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Summary

SUMMARY

Thousands of DNA lesions, in form of chemical modifications, base loss and single-strand
breaks are estimated to occur in every cell per day. Excision repair pathways and cell cycle
checkpoints have evolved as part of the cellular response to DNA damage. Base excision
repair (BER) can remove subtle DNA lesions, while nucleotide excision repair (NER) can

remove more bulky helix distorting DNA damage.

In paper |, we characterized two Cockayne syndrome (CS) patients deficient in a sub-
pathway of NER, transcription coupled (TC) NER. We hypothesized that the underlying
mutation most probably would be found in one of the known CS proteins, CSA or CSB.
Molecular analysis confirmed our hypothesis, and a new splice site mutation was identified
in the CSA gene. Moreover, we reviewed on the known human mutations in the CSA protein,
at the time of publication, and their possible correlation to clinical findings. In the discussion
of this thesis, an update on CS proteins, their known human mutations and clinical
characteristics is further reviewed. Still, a molecular explanation of the CS pathology is
lacking, and the role of the CS proteins in TC-NER and possibly oxidative damage repair

needs further investigation.

Flap endonuclease 1 (FEN1) is essential in mammalian long-patch (LP) BER and in removal of
RNA primers in lagging strand DNA replication. Thus, it could be hypothesized that FEN1
deficiency would have detrimental consequences for cell survival and health of mutated
mice. In paper Il we show that Fen1 mutations in mice result in severe phenotypes in form of
embryonic lethality and early cancer development. An update on FEN1’s role and regulation

in the cell, and possible mechanisms causing cancer, is given in the discussion of this thesis.

Moreover, in paper lll we characterized Fen1 knock-in mice with a yellow fluorescent protein
(YFP) tag fused to FEN1, in order to study FEN1-YFP kinetics in BER and DNA replication in
vivo. For the first time, the kinetics of the FEN1-YFP protein in LP-BER, expressed from the
Fenl-YFP gene at an endogenous level, could be investigated in living cells, following highly
localized laser irradiation. This micro-irradiation method produces a high concentration
(local damage) and wide spectrum of DNA lesions, including LP-BER substrates for FEN1. We
found that FEN1-YFP is rapidly recruited to DNA damaged areas and were able to follow
ongoing repair through the progressive disappearance of FEN1’s flap substrate. Inhibition of

PARP disrupted FEN1 accumulation at DNA lesions, indicating that PARP is needed for FEN1



Summary

recruitment to DNA repair intermediates in LP-BER. Fluorescence recovery after
photobleaching (FRAP) measurements following local damage allowed us to study the
kinetics of FEN1 binding and unbinding its flap substrate. FRAP after global damage allowed
us to measure the proportion of FEN1 binding at the moment of bleaching, and to estimate
how long the FEN1 molecules stay bound to the substrate. We found that FEN1 binding after
local damage is very short lived. In line with FEN1’s role in DNA replication and its interaction
with PCNA, we compared the (co)localization of FEN1 and PCNA in S-phase DNA replication

foci.



Introduction

1 INTRODUCTION

1.1 DNA DAMAGE

Unlike other macromolecules, DNA has no turnover and its stability is therefore essential to
maintain cellular function throughout the lifespan of a cell and an organism. Then again,
cells receive tens of thousands of DNA lesions per day (Lindahl and Barnes, 2000). Time-
dependent accumulation of damage in cells and organs is associated with gradual functional
decline and aging (Kirkwood, 2005). Such lesions can block genome replication and
transcription, and if they are not repaired or are repaired incorrectly, they lead to mutations
or wider-scale genome aberrations that threaten the cell or organisms viability. Hydrolysis of
DNA is the most common damage, with depurination being the most prevalent of these
spontaneous chemical reactions (Lindahl, 1993). Non-enzymatic methylation of DNA bases

and oxidation are also frequent occurring endogenous lesions (Sedgwick et al., 2007).

1.1.1 Endogenous and exogenous DNA damage

Cellular metabolism generates reactive oxygen species (ROS), reactive nitrogen species
(RNS), lipid peroxidation products, endogenous alkylating agents, estrogen and cholesterol
metabolites, and reactive carbonyl species, all of which damage DNA (De and Van, 2004).
ROS arising as by-products from oxidative respiration, redox-cycling events involving
environmental toxic agents, Fenton reactions mediated by heavy metals, and ROS and RNS
produced by macrophages and neutrophils at sites of inflammation and infections can
induce strand breaks, oxidized bases and AP sites (Valko et al., 2006;Kawanishi et al., 2006).
More than 80 different aberrant bases produced by ROS have been identified (Bjelland and
Seeberg, 2003). Occasionally, DNA aberrations arise via physiological processes, such as DNA
mismatches introduced during DNA replication and DNA strand breaks caused by abortive
topoisomerase | and topoisomerase |l activity. Single-strand breaks (SSBs) that occur in close
proximity, or certain other lesions that are encountered by the DNA replication apparatus,
form double-strand breaks (DSBs). Although DSBs do not occur as frequently as the lesions
listed above, they are more complicated to repair and extremely toxic to the cell (Khanna

and Jackson, 2001).

In addition to spontaneous reactions and reactive species from cell metabolism, exogenous

physical and chemical agents damage DNA. The damage from environmental agents, such as
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ultraviolet (UV) radiation, ionizing radiation and genotoxic chemicals is to some extent
avoidable. UV radiation gives rise to intrastrand crosslinks between adjacent pyrimidines in
the DNA and creates free radicals. After a single day in strong sunlight, up to 10° UVA and
UVB photoproducts are induced in each exposed keratinocyte (Hoeijmakers, 2009). lonizing
radiation also generates various forms of DNA damage, the most toxic of these being DSBs
(Ward, 1988). Some ionizing radiation results from radioactive decay of naturally occurring
radioactive compounds. Uranium decay, for example, produces radioactive radon gas that
accumulates in some homes and contributes to lung-cancer incidence. Environmental and
industrial chemicals create a huge diversity of DNA adducts and crosslinking of DNA. The
most prevalent environmental cancer-causing chemicals today are those produced by
tobacco products, which cause various cancers, most notably those of the lung, oral cavity
and adjacent tissues (Doll and Peto, 1981;Wogan et al.,, 2004). Cancer-causing DNA
damaging chemicals can also contaminate foods, such as heterocyclic amines in over-cooked

meats and aflatoxins in contaminated peanuts (Wogan et al., 2004).

Cells that accumulate large numbers of DNA damage can no longer effectively repair injured
DNA, and where mutations are induced, can go into senescence, programmed cell
death/apoptosis or unregulated cell division, the latter which can lead to cancer. The
outcome of the cell depends of the type of damage. Some lesions are primarily mutagenic,
while others are mainly cytotoxic or cytostatic. Both types of outcomes in different ratios
can result from many DNA lesions, depending on the location and number of lesions, cell
type, and stage in the cell cycle and differentiation (Akbari and Krokan, 2008;Hoeijmakers,
2009). The oxidative lesion 7,8-dihydro-8-oxoguanine is a mutagenic lesion, pairing equally
well with cytosine (normal pairing) and guanine (abnormal pairing) during DNA replication,
causing GC->TA transversions (Akbari and Krokan, 2008). DSBs induced by ionizing radiation
or that occur during the processing of interstrand crosslinks are primarily cytotoxic or
cytostatic. Over time the accumulation of DNA damage contributes to a gradual decline in

cellular function and manifestation of aging (Izzotti et al., 1999;Mecocci et al., 1999;Lu et al.,

2004;Siomek et al., 2007).

