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1. Introduction 

1.1 Introduction to placenta 

The placenta is a highly specialized organ with a limited life span. It is unique to 

mammals, and in concert with fetal membranes and amniotic fluid it supports the 

normal growth and development of the fetus (1). Placenta is quite remarkable as it 

performs multiple functions, which in the adult are associated with several individual 

organs. The transfer of respiratory gases and nutrients between mother and fetus are 

functions analoguous to those of the lung and intestine respectively, while the 

handling and transport of fetal waste products is analogue to the kidney. Substances 

transported to the fetus include amino acids, carbohydrates, lipids, vitamins, minerals, 

water and oxygen. Reverse transport of metabolic waste products to the maternal 

circulation include carbon dioxide and urea (reviewed in (2)). In addition it is an 

important endocrine gland, which biosynthesis hormones that are essential to the 

maintenance of pregnancy (3). These placental functions serve as substitutes for the 

developing fetal organs until they are mature enough to fulfil the functions on their 

own. Other placental functions include energy metabolism to support placental needs, 

metabolic modifications of maternal nutrients destined for the fetus, maintenance of 

an immunological barrier, transfer of heat, and detoxification of xenobiotics.  

 

There are large species variations in placental architecture. Histologically humans 

and rodents have a placenta where the maternal blood comes into direct contact with 

the trophoblast cells. Still the human placenta differs from that of rodents in that only 

a single layer of trophoblast cells separate the fetal endothelial cells from direct 

contact with the maternal blood. At term, the average normal human placenta is ~22 

cm in diameter, 2-2.5 cm thick and with a weight of ~500 grams (Figure 1).  
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Figure 1: Human third trimester placenta; seen from the fetal side including the umbilical 
cord. From www.wikipedia.org 

1.1.1 Development of the placenta 

The fertilized egg develops into a blastocyst with an inner cell mass that becomes the 

fetus. The outer layer of cells consist of trophoblast cells. They invade the uterine 

wall (endometrium) in a highly regulated process and have a crucial role both in 

implantation and placentation (Figure 2, (1)). They develop into the placenta (which 

is fetally derived) and the fetal membranes (Figure 2). Failure to control the invasion 

of the trophoblasts results in a very aggressive cancer, named choriocarcinoma (4). 

The maternal part of the placenta, the decidua basalis, is the term for the uterine 

lining during pregnancy that is developed from the endometrium (Figure 3, (5)). The 

trophoblasts from the outer layer of the blastocyst eventually differentiate into either 

villous or extravillous trophoblasts. The extravillous trophoblasts invade the decidua 

and remodel the uterine spinal arteries to accommodate the increased blood flow 
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needed during gestation. Insufficient trophoblast invasion with altered remodeling of 

the spiral arteries is a common feature of preeclampsia (6).  

 

 

 

 

 

 

 

 

 

Figure 2: Implantation of the blastocyst. The trophoblast outer layer of the blastocyst forms 
an attachment with the endometrium about 6 days after fertilization in humans.  

 

The villous trophoblasts consist of two cell populations, the cyto- and the 

syncytiotrophoblasts. The cytotrophoblasts proliferate, differentiate and subsequently 

fuse to multinuclear syncytiotrophoblasts (Figure 3). The finger-like chorionic villi 

are the functional units of the placenta and are surrounded by maternal blood in the 

intervillous space provided by the transformed uterine spiral arteries (Figure 3). The 

villi bring the maternal and fetal side in close proximity, and are constructed to give 

maximal area of contact between the fetal and maternal blood for efficient feto-

maternal exchange (Figure 3). In the beginning of pregnancy, the villi consist of both 

a cyto- and a syncytiotrophoblast layer, but the cytotrophoblasts gradually disappear 

throughout gestation (reviewed in (1;2)). Despite having a key role in active 
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transport, hormone biosynthesis and metabolic regulation, the syncytiotrophoblasts 

have been thought to be transcriptionally inactive. Very recently this hypothesis was 

challenged by the finding of nucleoside incorporation and histone modifications 

associated with active chromatin and potential transcriptional activity in these cells 

(7). 

  

 

 

 

 

 

 

 

 

Figure 3: The villous structure of placenta. The villi, the functional units of the placenta are 
surrounded by maternal blood from the transformed spiral arteries of the uterine wall. The 
villi consist of an outer layer of syncytiotrophoblasts and an inner layer of cytotrophoblasts. 
Modified from www.wikipedia.com 
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hormone, as well as a number of growth factors, cytokines, chemokines, eicosanoids 

and many others (reviewed in (2)). The two main steroid hormones biosynthesized in 

placenta are estrogen and progesterone, while hCG and hPL are two of the main 

peptide/protein hormones biosynthesized by the placenta (1).  

hCG is a glycoprotein composed of two subunits (� and �) non-covalently joined 

together (8;9). It is produced by the syncytiotrophoblasts mainly in early pregnancy 

with peak plasma levels at about 8 weeks of gestation, and secreted into mainly the 

maternal circulation (10). It promotes the corpus luteum progesterone production 

until the placenta develops sufficient production of progesterone to maintain 

pregnancy (10). hCG increases cytotrophoblast differentiation and placental 

angiogenesis, functions that are critical for efficient placentation in humans (11-13).  

1.1.3 Maternal and fetal lipid changes in healthy pregnancies 

Pregnancy is a metabolically dynamic situation that can be divided into two 

metabolically different periods, an anabolic period in early and mid pregnancy 

followed by a catabolic period at the end of pregnancy. During the anabolic period 

there is limited fetal growth and maternal hyperphagia which promote the 

accumulation of maternal body fat (14;15). The catabolic period is simultaneous with 

the period of maximal fetal growth, when most of the fat deposition in the fetus 

occurs (Figure 4). At this stage there is an increased maternal adipose tissue lipolysis 

and increased circulating free fatty acids (FFAs, Figure 4 (15;16)). This is thought to 

be secondary to the development of insulin resistance (17), which is a normal feature 

of a healthy pregnancy (reviewed in (18)). Much of the FFA are taken up by the liver, 

activated to acyl-Coenzyme A (CoA) and re-esterified to triglycerides (TAGs, Figure 

4). These TAGs are further released into the circulation as part of very low-density 

lipoproteins (VLDL, Figure 4). As a result, there is an approximately 3-fold increase 

in circulating TAGs during late gestation (19). The circulating TAGs are also partly 

increased due to inhibition of adipose tissue lipoprotein lipase (LPL) as a result of 

insulin resistance and elevated estrogen concentrations (20). A positive correlation 
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between maternal TAG and newborn weight is reported (21). Circulating maternal 

total cholesterol is increased by 50% in late pregnancy, and is present mostly in low 

density lipoproteins (LDL) (19). A small increase in phospholipids is also observed 

(22). 6-10 weeks after delivery the gestational hyperlipidemia is essentially 

completely reversed to pre-pregnant levels (19). 

Figure 4: Maternal circulating lipid changes at the end of pregnancy. Modified from 
www.wikipedia.org 

1.1.4 Placental �-oxidation, fatty acids and TAG biosynthesis 

De novo fatty acid biosynthesis is the metabolic pathway converting dietary 

carbohydrates to fatty acids for incorporation into various macromolecules, including 

membrane lipids and lipid storage in lipid droplets. Acetyl-CoA carboxylase � (ACC) 

and fatty acid synthase (FAS) are the principal enzymes required for de novo fatty 

acid biosynthesis (23;24). FAS is a large multifunctional enzyme complex, which 

converts acetyl-CoA and malonyl-CoA to fatty acids. ACC produces malonyl CoA, 

which is substrate for FAS. De novo fatty acid synthesis occurs primarily in the liver, 

with some activity in adipose tissue. These hepatic fatty acids are further exported as 
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VLDL to other organs through the circulation. In addition to the synthesis in liver and 

adipose tissue, endogenous fatty acid synthesis is observed in rapidly proliferating 

tissues such as the human placenta. Although little information is available on 

placenta de novo fatty acid synthesis, this information suggests that placenta has a 

high de novo fatty acid capacity. It has been reported that human placental fatty acid 

synthesis is more then 100-fold greater than that observed in cultured rat hepatocytes 

(25;26). These fatty acids can be further activated to acyl-CoA and thereafter 

esterified and stored as TAG in placenta. Both TAG synthesis and lipid droplets are 

reported in placental trophoblast cells (27;28). The fatty acids may also be 

transported directly to the fetus. Alternatively, the fatty acids may be used as energy 

for the placenta itself since high capacity for placental �-oxidation is reported (29-

31). The importance of a functional �-oxidation in fetal tissues is evident as fetal fatty 

acid oxidation (FAO) defects are potentially causes of maternal and fetal morbidity 

and mortality (32;33). Because the placenta is of fetal origin, the FAO defects are 

also present in the placenta. FAO defects of the fetus/placenta have recently been 

associated with hemolysis, elevated liver enzymes, and low platelet count (HELLP) 

syndrome, placental floor infarct and acute fatty liver of pregnancy (32;33). Several 

reports suggest that not only the fetus, but maybe rather the placenta may be involved 

in these maternal toxic effects of FAO defects. However, more research is needed for 

a definite clinical conclusion (30;34;35).  

1.1.5 Transport of lipids across the placenta 

The transport of a molecule from the maternal to the fetal circulation includes 

traversing the syncytiotrophoblast cell layer, connective tissue, and the fetal capillary 

endothelium. Every one of these layers can contribute to the transport properties of 

the placenta. In addition, the placenta is not merely a transport organ; placental 

metabolism itself also contributes to the net transfer of nutrients to the fetal side.  

Materno-fetal nutrient transfer across the placenta may proceed by different 

mechanisms, including facilitated diffusion, simple diffusion and active transport (2). 
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The proportion of transport across the placenta varies with the period of gestation and 

nutritional status of the mother.  

Most maternal fatty acids are transported as TAG in TAG-rich lipoprotein particles, 

Therefore these lipoproteins are important sources of fetal fatty acids and need to be 

transported to the fetus (36). TAG cannot directly cross the placental barrier. Thus, in 

order to accomplish this transport, an elaborate placental transport system has been 

developed. It includes LDL receptor (LDLR) and VLDL/apoprotein E receptors, 

placental LPL, placental phospholipase A2 and intracellular placental lipases (36-43). 

