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1. ABBREVIATIONS 

ANGPT, angiopoietin; ER, endoplasmatic reticulum; GSIS, glucose-stimulated 

insulin secretion; HLA, human leukocyte antigen; HO, haem oxygenase; Hsp, heat-

shock protein; IBMIR, the instant blood-mediated inflammatory reaction; IEQ, islet 

equivalents; IL, interleukin; IM, intramuscular; iNOS, inducible nitric oxide synthase; 

MAPK, mitogen-activated protein kinase; MCP, monocyte chemotactic protein; MIF, 

macrophage migration inhibiting factor; NF-�B, nuclear factor kappa B; NO, nitric 

oxide; PARP, poly ADP-ribose polymerase; PDC, pancreatic duct cells; PUFAs, 

poly-unsaturated fatty acids; RANTES,  Regulated upon Activation, Normal T-cell 

Expressed, and Secreted; ROS, reactive oxygen species; RT-qPCR, reverse 

transcriptase quantitative polymerase chain reaction; RvE1, Resolvin E1; Socs, 

suppressor of cytokine signalling; SREBP, sterol regulatory element binding protein; 

STAT, signal transducers and activators of transcription; TAT, thrombin antithrombin 

complex; TF, tissue factor; TLR, Toll-like receptor; TNF, tumor necrosis factor; 

TUNEL, terminal dUTP nick end labelling; VEGF, vascular endothelial growth 

factor. 
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3. INTRODUCTION 

 

3.1 TYPE 1 DIABETES 

Type 1 diabetes is a disease resulting from specific destruction of the �-cells of the 

islets of Langerhans of the pancreas (1). As �-cells produce insulin - the hormone that 

helps to regulate glucose metabolism - loss of �-cells leads to the disordered blood 

glucose levels that characterize diabetes. Descriptions of diabetes appear in ancient 

Egyptian and Greek writings, but the causes and mechanisms responsible for the 

disease are still not fully understood (2).  

 

Pionering studies by David E. Sutherland and his team during the early 80s involving 

partial pancreas transplantion between monocygotic twins, demonstrated that a 

nondiabetic pancreas was rapidly destroyed after transplantation into a recipient with 

type 1 diabetes (3). Histologically, immune cell infiltration of the islets was observed, 

a finding that suggests an ongoing autoimmune process. Additionally, autoantibodies 

to �-cell antigens precede clinical symptoms and can predict the risk of developing 

diabetes (4,5). These, among other observations, strongly suggest that type 1 diabetes 

is an autoimmune disease. The initiator(s) of this detrimental auto-immune reaction 

have not been identified, but a combination of genetic susceptibility (6,7) and 

environmental factors, possibly viral, seem plausible [reviewed in (8)].  It should be 

noted however, that cases of non-autoimmune, abrupt-onset insulin-dependent 

diabetes have been reported, and, although rare, they suggest that type 1 diabetes may 

be a heterogeneous disease (9). 

 

3.2 CAN TYPE 1 DIABETES BE PREVENTED? 

Type 1 diabetes currently affects approximately 0.5% of the population in developed 

countries, with highest rates in Finland (10). Disturbingly, the incidence of the disease 

has steadily increased since the 1950s (11), with an apparent steep increase in the last 

decade (10,12-14). Rapid increase in incidence within genetic stable populations 

implies that nongenetic factors are important in causing type 1 diabetes (15).  

 

Efforts aimed at preventing diabetes has so far been unsuccessful (16). However, once 

type 1 diabetes becomes clinically evident, there is usually a significant �-cell 
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reservoir left. Several trials have since the 1970s explored different strategies for 

preventing the continued destruction of �-cells after diagnosis. Among the more 

successful attempts, albeit accompanied by significant side-effects, were the trials in 

the mid- and late 1980’s utilizing cyclosporine(17-19), and recent trials involving 

anti-CD3 monoclonal antibodies (20,21). Both therapies delay, for various lengths (up 

to several years), but do not prevent the development of full-blown diabetes. As type 

1 diabetes seems to be the result of an aberrant immune response, a growing body of 

evidence is suggesting that two components are needed to stop (further) progression 

of type 1 diabetes:  

1) elimination of aggressive T-cells, and 2) augmentation of regulatory T-cells to 

achieve long-term tolerance (8). Interestingly, these components are also needed for 

transplant tolerance. Currently, the only available strategy to induce tolerance 

involves radiation, chemotherapy and hematopoietic stem cell transplantation (22). 

This approach has been explored for some time in solid organ transplantation (23), 

and recently also in patients with recent onset type 1 diabetes (24). The development 

of less toxic conditioning regimens would allow a broader applicability of such 

protocols, but at present it is difficult to envision this modality becoming clinical 

practice in the context of type 1 diabetes.  

 

3.3 TREATMENT OF TYPE 1 DIABETES 

Exogenous insulin administration, either as injection or via a subcutaneous pump, is 

the current treatment for type 1 diabetes. A principal objective is the prevention of 

long-term vascular complications, both microvascular (retinopathy, nephropathy and 

neuropathy) and macrovascular (affecting the coronary, cerebral, and peripheral 

arteries). Intensive diabetes treatment reduces the risk of these complications (25-27), 

but it carries a two to three-fold increased risk of severe attacks of hypoglycaemia 

(25). Not surprisingly, fear of hypoglycaemia (28) or development of hypoglymia-

associated autonomic failure (hypoglycaemic unawereness) (29) hinders the 

successful implementation of intensive insulin therapy in many patients.  

 

Data from clinical trials indicate that recent advances, such as the continuous glucose 

meter, has only modest effect in improving glycemic control; those who appear to 

gain benefit are those who are actively and skillfully engaged in diabetes self-
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management (30). For patients who have difficulties in maintaining glycemic control, 

early illness and early death is the inevitable result (25). 

  

3.4 TRANSPLANTATION AS A CURE FOR TYPE 1 DIABETES 

Transplantation of �-cells by implantation of vascularized pancreata or isolated 

pancreatic islets is currently the only way to achieve physiological glycemic control, 

and thereby halt progression of diabetic complications in patients with type 1 diabetes 

(31). The islets of Langerhans are endocrine cell clusters that represent approximately 

1% of pancreatic tissue. Each islet contains different cell subsets specialized in the 

production and secretion of the hormones (e.g. alpha- and �-cells for glucagons and 

insulin, respectively) that maintain glucose levels within the physiologic range (31). 

The principal advantage of �-cell replacement through transplantation is the 

achievement of glycemic control without the risk of life-threatening hypoglycaemic 

events associated with intensive insulin treatment (25). 

 

Selecting patients for �-cell replacement is difficult, as the severity of the disease 

must justify the risks of life-long immunosuppression. However; growing consensus  

is establishing that there is a small group of patients affected by type 1 diabetes 

mellitus who suffer from severe glycemic instability with frequent and unpredictable 

hypoglycemic episodes, despite compliance to intensive and state-of-the art therapy 

(32). It has been estimated that 5% of patients with type 1 diabetes accounts for more 

than half of all episodes of severe hypoglycemia (33). Frequent hypoglycaemic 

episodes is associated with cognitive impairment (34,35), risks of serious accidents 

(34), and impairs the ability to lead an independent life (36). It can readily be 

envisioned that the quality of life of these patients is dramatically compromised. 

Transplantation of �-cells is thus an attractive option for a select subset of patients 

with type 1 diabetes. Whole-organ pancreatic transplantation involves major surgery 

and risks of serious complications (36), but when successful, long-term insulin-

independence can be obtained. Allogeneic islet transplantation is a gentle procedure, 

but generally does not produce long-term insulin independence (see below).  

 

3.5 ALLOGENEIC ISLET TRANSPLANTATION 

Allogeneic islet transplantation has been explored, with various results, since the early 

1980’s (37). Sustainable insulin independence was not achieved until the introduction 
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of the Edmonton protocol in 2000 by Shapiro and co-workers (38). Key points 

included restrictions on islet recipients with regards to weight and insulin 

requirements, infusion of islets from up to 4 different donors and avoidance of 

glucocorticoids in the immunosuppressive regimen (38). Later studies have 

demonstrated that the results are reproducible (39), however, long-term follow up 

reveals that most patients (90%) have to resume insulin therapy within 5 years after 

transplantation (40). In spite of having to resume insulin therapy, most patients are C-

peptide positive (intact graft function), are protected from hypoglycaemic episodes 

and exhibit satisfactory glycemic control at 5 years post transplantation (40). 

Importantly, the procedure is carried out under local anaesthesia and has low levels of 

complications.  

 

The need for islets from multiple donors and somewhat disappointing long-term 

results limits the application of the procedure. Progress in the field of islet 

transplantation warrants implementation of strategies that increase short- and long 

term survival of pancreatic islets after transplantation.  