1.2 DNA REPAIR SYSTEMS AND CONSEQUENCES OF THEIR DEFICIENCY

A complex genome maintenance apparatus controls DNA damage. It consists of multiple
repair pathways, each usually involving a number of proteins for detection and repair of

damaged DNA (Figure 1). Each pathway focus on a specific category of DNA lesion, various

10
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checkpoint, signal transduction, and effector systems connected with replication,
transcription, recombination, chromatin remodeling and differentiation (Harper and Elledge,
2007;Altieri et al., 2008). There also exists DNA repair where only one protein is involved,
direct lesion removal. Some alkylations of bases in DNA are repaired by direct removal of the
alkyl adduct from the damaged base. This mechanism does not require a template for repair,
and does not involve incision of the phosphodiester backbone (Friedberg et al., 1995;Falnes
et al., 2007). The massive investment cells make in genome maintenance is illustrated by the
class of repair proteins that can be used only once. For instance O-6-methylguanine
methyltransferase (MGMT or AGT) repairs a single O-6 methylguanine lesion by transferring
the methyl from a guanine in DNA to a cysteine in the enzyme, thereby inactivating itself
(Xu-Welliver and Pegg, 2002). All organisms from bacteria to man have evolved distinct
repair systems to combat the threats posed by DNA damage (Taylor and Lehmann,

1998;Hoeijmakers, 2001;Weller et al., 2002).

a b

X-rays — (Transient)
Oxygen radicals UV light X-rays Replication cell-cydle
Alkylating agents Polycyclic aromatic ~ Anti-tumour agents errors arrest

Spontaneous reactions hydrocarbons (cis-Pt, MMC)

4
. Inhibition of:
« Transcription
S| ° Replication —> Apoptosis

_¢ ¢ ¢ /L_ . ggé?e"égme (cell death)

>

Uracil (6-4)PP Interstrand cross-link A-G Mismatch
Abasic site Bulky adduct Double-strand break T-C Mismatch
8-Oxoguanine CPD Insertion
Single-strand break Deletion
Base-excision Nucleotide-excision Recombinational Mismatch repair Mutations Earicnr
repair (BER) repair (NER) repair (HR, EJ) Chromosome > 2
i aberrations Ageing

Figure 1 DNA damage, repair mechanisms and consequences. a, Common DNA damaging agents
(top); examples of DNA lesions induced by these agents (middle); and most relevant DNA repair
mechanism responsible for the removal of the lesions (bottom). b, Acute effects of DNA damage on
cell-cycle progression, leading to transient arrest in the G1, S, G2 and M phases (top), and on DNA
metabolism (middle). Long-term consequences of DNA injury (bottom) include permanent changes in
the DNA sequence (point mutations affecting single genes or chromosome aberrations which may
involve multiple genes) and their biological effects. Abbreviations: cis-Pt and MMC, cisplatin and
mitomycin C, respectively (both DNA-crosslinking agents); (6—4)PP and CPD, 6—4 photoproduct and
cyclobutane pyrimidine dimer, respectively (both induced by UV light); BER and NER, base and
nucleotide-excision repair, respectively; HR, homologous recombination; EJ, end joining. (Figure and
legend from (Hoeijmakers, 2001)).
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In addition to direct lesion reversal, different multistep DNA repair systems exist: base
excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), homologous
recombination (HR) and non-homologous end joining (NHEJ) (Figures 1 and 2). Some DNA
damages escape detection by repair proteins and specialized polymerases allow replication
to bypass such lesions in the template through translesion synthesis (TLS) ((Andersen et al.,

2008) and Figure 2).

So far, three mammalian DNA repair proteins working by direct reversal have been ascribed.
These include the MGMT mentioned above, and the E.coli AIkB homologs 2 and 3 (ALKBH2
and ALKBH3) (Duncan et al., 2002). Homozygous Mgmt’ mice are viable with no increase in
spontaneous mutagenesis, however, they are very sensitive to chemotherapeutic alkylating
agents and develop liver and lung tumors (Iwakuma et al., 1997). Mice lacking functional
Alkbh2 and Alkbh3 genes are viable with no overt phenotype. However, Alkbh2 deficient
mice accumulate significant levels of 1meA in the genome, and embryonic fibroblast cells
from these mice are not able to remove methyl methane sulfate (MMS)-induced 1meA
lesions from genomic DNA, and display increased cytotoxicity after MMS exposure (Ringvoll

et al., 2006).

The mismatch repair pathway removes mispaired nucleotides and insertion/deletion loops
that result from slippage of the DNA polymerase during replication ((Jiricny, 2006) and
Figure 1). Identification of mutations in human MMR genes in patients with hereditary non-
polyposis colorectal cancer (HNPCC) revealed the importance of the MMR pathway in

human etiology (Papadopoulos et al., 1994;Vasen, 2007).

The removal of helix-distorting lesions that interfere with base pairing and obstruct
replication and transcription are dealt with by the NER pathway ((Cleaver et al., 2009) and
Figures 1 and 2). Transcription-coupled repair (TCR), one of the two sub-pathways of NER
(Figures 2 and 3), targets only lesions that hinder transcription, through arresting RNA
polymerase Il (Fousteri and Mullenders, 2008). Global genome (GG-) NER surveys damage to
DNA that occurs anywhere in the genome (Figures 2 and 3). Individuals with inherited
defects in NER are characterized with hypersensitivity to the sun. This is due to defective
handling of UV damage, however, other NER associated clinical features are extremely
heterogenous (Cleaver et al., 2009). Xeroderma pigmentosum (XP), Cockayne syndrome (CS)

and trichothiodystrophy (TTD) are three rare syndromes arising from mutations in genes

12
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coding for NER proteins (Bootsma et al., 1995;Kraemer et al., 2007). XP patients have an
extremely high risk of developing skin cancer at young age. This is a feature not found in
individuals with CS and TTD (Cleaver, 2005). Neurodegeneration and developmental
disorders are major features of all three syndromes, including growth retardation, cognitive
impairment and ataxia. A TTD typical feature is brittle hair and nails, whereas CS patients are
characterized by microcephaly, cachetic dwarfism and developmental delay (Andressoo and

Hoeijmakers, 2005).

BER is the main pathway for removal of DNA damage due to cellular metabolism and targets
small chemical alterations of DNA bases ((Baute and Depicker, 2008;Zharkov, 2008) and
Figures 1 and 2). Mice lacking individual BER proteins either show no particular phenotype,
or a severe, mostly embryonic lethal phenotype. This can be explained by backup
mechanisms for many of the BER glycosylases which initiate the BER pathway, whereas
enzymes handling BER intermediates (see below) are essential and it seem that no efficient
backup exist. MUTYH is a DNA glycosylase excising adenine (A) misincorporated opposite 8-
oxoG during replication and in humans, MUTYH deficiencies is the underlying factor of the
disorder MUTYH-associated polyposis (MAP) (Al-Tassan et al., 2002;Jones et al., 2002;Sieber
et al., 2003;Dallosso et al., 2008). Biallelic germline mutations in the MUTYH gene cause
increased GC to TA transversions in the APC gene, which controls the proliferation of colon
cells (Fearnhead et al., 2001). Uracil DNA N-glycosylase has been shown to be involved in
immunoglobulin (Ig) class-switch recombination (CSR) and somatic hypermutation (SHM)
generation (Rada et al., 2002). Recessive mutations of the gene encoding UNG are linked to
defects in CSR and the SHM pattern in patients with hyper-IgGM syndrome. UNG deficient
mice were shown to have a highly elevated risk, 22 fold, of developing B-cell lymphoma
(Andersen et al., 2005). In mice, the single knockouts of Ogg1 and MutY appear normal with
no obvious cancer phenotype. However, the double knockout Oggl1/Mutyh develop lung
tumors (Xie et al., 2004). Polymorphisms in BER genes are associated with increased risk for
certain cancers (Xu et al., 2008), however, conflicting reports necessitate functional studies
of these polymorphisms. Accumulating evidence also suggests that BER might play a
fundamental role in the development of age-related neurodegenerative diseases, such as
Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and
Huntington’s disease (HD) (Yang et al, 2008;de Souza-Pinto et al., 2008;Xu et al.,
2008;Coppede and Migliore, 2010a).