Alteration in placental LPL activity, and placental protein levels of LDLR and 

scavenger receptor (SR)-B1 were associated with intrauterine growth restriction 

(IUGR) (44-47). These alterations suggest a clinical importance of placental lipid 

transport for fetal growth.  

FFA and glycerol can cross the placental membrane by either diffusion or fatty acid 

binding/transport proteins. These proteins are involved in regulating the direction and 

amount of net flux of fatty acids across the placenta. CD36/fatty acid transporter is 

one such fatty acid transporter. It is a multifunctional transmembrane glycoprotein 

that is involved in long chain fatty acid uptake and is expressed in human primary 

trophoblast cells (48;49). Interestingly it also function as a class B scavenger receptor 

for oxidized LDL (oxLDL, (48;50-52)). 

1.1.6 Transport of cholesterol to the fetus 

Cholesterol is an important structural component of cellular membranes. It is also the 

precursor of steroid hormones, synthesized by the syncytiotrophoblasts. Maternal 

hypercholesterolemia correlate to the fatty streak formation in the fetal aorta (53), 

indicating the existence of materno-fetal cholesterol transfer. The ATP-binding 

cassette (ABC) cholesterol transporter proteins ABCA1 and ABCG1 are probably 

important for this trans-placental transport. Stefulj et al (54) recently demonstrated 

that inhibition of ATP-binding cassette (ABC) A1 and silencing of ABCG1 resulted 
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in approximately 60 to 70% reduction in cholesterol efflux from placental third 

trimester endothelial cells. Interestingly, both transporters were predominantly 

located in the apical membrane of placental endothelial cells. Both the SR-B1 and the 

oxLDL (lectin-like) receptor 1 and the lipoprotein receptor LDLR are also present in 

the placenta and could potentially contribute to the transfer of cholesterol from the 

maternal to the fetal side (55-57). Even if recent publications indicate a number of 

proteins involved in transport of cholesterol across the placenta, more studies are 

needed to clarify if placental cholesterol transfer is required to support the fetal needs 

and placental growth and biosynthesis of steroid hormones. 

1.1.7 Placental transfer and fetal needs for long chain 
polyunsaturated fatty acids 

Long chain polyunsaturated fatty acids (LCPUFA)s are of critical importance for the 

development of the fetus. Data from large cohort studies and randomized controlled 

trials highlight the importance of adequate amount of n-3 LCPUFAs for optimal 

cognitive and visual development and reducing the risk of preterm delivery (58-63). 

Docosahexaenoic acid (DHA, 22:6, n-3) is selectively accumulated in the retina and 

brain during development (64;65). Arachidonic acid (ARA, 20:4, n-6) serves as a 

precursor of bioactive eicosanoids and is reported to be associated with infant birth 

weight and preterm infant growth (66;67).  

The human body cannot introduce double bonds distal to the ninth carbon from the 

methyl end (�- or n-end) of fatty acids. Thus, n-3 and n-6 poly unsaturated fatty acids 

(PUFA)s are essential fatty acids that must be obtained from the diet, either as 

linoleic acid (LA, 18:2 n-6) and �-linolenic acid (ALA, 18:3 n-3), or their LCPUFA 

derivatives; ARA, eicosapentaenoic acid (EPA, 20:5, n-3) and DHA. If obtained as 

LA and ALA in the diet, the fatty acids must be elongated and desaturated to provide 

the biologically active LCPUFAs (Figure 5). Basal expression of delta 5 and delta 6 

desaturase and elongase has been detected both in placenta and fetal liver (68-70). 

However, their enzyme activities are low. Studies in baboons show that DHA from 
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the maternal diet is much more efficient than ALA as a source for fetal DHA 

accretion (71;72). Furthermore, supplementation of pregnant women with ALA does 

not result in higher umbilical cord blood levels of DHA (73). Taken together, the 

high needs of fetal LCPUFAs are difficult to meet by metabolism of their precursor 

PUFAs alone. Therefore, dietary intake of LCPUFAs and subsequent transport by the 

placenta to the fetus is important for optimal fetal development. 

 

 

 

 

 

 

 

 

Figure 5: LA and ALA elongation and desaturation to ARA and DHA respectively in 
placenta. Picture modified from www.wikipedia.org 
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fetus during pregnancy. It represents an important mechanism to secure a sufficient 

supply of these critically important fatty acids to meet the increasing fetal demands. 

The transport of PUFAs across the placenta is selective in the order of preference, 

DHA > ARA > ALA > LA (76;77). Recently, the sophisticated use of 13C-DHA 
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demonstrated in vivo the preferred human placental transfer of DHA relative to LA, 

oleic acid (OA) and palmitic acid (78).  

1.1.8 Preferential uptake of LCPUFAs in placenta  

It has been reported that fatty acids can flip flop across membranes, but protein-

mediated transport is essential for the preferential transport of LCPUFAs (79). 

Placental transfer of LCPUFAs is probably a multi-step process involving both 

uptake and intracellular translocation. It is facilitated by several placental fatty acid 

uptake proteins, including CD36, fatty acid transport proteins (FATPs), fatty acid 

binding proteins (FABPs) and plasma membrane fatty acid binding protein 

(FABPpm) (Figure 6, reviewed in (80)). FABPpm is a peripheral membrane protein 

which, by binding to and increasing the concentration of fatty acids extracellulary, 

could contribute to placental transfer of fatty acids (81). The placenta-specific 

FABPpm (pFABPpm) resembles the ubiquitously expressed FABPpm, but is located 

exclusively on the maternal facing syncytiotrophoblast membranes and is involved in 

the preferential uptake of LCPUFAs in the placenta (Figure 6 (77;82;83)). FATP1 to 

4 and FATP6 are fatty acid transporters reported to be expressed in primary human 

term trophoblasts (84). The expression of particularly FATP1 and FATP4 could also 

be important for the materno-placental transport of LCPUFAs, as their placental 

expression were positively correlated to DHA levels in the placental phospholipid 

fraction (85). Once taken up by the cell, the fatty acids can be transported in the 

cytosol by FABPs. FABP1, 3, 4 and 5 are expressed in primary human trophoblast 

cells, and they are able to bind long chain fatty acids (48;86;87). Fatty acids can also 

be activated to acyl-CoA by acyl-co A synthetases and the activated protein can 

further be transported in the cytosol bound to acyl-CoA binding protein (ACBP, 

reviewed in (88-90). Several proteins containing acyl-CoA synthetase activity and 

ACBP are detected in placenta but further studies are needed to clarify their roles in 

placenta (84;91;92).  
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Figure 6: Proteins involved in lipid transport in placental trophoblast cells (modified from 
AK Duttaroy (80)) 

1.2 Preeclampsia 

1.2.1 Introduction to preeclampsia 

Preeclampsia is a pregnancy-specific syndrome, defined clinically as de novo 

hypertension and proteinuria occurring after 20 weeks of gestation. In Norway it 

affects 3.7% of all pregnancies, and is a leading cause of maternal death (93;94). 
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and increased risk of fetal morbidity and mortality (96).  
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1) "Blood pressure at 140 mm Hg systolic or higher or 90 mm Hg diastolic or higher 

that occurs after 20 weeks of gestation in a woman with previously normal blood 

pressure". 

 2) "Proteinuria, defined as urinary excretion of 0.3g protein or higher in a 24 hour 

urine specimen (or protein dipstick reading equal to or higher than 1+ on more than 

one midstream urine sample six hours apart)". 

When pre-existing hypertension is present in the women, preeclampsia is defined as 

superimposed on the chronic hypertension. Eclampsia is an end stage of the disease 

involving the occurrence of seizures in a preeclamptic woman, where the seizures 

cannot be attributed to other causes. The HELLP syndrome is a variant of 

preeclampsia (98). 

Preeclampsia is unpredictable in its onset, progression and severity. It is sometimes 

divided into severe, early onset preeclampsia occurring prior to week 34 of gestation, 

and a mild, late onset preeclampsia occurring at or after 34 weeks of gestation 

(99;100).  

Despite decades of research on the etiology and mechanism of preeclampsia, the 

pathogenesis is not fully understood, but increasing evidence support the concept that 

it is a multifactorial syndrome involving both the mother and the fetus. The 

pathogenesis is generally recognized to include an abnormal placental implantation 

and endothelial dysfunction resulting from oxidative stress and excessive 

inflammatory response, but numerous other factors are also suggested to be involved 

(reviewed in (6;101) ). Several lines of evidence point to a key role of the placenta in 

the aetiology of the disease as delivery resolves the syndrome, it occurs without the 

presence of a fetus (in molar pregnancies) and the risk of preeclampsia is increased 

by greater placental mass (102). 
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1.2.2 Hyperlipidemia in preeclampsia 

Hyperlipidemia of pregnancy develops in every pregnant woman, but is significantly 

increased in women with preeclampsia relative to healthy pregnancies. The lipid 

abnormalities of preeclampsia include hypertriglyceridemia, increased circulating 

FFAs, reduced high density lipoproteins (HDL) and increased concentrations of small 

LDL which leads to the presence of oxLDL in maternal circulation (103-108), while 

total and LDL cholesterol levels are not substantially different (104;105). This 

exaggerated lipid adaptation of preeclamptic pregnancy is strikingly similar to 

abnormalities associated with cardiovascular disease (109-112). Indeed, preeclampsia 

is related to an increased risk of developing cardiovascular disease later in life 

(systematically reviewed in (113)). The two disease entities also have several risk 

factors in common including obesity, diabetes mellitus, insulin resistance and lipid 

abnormalities (111;114). Both cardiovascular disease and preeclampsia include 

presence of endothelial dysfunction, partly due to increased lipid peroxidation. 

“Acute atherosis” of the decidual/uterine spiral arteries in preeclampsia closely 

resembles the early stages of atherosclerotic lesions found in cardiovascular disease 

(115). In addition, recent research indicates increased risk of cardiovascular disease 

in the offspring of preeclamptic mothers, but whether this is attributed to genetic or 

epigenetic factors or only an adverse pro-atherogenic lipid profile in utero is not clear 

(reviewed in (116)).  

