052. These findings might indicate a potential for increasing the 

immunosuppressive effect of MPA by higher dosing, under monitoring of IMPDH activity, 
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in selected patients. Alternatively, in patients with low degree of IMPDH inhibition, other 

immunosuppressive drugs might be considered to achieve adequate immunosuppression. 

For MPA the median AUC0–12h was comparable between the non-rejection group 

(median 25.6 mg*h/L, period I-IV pooled) and the rejection group (median 24.2 mg*h/L). 

There was a trend towards a lower degree of IMPDH inhibition in the rejection group 

(median IMPDH inhibition 64.0%, period I-IV pooled) compared to the non-rejection 

group (median IMPDH inhibition 73.0%). 

Although the median MPA exposure and pre-dose concentrations were stable 

during the four periods, considerable variability was observed between the patients. This 

inter-individual variability in MPA pharmacokinetics was consistent with findings in other 

studies.151-155 In the study performed by Jain et al. in eight liver transplant recipients, the 

median MPA AUC0-12h of 32.3 mg*h/L (range 7.3-102) was reported in the first month 

post-transplant.153 Brunet et al. found that the MPA exposure was relatively low in 15 liver 

transplant recipients during the first month after transplantation.151 They further 

demonstrated variable exposure of MPA, with median AUC0-12h of 17.4 mg*h/L (day 6 

post-transplant, range 13.2-39.7), 16.3 mg*h/L (day 10, range 8.4-51.3), 26.3 mg*h/L (day 

16, range 13.1-45.8) and 33.6 mg*h/L (month 3, range 15.1-54.6). The proportion of 

patients below the target range (30-60 mg*h/L) of AUC0-12h was 85%, 92%, 64% and 30% 

at day 6, 10, 16 and month 3, respectively. Pisupati et al. observed large pharmacokinetic 

variability in ten patients at three time points during the first six weeks post-transplant, 

with MPA AUC0-12h (mean± SD) of 50.8±42.1 mg*h/L (≤ 1week), 60.3±38.5 mg*h/L (> 1 

week and ≤ 2 weeks) and 118.0±57.6 mg*h/L (≥ 1 week and ≤ 6 weeks).154 The MPA 

exposure described by Pisupati et al. was generally higher than reported by Jain, Brunet 

and in our study, where the mean AUC0-12h was within and above the recommended target 

area. However, a large proportion of the liver transplant patients were reported to reach 

sub-therapeutic levels of MPA short-term after transplantation.  

There are several possible explanations for the observed low MPA exposure in the 

early phase after liver transplantation. The absorption might be reduced in the early post-

operative phase. Anaesthesia and surgical trauma can cause impairment of gastric motility 

and the absorption of orally administered drugs.156,157 A second explanation might be an 

increased clearance short-term after transplantation. An earlier study found that the oral 

bioavailability of MPA in the immediate phase after liver transplantation was less than 

50%, and that an increase in pre-dose concentration and exposure was associated with 

increasing plasma albumin concentration.158 These findings were consistent with the 
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findings of our study, (see section 4.2 for biochemical data). MPA is highly bound to 

albumin and is a low clearance drug. Thus the clearance of MPA will be affected by the 

degree of protein binding and plasma albumin levels. Benichou et al. report that the 

variability in free MPA exposure was much higher than that of total MPA exposure in the 

immediate phase after liver transplantation.159 An increased risk of leukopenia has been 

reported for total MPA AUC0-12h above 40 mg*h/L within 2 weeks after liver 

transplantation.152 Although the MPA exposure was in the recommended target range, this 

does not necessarily reflect the free concentration. Hence patients with impaired hepatic or 

renal function, liver transplant recipients or patients with hypoalbumineamia might benefit 

from free drug measurement.  

As described in section 1.6, the UGT1A9 sequence variants -275T>A and -

2152C>T cause higher UGT1A9 expression and increased MPA glucuronidation, resulting 

in a lower MPA exposure. In the study population decribed in this paper one patient was 

heterozygous for both -275T>A and -2152C>T, the rest carried the wild-type alleles. For 

the sequence variants -440C>T and -331T>C seven patients were heterozygous and one 

homozygous for both. In this small group of recipients there were no significant 

associations between UGT variants and the variability in AUC0–12h and C0. In another, 

larger study of renal transplant recipients, carriers of -275T>A and/or -2152C>T variants 

had lower MPA AUC0-12h.89 As for the CYP3A5 genotyping in liver transplant recipients, 

the liver specific expression makes the interpretation of UGT variants difficult, hence both 

donor and recipient must be genotyped. Moreover, the UGT1A9 variants -275T>A 

and -2152C>T increase the MPA glucuronidation, while the –440C>T and –331T>C 

variants decrease it. Measurement of the metabolite MPAG might help describing the 

overall effect of UGT1A9 sequence variants. 