13
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Bulky, helix-distorting In replication

Stalled DNA

ti ipti
Stalled transcription polymerase 8/

SSBiin
replication

Repair | \ i) o HR BER TCR TC-NER GG-NER TLS Template
System: switching
Effect on
Gt U1 Iy " (N 1 " Tt
Effect on

Mutagenesis: fNHE) | HR 2 NB NS e 1 1

Figure 2 DNA lesions, Corresponding DNA repair Maintenance Systems, and their Effect on Cellular
Survival and Mutagenesis. Double-strand breaks (DSBs) in DNA are highly cytotoxic and cytostatic
forms of damage. They are repaired through nonhomologous end-joining (NHEJ), which simply joins
the ends of DNA strands and is associated with an elevated risk of mutagenesis, or through
homologous recombination (HR), which takes place after replication and uses the intact copy on the
sister chromatid to properly align and seal the broken ends in an error-free manner. HR is also
involved in bypassing interstrand cross-links (not shown) and in repairing single-strand breaks (SSBs)
and blocking lesions encountered during replication. In mammals, NHEJ is important for the repair of
somatic (differentiated) cells and proliferating cells in the G1 stage, whereas HR is important for early
embryogenesis and repair of proliferating cells in the S or G2 stage. NHEJ promotes cellular survival in
the presence of highly cytotoxic DSBs and may thereby enhance mutagenesis. HR also promotes
cellular survival, but without inducing mutations. Base-excision repair (BER) is involved with small
DNA adducts (mainly oxidative and alkylating lesions), some of which may be highly mutagenic (e.g.,
7,8-dihydro-8-oxoguanine), and some cytotoxic. When these lesions block elongating RNA
polymerase, transcription-coupled repair (TCR) removes the damage, allowing the vital transcription
to resume. BER prevents mutagenesis and promotes cellular survival. Transcription-coupled
nucleotide-excision repair (TC-NER) is specific to transcription-blocking bulky adducts, which are
eliminated throughout the entire genome by the global genome nucleotide-excision repair (GG-NER)
system. DNA damage that blocks the regular replication machinery involving DNA polymerase /¢
(e.g., breaks and cross-links) can be repaired, bypassed by homologous recombination, which involves
template switching and strand displacement, or bypassed by translesional synthesis (TLS), a
specialized, relatively error-free (but still somewhat mutagenic) means of bypassing a specific
subgroup of lesions. Arrows pointing upward indicate increases in cell survival or mutagenesis after
DNA damage, and arrows pointing downward indicate decreases; the greater the number of arrows,
the stronger the effect. NS denotes no significant effect. Figure and legend from (Hoeijmakers, 2009)).

Homologous recombination and non-homologous end-joining repair various types of double
strand breaks ((Huertas, 2010) and Figure 1 and 2). NHEJ, which accounts for about 90% of
the DSB repair, is highly efficient in ligating DNA ends. However, the repair is relatively error

prone as it might involve loss or addition of bases as the joining occurs (Lieber, 2008). This
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inaccurate process takes place mostly before replication, in the absence of an identical copy
of DNA. NHEJ is also acting upon V(D)) and class-switch recombination intermediates
(Rooney et al., 2004;Chaudhuri and Alt, 2004). Inactivation of essential components of NHEJ
in mice results in a severe combined immunodeficiency (SCID) phenotype (Bosma et al.,
1983;Blunt et al., 1995;Kirchgessner et al., 1995). In the S or G2 phase of the cell cycle, HR
uses the identical sister chromatid to align the broken ends and accurately insert missing
information through a set of pathways (Krogh and Symington, 2004). This second DSB repair
mechanism is also dealing with stalled and collapsed replication forks (Aguilera and Gomez-
Gonzalez, 2008). Defects in HR cause the human syndromes AT (ataxia telangiectasia)-like
disorder (ATLD) and Nijmegen Breakage Syndrome (NBS), and predisposition has been linked
to mutations in the MRN (MRE11/RAD50/NBS1) complex (Thompson and Schild, 2002). ATLD
is characterized by progressive neurodegeneration, whereas NBS is characterized by
microcephaly, growth retardation, immunodeficiency and predisposition to tumors (Taylor
et al., 2004;Czornak et al., 2008). The RecQ helicases are required for efficient HR, and
mutations in the RecQ helicase genes are associated with Werner Syndrome (WS),
Rothmund-Thomson syndrome (RTS) and Blooms syndrome (BS) (Hickson, 2003). WS and
RTS are characterized with a premature aging, BS patients have a strong predisposition to
cancer (Bohr, 2008). Defects in DSB repair genes cause embryonic lethality, developmental
disorders, sterility, immune deficiencies, and predisposition to neurodegenerative diseases

and cancer (Phillips and McKinnon, 2007).

1.2.1 The nucleotide excision repair (NER) pathway

Key enzymes in NER sense the presence of a lesion through the distortion of the DNA helix
structure, and there is not a collection of specific enzymes each recognizing a different
lesion, as is the case for BER (de Laat et al., 1999;Batty and Wood, 2000). The helix distorting
lesions sensed by NER can be structurally unrelated, such as UV-induced photoproducts and
numerous bulky DNA adducts induced by mutagenic chemicals from the environment or by
cytotoxic drugs used in chemotherapy (Nouspikel, 2009). Two major UV photolesions
repaired by NER are cyclobutane pyrimidine dimer (CPD) and the pyrimidine-pyrimidone (6-
4) photoproduct (6-4PP). Benzo(a)pyrene DNA adducts induced by cigarette smoke and
lesions formed by chemical carcinogens, like cisplatin, are also recognized and removed by
NER (Wood, 1996;Sancar, 1996;Friedberg et al., 2006). After sensing the lesion, the damaged
strand is identified, and a short (24 to 32 nucleotides long) oligonucleotide spanning the

lesion is excised, leaving a gap that is filled by the replicative polymerases (Figure 3). Thus,
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many different lesions can be handled by a common set of enzymes, a sequential action
involving over 30 proteins. Depending on whether the damage occurs in a transcriptionally
inactive or active domain, repair can occur by two sub-pathways: global genomic repair
(GGR) or transcription-coupled repair (TCR) (Friedberg, 1996). GGR and TCR differ in their
mode of damage recognition; however, all subsequent steps are common to these two
repair pathways (Figure 3). TCR ensures that the transcribed strand of active genes is
repaired with higher priority than the rest of the genome, probably by using RNA
polymerase Il (RNAPII) as a lesion sensor (Mellon et al., 1986). In GGR in human cells, the
heterodimer XPC/HR23B (XPC in figure 3) appears to be the major damage recognition
factor, detecting the helix distortion and stabilizing the DNA bend. XPC/HR23B recruits
transcription factor TFIIH, a ten-subunit complex (including XPB, XPD and TTDA), at the site
of the lesion (Figure 3). Upon ATP addition, TFIIH unwinds the DNA helix, until one of its
helicase subunits (XPD) encounters a chemically modified base; the second helicase subunit
(XPB) goes on unwinding the DNA to create a 20 base pair opened “bubble” structure. RPA,
XPA and XPG are then recruited to assemble the “preincision” complex; ERCC1-XPF joins the
complex and the dual incision (5’ by ERCC1-XPF and 3’ by XPG) occurs. RPA remains bound to
the ssDNA and facilitates the transition to repair-synthesis by POL §(or €) supported by RFC
and PCNA; ligase | finally seals the nick (Gillet and Scharer, 2006).

Hereditary defects in NER are associated with several human autosomal recessive genetic
disorders, such as xeroderma pigmentosum (XP), Cockayne syndrome (CS) and
trichothiodystrophy (TTD) (Lehmann, 2001;Bootsma et al., 2001). These three syndromes
are all characterized by UV sensitivity, however, they display complex and varying
pathologies that involve most systemic and neural tissues and organs (Cleaver et al., 2009).
XP patients suffer from a high incidence of skin cancer, more than 1,000 times as high as the
incidence in the general population (Benhamou and Sarasin, 2000). Mutations in 13 genes
(XPA-G, where DDB1 and DDB2 encode two subunits of the XPE complex, ERCC1, XPV, CSA,
CSB, TTDA) associated with NER cause a wide range of clinical symptoms, from mild solar
sensitivity to severe skin cancers, developmental disorders and neurodegeneration (Kraemer
et al.,, 1987;Cleaver, 2005). The sites of mutations in the NER genes, protein-protein
interactions, the regulation of protein expression and turnover, and external or endogenous
damage are all modulators of the phenotypic features of NER diseases (Cleaver et al., 2009).
Mutations in XPC or XPE, which exclusively affect the GGR pathway, are associated with skin

cancer, whereas mutations in the CSA and CSB in the TCR pathway contribute to more