A rise in circulating TAG is also shown to be present prior to clinical onset of 

preeclampsia (117), as early as 10 weeks of gestation (118). There seems to be a 

dose-response effect, with a four-fold higher adjusted risk of developing 

preeclampsia in women with the highest circulating levels of TAG compared to 

normal TAG levels (108). Although hypertriglyceridemia may contribute to the 

development of preeclampsia, therapeutic intervention is probably not a good 

alternative, as severe correction of maternal hypertriglyceridemia in rodents has been 

shown to mediate negative effects on fetal growth and development (119). 
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1.3 Long chain acyl-CoA synthetases 

The activation of free fatty acids by the addition of a CoASH group is essential for 

the participation of fatty acids in most metabolic reactions, including �-oxidation, 

biosynthesis pathways and phospholipid remodelling. Acyl-CoA synthetases have 

been found in all organisms investigated, testifying to the evolutionary conservation 

and essential role of this activity (89). The activation is a two-step reaction where the 

first step is the biosynthesis of an acyl-AMP intermediate from fatty acid and ATP, 

and the second step is the exchange of AMP with CoASH to produce the activated 

acyl-CoA:  

Fatty acid + ATP + Mg2+ � Acyl-AMP + Mg2+ + PPi 

Acyl-AMP + CoASH � Acyl-CoA + AMP 

All proteins containing acyl-CoA synthetase activity have two conserved amino acid 

(aa) sequence domains: a 10 aa, highly conserved AMP-binding domain and a 35 aa 

domain originally proposed to be important for fatty acid-binding properties 

(120;121). Later it has been found that the fatty acid binding is located between these 

two domains (122). 

The family of acyl-CoA synthetases can be divided into five sub-families based on 

fatty acid chain length preference; acyl-CoA synthetase short-chain (C2 to C4), 

medium chain (C4 to C12), long chain (ACSL, C12 to C20), bubblegum (ACSBG, 

C14 to C24) and very long chain (FATP, C18 to C26) (reviewed in (89;123)). Thus, 

there are three related families of proteins able to activate long chain fatty acids, 

ACSL, ACSBG and FATP (124-129).  

The ACSBG1 and ACSBG2 were only recently discovered and little information is 

available on their function (129;130). Both ACSBGs have acyl-CoA synthetase 

activity with preference for long chain fatty acids more than very long chain fatty 

acids, and expression restricted to brain, ovary and testis (128-131).  
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The FATPs are the most thoroughly investigated of the long chain and very long 

chain acyl-CoA synthetase families. Six members of the FATP family are known, 

FATP1 to FATP6, which differ in their tissue expression, subcellular localizations 

and substrate specificities (132-137). They are documented to have intrinsic acyl-

CoA synthetase activity and to increase uptake of fatty acids when overexpressed. 

Thus, it has been an ongoing controversy as to whether they are fatty acid 

transporters, acyl-CoA synthetases or both (reviewed in (90;138)). Studies on FATP4 

have debated whether plasma membrane location is necessary for cellular fatty acid 

uptake. Despite the exclusive localisation to endoplasmic reticulum, FATP4 over-

expression significantly increased the cellular uptake of fatty acids in one study, but 

not in another study (139;140). Mutated FATP4, containing a non-functional acyl-

CoA synthetase domain, did not increase the uptake of fatty acid when 

overexpressed, in contrast to wt FATP4, indicating that the acyl-CoA synthetase 

function could be necessary for the fatty acid uptake (140). Evidence for a role of 

acyl-CoA synthetase in uptake of fatty acids is supported by the fact that the acyl-

CoA synthetase inhibitor Triacsin C strongly reduces the fatty acid uptake (141). Co-

immunoprecipitation of ACSL1 and FATP1 in adipocytes further suggests that acyl-

CoA synthetase is important for fatty acid uptake (141). On the other hand murine 

FATPs transfected into FATP mutated yeast strains did not show correlation between 

acyl-CoA synthetase activity and long chain fatty acid uptake (142). Furthermore, 

FATP3 was found to have acyl-CoA synthetase activity without increasing fatty acid 

uptake (134). It appears that acyl-CoA synthetase in certain situations is necessary for 

fatty acid uptake, but is alone not sufficient to ensure fatty acid uptake. Thus, clearly 

more studies are needed for a definitive conclusion on the role of acyl-CoA 

synthetase activity on fatty acid uptake.  

Five genes in the ACSL family have been identified based on sequence homology 

(143;144). They are named ACSL1 and ACSL3 to 6 and differ in their tissue 

distribution, intracellular locations and regulation, suggesting distinct functions 

(143;145;146). The ACSL family can be further divided into two subfamilies where 
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the ACSL1, 5 and 6 constitute one subfamily and ACSL3 and 4 constitute another 

subfamily (143). Coleman et al have suggested that instead of being redundant, the 

different ACSLs channel fatty acids into distinct metabolic pathways (147). ACSL5 

was initially thought to be involved in �-oxidation (148), but has later also been 

shown to increase TAG biosynthesis in hepatoma cells (149). Overexpression studies 

reveal that ACSL6 in the brain is important for uptake and incorporation of DHA and 

ARA into phospholipids, but not TAG (150;151). Although increasing evidence 

supports the hypothesis, many questions regarding the "channelling hypothesis" still 

remain to be answered, including the subcellular localization of the different ACSLs 

in different cells and environments, which could be important for the channelling 

mechanism (89).  

Besides activation of fatty acids, a function similar to that reported on FATPs in the 

transport of fatty acids has been indicated for members of the ACSL family. 

Expression of mammalian ACSL1, ACSL4 and ACSL6 in yeast cells lacking native 

long-chain acyl-CoA activity leads to enhanced fatty acid uptake (146). 

Overexpression of ACSL5 and ACSL6 in rat hepatoma cells and neuronal cells 

respectively increased the uptake of fatty acids in these cells (149;150). The 

hypothesis is that FFAs cross the plasma membrane, where it is esterified to the acyl-

CoA product that is no longer lipid permeable and thus is trapped inside the cell. 

Interestingly, Lobo et al (152) recently showed that ACSL1 was involved in fatty 

acid efflux rather then uptake in an adipocyte cell line, opening the possibility for a 

novel role of the ACSLs. 

ACSL3 was cloned from rat brain in 1996 and in human placenta the year after. It 

was shown to have substrate preference in the order of myristic acid (14:0): ARA : 

EPA > OA >> DHA (92;124). The ACSL3 is highly expressed in prostate, skeletal 

muscle, testis, heart and placenta (153). It consist of 17 exons, spanning a domain of 

more than 80 kb (153). A difference in translation start gives rise to two different 

ACSL3 isoforms with similar cellular and tissue localization (154). ACSL3 is one of 

the most abundant proteins associated with lipid droplets in huh7 hepatocytes, but it 
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was also found in the endoplasmatic reticulum and plasma membrane fraction in 

these cells (155;156). ACSL3 was associated with the biosynthesis of neutral lipids in 

Huh7 cells in one study (156). In another study in 3T3-L1 adipocytes ACSL3 was 

detected on lipid droplets only during lipolysis (157). Hence, the role of ACSL3 in 

channelling fatty acids to anabolic compared to catabolic pathways needs more 

investigation. 

1.4 Nuclear Receptors 

It took the scientific world approximately 10 years from the human genome 

sequencing project was initiated until the entire human genome was sequenced, and it 

was found to consist of 20.000-25.000 protein coding genes (158). The same genetic 

material is present in almost all cells of the body, and the variability among cells and 

tissues depend on the regulation of these genes. The importance of an accurate 

transcriptional control is emphasized by the fact that almost 10% of all human genes 

are estimated to be transcription factors (159). Hence, transcription factors constitute 

the single largest family of human genes. The comprehension of this transcriptional 

regulation is fundamental for the molecular understanding of human biology in health 

and disease  

The Nuclear receptor (NR) superfamily is a diverse group of evolutionary related 

DNA binding transcription factors of which 48 are identified in humans (reviewed in 

(160)). Many of these NRs are ligand dependent transcription factors, but a 

significant number are still considered as orphan receptors, since no physiological 

relevant ligand has yet been identified (161;162). Their ligands are hydrophobic and 

small size, but except from these common features, they consist of a great variety of 

molecules. They include several fatty acids, cholesterol derivatives (steroid 

hormones, vitamin D, bile acids, oxysterols and other cholesterol metabolites), 

retinoids, thyroid hormone, prostaglandins, leukotriens, and xenobiotics (163). The 

ligand-dependent property permits NR to serve essential functions as communicators 
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between the intracellular or body environment and the genome. They play critical 

roles in a variety of biological processes including development, reproduction, 

homeostasis, inflammation, and metabolism, by altering target-gene expression 

(161;163;164).  

1.4.1 Subfamilies of the NRs 

The NRs can be divided into subfamilies in many different ways, based on properties 

such as phylogenetic analysis of sequence homology, ligand sources and 

physiological functions (160;165). A classical way of dividing the NRs is according 

to DNA-binding and dimerization properties, as presented in table 1 (162). This 

classification divides the NRs into four groups (Table 1). Class 1 receptors include 

the classical steroid hormone receptors, which bind to regulatory sequences on DNA 

as homodimers. Class 2 receptors are heterodimers with RXR and function in a 

ligand-dependent manner. Examples of these receptors include several NRs that are 

known to regulate lipid biosynthesis, flux, storage and utilization, of which some of 

the most important are the peroxisome proliferator-activated receptors (PPAR)s and 

the liver X receptor (LXR)s. The next two classes contain orphan nuclear receptors, 

which are so named because their ligands were unknown, at least at the time when the 

receptor was identified. Class 3 are orphan receptors, which function as homodimers, 

and class 4 are orphan receptors, which function as monomers.  