 

3.6 LOSS OF �-CELL MASS IN ALLOGENEIC ISLET TRANSPLANTATION 

The average human pancreas has between 300,000 and 1.5 million pancreatic islets 

(41). Although difficult to assess, it has been estimated that patients may loose of up 

to 90% of their �-cell mass, and still maintain euglycemia (42). Similarily, surgical 

removal of up to 80% of the pancreas rarely cause diabetic symptoms (43). Thus, only 

10-20% of the total �-cell mass is required to maintain euglycaemia (44). It is 

estimated that an experienced isolation facility can retrieve 50-80% of the islets in 

pancreas through the process of islet isolation (45,46). If all isolated islets were to 

survive transplantation and subsequent engraftment, islet transplantation would 

regularly restore insulin-independence in the recipients. However; in most cases islet 

transplantation from multiple donors is required (38). Functional evaluation of insulin 

independent transplant recipient demonstrates that the insulin secretory capacity is 

only 20-40% of a normal person (47). Taken together, it seems apparent that most of 

the transplanted �-cells do not survive in the recipient. Several factors, depicted in 

Figure 1, are thought to be responsible. 
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Figure 1: Schematic presentation of loss of �-cells from the time of organ harvest to 

revascularization in the recipient (modified from Korsgren O et al. Diabetologia 

2008). Green area represents insulin-independence, red area insulin dependence.  

1. Loss of �-cells during brain death and organ harvest; 2. Loss of �-cells during islet 

isolation; 3. Loss of � cells during pre-transplant culture; 4. Loss of islets during the 

islet transplant procedure; 5. Loss of islets during post-transplant period prior to 

revascularization.  

 

3.7 INFLAMMATORY PROCESSES CAUSING LOSS OF � -CELLS  

 

3.7.1 BRAIN DEATH 

Loss of �-cell viability and mass begins with the complex process of brain death in 

the organ donor. Brain death is initiated by an increase in the intracranial pressure. 

This increase is usually caused by intracranial bleeding, but could also be secondary 

to brain swelling (e.g. as a result of cardiac arrest-induced brain ischemia). The skull 

constitutes a restricted compartment for the brain; increase in pressure will inevitably 

cause the lower parts of the brain, the temporal lobes, to be forced through the 

aperture at the base of the skull, the foramen magnum. This herniation of brain tissue 

compresses the brain stem, cranial nerves and the arterial blood supply to the rest of 

the brain, causing ischemia and additional swelling, culminating in cessation of blood 
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flow and brain death (48). In this process, a massive sympathetic autonomic response 

ensues as the brain stem becomes ischemic, presumably to maintain cerebral 

perfusion pressure. This “autonomic storm” lasts about 5 to 15 minutes, and causes 

intense vasoconstriction and ischemia in most organs, including pancreas (49). 

Herniation is followed by a resolution of the sympathetic surge with vasodilatation 

and reperfusion injury as result (49).  

 

In addition to ischemia-reperfusion injury, brain death is followed by activation of 

inflammatory mediators such as the complement system, thromboxanes, platelet, and 

leukocyte factors (50,51), causing a progressive leukocyte influx into solid organs that 

enhances the immunogenicity of the grafts (52). Pro-inflammatory gene expression 

has been demonstrated to be higher in organs at the time of organ procurement than 

during periods of acute rejection (53), illustrating the magnitude of the pro-

inflammatory effects of brain death. This may explain why graft survival from brain-

dead donors is inferior to living-unrelated donors, despite the better human leucocyte 

antigen (HLA) matching (54). 

 

The surge of pro-inflammatory mediators observed in brain dead donors may be 

explained by at least two factors. First, brain death disrupts the hypothalamic-

pituitary-adrenal axis, that normally under stressful conditions produce 

glucocorticoids. Glucocorticoids inhibit pro-inflammatory- and increase anti-

inflammatory signalling, thereby reducing the magnitude of the inflammatory 

response (55). Administration of glucocorticoids to the brain dead donor has been 

shown to improve graft function and reduce acute rejection episodes in liver 

transplantation (56). Second, Tracy and co-workers have demonstrated that the 

nervous system, via an inflammatory reflex of the vagus nerve, can inhibit cytokine 

release and thereby prevent tissue injury and death (57,58). This efferent neural 

signalling pathway is termed the “cholinergic anti-inflammatory pathway”. Disruption 

of this anti-inflammatory pathway is inevitably the consequence of brain death.  

 

Brain death causes significant pathophysiological alterations in the pancreas, 

including deterioration of pancreatic microvasculature, inflammation, and histologic 

damage (59). Studies have demonstrated that brain death is associated with a 
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significant reduction in islet yield after isolation and impaired islet function in vitro 

and in vivo (60,61). 

 

3.7.2 ORGAN PROCUREMENT AND COLD ISCHEMIA 

Organ procurement arguably represents one of the most invasive surgical procedures 

conducted today. Because pro-inflammatory response has been shown to correlate 

with the extent of surgery (62), the surgical trauma associated with the procurement 

procedure probably contributes to the pro-inflammatory response in the donor.  

A subsequent prolonged cold preservation period may exacerbate functional 

deterioration, an observation widely acknowledged in renal transplantation where 

prolonged cold storage is associated with poor graft outcome (63,64). Prolonged cold 

ischemic time is associated with poor graft function in whole-organ pancreas 

transplantation (36) and islet loss in culture (65). The mechanism responsible may 

involve generation of reactive oxygen species (ROS) during cold preservation (66). 

 

3.7.3 ISLET ISOLATION 

Islet isolation consists of pancreas digestion and purification of the islets. The crucial 

part of the isolation procedure is the enzymatic dissociation of islets from the 

surrounding exocrine tissue, by the use of an enzyme blend. The blend consists 

mainly of collagenase class I and II and neutral protease or thermolysin (67) that is 

perfused into the pancreas via the main duct. This is followed by 37°C incubation and 

mechanical dissociation (68).   

 

It has fairly conclusively been demonstrated that some of the components of the 

enzyme blend are toxic to islets (69-72). Additionally, islets are exposed anoxia, 

hyperosmolarity, acidity, and mechanical stress during the digestion phase of isolation 

(73,74). As a consequence, up to 30% of all islets may stain TUNEL (terminal dUTP 

nick end labeling) positive for apoptosis immediately after isolation (75). Not 

surprisingly, the length of the digestion process correlate with islet damage (76-78), 

stressing the importance of an efficient enzyme blend (79). The search for an optimal 

blend is a work in progress (80).  
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3.8 THE ROLE OF INNATE IMMUNITY IN THE PERI- AND POST-

TRANSPLANT PERIOD 

Observations from experimental syngeneic islet transplantation demonstrate that a 

majority of transplanted �-cells (up to 60%) are lost during the first week after 

transplantation (81-83). The absence of allo- and auto-immunity in these models 

implies a dominant role for innate immunity in causing �-cell loss. Moreover, the 

inflammatory cytokines released during islet transplantation are suggestive of an 

activated innate immune system (84). The activator of the host immune response may 

be the islets themselves, as islets become highly inflamed during the process of brain 

death, organ procurement and islet isolation and secrete multiple pro-inflammatory 

mediators such as tissue factor (TF), monocyte chemotactic protein (MCP)-1, and 

interleukin (IL)-8 (85). The innate immunity-driven processes can roughly be divided 

into the peri-transplant blood-mediated reaction and post-transplant interactions with 

the host liver.  

 

3.8.1 THE INSTANT BLOOD-MEDIATED INFLAMMATORY REACTION 

When islets are dispersed in ABO-identical non-heparinized whole blood, clotting can 

be observed macroscopically within 5 minutes. This clotting reaction has been termed 

the instant blood-mediated inflammatory reaction (IBMIR) (86,87). Characterization 

of the process reveals that when islets come in contact with blood, there is activation 

and rapid binding of platelets to the islet surface, together with activation of the 

coagulation and complement systems (86). Within 15 min, leukocytes are found 

infiltrating the islets, and after an hour, most of the islets are infiltrated by numerous 

leukocytes resulting in disruption of islet integrity and islet loss (86). The process has 

been demonstrated in experimental animal models and in the clinical setting (86,87).  

 

It has been demonstrated that human pancreatic islets, but not exocrine tissue, express 

tissue factor (TF) at the cell surface (87). IBMIR can be abrogated with specific 

antibodies towards TF,  which suggests that TF on the islet surface is the main trigger 

of IBMIR (87). Moreover, it has been demonstrated that the content of tissue factor in 

the islets correlates with the strength of the IBMIR (88). Human islets express >50 

inflammation-associated genes (85), and several lines of evidence suggest that TF 

expression is part of general pro-inflammatory status of human islets, induced in a 

manner analogous to that of other inflammation-related genes (88,89). IBMIR 
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therefore represents a functional link between inflammation and coagulation. Inhibing 

IBMIR has been shown to enhances islet survival and improves long-term function in 

nonhuman primates (90).  