16



Introduction

complex developmental and neurological disorders (Cleaver, 2005). Mutations in XPD, which
lies at the convergence of the GGR and TCR pathways, are associated with the most varied

and complex combinations of clinical features (Cleaver et al., 2009).
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Figure 3 Molecular mechanisms of nucleotide excision repair. Damage to DNA that occurs anywhere
in the genome (e.g.,, photoproducts resulting from exposure to ultraviolet [UV] radiation) is
recognized by the XPC and XPE (or UV-DDB) protein complexes, which are specific components of the
global genome nucleotide-excision repair (NER) system. Damage that actually blocks transcription
(e.g., cyclobutane pyrimidine dimers [CPDs] resulting from exposure to UV radiation) is detected by
the transcription-coupled NER system (TC-NER) system, which involves the CSB and CSA proteins. The
DNA helix is opened by the XPB and XPD helicases of the repair and transcription factor IIH (TFIIH),
allowing damage verification by the XPA protein. Single-strand binding protein RPA prevents
reannealing, and dual incisions in the damaged strand are made by the ERCC1-XPF and XPG
endonucleases, excising the damage as part of a piece of 25 to 30 bases. The single-strand gap is filled
by the replication machinery, and the final nick sealed by DNA ligase. (Figure and legend from
(Hoeijmakers, 2009)).
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1.2.2 Transcription coupled NER, TCR

When DNA damage is located in the transcribed regions of the genome, a unique problem
arises. Mistakes may be introduced at a miscoding or non-informational damage site if RNA
polymerase (RNAP) continues transcribing its product past a lesion, potentially leading to
transcriptional mutagenesis in a non-dividing cell (Saxowsky and Doetsch, 2006). A lesion
may alter the expression level of a gene, through altering the transcription rate, some
lesions could transiently arrest the elongation process, while others may arrest the RNAP
complex completely (Tornaletti, 2009). The arrested RNAP complex may not be stable,
resulting in release of the arrested polymerase and nascent RNA product, or if stable,
represent a strong signal for accumulation of p53 and apoptosis (Yamaizumi and Sugano,

1994;Ljungman and Zhang, 1996;Derheimer et al., 2007).

In TCR, lesion recognition occurs through arrest of the elongating RNAPII when it encounters
the damage. Briefly, the stalled RNAPII at the damage site is recognized by CSB which in turn
recruits CSA. Then the arrested RNAPII transcript, assisted by CSA and CSB, attracts core NER
repair factors which remove the lesion ((Altieri et al., 2008) and Figures 3 and 4). TCR
operates on bulky lesions like UV-induced CPDs (Mellon et al., 1987) and helix distorting
DNA damage like cisplatin DNA crosslinks (Zhen et al., 1993) and DNA adducts formed by
benzopyrene-diolepoxide (Chen et al., 1992). Oxidative lesions and non-bulky DNA adducts,
like abasic sites and their oxidative derivatives may be sufficient to initiate TCR in vivo,
however, the current model postulate that only lesions that block RNAPII will be subject to
TCR (Tornaletti, 2009). The in vitro and in vivo TCR studies performed so far have shown
various levels of RNAPII bypass of 8-oxoG and thymine glycol (Tg), suggesting that other
factors, such as the source of RNAPII; the sequence context and/or the transcription system
might play a role in the extent of lesion bypass (Larsen et al., 2004;Hanawalt and Spivak,

2008;Tornaletti, 2009).
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Figure 4 A suggested scenario for initiation of repair through TCR. a As RNA polymerase-Il (RNAPII)
translocates along the DNA, nucleosomes are dislodged in front of the polymerase and reassembled
behind it. b Transcription is arrested when RNAPII encounters an obstacle. ¢ Cockayne syndrome type
B protein (CSB) becomes tightly bound to the arrested RNAPII and recruits factors that are needed to
accomplish transcription-coupled repair. TFIIH localizes to the arrested elongation complex with
xeroderma pigmentosum complementation group G (XPG) and XPA (which is possibly brought to the
scene by XPA-binding protein-2 (XAB2)); replication protein A (RPA) arrives simultaneously or shortly
thereafter. d The chromatin remodelling factors high-mobility group nucleosome-binding domain-
containing protein-1 (HMGN1) and p300 loosen the nucleosome structure behind the polymerase;
RNAPII reverses direction, backtracking from the obstacle and degrading the nascent RNA product
through its cryptic 3'-5" exonuclease activity, which is activated by TFIIS. TFIIH with associated XPG,
XPA and RPA remain at the site of the obstacle, possibly maintaining the bubble of denatured DNA,
but without the RNA-DNA hybrid. XPA and RPA bind the single-stranded DNA in the vicinity of the
obstruction, providing lesion verification and strand specificity before the next steps. e Once RNAPII
has backtracked, TFIIH extends the denatured region around the lesion to ~30 nucleotides, thus
setting up the substrate for the subsequent DNA nicking by the structure-specific endonucleases XPG
and the XPF-ERRC1 complex. CSA, as a component of a cullin-containing ubiquitylation E3 ligase
complex, might facilitate resumption of transcription (once the repair process has been completed) by
removing or deactivating factors, including CSB. The sizes of the respective proteins and complexes,
and the expected distance of RNAPII backtracking are not drawn to scale, nor do they indicate their
respective footprints on the DNA substrate. Abbreviations: CUL4A, cullin-4A; DDB1, DNA damage-
binding-1. (Figure and legend from (Hanawalt and Spivak, 2008)).
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1.2.3 Cockayne syndrome and the CSA protein

Cockayne syndrome (CS) is a very rare autosomal recessive neurodegenerative disorder
characterized by severe postnatal growth failure, photosensitivity, microcephaly,
psychomotor delay, retinal degeneration, sensorineural deafness and lipoatrophy (Nance
and Berry, 1992;Pasquier et al., 2006;Laugel et al., 2009). CS belongs to the family of NER
disorders, and CS cells are specifically defective in TCR. Mutations in CSA (also known as
ERCC8) or CSB (also known as ERCC6), identified in 1995 and 1992, respectively, are
responsible for most cases of CS (Troelstra et al., 1992;Troelstra et al., 1993;Henning et al.,
1995). Clusters of missense mutations in CSA and CSB can be recognized and highlight the
role of particular motifs in the proteins, however, many types of mutations are scattered
along the whole coding sequence of both genes (Laugel et al., 2009). Rare cases of mixed
XP/CS phenotypes have been linked to specific mutations in the XPB, XPD and XPG genes.
These XP/CS patients show a specifically severe clinical photosensitivity, cancer-proneness
and have a combined defect in the TCR and GGR pathways, causing mutagenesis and cancer
in some tissues and accelerated cell death and premature aging in others (Andressoo and
Hoeijmakers, 2005). In patients (Weidenheim et al., 2009), and mouse models (Laposa et al.,
2007), the Purkinje cells of the cerebellum seem to be sensitive to degeneration and
contains many markers of DNA damage. In contrast to CS individuals, Csa- and Csb- mutant
mice are prone to UV-induced skin cancer (van der Horst et al., 1997;van der Horst et al.,

2002). The average life span for CS patients is 12 years (Andressoo and Hoeijmakers, 2005).

The CSA gene, located on chromosome 5q11, encodes a 44kDa protein of 396 amino acids
with seven predicted WD-40 repeats (Henning et al., 1995;Zhou and Wang, 2001). Trp-Asp
(WD) amino acid residues are usually found at the end of the motif and the WD repeat
proteins are thought to form circularized beta propeller structures in which the repeat units
may serve as a scaffold for protein-protein interactions (Li and Roberts, 2001). CSA has been
shown to interact with CSB, XAB2, and the p44 subunit of TFIIH (Henning et al.,
1995;Nakatsu et al., 2000). The E3 ubiquitin ligase complex contains CSA (Groisman et al.,
2003), and this complex is required for the recruitment of other ancillary NER factors to the
repair site ((Fousteri et al., 2006) and Figure 4) and is probably able to trigger the
degradation of CSB at a late stage of the TCR process (Groisman et al., 2006). After UV-
irradiation, and in the presence of functional CSB and TFIIH, the CSA protein is translocated
to the nuclear matrix (Saijo et al., 2007) and colocalizes with the hyperphosphorylated form

of RNAPII stalled at the lesion. CSA is also involved in the response to oxidative stress and
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contributes to prevent the accumulation of various oxidized bases in vivo (Frosina,

2007;D'Errico et al., 2007;Nardo et al., 2009).