Recently the crystallization of the first full-length NR pair, PPAR� and RXR� was 

identified after many years of effort. It showed that the PPAR ligand binding domain 

(LBD) dominates the entire RXR molecule and seems to play the major role of the 

two (166). 
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Steroid Receptors  RXR heterodimers 
NR agonist  NR agonist 
GR glucocorticoid  LXR oxysterols 
MR mineralocorticoid  PPARa 
PR progesterone  PPARg 

fatty acids/ 
15d-delta12,14-PGJ2 

AR androgen  FXR bile acids 
ER estrogen  PXR/SXR xenobiotics 
   T3R tyroid hormone 
   RAR all-trans RA 
   VDR 1,25-(OH)2-VD 
   CAR androstane 
   EcR ecdysone 
     
Dimeric Orphan Receptors  Monomeric/Tethered Orphan Receptors 
RXR 9-cis RA  NGFI-B  
COUP   SF-1  
HNF-4   Rev-erb  
TR2   ROR  
TLX   ERR  
GCNF     
     
  

Table 1: The nuclear receptor superfamily. The table shows the subdivision of NRs into four 
classes according to their DNA-binding and dimerization properties (162). 

1.4.2 Structure of the NRs 

NRs share a characteristic structure that consists of five to six homologousdomains 

(Figure 7, reviewed in (160;163)). The amino-terminal domain (often referred to as 

the A/B domain or the modulator domain) does highly vary in sequence between 

different NRs. This domain is structurally flexible and contains surfaces for both 

activation and repression of gene transcription (reviewed in (167)). The A/B domain 

usually contains a transcriptional activation functional domain, termed activation 

function 1 (AF-1). The AF-1 domain may be involved in cofactor interaction, and it 

is the target of post-translational modifications (168). Next to the A/B domain is the 

C domain also called the DNA-binding domain (DBD). It is a highly conserved 

domain containing two zinc fingers, which bind to specific sequences of DNA called 

hormone response elements (HRE)s. These HREs consist of one or two consensus 

core half sites in the promoter or enhancer region of the target genes, but the exact 
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HRE nucleotide sequence in each target gene can differ considerably from the 

consensus sequence (169). The HRE of dimeric NRs are organized as direct (DR), 

inverted (IR) or everted repeats (ER) of a six-nucleotide half site DNA consensus 

sequence. The D region serves as a hinge between the DBD and the E domain, which 

is also called the ligand-binding domain (LBD) This flexibility permits the DBD and 

the LBD to adopt different conformations. The LBD is located in the carboxy-

terminaly part of the protein, which is the hallmark of NRs. Within this C-terminal 

domain is another AF domain, which is termed AF-2 (Figure 7, reviewed in (170)). 

The AF-2 is important for the NR LBD to activate gene transcription and it mediates 

ligand dependent transactivation and cofactor recruitment. 

 

 

 

 

 

Figure 7: The protein structure of NRs. The NRs share a characteristic structure that 
consists of five to six homologous domains. Modified from www.wikipedia.org 
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gene expression (reviewed in (171;172)). The coactivators are recruited upon NR 

ligand binding due to a conformational change in the LBD of the receptor. Most 
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the access to the DNA (172). Some unliganded nuclear receptors are bound to DNA 

in association with corepressors, repressing transcription of target genes. Examples of 

such corepressors are nuclear receptor corepressor (NCoR) and silencing mediator of 

retinoic acid (SMRT, (173)). Upon NR ligand binding, conformation changes in the 

NR LBD releases the corepressors in an active mechanism clearing the corepressors 

from the NRs and recruiting the coactivators.  

In addition to ligand and cofactor binding the NRs are reported to be modified in 

many other ways such as by; phosphorylation, glycosylation, methylation, 

acetylation, ubiquitinylation and small ubiquitin-like modifier (SUMO)ylation (172). 

1.4.4 RXRs and PPARs 

The RXRs consist of three members RXR�, � and � ((174-176)). They can form 

transcriptionally active homodimers on DR-1 elements, but are also the heterodimeric 

partner of many NRs (177;178). The RXR are activated by the endogenous agonist 9-

cis retinoic acid and several synthetic agonists (179-181).  

The PPARs consist of three distinct members, PPAR�, � and � (182-184). The array 

of genes regulated by each PPAR is divergent, and include genes involved in cellular 

differentiation, development and metabolism (185). The PPARs are important 

regulators of lipid metabolism. PPAR� and PPAR� predominantly enhance energy 

expenditure in metabolic tissues, and PPAR� promotes lipid storage (186). The 

PPARs heterodimerize with RXRs and preferentially bind to DR-1 elements. PPAR� 

and PPAR� are the molecular targets of a number of marketed drugs. Fibrates are 

PPAR� activators and used in humans as a class of hypolipidemic drugs (187). The 

thiazolidinediones are selective PPAR� agonists used in humans to increase insulin 

sensitivity (188). Fatty acids and eicosanoids have also been identified as natural 

ligands for the PPARs (186).  
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1.5 LXRs 

The LXRs were cloned in 1994-1995 (189-194). Subsequently until today, more than 

1200 publications have established a role for the LXRs in cholesterol homoeostasis, 

lipogenesis, glucose metabolism, atherosclerosis, diabetes, Alzheimer's disease, 

dermatitis, immunology, and inflammation (195-199). The LXR subfamily of NRs 

consists of two members; LXR� (NR1H3) and LXR� (NR1H2), which share 

considerable sequence homology and are activated by the same agonists (200). LXR� 

is ubiquitously expressed, whereas LXR� has a more restricted expression pattern 

predominantly in tissues known to be important in lipid metabolism 

(189;193;194;201).  

 

 

 

 

 

 

 

 

 

 

Figure 8: Binding of RXR/LXR heterodimer to LXRE with and without activators 
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Both LXRs form heterodimers with RXR, and the heterodimer bind to LXR 

responsive elements (LXREs) in the promoter of the target genes (202). The LXREs 

are classified as DR-4 elements because they consist of two direct repeat hexamers 

separated by four nucleotides (189;193). In the absence of ligands, the heterodimer 

functions as an inhibitor bound to the LXRE, together with corepressor complexes. 

Upon ligand binding, a conformational change of the protein complex induces the 

release of corepressors and the recruitment of coactivators resulting in transcription 

of the target genes (Figure 8 (203;204)).  

1.5.1 LXR ligands 

A major breakthrough in the understanding of LXR was the identification of 

oxysterols as endogenous LXR agonists (205;206). Oxysterols are oxidized 

derivatives of cholesterol and are present for example in oxLDL (207). Some of the 

most potent of these endogenous LXR activators are 22(R)-hydroxycholesterol, 

20(S)-hydroxycholesterol, 24(S), 25-epoxycholesterol, and 27-hydroxycholesterol 

(200;205;206). In addition LXR can be activated by non-steroidal synthetic agonists, 

of which T0901317 and GW3965 are the most commonly used (208;209).  

LXR activation by synthetic agonists leads to reverse cholesterol transport (returning 

of peripheral cholesterol to the liver) resulting in decreased atherosclerosis (210). 

Despite this promising effect by these agonists on atherosclerosis, the undesirable 

side effects of increased hepatic lipogenesis leading to liver steatosis and 

hypertriglyceridemia has made it unlikely that this first generation of LXR ligands 

will be used therapeutically (209). Still, these synthetic LXR agonists have been 

valuable tools for the identification and characterization of LXR target genes and the 

understanding of LXR regulated physiological processes. Along this line, there is an 

ongoing search for tissue selective agonists or agonists selective for only one of the 

LXRs (reviewed in (211)). An ideal agonist would have preserved the beneficial 

effects of inducing ABCA1 transporters in macrophages and liver, without the sterol 

regulatory element binding protein (SREBP)-1 regulatory effects leading to 
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hypertriglyceridemia and liver steatosis (212). Recently, the first human trial of an 

LXR agonist on healthy subjects was performed, but many side effects, mainly in the 

central nervous system were observed (213). 

In vivo studies with either LXR�-/- or LXR� -/- mice indicate a more prominent role of 

LXR� than LXR� in controlling hepatic lipogenesis. Hence, selective LXR� agonists 

are candidates for such beneficial effects and several LXR� agonists have been tested 

(214). Still, the question remains to be answered whether the activation of LXR� 

alone is sufficient to ameliorate the atherosclerosis process.  

In contrast to many oxysterol and synthetic LXR agonists that activate LXR, several 

compounds with antagonising properties have been reported, including PUFAs. 

These fatty acids inhibit LXR activation by competing with LXR agonist binding in 

the order of ARA > EPA > DHA > ALA, whereas saturated and monounsaturated 

fatty acids have very little effect on LXR activation in Human Embryonic Kidney 

293 cells (215).  

1.5.2 LXR in cholesterol homeostasis 

The LXRs were initially described as regulators of cholesterol metabolism through 

the identification of the first LXR target gene, cholesterol 7 alpha-hydroxylase, in 

rodent liver, which is the rate-limiting enzyme in conversion of cholesterol into bile 

acids (200). Later, numerous studies have established the LXRs as cholesterol sensors 

that regulate both cellular and systemic cholesterol homeostasis in a tissue-specific 

manner. In the liver, LXR regulates genes leading to increased biliary cholesterol 

excretion (216). In peripheral tissues like macrophages, the LXRs control the 

expression of genes involved in reverse cholesterol transport (217-222). Recently, a 

new regulatory pathway of LXR in cholesterol homeostasis was reported by Zelcer et 

al (223). LXR was shown to increase the expression of the gene inducible degrader of 

the LDLR (Idol), which subsequently target LDLR for degradation, resulting in a 
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suppression of LDL uptake in a number of tissues. Taken together, the systemic 

activation of LXRs leads to net cholesterol excretion and reduced atherosclerosis.  

1.5.3 LXR in lipogenesis 

Analysis of mice deficient in LXR� and LXR� reveal the involvement of the LXRs in 

fatty acid biosynthesis (lipogenesis) and secretion of TAG in the liver (224). These 

mice were deficient in hepatic expression of a number of lipogenic genes including 

SREBP-1, stearoyl-CoA desaturase (SCD)-1, FAS and ACC. Accordingly, 

administration of LXR agonist to wild-type mice induced the expression of these 

lipogenic genes and results in elevated plasma and hepatic triglyceride levels (209). 