 

Recently, Eich and co-workers have demonstrated, using FDG labeled porcine islets 

in a pig alloislet transplant model, that following intraportal islet transplantation, only 

50% of the radioactivity contained in the injected islets could be found in the liver 

following intraportal transplantation (the peak occurred at 25 minutes, 5 minutes after 

completion of the transplantation; all of the infused radioactivity was accounted for) 

(91). The data imply that 50% of the infused islets are damaged to an extent that they 

release intracellular FDG, and additionally, that this happens within an extremely 

short time-period (<20 minutes) (91). Disturbingly, in a series of human islet 

transplants, the same results were obtained (personal communication O. Korsgren). 

This may explain the peaks in C-peptide observed during and immediately after 

clinical islet transplantation (92). Eich and co-workers speculate that the only 

biological systems capable of such swift destruction are the cascade systems with the 

complement system as the prime candidate (91). Interestingly, heparin had no effect 

on this immediate destruction of islets (91), testifying to the suboptimal effects of 

heparin on complement activation.  

 

3.8.2 INTERACTIONS WITH THE LIVER 

As outlined, the events proceeding transplantation are highly stressful to the islets and 

induce secretion of pro-inflammatory mediators (85). These include chemokines of 

the CC- and CXC- families, notably MCP-1, macrophage migration inhibiting factor 

(MIF), IL-8, RANTES (Regulated upon activation, normal T-cell expressed and 

secreted) and CXCL10 (85). The secretion of these chemokines can recruit monocytes 

from blood into the islets were they mature into dendritic cells (93), but also attracts 

and activates macrophages (94). The resident macrophages in the liver (Kupffer cells) 

appear to be important mediators of cellular injury to the islets, e.g. by secreting pro-

inflammatory cytokines such as IL-1� and tumor necrosis factor (TNF)-� (95,96). 

Prevention of macrophage activation and the consequent release of inflammatory 

cytokines preserve islet mass after transplantation (84). Additionally, experimental 

studies have revealed a significant increase in pro-inflammatory cytokines from 

neighbouring hepatocytes (97) and intrahepatic endothelial cells (98,99) as a result of 
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intraportal transplantation. Finally, contaminating ductal (100) and acinar (101) cells 

that are inherently co-transplanted with the islets are also important contributors to the 

secretion of pro-inflammatory cytokines. The net result is a peri-islet milieu 

characterized by high levels of �-cell toxic cytokines (e.g. IL-1�, TNF-� and IFN-� 

(102)), hampering the post-transplant survival of islets.   

 

3.9 ALLO- AND AUTOIMMUNITY IN ISLET TRANSPLANTATION 

There is extensive crosstalk between the innate and the adaptive immune system. This 

may be illustrated by the observation that activation of the innate immune system 

delays or prevents the establishment of peripheral tolerance (103-105). It has been 

shown that human islets can release high-mobility group box 1 (HMGB1), a protein 

associated with necrotic cell death (106). HMBG1 activates, possibly through binding 

with toll-like receptors (TLRs) (107-109), both dendritic (antigen presenting) cells 

and T-cells (110) and may thus be a link between the innate and adaptive immune 

system. Accordingly, HMGB1 has been shown to be pivotal in the initiation and 

progression of allograft rejection (111). Blockade of HMGB1 in NOD mice prevents 

autoimmune progression and delays diabetes onset (110). 

 

In clinical islet transplantation there is uncertainty regarding the contributions of 

adaptive immunity to the post-transplant decline in graft function (112), perhaps 

because intrahepatic islets are not regularly biopsied. However, we (TL, AF and TGJ, 

unpublished data) and others (113) have witnessed rise in antidonor HLA-levels 

occurring simultaneously with disappearance of C-peptide in islet-graft recipients, 

strongly indicating transplant failure due to rejection. Additionally, it has been 

reported that pre-transplant recipient donor-HLA reactivity is associated with a 4-fold 

increased risk of graft loss (114). Also, cultured human islets have been reported to 

cause T-cell responses in mixed islet/lymphocyte cultures dependent upon the degree 

of HLA mismatch (115). The Edmonton protocol is steroid-free and therefore the 

potential for alloreactivity may be significant.  

 

Transplantation to patients with type 1 diabetes is a unique situation in that type 1 

diabetes is an auto-immune disease. Recurrence of auto-immunity following islet 

transplantation has been reported, and is associated with graft failure (116-119). It has 

been suggested that the risk of auto-immune recurrence is particularly high in islet 
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recipients that have not been subjected to prolonged immunosuppression prior to 

transplantation (e.g. patients that have not received a kidney graft prior to 

transplantation) (116) and that a short duration of diabetes, and presumably relative 

high auto-immune activity, correlates with an increased risk of graft loss (114). 

Alternatively, the immunosuppressive regimen may play a role, as the Edmonton 

protocol (daclizumab, tacrolimus and sirolimus) has been demonstrated to increase 

autoreactive T-cells and to induce autoimmune recurrence after islet transplantion 

(119). 

 

Some evidence suggest that substitution of monoclonal anti-CD25 antiboides (e.g. 

daclizumab) with polyclonal T-cell antibodies (e.g. ATG) may reduce the risk of graft 

failure (112), indicating that the immunosuppression traditionally utilized in islet 

transplantation is insufficient. 

 

3.10 HYPOXIA AND TOXIC SUBSTANCES IN THE POST-TRANSPLANT 

PERIOD 

 

3.10.1 REVASCULARIZATION 

For the islets that have escaped the IBMIR, and are able to survive in the pro-

inflammatory hepatic environment (the presinusoidal capillaries (120)), the journey 

towards successful engraftment has only just begun. The process of islet isolation and 

purification has caused complete destruction of the islet capillary network (121), and 

because revascularization takes about 2 weeks, they are now relaying upon passive 

diffusion of oxygen and nutrients for a prolonged period (122-124). Islets are 

normally accustomed to highly oxygenated blood and nutrient rich surroundings 

(125); in spite of making up 1% of the pancreatic mass, islets receive 15% of the 

blood flow (126). In whole organ pancreas transplantation it has been shown that the 

major cause of graft loss and primary non-function during the first days after 

transplantation is caused by vascular thrombosis (127). This indicates that adequate 

oxygenation is important for islet survival. A 2 week hypoxic period may thus be 

detrimental to the transplanted islets (128).  
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The islets that do survive have adapted to hypoxia (125). Once revascularization is in 

place, the ability to absorb oxygen is immediately enhanced. This rapid increase in 

oxygenated blood flow may cause reperfusion injury (44).  

 

Careful observations of intraportally transplanted islets show that, when grafted, the 

vascular density is only ~25% of that in native islets, accompanied by markedly 

reduced oxygen tension compared to normal (123,129). This has profound adverse 

effects on insulin synthesis and glucose-stimulated insulin secretion (122). 

Additionally, important paracrine signaling from neighbouring endothelial cells is 

reduced (130), as well as the drainage of secreted hormones, including islet amyloid 

polypeptide (129). Amyloid deposition is a hallmark of type 2 diabetes, and extensive 

amyloid depositions has been observed in intraportally transplanted human islets 

(131).   

 

3.10.2 LIPOTOXICITY 

Animal models of type 2 diabetes (e.g. Zucker diabetic fatty (ZDF) rats) have 

identified overaccumulation of lipids in islets as a cause of �-cell destruction (132). 

Later studies have confirmed that exposure of isolated human islets to fatty acids 

damages �-cells and results in apoptosis (133).  

 

The importance of lipotoxicity in clinical islet transplantation is illustrated by the 

regular occurrence of focal liver steatosis [REF (134) and figure 2]. Islets transplanted 

to the liver are exposed to high portal vein levels of nutrients and gut hormones, 

stimulating maximal production and secretion of insulin. High levels of insulin 

upregulates SREBP1c in hepatocytes, which in turn cause intracellular lipid 

accumulation (steatosis) and increased secretion of triglycerides (135). Focal liver 

steatosis is also observed in other scenarios where the liver is exposed to high levels 

of insulin locally (e.g. in patients with metastatic insulinoma (136) or in peritoneal 

dialysis when insulin is added (137)). Unfortunately, lipoprotein lipase of the islets 

(138) may hydrolyze triglycerides released by surrounding hepatocytes, exposing the 

�-cells to increasing levels of fatty acids. In a murine model of intraportal islet 

transplantation it has been demonstrated that islets within steatotic leasions display 

sharp reductions in insulin-positive �-cells and replacement by thick collagen strands 

reminiscent of the poststeatotic fibrosis observed in islets of ZDF rats (135). 
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There are several possible explanations for lipid-induced �-cell damage. First, excess 

lipid induces stress on the membranes of lipid-metabolizing organelles (e.g. the 

endoplasmic reticulum (ER) and mitochondria) (139), thereby increasing the 

production of ROS (140). Second, fatty acids can directly elicit a pro-inflammatory 

response by binding to Toll-like receptors (TLRs) (141). TLRs belong to a family of 

pattern-recognition receptors that activate nuclear factor-kappaB (NF-�B) and initiate 

synthesis of pro-inflammatory mediators (142). TLRs are found on �-cells, and 

suppression of TLRs is associated with improved islet survival (143). 