1.2.4 The base excision repair (BER) pathway

The multistep BER pathway is the main pathway for correcting nonbulky single-base lesions,
AP sites and single-strand breaks in DNA. Such lesions are introduced by reactive oxygen
species, methylation, deamination and hydroxylation (Lindahl, 1993;Seeberg et al.,
1995;Dalhus et al., 2009). The BER pathway is responsible for removal of more than ten
thousand DNA lesions daily in each human cell (Lindahl, 1993). Two sub-pathways exist,
short-patch (SP) BER and long-patch (LP) BER ((Robertson et al., 2009) and Figure 5). The SP-
BER replaces a single nucleotide, whereas the LP-BER sub-pathway results in the
incorporation of 2-13 nucleotides (Kubota et al., 1996;Klungland and Lindahl, 1997). The
core BER pathway requires a damage-specific DNA glycosylase, an AP endonuclease or AP
DNA lyase, a DNA polymerase, and a DNA ligase. BER can be initiated in three ways, either i)
by a glycosylase removing a modified or mismatched base, ii) by non-enzymatic hydrolytic
depurination leading to base loss, as well as iii) by SSBs with 3’ and 5’ ends that require
processing prior to ligation (Krwawicz et al., 2007). To date, 11 different mammalian DNA
glycosylases have been identified. Some are highly specific whereas other recognize
apparently unrelated types of base lesions (Dalhus et al., 2009;Robertson et al., 2009). Some
DNA glycosylases possess an additional intrinsic AP lyase activity which cleaves the DNA
chain 3’ to the AP site forming a 5’ phosphate and a 3’-fragmented deoxyribose. The
resulting cytotoxic and mutagenic AP site needs to be further processed. AP endonuclease 1
(APE1) is the major AP endonuclease in mammalian cells (Loeb, 1985). APE1 produces a nick
in the backbone of the phosphodiester bond 5 to the AP site, which creates a 5’-
deoxyribose phosphate (dRP) group that is cleaved by DNA polymerase B (Allinson et al.,
2001). In humans, a second AP endonuclease has been identified, APE2. APE2 show much
lower endonuclease activity than APE1 (Hadi et al., 2002). An AP endonuclease independent
BER pathway has also been identified. Here, polynucleotide kinase (PNK) is processing the
gap left by the mammalian DNA glycosylases NEIL1 and NEIL2 (Wiederhold et al., 2004;Das
et al., 2006).

The major polymerase in BER is POLB, which mainly insert single-nucleotides. However,
POLPB is also able to insert the first nucleotide in LP-BER (Podlutsky et al., 2001;Beard et al.,
2006). LP-BER DNA synthesis is mainly carried out by DNA polymerase & (POLS), a high

fidelity replicative DNA polymerase with intrinsic exonuclease (proof-reading) activity, but
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also POLe has been implicated, together with POLB (Stucki et al., 1998;Podlutsky et al.,
2001;Dianov et al., 2003;Asagoshi et al., 2010). The 5’ single-strand DNA displaced by the
polymerase in LP repair is removed by the flap structure specific endonuclease 1 (FEN1)
(Klungland and Lindahl, 1997). Finally the newly synthesized DNA is sealed by DNA ligase IlI
in SP and ligase | in LP-BER (Mortusewicz et al., 2006;Fortini and Dogliotti, 2007).
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Figure 5 Selected protein interactions in the BER pathway. This figure shows the plethora of proteins
and DNA interactions in both the short-patch (left branch) and long-patch (right branch) mammalian
BER pathways. OGG1, 8-oxoguanine-DNA glycosylase; NTHL1, nth endonuclease lll-like 1; NEIL, nei
endonuclease Vlll-like; MUTYH, muty homolog; MPG, N-methylpurine-DNA glycosylase; UNG, uracil-
DNA glycosylase; SMUG1, single-strand-selective monofunctional uracil-DNA glycosylase; TDG,
thymine-DNA glycosylase; MBD4, methyl-CpG binding domain protein 4; APEX1, APEX nuclease 1;
POL, DNA polymerase; FEN1, flap structure-specific endonuclease 1; LIG,DNA ligase; PCNA,
proliferating cell nuclear antigen; RPA, replication protein A; RFC, replication factor C; WRN, Werner
syndrome protein; EP300, E1A binding protein (alias p300); BLM, bloom syndrome protein; CDKM1A,
cyclin dependent kinase inhibitorlA (alias p21); MSH,mutS homolog, ERCC5, excision repair cross-
complementing rodent repair deficiency protein 5 (alias XPG). Gene names by www.genenames.org.
(Figure and legend from (Robertson et al., 2009)).
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1.2.5 Flap structure-specific endonuclease 1 (FEN1)

Flap structure specific endonuclease 1 (FEN1) is best known for its involvement in RNA
primer removal during Okazaki fragment processing in lagging strand DNA replication, and
for its 5’-flap cleavage in LP-BER (Figure 5) (Harrington and Lieber, 1994;Klungland and
Lindahl, 1997;Bambara et al., 1997;Lieber, 1997;Liu et al., 2004). FEN1 is both a structure
specific 5’-flap endonuclease and a 5’-3-exonuclease, and it has also been shown to possess
a gap endonuclease activity (Harrington and Lieber, 1994;Murante et al., 1994;Parrish et al.,
2003;Zheng et al., 2005). The preferred substrate for FEN1 is a double flap structure
containing a 1-nucleotide 3’-tail on the upstream primer adjacent to the 5’ flap (Kaiser et al.,
1999;Storici et al., 2002;Kao et al., 2002;Friedrich-Heineken et al., 2003;Finger et al., 2009).
The multiple biochemical activities of FEN1 have been reviewed recently (Shen et al.,

2005;Zheng et al., 2011b).

In higher organisms, FEN1 has a C-terminal conserved domain mediating interaction with
proliferating cell nuclear antigen (PCNA), the “DNA sliding clamp” which stimulates FEN1 by
enhancing FEN1’s binding stability and cleavage efficiency in vitro and in vivo (Li et al.,
1995;Klungland and Lindahl, 1997;Gary et al., 1999;Tom et al., 2000;Gomes and Burgers,
2000).

FEN1 belongs to class Il of the XPG/RAD2 family of structure-specific nucleases evolutionary
conserved between Archaea and Eukarya (Lieber, 1997;Ceska and Sayers, 1998;Shen et al.,
1998;lp et al., 2008). The key amino acid residues involved in substrate binding and enzyme

catalysis are highly conserved (Shen et al., 1998).

Recently, the crystal structure of human FEN1 complexed with PCNA was reported (Sakurai
et al., 2005), this was the first structure of eukaryotic FEN1 (Figure 6). In the proposed model
a hinge region present between the core domain and the C-terminal tail of FEN1 plays a role
in switching the orientation of FEN1 from an active into an inactive orientation. In an
inactive/locked-down orientation, maintained by interactions on the interfaces, rapid
tracking of DNA can occur with the central hole of PCNA for sliding along DNA preserved. In
the sequential processes of base excision repair and DNA replication, the PCNA trimer also
stimulates DNA polymerase 6/ and DNA ligase |, and FEN1 needs to remove its core domain
from the excision point after flap cleavage, utilizing its hinge region, to provide access for

incoming proteins, such as DNA ligase 1 (Sakurai et al., 2005).
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Figure 6 A stereo view of the human FEN1-PCNA complex. Three FEN1 molecules are colored in blue
(X), red (Y) and green (Z), and the three subunits of the PCNA trimer in yellow (A), cyan (B) and orange
(C). The C-termini of FEN1 and PCNA are labeled. Metal ions bound to the active sites of FEN1 (X and
Y) are shown in magenta. Proposed catalytic faces of FEN1 are indicated by arrows. (Figure and legend
from (Sakurai et al., 2005)).