LXR activation was also shown to increase expression of SREBP-1 and FAS and 

give lipid accumulation in cultured adipocytes (225). The effect of LXRs on 

lipogenesis is largely due to the direct LXR-mediated induction of the transcription 

factor SREBP-1c, which subsequently upregulates FAS, SCD-1 and ACC. SREBP-

1c is a master regulator of genes involved in fatty acid biosynthesis, through the 

binding to SREBP responsive elements in the promoter of target genes (reviewed in 

(226)). However, the treatment of SREBP-1c-/- animals with LXR agonist indicates 

the ability of LXR to induce the expression of some lipogenic genes independently of 

SREBP-1c (227). Furthermore, the recognition of the known SREBP-1c target genes 

FAS, SCD-1 and ACC as direct LXR target genes supports this observation. 

Peroxisome proliferator activated receptor (PPAR)�, Carbohydrate responsive 

element-binding protein (ChREBP), LPL, Angiopoietin-like 3 and CD36 are also 

direct LXR target genes involved in lipid metabolism (228-232). Hence, systemic 

activation of LXR induces a whole collection of genes involved in lipid metabolism, 

with the net effect of increasing hepatic lipogenesis, circulating TAG and hepatic 

steatosis.  

In addition to hepatic de novo fatty acid biosynthesis, circulating FFAs are also a 

source of hepatic lipids. LPL is an important enzyme in lipid metabolism hydrolyzing 

TAG in circulating lipoproteins to release FFA to muscle, adipose tissue, and 
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macrophages. The direct LXR-mediated regulation of LPL is shown in several tissues 

to increase fatty acid uptake and further TAG biosynthesis and lipid accumulation 

(233). The involvement of LXR in lipid uptake is further demonstrated by the recent 

identification of CD36 as a direct LXR target gene in liver (234). CD36 is an 

important gene in lipid homeostasis, and is tightly controlled by a number of NRs. In 

addition to the regulation by LXR, CD36 is shown to be a direct pregnane X receptor 

(PXR) and PPAR� target gene, and an additive increase in CD36 expression is 

observed with both PXR and LXR agonist together in liver (234). Not only is CD36 

regulated by a number of NRs, but the NRs themselves are also reported to regulate 

each other in different tissues, which again could potentially influence the regulation 

of CD36. PPAR� is induced by PXR activation in liver, and PPAR� is a direct target 

gene for LXR in adipocytes (234;235). Furthermore, LXR is a target gene for PPAR� 

in macrophages and adipocytes (225;236). Such a complex regulation of genes in the 

lipid metabolism including a whole network of transcription factors is not unique to 

CD36 (229;237-240). It permits the fine-tuning of mRNA concentrations of 

important metabolic genes to meet the shifting metabolic needs of the body, by 

integrating the information from nutritional, hormonal and cell signalling.  

1.5.4 LXR, glucose, insulin and diabetes mellitus 

Increasing evidence has placed LXR as regulator of glucose homeostasis and insulin 

action. LXR agonists improve glucose tolerance in diabetic rodent models mainly 

through hepatic LXR� (241). In liver, LXR activation represses phosphoenolpyruvate 

carboxykinase and glucose-6-phosphatase expression, whereas in adipose tissue, 

LXR mediate direct upregulation of glucose transporter 4 (199;242;243). 

Furthermore, high concentrations of glucose was shown to bind and activate LXR, 

although these findings have been debated (244;245). Tobin et al (246) show that 

hepatic LXR� is involved in insulin regulation of both cholesterol homeostasis and 

triglyceride metabolism in liver as insulin increases the expression of hepatic LXR� 

and LXR target genes. Finally, LXR� was shown to increase glucose dependent 



 38 

insulin secretion in pancreatic �-cells (247). However, LXR-mediated activation does 

not always lead to increased insulin-sensitivity. Activation of LXRs increase TAG 

accumulation in human skeletal muscle and pancreatic �-cells, and increase 

pancreatic �-cell apoptosis, conditions usually associated with insulin resistance and 

type 2 diabetes mellitus (247-249). Thus, even if several studies support a beneficial 

role of LXR activation, further studies are needed to clarify the net effect of LXR 

agonists on type 2 diabetes mellitus. 

1.6 PPARs and RXRs in placenta 

Of the NRs involved in lipid metabolism, most research in placenta has been done on 

the PPARs and the RXRs. As RXR is a heterodimeric partner of both LXR and 

PPAR, and numberous studies show the cross talk between PPARs and LXRs, the 

regulation of these NRs in placenta could be relevant for the understanding of LXRs 

in placenta. An overview of the literature on RXRs and PPARs in placenta is given in 

this thesis introduction, Also, the role of LXR in placenta and other reproductive 

organs will be addressed, but limited information is available on LXR in placenta. 

All three PPARs and two RXRs (RXR� and RXR�) were detected in human and rat 

placenta and placental trophoblast cells, while RXR� was only detected in rat 

placenta (250). Both PPARs and RXRs have been reported to be involved in several 

aspects of pregnancy development including implantation, placentation, trophoblast 

invasion and fatty acid uptake (reviewed in (251)).  

Studies of PPAR� -/- mice revealed abnormal placental development resulting in 

embryonic death at mid gestation (252). Detailed analysis of these mice revealed that 

the PPAR�/RXR heterodimers are essential for differentiation of trophoblast cells and 

the formation of a functional placenta (252). Both PPAR� and RXR� agonists also 

increase differentiation of human primary cytotrophoblast (253). Increased hCG 

production is a hallmark for cytotrophoblast differentiation, and this reproductive 

hormone was also increased by PPAR�, and shown to be a direct PPAR� target gene 
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(253;254). Even though several PPAR� target genes have been identified in placenta, 

this cannot fully explain the lethal phenotype observed in PPAR� -/- mice (255;256). 

Hence, there is a continuous research going on to decipher the gene regulation 

responsible for this PPAR� -/- phenotype (251) 

A role for PPAR� in trophoblast invasion has also been demonstrated. Both synthetic 

and natural PPAR� agonists were shown to inhibit extravillous cytotrophoblast cell 

invasion in in vitro invasion assays (257;258).  

PPAR� is involved in differentiation, fatty acid transport and accumulation in 

adipocytes (259). Likewise, PPAR� seems to play a role in fatty acid uptake and 

accumulation in placenta. PPAR� -/- and RXR -/- mice both lack lipid droplets 

normally present in wt mice, and PPAR� and RXR agonist increase fatty acid uptake 

and accumulation in primary human trophoblasts (84;252;260;261). In line with these 

observations, both the fatty acid transporters FATP1 and FATP4, and the lipid 

droplet protein adipophilin are upregulated by PPAR� activation in human 

trophoblast cells (84;262).  

An essential role for PPAR� in placental development has been demonstrated in 

implantation and trophoblast differentiation. PPAR� -/- mice develop placental 

abnormalities, with compromised size of trophoblast giant cell and increased 

embryonic lethality (263). In line with this observation, PPAR� was later shown to be 

crucial for giant cell differentiation in vitro (264). PPAR� regulate the production of 

cyclooxygenase (COX)-2 derived prostacyclin I2 (PGI2), and COX-2 -/- female mice 

display decreased fertility, partly due to impaired blastocyst implantation and 

decidualization (265;266). Treatment of these mice with PPAR� selective agonist 

restored the implantation (266). PPAR� was also shown to be essential for the effect 

of PGI2 to enhance mouse blastocyst invasion (267;268).  

PPAR� activation is reported to inhibit secretion of hCG and increase secretion of 

progesterone from immortalized human extravillous trophoblast cells (269). PPAR� -

/- mice had increased abortion rate, which was further increased in diabetic PPAR� -/- 
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mice (270). The increased abortion rate was suggested to involve a compromised 

materno-fetal lipid exchange, but no placental abnormalities were observed. Hence, 

further studies are needed to clarify the role of PPAR� in embryonic development.  

RXR� is the main RXR isoform expressed in the placenta (250). As the PPARs 

heterodimerize with RXR and both PPAR� and PPAR� are essential for placental 

development it would be expected that RXR -/- mice display a similar abnormal 

placental development. As expected RXR� -/- mice die in utero from day E12.5 to 

E16.5 and exhibit a similar placental phenotype as PPAR� (260;271). The RXR� -/-

/RXR� -/- mice exhibited a much more severe phenotype resembling both PPAR� -/- 

and PPAR� -/- mice, indicating that RXR� to some degree could compensate for the 

loss of RXR� (272).  

1.7 LXR in reproductive tissues 

The major part of research on LXRs has focused on their role in liver and 

macrophages. However, recent studies indicate putative roles for LXRs in many other 

tissues including placenta and other reproductive tissues. Both male and female 

LXR� -/-, LXR� -/- and LXR� -/-/� -/- mice are less fertile then their wild type (wt) 

controls (273-276). Male LXR� -/- mice were essentially infertile by 5 months of age, 

while male LXR� -/- mice had reduced testicular testosterone and higher apoptotic 

rate of germ cells, indicating that LXR� and LXR� collaborate to maintain both 

integrity and function of the testis (273). It appears that LXR regulation of cholesterol 

homeostasis during the maturation of sperm cells is crucial for male fertility 

(273;274;276). In female LXR� -/-/� -/- mice, oocyte maturation is impaired due to a 

reduced effect of follicle-stimulating hormone, while LXR agonist stimulates 

resumption of meiosis in isolated oocytes (275). Further, female LXR� -/-/� -/- mice 

were recently identified to have many of the same features of complications as 

animals with ovarian hyperstimulation syndrome, which is a common complication 

of fertility treatment when inducing ovulation (277). The complications included 
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enlarged ovaries with increased vascularity, and elevated circulating estradiol. 

Isolated uteri from LXR� -/- mice had reduced contractile response to oxytocin, 

probably due to an abnormal increase in cholesterol content, indicating a role in 

uterine contraction during labour (278).  