 
 

Figure 2: Focal liver steatosis 5 months after a second islet transplant procedure. The 

two transplants were performed within a 3-week period in August 2003. 

Ultrasonography and magnetic resonance imaging 1 month after the second transplant 

were normal, indicating that focal steatosis needs time to develop. The patient was 

initially insulin independent, but resumed low dose insulin within 3 months after the 

second transplantation. 1 year after biopsy-proven liver steatosis, the patient received 

a third islet infusion, after which the patient enjoyed a 3 month period of insulin 

independence, with subsequent reinstatement of low-dose insulin therapy. Follow-up 

at 4 years indicates partial graft function with a 50% reduction in insulin requirement 
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compared to pre-transplant levels, with decent glycemic control (HbA1c levels 

persistently < 10) and absence of hypoglycaemic episodes. 

 

3.10.3 TOXIC IMMUNOSUPPRESSION 

Allogeneic islet transplantation warrants immunosuppression to prevent rejection. 

Unfortunately, all immunosuppressive agents utilized in the maintenance regimen 

after transplantation are islet toxic (144-146). Experiences from allogeneic kidney 

transplantation reveal that 15% of transplanted patients develop diabetes due to �-cell 

toxic immunosuppression (147), although it must be noted that glucocorticoids are 

avoided in islet transplantation (38). Still, intraportally transplanted islets are in close 

proximity to the the portal blood where the peak drug concentrations of e.g. 

calcineurin inhibitors are reported to be 2-3 times that of the peripheral circulation 

(148). This may potentiate the diabetogenic effects of the drugs (149).  

 

3.11 MECHANISMS OF �-CELL DESTRUCTION  

The principal mediators of �-cell damage in the context of islet transplantation are 

pro-inflammatory cytokines, oxidative stress and toxic substances. Regardless of the 

mediator, the mechanism of damage relates in large measure to the activation of 

intracellular transcription factors, most notably NF-�B, the Janus kinase–signal 

transducer and activator of transcription 1 (STAT1) pathway and the mitogen-

activated protein kinases (MAPK). The chain of events that promote activation of 

these intracellular transcription factors is essentially unknown (150), although a 

highly complex picture is emerging (151).  

 

3.11.1 PRO-INFLAMMATORY CYTOKINES 

Following receptor binding of IL-1�, TNF-� and IFN-� distinct signalling cascades 

are activated in �-cells, as shown in Figure 3.  IL-1� mediates activation of the 

transcription factor NF-�B pathway, a pathway partly shared by TNF-�. The IL-1� 

and TNF-� signalling cascades also cause the activation of members of the MAPK.  

IFN-� signalling involves activation of the STAT1 pathway. The concerted action of 

these transcription factors alters the expression of multiple genes, ultimately causing 

deleterious effects on �-cells following islet transplantation (152,153).  
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A growing body of evidence indicates that there is considerable cross-talk between 

the STAT and NF- B signalling pathways [reviewed in (154)]. In human islets in 

vitro, both activation of STAT1 (e.g. by IFN-�) and NF-�B (e.g. by IL-1�) are 

required for inducing apoptosis (155). 

 

3.11.2 OXIDATIVE STRESS 

During normal cellular metabolism, ROS are formed. The primary source of ROS 

production is probably mitochondria (156). All cells are equipped with multiple 

enzymes (e.g. superoxide dismutases) and anti-oxidants (e.g. vitamins) to neutralize 

ROS. However, during hypoxia the mitochondrial respiratory chain is inhibited, and 

as the antioxidant defence systems become overwhelmed, ROS accumulates (157). 

The result is oxidative stress. Oxidative stress is characterized by depletion of ATP, 

mitochondrial membrane depolarization, cytochrome c release, and activation of 

apoptotic and necrotic pathways (75,156,157). Islets have been shown to be 

particularly prone to ROS accumulation because of low levels of antioxidant enzymes 

(158). ROS are able to activate multiple signalling transduction pathways, notably 

MAPK (159) and NF-�B (160).  

 

3.11.3 NITRIC OXIDE 

As a consequence of activation of the intracellular pro-inflammatory signalling 

pathways, multiple deleterious events may be initiated, such as upregulation of the 

pro-apoptotic cell-surface receptor Fas (161), upregulation of pro-inflammatory 

mediators (162-164), transcription of apoptotic genes, caspase activation (165,166) 

and suppression of antiapoptotic signalling (167). However, the most important 

mediator of cellular damage is possibly the enzyme inducible nitric oxide synthase 

(iNOS) (168) that causes formation of nitric oxide (NO). NO has been shown to be 

highly toxic to human islets, causing apoptosis and necrosis (106,155,169,170). NF-

�B, STAT1 and MAPK signalling all induce iNOS expression, and conversely, the 

improved islet viability observed by inhibiting these signalling cascades may, at least 

partially, be attributed to reduced NO production (171-173). Selective inhibition of 

iNOS have been shown to prevent diabetes in the NOD mouse (174), protect rat islets 

from hypoxia-induced apoptosis (175) and to protect human islets from cytokine-

induced cell-death (106).  
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The deleterious effects of nitric oxide (NO) are mainly based on its, and its derivates, 

ability to deplete the cells of energy (ATP) (176). Both the energy status of the cells 

prior to NO exposure, as well as the concentration of NO are crucial determinants. 

NO may, in combination with compromised ATP production (e.g. hypoxia) cause 

necrosis (177), but if ATP production is sufficient, apoptosis may ensue or there may 

not even be cell death at all (176). Similarly, pro-inflammatory cytokines may induce 

necrosis or apoptosis in a NO-dependent manner in human islets (106), possibly 

dependent upon the energy status of the islets. 

 

NO depletes the cell of ATP via inhibiting mitochondrial respiration, inducing 

mitochondrial permeability transition, inhibiting glycolysis and finally by activating 

poly ADP-ribose polymerase (PARP) (178). Glucose-stimulated insulin secretion 

(GSIS) is dependent upon mitochondrial oxidation of glucose to CO2 (179), and 

consequently, NO may be one mechanism responsible for reduced GSIS under pro-

inflammatory conditions (169). Also, the NO stresses the endoplasmic reticulum (ER) 

(180), causing inappropriate folding of proteins in the ER, a mechanism involved in 

�-cell apoptosis (181-184). 

 

 
Figure 3: Following binding with membrane bound receptors, pro-inflammatory 

cytokines activate intracellular signalling cascades, culminating in inflammatory gene 
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transcription and production of NO. The net result may be apoptosis or necrosis. The 

complexity of the signalling pathways is grossly simplified. 

 

3.12 ENDOGENOUS PROTECTIVE MECHANISMS 

 

3.12.1 GLUCOCORTICOIDS 

An inflammatory insult is followed by systemic release of anti-inflammatory 

glucocorticoids (cortisol) from the adrenal glands. Despite continuous efforts of the 

pharmaceutical industry to design anti-inflammatory compounds that can circumvent 

side effects while maintaining effectiveness, no other drug has (yet) approached the 

therapeutic benefits of glucocorticoids (185). Glucocorticoids efficiently block 

leukocyte migration towards sites of inflammation, by inhibiting relevant NF-�B-

driven cytokines and chemokines and thereby ensues quick dampening of 

inflammation (186). NF-�B is a key regulator of pro-inflammatory gene expression 

(187) and chemokines of the CC- (e.g. MCP-1) and CXC- (e.g. IL-8) family are 

dependent on NF-�B (188-191). NF-�B activation, and subsequent secretion of pro-

inflammatory mediators may directly harm the �-cells by drawing immune cells into 

the islets in the donor during brain death, increase cytokine production from intraislet 

macrophages during isolation and in pretransplant culture (155) and cause immune 

activation post-transplantation in the recipient. Additionally, NF-�B induces PARP 

activation (70), and thereby apoptosis (192). An increasing body of evidence 

implicates NF-�B in �-cell apoptosis (193,194), and agents interfering with NF-�B 

binding to DNA have been shown to increase �-cell survival and improve insulin 

release following islet isolation (70,195-197). In addition to interfering with NF-�B, 

glucocorticoids mediate an increase in anti-inflammatory cytokines such as IL-10 

(198). IL-10 overexpression (in combination with low-dose CyA) has been shown to 

prolong allograft survival in a murine islet allotransplant model (199). 