In the C-terminal of eukaryotic FEN1, the very last 26 amino acids represent the motif
responsible for nuclear localization of the protein. In mammals, FEN1 is the only known
nuclear flap endonuclease. A few years ago, LP-BER was discovered also in mitochondria
along with 5’ exo/endonuclease activity (Liu et al., 2008;Szczesny et al., 2008;Akbari et al.,
2008). Until recently, mitochondria were thought to have only SP-BER, and although the
studies disagree on some details, they all detect LP-BER in mitochondria. In mitochondrial
extracts from Hela and HaCaT cells, generation and removal of 5’ flaps as in LP-BER was
identified, whereas FEN1 was not (Akbari et al., 2008). On the contrary, mitochondrial
extract from human lymphoblasts was found to contain FEN1, and FEN1 was proposed to
have a role in mitochondrial LP-BER (Liu et al., 2008). The third lab, which prepared
mitochondrial extracts from mouse tissue and human colon cancer HCT116 cells, observed
an unidentified LP-BER 5’ exo/endonuclease activity. The activity could not be credited FEN1,
however, FEN1 was observed in the mitochondria and could cut 5’ flaps, e.g. generated
during DNA synthesis (Szczesny et al., 2008). The missing 5’ flap endonuclease was then
found by Zheng and colleagues (Zheng et al., 2008), who show that the helicase/nuclease
hDNA2 participates, together with FEN1, in human mitochondria LP-BER. DNA2 was
originally identified in yeast as a nuclear DNA helicase with endonuclease activity, processing

5’ flaps together with FEN1 (Budd and Campbell, 1997). A few years ago, DNA2 was also
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identified in the nucleus of human cells, and the conserved enzymatic activities of DNA2
function in replication and double strand break repair in both mitochondria and nucleus of

human and yeast cells (Duxin et al., 2009;Budd et al., 2011;Fortini et al., 2011).

The important role of FEN1 (RAD27) in DNA metabolism is demonstrated by the severe
biological effects upon loss of it (Reagan et al., 1995;Kucherlapati et al., 2002;Larsen et al.,
2003). In yeast, RAD27 null mutants are conditionally lethal at high temperatures, with a
defect in DNA replication. Mutants show sensitivity to UV radiation and alkylation agents
and also deficiencies in telomere maintenance (Reagan et al.,, 1995;Sommers et al.,
1995;Parenteau and Wellinger, 1999). In mice, deletion of both Fen1 alleles results in early
embryonic lethality, with death at the blastocyst stage (Larsen et al., 2003).
Haploinsufficiency of Fenl in combination with a mutation in the adenomatous polyposis

coli (Apc) gene results in a mild tumor predisposition phenotype (Kucherlapati et al., 2002).

The RAD27 deletion strains are strong mutators with destabilized repetitive sequences, and
based on these results in yeast, it was suggested that mammalian FEN1 was involved in
mechanisms through which trinucleotide repeat (TNR) expansions occur (Gordenin et al.,
1997;Spiro et al., 1999). In more than 30 human neurological, neurodegenerative and
neuromuscular diseases repeat expansion has been identified as a cause of the disease.
These includes Huntington disease (CAG/CTG), myotonic dystrophy type 1 (CTG/CAG),
Friedreich ataxia (GAA/TTC), Fragile X syndrome (CGG/CCG), and many others (Paulson and
Fischbeck, 1996;Pearson et al., 2005;Lopez et al., 2010). CAG repeat instability is also
associated with human cancer (Andersson et al., 2006;Schildkraut et al., 2007). A linkage
between repeat expansion in brain and oxidative DNA damage has been established, in a
study where OGG1 was found to initiate age-dependent CAG repeat expansion in somatic
cells (Kovtun et al.,, 2007). Recent studies show that FEN1 can promote CAG repeat
expansion, if the coordination of POLB and FEN1 is disturbed during LP-BER (Liu et al.,
2009;Goula et al., 2009). Tissue specific levels of these BER proteins may explain the
increased CAG instability observed in striatum compared to the cerebellum in Huntington

disease (HD) mice (Goula et al., 2009).

FEN1 has also been implicated in non-homologous end joining (Wu et al., 1999),

microhomology-mediated end-joining (MHEJ) (Liang et al, 2005), telomere stability
(Parenteau and Wellinger, 1999;Parenteau and Wellinger, 2002;Saharia et al., 2008;Vallur
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and Maizels, 2010), recombination (Negritto et al., 2001;Kikuchi et al., 2005), HIV replication
(Rumbaugh et al., 1998;Brin et al., 2000;Faust and Triller, 2002) and apoptosis (Parrish et al.,
2003).

1.3 IN VIVO IMAGING

The cloning of genes encoding fluorescent proteins, e.g. green fluorescent protein (GFP)
from jellyfish Aequorea victoria (Shimomura et al., 1962), and the engineered fluorescent
protein derivatives have allowed detailed studies of protein expression and mobility by
fluorescence microscopy (Chalfie et al., 1994;Tsien, 1998). Current advances in applications
of optical techniques together with expression of fluorescent proteins have allowed amazing
localization and quantification studies in live cells (Waters, 2007;Day and Schaufele,
2008;Wang et al., 2008). Fluorescence microscopy of GFP-tagged proteins in intact living
cells allows the study of dynamic cellular processes under physiological conditions, which
represents an immense advantage to fixed cells (Essers et al., 2006;Giepmans et al., 2006). A
wide range of genetically encoded fluorescent proteins are available for live cell imaging,
ranging from deep blue to deep red of the visible spectrum ((Day and Schaufele, 2008) and
Figure 7). Thus, several proteins can be visualized simultaneously using fluorescent proteins
from different parts of the spectrum, and protein-protein interactions can be monitored.
Moreover, some of the fluorescent proteins have unusual characteristics that make them

useful reporters of the dynamic behavior of proteins inside cells (Day and Schaufele, 2008).

Figure 7 Multicolor labeling, living HeLa cells, Olympus FV1000 confocal microscope. TagBFP-H2B
(blue), TagGFP2-actin (green), phiYFP-mito (yellow), TagRFP-golgi (orange), mKate2-zyxin (red).
(Figure and legend from (Chudakov et al., 2010).)
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1.3.1 Yellow fluorescent protein (YFP) and fluorescent internal markers in living cells

Enhanced yellow fluorescent protein (EYFP) is one of many mutant forms of the Aequorea
victoria GFP. The EYFP gene contains four amino acid substitutions previously published as
GFP-10C (Ormo et al., 1996). The fluorescence excitation maximum of EYFP is 513 nm, and
the emission spectrum has a peak at 527 nm, which is in the yellow-green region. EYFP gives
a bright fluorescent signal. The barrel structure made from the 11 B-sheets of EYFP protects
the fluorophore, and the molecule is photostable. In addition to the chromophore
mutations, EYFP contains >190 silent mutations that create an open reading frame
comprised almost entirely of preferred human codons (Haas et al., 1996;Yang et al., 1996).
Furthermore, upstream sequences flanking EYFP have been converted to a Kozak consensus
translation initiation site (Kozak, 1987). These changes increase the translational efficiency
of the EYFP mRNA and consequently increase the expression of EYFP in mammalian and
plant cells (Tsien, 1998). EYFP with N-terminal fusion moieties retains the fluorescent
properties of the native protein and thus can be used to localize fusion proteins in vivo. In
2008, the Nobel prize in chemistry was awarded professors Shimomura, Chalfie and Tsien for
"the discovery and development of the green fluorescent protein, GFP". Applications for the
fluorescent proteins range from fusion proteins designed to monitor intracellular dynamics
and organelle-targeted markers to reporters of transcriptional regulation and in vivo probes
for whole-body imaging and detection of cancer ((Gross and Piwnica-Worms, 2005) and
Figure 8). Fluorescent proteins have facilitated the engineering of highly specific biosensors
to visualize intracellular processes including protein kinase activity, apoptosis, membrane
voltage, cyclic nucleotide signaling, tracing neuronal pathways, pH and metal-ion
concentration (Lalonde et al., 2005;Li et al., 2006;Wang et al., 2008;Stepanenko et al., 2008).
Recent achievements using fluorescent proteins include the Brainbow project, an elegant
experiment where individual neurons in the brain are mapped with fluorescent proteins and
fluoresce with a distinct color ((Livet et al., 2007) and Figure 9) and the tracking of adult

stem cells, recently reviewed (Snippert and Clevers, 2011).
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Figure 8 A Main areas of applications of fluorescent proteins. Dark gray and light gray petals show
structural and functional studies, respectively, although boundaries between them are often quite
fuzzy. (Figure and legend from (Chudakov et al., 2010)).