 A close, inverse association between MPA plasma concentration and IMPDH 

activity after oral MMF administration has been demonstrated.108,160-163 Glander et al. 

demonstrated large variability in pre-transplant IMPDH activity between individuals, and a 

poor correlation between pre-dose MPA concentration and IMPDH activity.108 As 

described in section 1.6, IMPDH variants are associated with episodes of acute rejection 

and the presence of an IMPDH2 3757T>C allele is associated with increased IMPDH 

activity in renal transplant recipients.105-107 Bremer et al. demonstrated that the IMPDH 

expression in lymphocytes increased early after transplantation, and that increased 

IMPDH2 expression is associated with acute rejection in renal transplant recipients. 103 

High pre-transplant IMPDH activity is also associated with rejection. 108 In liver transplant 
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recipients, patients with MPA-related side effects tended to have a higher level of 

IMPDH2 expression.164 

 

Individualizing mycophenolic acid therapy 

In our study material, the tacrolimus exposure is generally low in the first study period. 

The low exposure is followed by an increase in tacrolimus dosing in order to reach target 

concentrations. As described in section 1.8 the initial low tacrolimus concentrations might 

reflect the clinical management of renal function in the early post-operative period (period 

I and II). This relatively low dosing of tacrolimus immediately after transplantation is in a 

period where the risk of acute rejection is the greatest. Maintaining adequate 

immunosuppression in this period is crucial to avoid rejection episodes. The efficacy of 

MPA (i.e. IMPDH inhibition) might be of great importance in this period. In order to 

ensure adequate immunosuppression in the early-phase after transplantation, PD-

monitoring of MPA in combination with PK monitoring of tacrolimus and MPA might be 

valuable. Several complications and serious adverse effects have been described for 

calcineurin inhibitors (CNI), where nephrotoxicity is of big concern.165 As mycophenolic 

acid is not associated with impairment in renal function, the combination of reduced CNI 

dosing and concentration controlled MPA dosing is an attractive approach. Assisted by 

therapeutic drug monitoring, an increased dosing of MPA could provide a more adequate 

immunosuppression in selected patients in the early post-operative phase. As a result, a 

more moderate dosing of calcineurin inhibitors (e.g. tacrolimus) might be considered to 

avoid CNI-induced nephrotoxicity. The Opticept® trial revealed that the combination of 

low-dose CNI and concentration-controlled dosing of MMF was not inferior to fixed MMF 

and standard tacrolimus dosing in renal transplant recipients, with treatment failure as the 

end point.166  

 Pharmacodynamic (PD) monitoring and pharmacogenetics, might in a combination 

with more conventional pharmacokinetic (PK) monitoring describe the overall MPA 

response better than PK monitoring alone. To allow reductions of CNI and steroid dosing, 

PD monitoring may enable a closer follow-up of the patients, while ensuring adequate 

immunosuppression. However, there are some limitations in the pharmacodynamic 

monitoring approach. The most suitable marker (e.g. pre-dose or minimum IMPDH 

activity, degree of inhibition) for MPA efficacy must be further elucidated. A therapeutic 

range of IMPDH activity must be established. Furthermore, the time point after MPA dose 

for sampling must be decided. In our study, the time for maximum IMPDH inhibition 
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(Tmin) ranged from 0.5 to 10 hours between individuals (medians between 1.0 and 2.0 

hours in the four periods), so finding the appropriate sampling time point is challenging. 

The matrix for measuring the IMPDH activity must be standardized (e.g. whole blood, 

mononuclear cells or CD4+ cells). Available assays for quantification of IMPDH activity 

is quite time consuming and laborious, which limits the implementation of PD monitoring 

in the daily routine. Even though using IMPDH activity as a biomarker for the 

pharmacological effect of MPA is promising, further investigation is needed to ensure its 

validity. Larger, prospective studies addressing the PK-PD relationship must be performed. 
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Conclusion of thesis 
Given the role of the liver in the pharmacokinetics of drugs and all the potential factors 

leading to individual variability in immunosuppressive therapy, the present thesis aimed to 

describe the pharmacokinetics of glucocorticoids, tacrolimus and mycophenolic acid in the 

first weeks after liver transplantation. Furthermore, the pharmacodynamics of 

mycophenolic acid was investigated in addition to relevant genetic analyses. 