 

3.12.2 THE LIVER X RECEPTORS 

Inflammation and metabolism are tightly linked processes. For example, injurious 

signals (e.g. ROS or toxins) may activate intracellular danger sensors (the 

inflammasomes (200)) that via activated caspase-1 subsequently alters lipid (201), 

glucose (202) and protein (203) metabolism, presumably to protect the cell and 

promote homeostasis after injury. Additionally, caspase-1 processes pro-inflammatory 
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cytokines (204). Alternatively, an injurious signal may activate NF-�B, and thereby 

cause profound effects on lipid (205), glucose (206) and protein (207) metabolism, in 

addition to the well-documented effects on chemokine and cytokine secretion. Thus, 

injurious stimuli cause cells to alert their surroundings using inflammatory mediators, 

but also to change their metabolism to maximize the chance of survival.  

 

Conversely, nutrients, especially lipids and their metabolites alter the inflammatory 

profile of the cell. Lipids are sensed and regulated by intracellular nuclear hormone 

receptors, notably the liver X receptors (LXRs) and the peroxisome proliferator-

activated receptors (PPARs) (208). These lipid-sensing receptors heterodimerize with 

the retinoid X receptor (RXR) to activate a feed-forward metabolic cascade that 

maintains lipid homeostasis (139). Simultaneously, these receptors also suppress 

inflammatory gene transcription, perhaps through interference with NF-�B (209,210). 

Due to their effects on metabolism and inflammation, LXR and PPAR agonists 

represent promising anti-diabetic agents (211-213). Some PPAR agonists (e.g. the 

glitazones and the fibrate class of hypolipedemic drugs) have been used clinically for 

decades (211).  

 

LXRs primarily act as cholesterol sensors: when the cellular concentration of 

oxysterols (oxygenized cholesterol) increases, LXR induces the transcription of genes 

that protect the cell from cholesterol overload. In islets, they promote the transcription 

of genes for ATP-binding cassette transporters, ABCA1 and ABCG1 (214) that 

transport lipids out of the cell. At the same time, LXRs also up-regulate sterol 

regulatory element binding protein (SREBP)1c (215,216). SREBP1c boosts synthesis 

of poly-unsaturated fatty acids (PUFAs) for use in e.g. the cell membrane and 

organelles, and thus has cytoprotective effects (200). However, other lipids are also 

synthesized and prolonged SREBP1c activity is associated with lipotoxicity in �-cells 

(214,217). Importantly, LXRs suppress NF-�B target genes (209,218), and dampens 

both innate (209) and adaptive immune responses (219). The effects of LXRs on �-

cells are schematically represented in Figure 4. 
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Figure 4: The LXR-RXR complex is activated by endogenous oxysterols and initiate 

transcription of products that inhibit downstream TLR4 signaling. Additionally, LXRs 

increase transcription of SCREBP1c that in turn increases cellular lipogenesis (e.g. 

production of PUFAs).  

 

3.12.3 LIPID SIGNALING – THE POLY-UNSATURATED FATTY ACIDS 

Injury prompts cells, via cyclooxygenases or lipoxygenases, to synthesize eicosanoids 

(e.g. prostaglandins and leukotrienes) from PUFAs. Prostaglandines and leukotrienes 

have been recognized for their pro-inflammatory effects for more than seven decades 

(220,221), and are involved in the development acute inflammation. Recent studies 

indicate that as inflammation proceeds, immune cells stop producing eicosanoids and 

instead convert PUFAs into lipoxins, protectins and resolvins (222,223). These lipid 

mediators actively terminate inflammation and promote resolution of the 

inflammatory process (222,223).  

 

Interestingly, PUFAs downregulates SREBP1c, and thereby limit their own 

production (224). This has been demonstrated to occur through interacting with the 

binding domain of LXR in the SREBP1c promoter (225). A recent study has 
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demonstrated that PUFAs, and especially the PUFA-derived product Resolvin E1 

(RvE1), decreases liver steatosis and increases insulin sensitivity in adipose tissue 

(226). It is conceivable that some of these effects are due to downregulation of 

SREBP1c.  

 

3.12.4 SUPPRESSOR OF CYTOKINE SIGNALLING PROTEINS 

A different mechanism for negatively regulating the pro-inflammatory loop is the 

production of suppressor of cytokine signalling (Socs) proteins (227). Transcription of 

Socs genes is induced by NF-�B activation, and the Socs proteins act in a negative 

feedback-loop that attenuates pro-inflammation (228). For example, Socs-3 inhibits 

inflammation-induced NO production and apoptosis in a �-cell line (229), as well as 

several chemokines  and the death receptor Fas (230). Moreover, Socs3 transgenic 

islets have been demonstrated to be protected in an allogenic transplant model (231). 

 

3.12.5 HEAT SHOCK PROTEINS 

Heat-shock proteins (Hsps) constitute another protective mechanism. Hsp70 confers 

protection against NO induced necrosis (232) and inhibit iNOS expression (233). 

Additionally, the level of protection against IL-1 induced apoptosis has been reported 

to depend upon the level of Hsp70 expression (234). Hsp32, or haem oxygenase-1 

(HO-1), has been shown to protect against pro-inflammatory cytokine and Fas 

induced �-cell dysfunction, and HO-1 upregulation resulted in improved islet function 

in vivo (235). HO-1 has also been shown to be prolong islet allograft survival (235-

237). 
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4. AIMS OF THE STUDY 

The common denominator causing loss of �-cells in islet transplantation seems to be 

inflammation and the single most important inflammatory reaction may occur in the 

recipient upon transplantation: IBMIR. Our main hypothesis is that anti-

inflammatory strategies, applicable to the donor, islets in pre-transplant culture and 

to the recipient, could limit the loss of �-cells. The purpose of the present study was to 

expand our knowledge on anti-inflammatory strategies and their effect on human 

islets, and thereby hopefully identifying safe and effective tools for improving �-cell 

survival following islet transplantation. Finally, we reasoned, a powerful tool for 

reducing loss of �-cells would be to develop a transplant technique that avoids 

IBMIR. 
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5. METHODS 

 

5.1 ETHICS 

Human islets were isolated from deceased donors after consent was obtained from the 

organ donor registry or relatives, and experiments were performed in accordance with 

local institutional and Norwegian rules and regulations. The animal procedures and 

housing were in accordance with institutional guidelines and national legislation 

conforming to the Guide for the Care and Use of Laboratory Animals published by 

the U.S. National Institutes of Health (NIH Publication no. 85-23, revised 1996). All 

animal experiments were approved by the Institutional Animal Care Committee. 

 

5.2 HUMAN ISLET ISOLATION AND CULTURE (PAPER I-III) 

Islets were isolated according to the automated Ricordi method (238), refined by the 

Nordic Network for Islet Transplantation (68). The isolations were performed in Oslo 

and in Uppsala. Pancreata were digested using Liberase until May 2007 and thereafter 

SERVA Collagenase. To ensure comparable results, quality testing using dynamic or 

static insulin secretion was performed on hand-picked islets, only using preparations 

were an insulin stimulation index > 2 was obtained. Additionally, aliquots of ~100 

islets were stained with dithizone and purity calculated, and generally, only 

preparations with purities >50% were used. Islets were cultured at 37 °C (5% CO2) in 

CMRL 1066 medium supplemented with 10% ABO-compatible human serum or 

heat-inactivated foetal calf serum. The medium was changed every second day.  

 

5.3 TRANSPLANTATION OF HUMAN ISLETS TO SCID MICE (PAPER I)  

Male inbred SCID mice were chemically rendered diabetic and used as recipients. 

Human islets were cultured for 48 h prior to transplantation, and subsequently batches 

of 600 IEQ human islets were washed twice and transplanted under the left kidney 

capsule. The nonfasting blood glucose levels of the animals were measured twice a 

week during the first week. Thereafter, blood glucose levels were assessed once a 

week. At 4 weeks, cured mice were subjected to an intraperitoneal glucose tolerance 

test. Two to three days later, grafts were removed to confirm the recurrence of 

diabetes. 
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5.4 SYNGENEIC INTRAMUSCULAR ISLET TRANSPLANTATION (PAPER 

IV) 

Lewis rats were used as donors and recipients; the recipients were chemically 

rendered diabetic, thus allowing a transplant model devoid of allo- and autoimmunity. 