1.3.2 Fluorescence microscopy

Fluorescent microscopes use a specific wavelength of light to excite fluorochromes
(Lichtman and Conchello, 2005). In the biological field, antibodies are labelled with
fluorochromes and used to tag cellular structures. Emitted fluorescence is passed through an
emission filter and collected using a cooled charge-coupled device (CCD) camera ((Lichtman
and Conchello, 2005) and Figure 9 Left). Thick samples will cause out-of-focus light to blur
images making it difficult to resolve fine details. Confocal microscopy uses a pinhole to block
out of focus light and therefore increase optical resolution ((Furrer and Gurny, 2010) and
Figure 9 Middle). The light source is usually a single wavelength laser allowing tight
illumination focus (Furrer and Gurny, 2010). Samples can be optically sectioned (z stacks)
and the resulting images can then be reconstructed into a 3D data set (Brakenhoff et al.,
1985;Conchello and Lichtman, 2005). Multiphoton fluorescence microscopy allows optical
sectioning of thick samples using two photons of light and leads to excitation only at the
focal point ((Denk et al., 1990;Hadjantonakis et al., 2003) and Figure 9 Right). Therefore, all
light collected by the system must be from the plane of focus. Because two-photon emission
must inherently occur at a discrete point, pinholes are not required (Nowotschin et al.,
2009). Using longer wavelengths (near infra red) provides several benefits including less
phototoxicity and deeper penetration, allowing imaging around 500 microns into a sample
(Zipfel et al., 2003;Helmchen and Denk, 2005;Makale et al., 2009;Andresen et al.,

2009;Ntziachristos, 2010). Live cell imaging is made possible by including an incubation
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chamber which tightly controls the environment of the cells and keep living cells in a healthy
state during long term imaging (Baker, 2010). Investigation, e.g. by multiphoton microscopy,
of three-dimensional cultures like organotypic explants can elucidate essential cellular
functions like tissue-specific architecture, mechanical and biochemical signals and cell—cell

communication, which is lost in monolayer “petri-dish” cell cultures (Pampaloni et al., 2007).

Figure 9 Fluorescence microscopy images. Left A widefield microscopy image showing a double
transgenic mouse embryo, 18.5 days (17x). The image was captured using brightfield as well as green
and red fluorescent filters in darkfield (Gloria Kwon, Memorial Sloan-Kettering Insititute - New York).
Middle A confocal fluorescence microscope image of “Brainbow” transgenic mouse hippocampus
(40x) (Dr. Tamily Weissman, Harvard University, Cambridge and (Livet et al., 2007)). Right A two-
photon fluorescence microscope 3D image of cell nuclei in the mouse colon (740x) (Dr Paul Appleton,
University of Dundee). (All 3 images are taken from http://www.nikonsmallworld.com/.)

1.3.3 Fluorescence recovery after photobleaching (FRAP)

Fluorescence recovery after photobleaching (FRAP) is a method developed to detect
motions of substances in the cell (Axelrod et al.,, 1976). During FRAP a region is
photobleached with high-power laser irradiation followed by low-power laser scanning to
observe and measure the speed of fluorescence recovery in the bleached region
(Houtsmuller and Vermeulen, 2001;Wang et al., 2008). The characteristics of redistribution
give information on diffusion, mobile fraction and duration of transient immobilization of
the molecule under investigation ((Houtsmuller and Vermeulen, 2001;Lippincott-Schwartz et

al., 2003) and Figure 10).
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Figure 10 Fluorescence recovery after photobleaching. a A cell expressing fluorescent molecules is
imaged with low light levels before and after photobleaching the strip outlined in red. Recovery of
fluorescent molecules from the surrounding area into the photobleached region is monitored over
time. Analysis usually includes compensation for the reduction in whole-cell fluorescence (depicted in
the bottom cartoons). b Fluorescence recovery into the photobleached region can be quantified in a
fluorescence recovery after photobleaching (FRAP) curve. These plots depict the recovery for a single
species (simulated by a single exponential curve shown in yellow circles) or the kinetics for two equal
populations recovering at two different rates (simulated by a double exponential curve shown in
orange circles). Note that the kinetics for recovery of the latter takes much longer to plateau. ¢ The
level of fluorescence recovery in the photobleached region reveals the mobile and immobile fractions
of the fluorophore in the cell. d A simple test for photo-induced immobile fractions is to perform a
second FRAP experiment in the same region of interest. In the example here, the mobile fraction of
the initial FRAP experiment is ~70%. The level of recovery can be determined by normalizing the
fluorescent signal in the region and repeating the FRAP experiment. In the absence of photodamage,
full recovery should be observed. (Figure and legend from (Lippincott-Schwartz et al., 2003)).
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2. PRESENT INVESTIGATION

2.1 AIMS OF THE STUDY

The projects presented here were initiated to increase our knowledge of DNA repair and
investigate consequences of deficient DNA excision repair in human and mice. In the first
part of the work, we aimed to find the disease-causing mutation in two patients with clinical
features typical of Cockayne Syndrome (CS). Given that the number of studies linking clinical
findings in CS patients and molecular findings of their respective CS mutations is relatively
low, especially for the CSA protein where we found a novel mutation, a secondary aim was

to review the CSA protein and its currently known mutations in humans.

In the last two projects described in this thesis, we wanted to further characterize the role of
mouse FEN1. FEN1 is essential for DNA replication and LP-BER. Previous studies in our lab
revealed early embryonic lethality of Fen1 knock-out mice. Two Fenl knock-in models were
generated, carrying mutations in conserved amino acids. In one model, the PCNA-binding
domain of FEN1 was mutated, while the other model had a mutated FEN1 active site. Our
aims were to characterize the Fen1 mutants, study the role of FEN1 and the consequences of

disrupted nuclease activity, and elucidate the importance of PCNA interaction.

Finally, the ultimate goal was to study the kinetics of mouse FEN1 in DNA repair. To obtain
this, we generated and characterized knock-in mice expressing FEN1 fused to YFP, and
performed multiphoton laser irradiation experiments. Our project is innovative in that the
expression, localization and distribution of FEN1 will be investigated in vivo in live mice and

cells.

Understanding the DNA metabolic pathways, their mechanisms at a fundamental level, and
the consequences of deficiency or distortions of proteins involved in DNA repair can help us
understand the cause, origin, and nature of disease, among them neurodegeneration and

cancer.
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2.2 SUMMARY OF PAPERS

PAPERI

Cockayne syndrome (CS) is mainly caused by mutations in the Cockayne syndrome group A
or B (CSA or CSB) genes which are required for a sub-pathway of nucleotide excision repair
entitled transcription coupled repair. Approximately 20% of the CS patients have mutations
in CSA, which encodes a 44 kDa tryptophane (Trp, W) and aspartic acid (Asp, D) amino acids
(WD) repeat protein. Up to now, nine different CSA mutations have been identified. We
examined two Somali siblings 9 and 12 years old with clinical features typical of CS including
skin photosensitivity, progressive ataxia, spasticity, hearing loss, central and peripheral
demyelination and intracranial calcifications. Molecular analysis showed a novel splice
acceptor site mutation, a G to A transition in the -1 position of intervening sequence 6
(g.IVS6-1G>A), in the CSA (excision repair cross-complementing 8 (ERCC8)) gene. IVS6-1G>A
results in a new 28 amino acid C-terminus and premature termination of the CSA protein
(G184DFs28X). A review of the CSA protein and the 10 known CSA mutations is also

presented.

PAPERII

Flap endonuclease 1 (FEN1) processes Okazaki fragments in lagging strand DNA synthesis,
and FEN1 is involved in several DNA repair pathways. The interaction of FEN1 with the
proliferating cell nuclear antigen (PCNA) processivity factor is central to the function of FEN1
in both DNA replication and repair. Here we present two gene-targeted mice with mutations
in FEN1. The first mutant mouse carries a single amino acid point mutation in the active site

E160D/E160D .
60D/£160 ), and the second mutant mouse contains two

of the nuclease domain of FEN1 (Fen1
amino acid substitutions in the highly conserved PCNA interaction domain of FEN1
(Fen1APCNA/APCNAY - pop 1E160D/E160D ica develop a considerably elevated incidence of B-cell
lymphomas beginning at 6 months of age, particularly in females. By 16 months of age, more
than 90% of the Fen1®®°”f1%% females have tumors, primarily lymphomas. By contrast,
FenlAPCNA/APCNA

mouse embryos show extensive apoptosis in the forebrain and vertebrae area

and die around stage E9.5 to E11.5.
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PAPERIII