An LC-MS/MS method was developed for quantification of prednisolone, 

prednisone, cortisol, cortisone, methylprednisolone and dexamethasone in human plasma, 

which is applicable for pharmacokinetic studies. The assay was validated and was in 

accordance with the bioanalytical guidelines from U.S. Food and Drug Administration 

(FDA). In addition, matrix effects were validated qualitatively and quantitatively, and were 

satisfactory.  

Large intra- and inter-individual variability was observed in the pharmacokinetics 

of prednisolone and prednisone in adult liver transplant recipients. Dose per body weight 

adjusted exposure of prednisolone increased significantly during the follow-up periods. A 

significant decrease in apparent clearance (CL/F) combined with a reduction in the 

apparent volume of distribution (VD/F) indicate that the bioavailability (F) increased with 

time after transplantation. The ratio between pharmacologically active prednisolone and 

inactive prednisone were generally stable throughout the study periods, but one patient had 

markedly elevated ratios in all periods, compared to the population medians. In patients 

receiving methylprednisolone intravenously, the prednisone concentrations in plasma 

decreased with a subsequent increase in this ratio. The mechanism behind this finding (e.g. 

sequence variants in HSD11B1 and HSD11B2) contributing to this elevated ratio should be 

further investigated. 

In parallel to the findings for prednisolone and prednisone, the intra- and inter-

individual variability of tacrolimus pharmacokinetics was large in the same study 

population. The tacrolimus exposure was relative low the first week after transplantation, 

with significant increases in dose per bodyweight adjusted AUC0-12h from period I to the 

following periods. In order to attain the target C0-concentrations the median tacrolimus 

dose was doubled from period I to period III-IV. 
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A trend towards a lower degree of IMPDH inhibition was observed in the patient with 

episodes of acute rejection, compared to the patients without rejection episodes. More than 

50% of the patients fell below the suggested target range for MPA exposure (30-60 

mg*h/L) in all four follow-up periods, suggesting that the initial dose might be too low the 

first days post-transplant in some of the patients. Pharmacodynamic monitoring of MPA, 

by measuring IMPDH activity, may assist in identifying patients with a suboptimal effect 

of MPA. 

The overall conclusion of this thesis is that in the adult liver transplant population, 

short-term after transplantation, the intra- and inter-individual variability in the 

pharmacokinetics of immunosuppressive drugs is large. As a consequence, a significant 

proportion of patients may be at sub-therapeutic immunosuppression in a period when the 

risk of acute rejection episodes is highest. The factors responsible for this variability must 

be further addressed and taken into account in order to further individualize the dosing of 

these immunosuppressive drugs. 
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Future perspectives 
To add further knowledge to individualization of glucocorticoid therapy, future 

investigations should include studies in other populations (i.e. other patients and healthy 

volunteers). Studies investigating the glucocorticoid pharmacokinetics in healthy 

volunteers and in children with acute lymphatic leukaemia and in paediatric transplanted 

recipients have been initiated by our group. Further research is needed to determine if there 

is a rationale for therapeutic drug monitoring of glucocorticoids. A possible association 

between the prednisolone/prednisone ratio and risk of adverse effects should be 

investigated, whether the ratio can predict the risk of glucocorticoid related side effects or 

not. Future studies must address the relationship between appropriately timed 

concentration measurements, and the effects of glucocorticoid treatment of organ 

transplant recipients. Rejection, graft loss, patient survival and adverse effects should be 

addressed as end-points in such a prospective study, due to the serious side effect profile of 

glucocorticoids. Measuring the unbound concentrations of glucocorticoids should be 

explored, due to the dose-dependent non-linear protein binding in plasma, which affects 

the biological active fraction available. With regards to the pre-receptor metabolism of 

glucocorticoids, sequence variants of 11β-HSD should be determined to see whether there 

is an association between these variants and the pharmacokinetics. The future of 

pharmacodynamic monitoring of mycophenolic acid relies on larger prospective studies to 

find monitoring strategies with regards to suitable time points for sampling, sampling 

material and therapeutic ranges for IMPDH activity. To further investigate the effect of the 

UGT1A9 sequence variants on MPA pharmacokinetics, quantification of the metabolite 

MPAG should be performed. 
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