Islets (2000 IEQ) were dispersed in 0.15 mL of transplant medium, collected in a 

syringe, and transplanted in the fibre direction of the m. biceps femoris bilaterally, to 

obtain a pearls-on-a-string distribution of islets in the muscle. Post-transplant, blood 

glucose was measured daily in the recipients, until>3 consecutive measurements were 

below 10 mmol/L. After that, blood glucose was measured once a week. Eight weeks 

after transplantation, graft function was assessed by an intravenous glucose tolerance 

test. 

 

5.5 DYNAMIC INSULIN SECRETION (PAPER I-III) 

For dynamic insulin secretion, 20 islets were handpicked and added to each of six 

perfusion chambers, layered between inert polystyrene beads. A Krebs–Ringer 

bicarbonate buffer was used at a flow rate of 0.2 ml/min. The perfusion system was 

initiated after a 30-min equilibration period in 1.67 mM glucose, followed by a 60-

min stimulation period with 20 mM glucose and finally back to 1.67 mM glucose. 

Samples were collected at 6-min intervals, immediately ice-chilled, and stored at -

20°C until analyzed. In paper II and III, the hand-picked islets were photographed 

prior to perfusion, analysed with Cellimage® and following calculation of total islet 

size, the insulin secretion was normalized to islet area. 

 

5.6 TUBING LOOPS (PAPER III) 

 To measure IBMIR in vitro we used a modification of a tubing loop model 

previously described (87), designed to resemble a blood vessel. In brief, loops made 

of polyvinylchloride were treated with a heparin surface. 6 �L (about 6000 IEQ) islets 

were preincubated, washed and resuspended in 150 �L CMRL 1066. Thereafter, fresh 

ABO-identical blood (7 mL) was added to the loops and incubated for 15 minutes on 

a rocker inside a 37°C incubator for 15 min, before addition of the islets. We also 

included a control loop containing blood supplemented with 150 �L CMRL 1066 but 

no islets. The rocker was set to generate a blood flow of about 45 mL/min (to mimic 

portal blood flow). Blood samples were collected into tubes containing EDTA  before 

perfusion and at 5, 15, 30, and 60 min after the addition of islets. Platelets were 
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counted with a Coulter AcT diff analyser and plasma concentrations of thrombin-

antithrombin complex were quantified with a commercial EIA kit. 

 

5.7 RNA ISOLATION 

RNA was isolated from frozen islet pellets (paper I-III) with RNA isolation kit using 

the MagNA Pure LC instrument according to the manufacturer’s description. 

RNA from frozen muscle biopsies (paper IV) were isolated first by disruption and 

homogenization using mortar and pestle, subsequently solubilized in lysis buffer 

followed by three cycles in a rotor-stator homogenizer. RNA was then extracted 

according to the manufacturer’s protocol using the RNeasy kit from Qiagen. In all 

cases, RNA concentrations were determined with a spectrophotometer, and a 

standardized amount of RNA was reverse transcribed. 

 

5.8 ASSAYS 

Enzyme-linked immunosorbent assay (ELISA), enzyme immunoassay (EIA), 

quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) and 

the low-density array (LDA) are standardized and commonly used methods of 

analysis and will not be described in further detail. Similarly, commercial kits for 

ATP content, ADP/ATP ratio, Caspase 3 and 7 activity, mitochondrial 

dehydrogenase, DNA content activity were used. The procedures are described in the 

methods section of each paper and are generally performed according to the 

manufacturer’s instructions.   

 

5.9 METHODOLOGICAL CONSIDERATIONS 

In general, data generated in vitro are simplified approximations of the complex 

biological diversity encountered in vivo. For example, the blood loop model 

consisting of heparin coated polyvinylchloride tubes do not harbour the biological 

activities of endothelial cells in vivo. Additionally, air enclosed in the tubes affects 

blood-activation. The results obtained must therefore be interpreted carefully, and 

rather the relative differences between the groups, than the absolute values, are 

important. The in vivo models utilized have been devoid of allo- and autoimmunity 

and represent different islet:organism size ratios. These factors will inherently affect 

post-transplant islet engraftment, survival and function. 
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6. SUMMARY OF RESULTS  

 

6.1 PAPER I: Glucocorticoids reduce pro-inflammatory cytokines and tissue 

factor in vitro and improve function of transplanted human islets in vivo. 

In vitro, we showed that glucocorticoids reduced human islet mRNA and protein 

levels of the CC- (MCP-1) and CXC- (IL-8) chemokines and TF with ~50%, and 

increased IL-10 mRNA. Islet levels of TF remained lower than control during a 3 day 

period after drug removal. The anti-inflammatory effect was abrogated by high 

glucose. Furthermore, glucocorticoids had a profound dampening effect on glucose-

stimulated insulin secretion (~60%), but the reduction was accompanied by an 

increase in intracellular insulin content. Furthermore, this effect was reversible within 

5 days after drug removal from culture medium, at which point the glucocorticoid 

treated islets performed better than controls. Apart from increased intracellular ATP 

levels (~40%), there were no effects on islet viability. When transplanted to diabetic 

SCID mice, glucocorticoid treated islets reversed diabetes more effectively than 

controls. 

 

6.2 PAPER II: The synthetic liver X receptor agonist GW3965 reduces tissue 

factor expression and inflammatory responses in human islets in vitro. 

In this paper we demonstrated, in vitro, that the transcription factors LXR� and -� are 

expressed in human islets, and that the expression is upregulated by LPS and a 

synthetic LXR agonist (GW3965), but not by glucocorticoids. Mapping the effect of 

LXR stimulation in human islets, we showed that GW3965 has pleiotropic effects on 

human islets. It downregulated CC-(MCP-1 and CCL-5) and CXC-(IL-8) chemokines 

and TF, in addition to the transcription factor STAT1. The efficacy approached that of 

glucocorticoids. Additionally, treatment resulted in upregulation of vascular 

endothelial growth factor (VEGFA) as well as the zinc transporter SLC39A1. On the 

other hand, GW3965 also had pro-inflammatory properties, evident by upregulation 

of Toll-like receptor 4 (TLR4) and CXCL10. However, GW3965 had, in contrast to 

glucocorticoids, no effects on insulin secretion. Nor could we detect effects on islet 

viability. 
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6.3 PAPER III: Resolvin E1 reduces proinflammatory markers in human 

pancreatic islets in vitro. 

Resolvin E1 (RvE1) has two identified receptors; BLT1 and ChemR23. In vitro, we 

showed that human islets weakly express BLT1, but not ChemR23. Still, we showed 

that RvE1 has anti-inflammatory properties on human islets, reducing mRNA and 

protein levels of MCP-1, IL-8 and TF with an efficacy approaching that of 

glucocorticoids. Additionally, the expression of the CC-chemokine receptor and 

ligand 5 (CCL- and CCR5) and MMP9, and culture supernatant levels of CXCL10, 

were reduced. RvE1 upregulated TGF-�. At very high concentrations, RvE1 

demonstrated pro-inflammatory properties. No adverse effects of RvE1 on insulin 

secretion or islet viability were observed. We additionally evaluated the effect of 

RvE1 on IBMIR in vitro, and found a modest inhibition of platelet consumption and 

complement activation at 5 minutes following islet-blood contact, indicating a modest 

inhibition of the initial phases of IBMIR.  

 

6.4 PAPER IV: Sustained Reversal of Diabetes Following Islet Transplantation 

to Striated Musculature in the Rat. 

As our anti-inflammatory strategies were ineffective in reducing IBMIR we sought to 

develop a strategy that would avoid islet-blood contact altogether. We transplanted 

islets into the m.femoris biceps of Lewis rats, carefully avoiding bleeding, but showed 

that twice the amount of islets were required to reverse diabetes, compared to 

intraportal transplantation. However; when successful, the median time to reversal of 

diabetes and post-transplant weight development was similar to intraportal 

transplantation. Intravenous glucose tolerance test at 8 weeks posttransplantation 

demonstrated comparable insulin responses between the transplanted groups (both 

delayed compared to non-transplanted, healthy controls), and similar effects on 

temporal blood glucose decline were observed. PEGylation of islets were evaluated as 

a tool to improve efficacy, but was ineffective. Histological examination of the grafts 

revealed significant peri-islet fibrosis surrounding the intramuscular grafts, but also a 

significant amount of ductal-like tissue. mRNA analysis of biopsies taken 1 hour after 

intramuscular transplantation showed induction of IL-6 and IL-8 expression. Sham 

and islet transplantation induced similar inflammatory response, and higher transplant 

volume injected elicited a larger inflammatory response.  
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7. DISCUSSION 

 

THE INFLAMMATORY BARRIER IN ISLET TRANSPLANTATION 

Inflammation is a primordial response that functions to protect us against invasion by 

pathogens. However, the effects on human islets as they venture through brain death, 

procurement, cold ischemia, isolation and encounter with blood in the recipient show 

that aggressive and prolonged inflammatory responses can be detrimental.  