A function for LXR in placental cells was first described by Pavan et al in 2004 

(279). They showed that oxLDL inhibited cultured extravillous cytotrophoblast 

invasion in vitro. Only oxLDL containing a high amount of oxysterols contained 

these properties. These results were confirmed with a synthetic LXR agonist, 

suggesting that LXR activation could interfere with implantation. Later the 

identification of endoglin as a direct LXR agonist in JAR cells further suggest 

inhibitory activity of LXRs in trophoblast invasion (280). Endoglin is an 

antiangiogenic protein and an inhibitor of trophoblast invasion, with increased 

maternal circulating levels in preeclampsia (281).  

Several recent publications have investigated the role of LXR on cholesterol transport 

in the placenta. Stefulj et al (54) showed that isolated endothelial cells from human 

term placenta had a 2.5-fold higher cholesterol release to apoprotein A-I and 

increased cholesterol efflux following LXR activation, as compared to human 

umbilical vein endothelial cells. Fetuses with Smith-Lemli-Opitz syndrome are 

incapable of de novo cholesterol biosynthesis (282). In utero treatment of a Smith-

Lemli-Opitz syndrome mouse model with LXR agonist resulted in increased 

cholesterol content, probably due to increased expression of Abca1 (57). This opens 

for the possibility that activation of LXR in utero could attenuate the irreversible 

congenital malformations present in Smith-Lemli-Opitz syndrome patients already at 

birth.  
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2. Aims of the study 

At the start of this thesis, very little information was available on the role of LXR in 

placenta. The importance of LXR in lipid homeostasis in other tissues prompted us to 

explore the transcriptional activity and physiological roles of LXR� and LXR� in 

placental lipid transport and metabolism. This knowledge could be important in order 

to increase the understanding of molecular mechanisms involved in pathological 

pregnancies associated with hyperlipidemia. 

The following projects were addressed in Paper I, II and III:  

1. Gene expression of LXRs in human trophoblast cell lines and placental tissue 

2. The role of LXR� and LXR� in lipid metabolism and other functions in placental 

trophoblast cells 

 Are the LXRs involved in de novo fatty acid biosynthesis in trophoblasts? 

 Are the LXRs involved in activation of fatty acids in trophoblasts? 

 Are the LXRs involved in fatty acid uptake by trophoblasts? 

 Are the LXRs involved in regulation of hCG expression and secretion in 

 trophoblasts? 

3. The search for new LXR target genes in human placental trophoblast cells.  

During the work of this thesis, we observed increased expression of ACSL3 on 

microarray in human primary trophoblast cells treated with LXR agonist. Based on 

this finding the following additional questions were addressed: 

 Is ACSL3 a direct LXR target gene in trophoblasts? 

 Is ACSL3 involved in  LXR-mediated fatty acid activation and uptake in 

 trophoblasts? 
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4. The expression of LXR� and LXR� in relation to changes in physiological lipid 

parameters, in placental tissue in preeclampsia 

 Is LXR�, LXR� and LXR target genes differentially expressed in 

 preeclamptic placentas compared to controls? 
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3. Summary of papers 

3.1 Paper I: 

Liver X receptors mediate inhibition of hCG secretion in a human placental 

trophoblast cell line 

In the first paper, we investigated whether LXR has similar lipid metabolic effects in 

placental trophoblast BeWo cells as observed in liver and adipose tissues. We further 

investigated the  LXR-mediated regulation of hCG secretion from BeWo cells.  

We identified the expression of LXRs in placenta trophoblastic BeWo and JAR cells. 

We further indirectly identified the presence of functional LXR protein, by induced 

expression of a minimal LXRE containing promoter when stimulating with LXR 

agonist.  

Next, we investigated the effects of LXR activation on de novo fatty acid synthesis 

and further metabolism into complex lipids. We observed increased biosynthesis of 

all classes of lipids investigated (FFA, PL/MG, DG and TAG) in BeWo cells 

prestimulated with LXR agonist compared to controls. The known LXR target genes 

SREBP-1 and FAS were also highly induced upon LXR activation, and therefore 

suggest to be involved in the observed increased de novo fatty acid biosynthesis.  

We finally examined if activation of LXRs could affect expression and secretion of 

the glycoprotein hormone hCG during BeWo cell differentiation. Simultaneous 

incubation with LXR agonist and a differentiation agent (forskolin) throughout cell 

differentiation, produced a dose dependent reduction in expression and secretion of 

hCG.  

In conclusion, these results indicate that LXR has similar effects in placenta as in 

liver and adipose tissue on de novo fatty acid metabolism and further metabolism into 

complex lipids. Furthermore, the results suggest a role for the LXRs in regulation of 

trophoblast differentiation through the regulation of hCG.  
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3.2 Paper II: 

Activation of LXR increases fatty acid uptake through direct regulation of 

ACSL3 in placental trophoblast cells

Our results in Paper I encouraged us to further explore the role of LXRs in placental 

trophoblast cells. We therefore performed a microarray on human primary third 

trimester trophoblast cells incubated with LXR agonist (T0901317) or vehicle. 

Analysis of the microarray identified ACSL3 as a hitherto unknown LXR target gene, 

which was highly induced upon LXR agonist stimulation. Theoretical promoter 

analysis of the ACSL3 promoter identified a very promising LXRE. EMSA and 

transfection studies of the full length ACSL3 promoter and promoters without a 

functional LXRE identified ACSL3 as a direct LXR target gene.  

After establishing ACSL3 as a direct LXR target gene, we examined whether acyl-

CoA synthetase activity and fatty acid uptake was increased following LXR 

activation in BeWo cells. Incubation of BeWo cells with LXR agonist increased the 

activation of OA and the uptake of OA, EPA, DHA and ARA. To further test the 

importance of ACSL3 on fatty acid uptake and activation, we silenced ACSL3 in 

BeWo cells and incubated the cells with LXR agonist. The LXR-mediated induction 

of fatty acid uptake and activation was strongly inhibited in these cells. Interestingly, 

silencing of ACSL3 also reduced the basal fatty acid uptake by 30% and the basal 

acyl-CoA synthetase activity by 50%.  

In conclusion, our results show that LXR increase the uptake of LCPUFA. 

Furthermore, LXR increase the uptake and activation of OA through the direct 

induction of ACSL3 expression. Our results also identify ACSL3 as the main long 

chain acyl-CoA synthetase and a major fatty acid uptake protein in BeWo cells. 



 47

3.3 Paper III:

Expression of liver X receptors in pregnancies complicated by preeclampsia 

Preeclampsia is a pregnancy specific disorder associated with hyperlipidemia. Results 

from Paper I and II suggest that LXRs could be involved in regulation of lipid 

metabolism and uptake in human placenta. In Paper III we therefore wanted to 

investigate the expression of LXR� and LXR� in human term placental tissue in 

preeclampsia and uncomplicated pregnancies. We also analyzed placental tissue 

concentrations of lipids and the fatty acid profile in a subpopulation of these samples. 

Expression of LXR�, LXR� and fatty acid transporter CD36 was significantly 

decreased in placental tissues while increased expression was observed for LXR� in 

adipose tissue from pregnancies complicated by preeclampsia. There was a positive 

correlation between placental LXR� expression and placental free fatty acids in 

preeclampsia. Our results suggest a possible role for LXR� and LXR� as 

transcriptional regulators in the preeclamptic situation.  
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4. Discussion 

4.1 Methodological considerations 

4.1.1 Model systems 

In the papers included in this thesis, a human placental cell line, BeWo cells, and 

human term placental tissue were used to identify functions of the human placenta 

(Paper I, II and III). Supplemental information was obtained from human primary 

third trimester trophoblasts and other trophoblast cell lines (Paper I and II). We 

further used BeWo cells as a model system for trophoblast cells in several functional 

studies (Paper I and II).  

Cultured cell lines permit a high degree of control of the experimental settings. In 

addition, many cultured cell lines have retained properties of their origin, and 

therefore represent useful model systems for studies of cellular molecular biology. 

Primary human cells can be obtained from patients with different genetic, nutritional 

and metabolic background. Larger standard error is therefore expected in experiments 

using these cells than in cell line experiments. On the other hand, primary cells in 

culture are expected to represent a more physiologically “natural” model system.  

The BeWo cell line was the first commercial human trophoblast cell line to be 

developed (283). It was established from a malignant gestational trophoblast cancer 

(a choriocarcinoma), and has maintained many of the properties of primary 

cytotrophoblasts, such as the differentiation to syncytiotrophoblasts and secretion of 

hCG (284). Later, the cell line was also shown to have retained many of the 

properties of lipid transport and metabolism characteristic of human primary cyto- 

and syncytiotrophoblast cells. BeWo cells for example, have similar transport 

properties as primary trophoblasts, including a polarized transport of LCPUFAs and 

expression of many of the same genes involved in lipid metabolism (48;285;286). We 
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therefore believe that the BeWo cell line represents a good model system to study  

LXR-mediated regulation of lipid metabolism.  

The isolation of primary cytotrophoblast cells is more time-consuming and 

expensive, and primary cells are more difficult to keep in culture for longer periods 

compared to BeWo cells. We have therefore chosen to use BeWo cells as our 

principal cell model system in Paper I and II. Primary trophoblast cells were also 

used to supplement and confirm the results observed in BeWo cells (Paper II).  

Cell culture experiments are often supplemented with in vivo experiments. For these 

experiments, rodents are commonly used to obtain results from a more physiological, 

but still controllable laboratory setting. The access to the use of most human tissues 

for research purposes is limited. In placental research, the situation is quite different. 

There is an abundant access to human tissues, and although several general features 

of fetal nutrient uptake and utilisation are similar among mammalian species, major 

differences are present, especially concerning placental permeability. This is 

particularly important for research regarding lipid uptake and metabolism where 

permeability properties play a major role. These properties therefore limit the use of 

animal models in this field of human placental research. Species differences in lipid 

uptake and metabolism are reflected by a large species variation in fetal lipid 

accumulation during pregnancy. While fat constitutes 16% of body mass at birth in 

humans, it constitutes 10% in guinea pigs and only 2-4% in ruminants (reviewed in 

(2)). The net flux of fatty acid across the placenta also differs among species. In 

placentas having both maternal and fetal layers, such as sheep, pig and cat, the 

maternal fatty acid transfer is small (287-290), while in species in which the placenta 

is formed by layers of fetal origin, such as rabbit, rat, guinea pig and primates, the 

placental transport is much higher (290-295). It also appears that transport of 

individual FFAs across the placenta is determined largely by the placental 

characteristics of the species. While perfusion studies revealed little selectivity in the 

rate of transfer between different fatty acids in guinea pig and rabbits, similar studies 

in humans resulted in a preference for transfer of ARA and DHA (75;76;292;296). 
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On the basis of this information, we have therefore chosen not to use animal models 

for placenta studies in this thesis.  

4.1.2 LXR agonists 

At the initial stage of this work, the most common synthetic LXR agonist of that 

time, T0901317 (Paper I) was used. Later, when it was published that T0901317 

could interfere with farnesoid X receptor (FXR) and PXR signalling pathways, we 

replaced the use of T0901317 with that of the selective LXR�/LXR� agonist, 

GW3965 in our experiments (Paper II) (297;298). However, we cannot rule out the 

possibility that some of our findings in Paper I are not due to activation of PXR or 

FXR. Nevertheless, the confirmation of SREBP-1 and FAS induction by GW3965 in 

BeWo cells indicate reproducibility of some of the data with a new agonist 

(unpublished data and Paper II). 

4.1.3 The use of qRT-PCR 

During the last few years, quantitative real-time-polymerase chain reaction (qRT-

PCR) has essentially taken over from the traditional Northern blotting method for 

quantitative measurement of mRNA expression levels (Paper II and III as compared 

to Paper I). The combination of real time quantification with high levels of 

amplification permits fast, precise and accurate results. Modern qRT-PCR reactions 

produce a nearly exact doubling of product at every cycle in the exponential face of 

the reaction, in order to obtain a quantitative relationship between the amount of 

starting target sample and amount of PCR product produced per cycle. The 

amplification permits the detection of down to one copy of mRNA, but any 

experimental biases such as differences in RNA yields and PCR inhibition will effect 

the amplification. To compensate for such differences, there is a general agreement 

on normalizing the data to endogenous controls. The ideal endogenous control should 

be expressed at a constant level within the entire experiment, but unfortunately, no 

such universal endogenous control exists. If the endogenous controls are regulated it 
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could in the worst cases produce results reflecting the regulation of the endogenous 

control, not that of the target gene (Figure 9). Each new cell and tissue experiment 

should therefore be accompanied by the test of endogenous controls to ensure the use 

of a control with constant expression levels throughout the experiment.  
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Figure 9: Expression of ACSL1 in untreated BeWo cells and human term placenta using 
three different endogenous controls, or no endogenous control. cDNA was synthesized from 
BeWo cell and human placenta total RNA. qRT-PCR was run using cDNA from equal 
amount of measured total RNA. The following assays were used: ACSL1, Hs00960561_m1; 
Beta-2-microglobulin (B2M), Hs99999907; Glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH), Hs99999905_m1; ribosomal protein L27 (RPL27), Hs01594520_m1. All 
materials were from Applied Biosystems, and the methods were run according to the 
manufacturer's instruction. Results were quantified using the �Ct and ��Ct method. n = 3. 
Mean ± SEM is shown.  

Unfortunately, more commonly than not, information on the testing of endogenous 

controls are not presented in published papers. In this thesis, each new experimental 
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setting has been accompanied by thorough testing of several endogenous controls to 

ensure the use of a non-regulated one (Paper II and III). When comparing basal 

expression in different tissues or cell lines, we were not able to find non-regulated 

endogenous controls (Figure 9). By assuring linearity between mRNA to 

complementary DNA (cDNA) and cDNA to PCR conversion, we ended up not using 

any endogenous control when comparing the expression between different tissues, 

assuming that equal amount of total RNA added to each well, represented equal 

amplification (Paper III). Although unusual to do, we believe this method represents 

a more correct normalization than using a regulated endogenous control, in our 

setting.  

4.1.4 Problems with gene correlation studies using LDA cards 

Low density arrays (LDA) have recently become commercially accessible and thus 

efficient new tools for detection of multiple genes simultaneously using qRT-PCR 

technology have become available. The access to the transcriptional information of 

dozens of genes when studying clinical materials as in Paper III, provides a good 

possibility to run correlations between the genes to search for statistically significant 

and possibly biological relevant correlations between genes. We were interested in 

running correlations between placental LXR� or LXR� expression and placental 

expression of genes that are known LXR target genes in other tissues. Our intention 

when running the LXR-target gene correlation was to look for possible biological 

functions of the LXRs in placenta. Unfortunately, we came to the conclusion that we 

could not trust such a statistical use of our expression data. We observed a surprising 

number of biologically plausible significant correlations. As a control we further 

tested the correlation between genes that we did not believe had any biological 

correlation (e.g. endogenous controls), and the same surprising number of significant 

correlations was found between these genes. Our material was found to have linearity 

between total RNA, cDNA and PCR synthesis and potential PCR inhibition was not 

detected (Paper III). However, as with the run of any LDA cards, all the gene 
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expression data from every patient came from the same sample. Therefore, there was 

not a random distribution of technical differences between the genes analyzed in each 

sample. These systematic biases were probably so strong that whatever biological 

correlation present was impossible to distinguish from the technical differences in 

each sample.  

However, the data are excellent for analysis of average gene expression, because in 

this case the technical variation is not systematic. Confounding factors are present in 

any laboratory experiment, but are not usually of any significance for the results 

because they are not systematically distributed. If separate sample handling all the 

way from taking the biopsy to the running of the qRT-PCR and single genes were 

performed, the use of correlation between genes could have been possible, but very 

time-consuming.  

4.1.5 Gestational age 

There is a significant difference in gestational age between our two study groups in 

Paper III, with the preeclamptic group delivering earlier than the control group. 

However, avoiding a gestational difference between prematurely delivered PE and 

term-delivered uncomplicated pregnancy is clinically not feasible when sampling 

placental tissue. This is due to the fact that premature deliveries of uncomplicated 

pregnancies are ethically unacceptable and therefore not available as a control group. 

If a baby and placenta is delivered prematurely, it is normally due to pathological 

conditions, such as inflammation/infection and therefore not suitable as a control. 

Correcting for gestational age is mathematically possible but it is not necessarily 

biologically correct, as premature delivered women with preeclampsia will generally 

have a more severe form of the disease than women delivered at term (100). Still we 

cannot exclude that differences in gestational length between the study groups could 

potentially affect our results and conclusions in Paper III.  
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4.2  Discussion of results 

4.2.1 Roles for the LXRs in lipid metabolism in placenta  

Numerous LXR target genes have been identified in tissues involved in lipid 

metabolism, such as liver, muscle and adipose tissue. When considering that the 

human placenta is secreting 50-200 times more fatty acids than rat hepatocytes, we 

expected LXRs to have a regulatory role in controlling lipid metabolism in placenta 

(26). Our initial analyses of SREBP-1c, FAS and LXR suggested a role of LXR in 

lipogenesis in human placental BeWo cells (Paper I). To further understand the role 

of LXRs in placenta, we performed microarray and qRT-PCR on total RNA isolated 

from human term placental trophoblast cells stimulated with the synthetic LXR 

agonist, T0901317 (unpublished data and Paper II). These data confirmed the 

induction of SREBP-1 and FAS gene expression in primary trophoblast (Paper II and 

unpublished data) observed in BeWo cells (Paper I). In addition, the expression of 

other known direct LXR target genes was induced (~6-fold induction of SCD-1, ~4-

fold induction of ABCG1, ~3-fold induction of ABCA1 and an ~2.5-fold induction of 

ACC). This demonstrates a major regulatory role for LXRs in placental trophoblast 

cells apart from other metabolic tissues, such as macrophages, adipose tissue and 

liver (unpublished data, (198)). The microarray analysis further revealed several 

hitherto unknown potential LXR target. One of these genes, lipin-1, was investigated 

further. However, theoretical promoter analysis and gene expression studies in BeWo 

cells and LXR� -/-/� -/- mice suggested that it is not a direct LXR target gene 

(unpublished data). Then, ACSL3 was also identified as a potential LXR target gene, 

which was induced by the LXR agonist T0901317, on the microarray. Theoretical 

analysis of the ACSL3 promoter, using a consensus LXRE element, identified a 

potential theoretical LXRE, which was shown subsequently to be functional (Paper 

II). Further analysis in liver, muscle and adipose tissue in mice suggested that this 

regulation was not restricted to placenta (Figure 10).  
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Figure 10: LXR mediate regulation of ACSL3 in different tissues in mice. Male LXR� +/+/� 
+/+ and LXR� -/-� -/- mice were gavaged with vehicle (1% CMC) or T0901317 (30 mg/kg) 24 
hours prior to scarification. Total RNA (Trizol, Invitrogen) from liver, skeletal muscle, heart 
and white adipose tissue were analyzed for expression of Acsl3 (Mm01255804_m1) and Fas 
(Mm00662319_m1) by qRT-PCR (all from Applied Biosystems, according to the 
manufacturers instructions) normalized to Tbp (Mm00446973_m1). The results are 
presented as mean ±SEM, relative to control (n = 4-6 for each group). P-values * < 0.05 and 
** < 0.01 C).  

In addition to differential expression of target genes in both primary trophoblasts and 

BeWo cells, we identified an  LXR-mediated increased de novo fatty acid 

biosynthesis, increased uptake of several types of fatty acids (OA and LCPUFAs) and 

increased concentrations of FFA and complex lipids such as TAG, phospholipids and 

cholesteryl esters in BeWo cells (Figure 11, Paper I and II). These results are in line 

with the observed increased LXR-mediated expression of SREBP-1, FAS and 

ACSL3 in BeWo cells and primary trophoblasts (Figure 11, Paper I and II). We did 

not observe increased �-oxidation of fatty acids when incubating BeWo cells with 

LXR agonist (unpublished data). The expression of genes leading to increased uptake 

and lipogenesis and lack of regulation of �-oxidation, suggests LXR as a regulator of 

anabolic pathways of lipid metabolism in placental trophoblast cells. All these above 
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multiple roles of LXR suggest a coordinating role of LXR in lipid metabolism in 

placental trophoblast cells and perhaps in placental tissues (figure 11).  