 

Humans, along with most animals, have evolved mechanisms to ensure that the 

inflammatory response is limited in time and space. Many endogenous anti-

inflammatory and pro-resolving mediators function to counteract the properties of 

pro-inflammatory factors. During the progression towards brain death, and 

subsequently during procurement, cold ischemia, islet isolation and pretransplant 

culture, these mechanisms are severely disrupted or absent.  

 

This work has explored three different endogenous anti-inflammatory mechanisms for 

reducing inflammation in human islets. As it became apparent these strategies were 

insufficient in protecting the islets when encountering blood, we additionally sought 

to identify a way to circumvent blood-contact in islet transplantation.   

 

THE EFFECTS OF GLUCOCORTICOIDS 

Glucocorticoids are the first class of endogenous anti-inflammatory mediators that 

have been successfully used for therapeutic purposes. During inflammation, secretion 

of cortisol from the adrenal cortex dampen local and systemic inflammatory events 

(239). Glucocorticoids have substantial effects on gene expression; ~1% of the 

genome might be influenced (239). In Paper I we explored the effects of 

glucocorticoids on human islets, and showed a potent inhibition of the pro-

inflammatory markers TF, MCP-1 and IL-8. TF expression is part of general pro-

inflammatory status of human islets (85,89) and the principal initiator of IBMIR (87). 

Inhibition of TF has been demonstrated to improve islet transplant outcome in an 

allogenic non-human primate model of islet transplantation (90) and TF content in 

human pancreata correlates with clinical outcome (89). MCP-1 is a potent 

chemattractant for macrophages, and likely participates in the non-specific immune 

reaction that destroys islets after transplantation. MCP-1 content in islets has been 
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demonstrated to correlate with clinical outcome (240). IL-8 is a potent 

chemoattractant of eosinophils and neutrophils (241) and may synergize with the 

effects of MCP-1 in promoting immune cell infilatration following transplantation. 

Glucocorticoids may exert the inhibiting effects through transrepression of NF-�B 

(242). Additionally, we found elevated transcription of IL-10 following 

glucocorticoid treatment of human islets. IL-10 is an anti-inflammatory cytokine that 

also activates T-regs (243). Viral IL-10 induction has been shown to prolong allograft 

survival in a murine islet transplant model (199). Glucocorticoids have been 

demonstrated to transactivate IL-10, which may be the mechanism responsible (244).   

 

Insulin secretion was blunted by glucocorticoids, accompanied by an increase in the 

intracellular insulin content (Paper I), suggesting that glucocorticoids interfere with 

the secretory process of insulin release, and not the transcription. This observation is 

in line with previous studies (245). Additionally, the effect was reversible; 5 days 

after drug removal, glucocorticoid-treated islets responded better to glucose than 

controls. Collectively, these findings may suggest that glucocorticoids do not have 

durable detrimental effects on insulin metabolism.  

 

Glucocorticoids did not affect islet viability in our study. On the contrary; it increased 

intracellular ATP levels. Intracellular ATP levels have been shown to positively 

correlate with transplant outcome in a pig-to-nude-mice transplant model (246). These 

findings contradict previous studies on murine islets and �-cell lines, where 

dexamethasone has been shown to induce apoptosis (247). However; the conditions in 

our study were different in that we did not use hyperglycaemic conditions. 

Alternatively, species specific differences may be responsible (248,249).  

 

Possibly as a result of these anti-inflammatory effects, we found that glucocorticoid 

treated human islets reversed diabetes more efficient when transplanted to SCID mice. 

In a recent study it has been shown that glucocorticoid treatment of the brain-dead 

donor improves graft survival and reduces acute rejection episodes (56). Collectively, 

these data suggest that glucocorticoid treatment of the donor and/or islets in culture 

may be beneficial. 
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However, glucocorticoids have diabetogenic properties in vivo (250-254). Preliminary 

observations indicated that glucocorticoid treatment of the recipient severely 

complicates post-transplant blood glucose control (T. Lund, unpublished 

observations). We therefore wanted to explore other anti-inflammatory substances, 

with the identification of a non-diabetogenic, potent anti-inflammatory agent as target.   

 

LIVER X RECEPTOR AGONISM AND HUMAN ISLETS 

Liver X receptors (LXR�/�) are transcription factors belonging to the nuclear 

receptor superfamily and act as key regulators of lipid metabolism and inflammation 

[reviewed in (255)]. LXRs are activated by endogenously produced oxysterols. In 

paper II we showed that LXRs are expressed in human islets, and that the expression 

is upregulated by LPS. This suggests that activation of LXRs during stress constitutes 

an endogenous protective mechanism in human islets, as has been found to be the 

case in macrophages (256) and human monocytes (257). Supporting this, we found 

that GW3965, a synthetic LXR agonist, upregulated the expression of LXRs, and 

downregulated the pro-inflammatory mediators TF, IL-8 and  MCP-1. Moreover, we 

also found that LXR activation significantly decrease the transcription factor STAT1, 

known to be involved in cytokine-induced �-cell death (172,258).   

 

Interestingly, the data also showed significant upregulation of two known 

proangiogenic factors; angiopoietin-1 (ANGPT1) and vascular endothelial growth 

factor (VEGF) in GW3965 exposed islets. These factors have been shown to promote 

graft angiogenesis and enhance islet revascularization, contributing to improved 

glycemic control and better preservation of islet mass in mice (259,260).  

 

On the other hand we observed upregulation of toll-like receptor-4 (TLR4), a receptor 

associated with enhanced bacterial removal during infection (261), and CXCL10, a 

pro-inflammatory cytokine involved, via TLR4 signaling, in �-cell destruction (262). 

These data may illustrate the endogenous effects of LXRs; on one hand limiting 

excessive cytokine production and on the other hand enhancing removal of gram 

negative bacteria during infection [reviewed in (263)]. However, TLR-4 has also been 

implicated in �-cell death and graft rejection after transplantation (143).  
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Furthermore, we showed that GW3965 significantly induced the expression of the 

typical LXR lipogenic target gene, SREBP1c, as well as the cholesterol efflux genes, 

ABCA1 and ABCG1, in LPS-stimulated islets. Prolonged activation of lipogenic gene 

expression can result in accumulation of free fatty acids and triglycerides, causing ß-

cell dysfunction (264,265). Chronic stimulation of LXRs by the synthetic agonist 

T1317 has been shown to induce a marked upregulation of genes involved in 

lipogenesis in pancreatic � cells (266,267), and lipid overloading may cause serious � 

cell dysfunction and apoptosis (265,268). So even though it has been established that 

LXRs are important for maintaining normal � cell function (269), there also seems to 

be compelling evidence that supraphysiological activation of LXR could induce islet 

lipotoxicity (267,270).  

 

In our study, however, we found no evidence of storage of excess lipids in GW3965 

exposed islets, and consequently, we could detect no adverse effects on islet viability. 

On the contrary, we found a tendency towards lower basal insulin secretion from 

GW3965 treated islets, resulting in an increased insulin stimulation index. Increased 

basal insulin secretion is associated with cytokine induced islet dysfuncition (271), 

and these data may imply that GW3965 induced reduction in inflammatory milieu has 

positive effects on human islets. A possible explanation for the diverging results may 

be differences in the LXR agonist used, dosage and exposure time, glucose 

concentrations, or species specific differences (human versus murine islets).  

 

Taken together, activation of LXRs with the synthetic LXR agonist GW3965 has 

potent dampening effects on key inflammatory mediators in human islets in vitro 

without adverse effects on insulin secretion or islet viability. However, not all 

inflammatory markers were reduced (e.g. TLR4 and CXCL10). Additionally, 

lipotoxicity remains a concern, especially under high glucose concentrations and/or 

prolonged vigorous LXR stimulation. Although probably safe as an ex-vivo tool to 

reduce immunogenicity of human islets prior to transplantation, in vivo studies need 

to exclude potential detrimental effects of GW3965.  
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RESOLVIN E1 - ANOTHER LINK BETWEEN LIPID METABOLISM AND 

INFLAMMATION 

Lipid mediators derived from �-3 PUFAs have emerged as endogenous suppressors 

of inflammation (222,272-274), and include protectins, maresins and resolvins (275). 

Resolvin E1 (RvE1) belongs to the E-group of resolvins and has potent anti-

inflammatory and pro-resolving properties in many tissues and cells (276-280). In 

Paper III, we demonstrated that human islets express BLT1, the receptor for RvE1, 

but at a low level. However, other studies have confirmed effects of RvE1 in the 

absence of BLT1 (277), and in line with this, we found that RvE1 reduced IL-8, 

MCP-1 and TF in human islets. Additionally, we found reduced levels of CCL5 and 

its receptor CCR5.  Disruption of CCL5/CCR5 and MCP-1/CCR2 signaling pathways 

has been reported to delay islet allograft rejection (281). In culture supernatant, we 

also found reduction of CXCL10, a chemokine possibly involved in the pathogenesis 

of type 1 diabetes (262). Although these receptors/chemokines, except MCP-1, are 

expressed at low levels in islet preparations, the findings may imply that RvE1 

downregulates several important aspects of the inflammatory response. Additionally, 

we found no effect on insulin secretion or islet viability. 

 

RvE1 can be synthesized in an aspirin-dependent pathway, and it has been 

demonstrated that healthy volunteers taking aspirin and �-3 PUFAs have 

physiologically relevant doses of RvE1 in peripheral blood (282). This may indicate 

that RvE1 is a safe compound that could soon be commercially available. A recent 

study has demonstrated that RvE1 decreases liver steatosis and increases insulin 

sensitivity in adipose tissue (283) in a murine model. Since islet transplantation 

inherently produces (transient) liver steatosis, and insulin resistance is highly 

unfavourable in the context of minimal �-cell replacement, these properties of RvE1 

could be relevant. Combined with the observation that RvE1 efficiently blocks ADP- 

and tromboxane-induced platelet aggregation (279) led us to investigate whether 

RvE1 could have an effect on IBMIR. Disappointingly, RvE1 added to blood only 

modestly dampened IBMIR, and only during the first 5 minutes after islet-blood 

contact (~20% reduced platelet consumption, ~50% reduction in thrombin-

antithrombin (TAT) complexes). This may illustrate the potency and strength of the 

reaction elicited by blood upon contact with foreign tissue. Indeed, heparin dosages 

need to be increased to 4 IU/mL to have an effect on IBMIR (a dosage corresponding 
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to 20.000 IU in an adult). However; because islets reach the liver within 5 minutes 

after blood contact (91), RvE1 may still offer some benefit.  

Based on the observations that anti-inflammatory treatment alone has only modest 

effects on IBMIR, we next set out to identify a strategy which allowed us to avoid 

IBMIR altogether.  

 

AVOIDING IBMIR WITH INTRAMUSCULAR ISLET TRANSPLANTATION 

In order to avoid IBMIR, we reasoned, the islets need to be transplanted into a site 

where they are protected from direct blood-contact. An available, well vascularised 

transplantat site is striated musculature, which has been employed successfully in 

autotransplantation of parathyroid tissue for decades (284). Similarities between the 

parathyroid tissue and pancreatic islets, as well as a few experimental and clinical 

observations, could indicate that the intramuscular (IM) site would be a feasible site 

for islet transplantation (285-288). In Paper IV we developed a simple and 

reproducible IM islet transplantation model and showed that IM islet transplantation 

to m. biceps femoris is feasible in a syngeneic rat model. Key points included pearls-

on-a-string distrubion of islets in the muscle and utilizing as small transplant volumes 

as possible. However, in spite of an optimized transplant technique, twice the number 

of islets was required for reversal of diabetes compared to intraportal transplantation. 

We identified several possible reasons. First, in spite of an improved transplant 

technique, we observed clusters of islets with disrupted morphology in muscle, 

surrounded by fibrosis. This indicates a suboptimal transplant technique, as single 

islets located between muscle fibres appeared to have normal morphology. Second, 

the transplant procedure induced a volume dependent increase in the expression of IL-

6 and -8 in myocytes (that is, larger transplant volumes elicited a larger pro-

inflammatory response). The expression of IL-1� and TNF-� was not significantly 

upregulated, but that could possibly be due to the timing of the biopsy (1 hour after 

transplantation). These locally secreted pro-inflammatory mediators may recruit and 

activate immune cells to the transplant site, and thereby contribute in causing islet 

loss.  

 

However, we believe there are several reasons for optimism. First, when IM graft 

function was established, it was durable (>100 days). Second, the insulin response to 

glucose as well as the temporal decline in blood glucose in the intravenous glucose 
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tolerance-test was comparable to intraportal grafts, indicating that the grafted islets 

could deliver insulin to the circulation in a similar fashion as intraportal islets. Third, 

examination of IM islet grafts, contrary to intraportal grafts, revealed a relative 

abundance of pancreatic duct cells (PDC). The suggestion that PDCs may 

differentiate into insulin producing cells has been proposed (289); the IM transplant 

model may represent a useful tool for evaluating PDC function in islet transplantation. 

Clinically, the purity of islet preparations transplanted into patients averages 50% to 

60% (290), and the total proportion of PDC has been reported to approach 40% (291).  

 

The rat model may not be appropriate for a comparative study between intraportal and 

IM islet transplantation. This is because rat islets have similar size as human islets, 

and the engraftment of islets in the considerably smaller rat liver is not comparable to 

humans [reviewed in (45)]. Additionally, rat muscle is small, and it is technically 

difficult to obtain a dispersed distribution of islets in the muscles.  
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7. FUTURE PERSPECTIVES 

In light of research conducted in this thesis new possibilities arise.  

 

First, combinatory approaches of the tested substances may enhance efficacy. For 

example, glucocorticoids exert their non-genomic effects through mobilization of 

annexin 1 [reviewed in (239)]. The secretion of annexin 1, however, is performed by 

the ATP-binding cassette (ABC) transporter system (292). As the expression of the 

ABCs is potently upregulated by LXRs, LXR activation may enhance the effect of 

glucocorticoids. Additionally, glucocorticoids upregulate BLT-1, a pro-inflammatory 

receptor partly responsible for steroid-resistance, in for example asthma (293). Some 

of the anti-inflammatory effects of RvE1 occurs through functional antagonism of 

BLT-1 (277). This may possibly explain why �-3 PUFAs have steroid-sparing 

effects, in for example ulcerative colitis (294). The effects of RvE1 appear to be more 

potent than their �-3 precursors (295), suggesting that the anti-inflammatory effects 

of glucocorticoids may be enhanced by RvE1 through inactivation of BLT-1. 

 

Second, combinatory approaches may reduce unwanted effects. For example, RvE1 

has been reported to potently enhance peripheral insulin sensitivity (295), an effect 

that may reduce the increased insulin resistance occuring when glucocorticoids are 

administered. Additionally, the unwanted lipogenic effects of LXR activation, 

occuring via upregulation of SREBP1c, may be reduced by RvE1. This because 

PUFAs downregulate SREBP1c (224) by interaction with the binding domain of LXR 

in the SREBP1c promoter (225).  

 

Third, the studies suggest pro-tolerogenic effects of glucocorticoids (upregulation of 

IL-10) and RvE1 (upregulation of TGF-�) that may be explored in an allograft 

transplant setting. 

 

Fourth, the experimental IM transplantation model would allow studies on 

bioengineered matrices carrying growth factors that potentially could improve islet 

engraftment and revascularization. Additionally, IM islet transplantation would allow 

for serial biopsies to be taken. As we know very little about islet engraftment, this 

model could be a valuable tool for enhancing our understanding of this complex 

process. Finally, preclinical studies conducted in Uppsala indicate that islet 
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revascularization in muscle may be close to the native pancreas, while in liver it is 

sharply reduced (personal communications P.O. Carlsson). This may imply that the 

long-term islet function may be better in muscle.  

 

8. CONCLUSIONS  

 

We have identified several endogenous strategies that potently reduce inflammation in 

pancreatic islets in culture, and shown that reduced inflammation can be translated 

into superior function following transplantation. Of the tested anti-inflammatory 

strategies, glucocorticoids represent the most powerful. However, due to their 

diabetogenic effects, glucocorticoids are probably best avoided as chronic treatment 

of the recipient. 

 

The LXR agonist GW3965 has anti-inflammatory properties in human islets, with an 

efficacy that approaches that of glucocorticoids, without adverse effects on insulin 

secretion or islet viability. However, some aspects of the inflammatory response were 

upregulated, and concerns regarding lipotoxicity and overall safety need to be 

addressed prior to clinical application. 

 

Resolvin E1 displayed exclusively anti-inflammatory properties on human islets, 

albeit with less efficacy than glucocorticoids. In spite of downregulating the 

inflammatory response, only modest effects on IBMIR was observed.  

 

Intramuscular transplantation is a feasible strategy to avoid IBMIR, but it is less 

efficient compared to intraportal islet transplantation in rats. The IM transplant 

technique needs refinement.  
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