 

 

 

 

 

 

 

 

Figure 11: Effects of LXR on human placental trophoblast cells. Summery of Paper I and II. 
The influence of LXR is marked with +. The results obtained from each paper is indicated (I 
= Paper I, and II = Paper II).  

 

Numerous observations in this thesis demonstrate overlapping functions between the 

regulatory roles for LXR in placenta and other lipid metabolizing tissues. Although 

the regulation in different tissues appears to be similar, the physiological role could 

be quite different. ACSL3 is highly expressed in placenta, brain and intestine and in 

inguinal adipose tissue (153). Based on the LXR-mediated ACSL3 induction 

observed in several tissues (Figure 10), we suggest that a similar LXR-mediated 

regulation of ACSL3 could also have important roles in tissues with high levels of 

ACSL3 expression. The physiological consequences of such a regulation could differ 

depending on the function of the tissue. The ACSL3-mediated uptake of LCPUFAs 

in brain could be important for the high need for LCPUFAs in this organ during fetal 

development (60). In the intestine, the regulation could be important for LCPUFAs 
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uptake from the diet. In lymph node-containing adipose tissues such as the inguinal 

adipose tissue, LCPUFA uptake play a role in the interaction with the immune system 

(reviewed in (299)). Increased PUFA accumulation has been reported in node-

containing tissues, and is thought to be important for the production of prostaglandins 

and leukotriens (300). 

Insulin has a major effect on lipid metabolism in liver, muscle and adipose tissue, and 

LXR is upregulated by insulin. LXR is involved in insulin-mediated upregulation of 

SREBP-1, and so it would have been interesting if LXR-insulin stimulation had any 

influence on placental gene expression (246). However, when performing microarray 

on primary human trophoblasts incubated with insulin alone or insulin and T0901317 

together, no insulin-mediated regulation of any genes was observed compared to the 

respective controls (cells incubated with T0901317 alone, or cells incubated without 

T0901317 or insulin added; unpublished data). Limited impact of insulin on placental 

lipid metabolism function has also been reported previously (301). The lack of 

response to insulin also indicates major differences between placenta and other lipid 

metabolizing and insulin sensitive tissues such as adipose tissue, muscle and liver in 

terms of LXR regulation.  

4.2.2 LXR and ACSL3 functions on lipid droplets 

Our research group has previously observed an increase in lipid droplet size when 

incubating preadipocytes with LXR agonist during differentiation to adipocytes, but 

the mechanisms behind this increase are not fully understood (225). ACSL3 is one of 

the main proteins associated with lipid droplets in hepatocytes, and the concentration 

of ACSL3 on lipid droplets correlated with the TAG biosynthesis in Huh7 

hepatocytes (155;156). The identification of ACSL3 as a direct LXR target gene 

(Paper II) and the presence of this regulation in adipose tissue (Figure 10) therefore 

suggests a possible mechanism for the observed LXR-mediated increase in lipid 

droplet size in adipocytes, and perhaps also in other tissues. The localisation of 

ACSL3 on the lipid droplet would then perhaps increase the uptake and activation of 
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fatty acids and thereby increasing the production of TAG and the size of lipid 

droplets. A plasma membrane location of ACSL3 is possibly not necessary for the 

fatty acid uptake function of this gene as fatty acid uptake mediated by FATP4 has 

been reported to occur by FATP4 proteins exclusively located on intracellular 

organelles (140). ACSL3 could be involved in the channelling of fatty acids for TAG 

biosynthesis and further storage in lipid droplets. This suggests that ACSL3 together 

with LXR could have an important role in protecting cells from toxic effects of FFA 

and subsequent insulin resistance in tissues such as liver, muscle or adipose tissue.  

4.2.3 LXR in preeclampsia and atherosclerosis 

To the best of our knowledge, there is no information available on the levels of 

endogenous LXR agonists (oxysterol) in placenta in preeclampsia. In Paper III we 

observed a highly significant downregulation of both LXRs in preeclamptic placentas 

as compared to controls. An autoregulation of LXR� has been described in some 

tissues including BeWo cells (Paper I, (302;303)), suggesting that this autoregulation 

is present in placenta. Dyslipidemia, including increased oxLDL is a common feature 

of preeclampsia (110). It could perhaps result in increased placental concentrations of 

endogenous LXR agonists. However, the reduced placental expression of both LXRs 

in preeclampsia compared to uncomplicated pregnancies in Paper III suggests that 

there is not an increased placental concentration of LXR agonists in preeclampsia. 

Combined with reduced LXR expression, this suggests a reduced LXR activity in the 

preeclamptic placenta. However, ligand-independent factors such as cofactor-

interaction, and post-translational modifications of LXRs could also be important for 

the regulation of placental LXR expression and activity in preeclampsia.  

Preeclampsia and cardiovascular disease have many risk factors in common including 

endothelial dysfunction, obesity, insulin resistance, hypertension and dyslipidemia 

(110;112;113;304). There are strong indications for a protective role of LXR in 

atherosclerosis by the reverse cholesterol transport of endothelial cells and 

macrophages. The reduced expression of both LXRs in preeclamptic placentas (Paper 
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III) could result in a reduced reverse cholesterol transport from placental 

macrophages and endothelial cells. Endothelial dysfunction is a common feature of 

preeclampsia and plaque formation is observed in acute atherosis in Preeclampsia 

(115). Therefore, we speculate that the reduced expression of LXR may exacerbate 

these "atherogenic" characteristics of preeclampsia. We did not however observe a 

correlation between total placental cholesterol levels and LXR� or LXR� expression 

in placenta (Paper III). Separate analysis of cholesterol and cholesteryl ester levels in 

placental macrophages and endothelial cells would be necessary to clarify this issue.  

Our gene expression data from preeclamptic and control placentas suggest that LXR 

is not the main regulator of many known LXR target genes in placenta in 

Preeclampsia (Paper II). Although not anticipated, the results are not surprising, as 

complex mechanisms involving many unknown factors are involved in the regulation 

of genes. The identification of a gene as an LXR target gene in one tissue under 

certain conditions is therefore just an indication of a functional relationship between 

these genes in other tissues and conditions. Especially in a clinical situation, with 

many unpredictable potential regulatory factors, it is often difficult to predict the 

regulation of any gene based on such knowledge.  

4.2.4 Is there a lipid metabolism independent role for the LXRs in 
placenta? 

Regulatory roles for LXRs apart from lipid metabolism have been reported in 

macrophages (196;305;306). Pavan et al (279) and our results on hCG in Paper I also 

indicate a non-lipid metabolic role for LXR in placenta. Pavan et al showed that LXR 

activation inhibits a cell model of first trimester trophoblast invasion. This is in line 

with our observation of an inhibitory  LXR-mediated regulation of hCG, as hCG is 

important for the retaining of the implanted blastocyst in the uterine wall (Paper I). 

Furthermore, in Paper I we observed increased expression of LXR� during BeWo cell 

differentiation from cyto- to syncytiotrophoblasts. hCG is reported to increase 
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differentiation of trophoblasts (12). These findings suggest that LXR� could be 

involved in inhibiting trophoblast differentiation from cyto- to syncytiotrophoblasts. 

Many genes involved in inflammation are reported to be increased in preeclampsia 

and many of these genes are down regulated by LXRs. These genes include inducible 

nitric oxide synthase, COX-2, matrix metallopeptidase-9, interleukin 6 and tumour 

necrosis factor � (196;305;306). Thus, it is possible that LXR has hitherto 

unrecognized roles in placenta in preeclampsia. 

4.2.5 ACSL3 in placenta 

ACSL3 appears to have a central position in fatty acid activation and transport in 

placental trophoblast cells, but also ACSL1 and ACSL4 were highly expressed in 

these cells in our study (Paper II). However, our data suggest that ACSL3 is the main 

ACSL involved in fatty acid activation in placental trophoblast cells, as silencing of 

ACSL3 reduced the total oleoyl-CoA synthetase activity by 50% in BeWo cells 

(Paper II). Silencing of ACSL3 further reduced the basal fatty acid uptake by 30% in 

BeWo cells (Paper II). Silencing of ACSL3 could be accompanied by a compensatory 

increase in one or more of the other ACSLs, as is often observed between 

homologous genes in lipid metabolism. We did however not observe any alternations 

in the mRNA expression of any members of the ACSL family when ACSL3 was 

silenced in BeWo cells (unpublished data). Thus, ACSL3 appears to have a unique 

role in trophoblast cells that cannot be compensated by other members of the ACSL 

family, and this suggests a predominant role of ACSL3 in placental fatty acid uptake 

and metabolism.  

Activation of PPAR�, � and �, that are key regulators of numerous genes involved in 

fatty acid transport and lipid metabolism, did not have any effect on ACSL3 

expression in BeWo cells (unpublished data). These results agree with another study 

which showed that activation of PPAR� had no effect on ACSL3, but increased the 

expression of ACSL1 in rodent heart (307;307).  
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Although insulin, fatty acids, oncostatine and Vitamin D3-mediated regulation of 

ACSL3 has been reported (307-309), to the best of our knowledge our analysis is the 

first to demonstrate that ACSL3 is being directly regulated through any identified cis-

regulatory element in the promoter (an LXRE, Paper II).  
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5. Conclusions 

 

The conclusions from the present study can be summarized by listing the following 

main findings: 

1. LXR� and LXR� are expressed in placenta and BeWo cells (Paper I and III). 

2. LXR activation increases de novo fatty acid synthesis, fatty acid activation and 

fatty acid metabolism into complex lipids in BeWo cells (Paper I and II). 

3. LXR activation decreases the expression and secretion of hCG from BeWo 

cells (Paper I). 

4.  LXR activation increases the uptake of OA and LCPUFAs in BeWo cells 

(Paper II). 

5. ACSL3 is a direct LXR target gene in BeWo cells (Paper II). 

6. LXR-mediated increased fatty acid uptake and activation are dependent on 

ACSL3 (Paper II). 

7. LXR� and LXR� are downregulated in preeclamptic placentas compared to 

placentas from uneventful pregnancies (Paper III). 
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