The structure specific flap endonuclease 1 (FEN1) is known to play an essential role in long-
patch base excision repair (BER) and in DNA replication. Here, we have generated a novel
mouse model which allows for monitoring the kinetics of FEN1 in response to DNA damage
in live cells. The expression of the enhanced yellow fluorescent protein (eYFP), is here
regulated by the endogenous Fenl promoter, and is fused to FEN1. The FEN1-YFP mouse
enabled us to characterize expression levels and distribution of FEN1-YFP in cultured mouse
cells and in live tissues. According to its role in processing of Okazaki fragments in lagging
strand DNA synthesis, FEN1 expression is most readily found in highly proliferating tissue,
however, FEN1 expression was also seen in the brain. Moreover, the FEN1-YFP fusion
protein allowed us to investigate repair kinetics in cells challenged with local and global DNA
damage and following poly (ADP-ribose) polymerase (PARP) inhibition. In vivo 2-photon
fluorescence microscopy demonstrates rapid relocation of FEN1 at local DNA damage sites in
the laser-irradiated nuclei, providing evidence of a highly mobile protein which accumulates
fast at DNA lesion sites with high turnover rate. Inhibition of PARP disrupts FEN1
accumulation at sites of DNA damage, indicating that PARP is needed for FEN1 recruitment

to DNA repair intermediates in BER.
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3. DISCUSSION

3.1 A SUMMARY OF EXCISION REPAIR DEFICIENCIES AND DISEASE

When it comes to nuclear DNA repair, BER is the DNA repair pathway handling the highest
number of lesions. While the lesions handled by BER are relatively small, NER is dealing with
larger helix-distorting lesions generally obstructing transcription and replication (Nordstrand
et al., 2007). Deficiencies in BER and NER can range from a complete lack of essential
protein(s) to subtle mutations and SNPs which can result in a broad spectrum of phenotypes,
as illustrated in papers | and Il, and studies referred to throughout the introduction and
discussion of this thesis. Premature aging, cancer, neurodegeneration and developmental
disorders are the main diseases resulting from deficient excision repair (Xu et al.,

2008;Niedernhofer, 2008;Cleaver et al., 2009).

Aging is a complex phenomenon, characterized by increased susceptibility to cellular loss
and functional decline, where mitochondrial DNA mutations and mitochondrial DNA damage
response are thought to play important roles. Mitochondria are the major source of ROS in
the cell, and are shown to utilize mitochondrial BER (mtBER) in order to remove oxidative
damage and avoid mutations in the mitochondrial DNA (Larsen et al., 2005;Gredilla,
2010;Boesch et al., 2011). Emanating ROS from the electron transport chain can cause
mtDNA damage and mutations which might result in dysfunctional mitochondrial
respiration, further rising ROS generation and oxidative damage. This so-called “vicious
cycle” of ROS generation and oxidative damage is one hypothesis for aging associated
pathologies, and is particularly devastating in post-mitotic differentiated neuronal tissues
(Jang and Remmen, 2009). Moreover, age-related decline in mtBER in skeletal muscles has
been suggested to contribute to sarcopenia (loss of muscle mass) (Szczesny et al., 2010). The
mtBER pathway is similar to the nuclear version, however, mtBER proteins are encoded by
the nuclear genome and most are splice variants, alternative translation-initiation products
or post-translationally modified versions of the nuclear-encoded proteins. NER is not
thought to be active in mitochondria, at least not in the classical nuclear form, and classical
NER substrates like thymidine-dimers, cisplation intrastrand cross-links and complex alkyl
damage are not repaired in mtDNA (Larsen et al., 2005;Boesch et al., 2011). However, a
recent study revealed that NER proteins CSA and CSB rush into mitochondria upon oxidative

damage, and interact with BER proteins (Kamenisch et al., 2010). The authors suggest that
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the buildup of mitochondrial gene mutations could be responsible for the subcutaneous fat

loss characteristic of CS (Kamenisch et al., 2010).

Initiation and progression of cancer and accelerated aging can be caused by DNA damage.
The outcome depends on the amount and type of DNA damage, the location of damage and
different cells also respond differently to damage. Unrepaired DNA damage may cause cell
death and senescence leading to accelerated aging while protecting against cancer
(Hoeijmakers, 2009). Reducing ROS and the damage load through avoidance or limited
exposure to exogenous genotoxins and suppressed metabolism can delay cancer
development or the aging process (Blagosklonny et al., 2010). Both caloric restriction and
DNA damage can elicit a protective survival response that promotes longevity and healthy
aging (Garinis et al., 2008;Schumacher et al., 2009). This survival response includes
suppression of growth hormone (GH)/insulin growth factor (IGF)-1 somatotroph axis and
suppression of oxidative metabolism (Niedernhofer et al., 2006;van, | et al., 2007). The shift
from growth and proliferation to preservation of somatic maintenance also involves
upregulation of antioxidant defence and stress responses, along with a clear tendency to

store glycogen and fat (Niedernhofer et al., 2006;van, V et al., 2006;van, | et al., 2007).

BER deficiency increases susceptibility to mutagenesis and tumorigenesis, illustrated by high
lymphoma incidence in Ung”" mice and lymphoid hyperplasia and adenocarcinoma in Pol6""
mice (Nilsen et al., 2003;Cabelof et al., 2006). Moreover, the combined deletion of two DNA
glycosylases, OGG1 and MUTY, result in high incidence of lymphomas, lung tumors and
ovarian tumors (Xie et al., 2004). BER gene polymorphisms, including mouse Fenl and
human FEN1 variants, are associated with an increased risk for certain cancers (Zheng et al.,
2007b;Xu et al., 2008;Yang et al., 2009). Specific SNPs in OGG1, POLB and PARP1 genes have

been associated with bladder cancer risk (Figueroa et al., 2007).

Given the severe cancer-prone phenotype of XP patients one could question whether
variation in NER capacity in the general population is associated with more subtle risk of
sporadic cancer. One study identified an association of SNPs in the XPC gene with increased
lung cancer risk in a Chinese population (Bai et al., 2007). Common variation of other NER
associated proteins, like the MMS19L protein which interacts with XPD, is linked with

increased risk of pancreatic cancer (McWilliams et al., 2009). Further research, in large
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confirmatory studies, is needed to conclude whether SNPs in NER genes correlate with

increased incidence of cancer.

NER deficiencies cause progressive neurodegeneration, and is exposed in three syndromes,
XP, CS and TTD, mentioned in the introduction of this thesis, and in the case of CS described
more in detail in paper I. Although some overlapping symptoms exist between XP, CS and
TTD, pathogenesis differs among and within the syndromes, with the primary defect in XP
being loss of neurons, whereas abnormal myelin is the major neuropathological feature in
TTD and CS (Brooks et al., 2008). It is speculated that the classic DNA damage accumulation
model is applicable to neuronal death due to defective DNA repair, while the myelination
defects and brain calcification pathology are better explained by other mechanisms (Brooks
et al., 2008). Interestingly, mutated versions of one of the genes defective in XP individuals,
XPD, can result in all three NER disorders (Lehmann, 2001). XPD patients with mutations that
specifically affect the NER function of XPD develop a progressive neurodegenerative disease
similar to XPA patients, a “pure” XP phenotype. On the other hand, mutations in XPD that
either destabilize TFIIH or affect the transcription function result in TTD or the XP-CS
complex. TFIIH open DNA during NER and transcription, however, it also functions as a
kinase that phosphorylates nuclear hormone receptors (Rochette-Egly et al.,
1997;Chymkowitch et al., 2011). Moreover, TFIIH can function as a co-activator for thyroid
hormone-dependent gene regulation, and the neurologic disease in human TTD patients
might be explained by dysregulation of thyroid dependent gene expression in the brain,
resulting in aberrant myelin gene expression (Compe et al., 2007). “Pure” CS cells display
normal nuclear hormone-dependent transcription, whereas reduced phosphorylation of
nuclear hormone receptors levels explains the hormone-dependent transcription defect
observed in XPG-CS cells (Ito et al., 2007). Despite the phenotypic similarity between CS,
XPG-CS, and TTD, the underlying molecular defects appear to be different (Brooks et al.,
2008;Hashimoto and Egly, 2009).

Abnormal myelin is, as mentioned above, the most prominent neuropathological finding in
TTD and CS, and also in another rare genetic disease, Aicardi-Goutieres syndrome (AGS)
(Brooks et al., 2008). Myelin, the “white matter”, lipid-rich insulating material forming a
layer around the axons of neurons, is synthesized by specific types of glial cells called
oligodendrocytes (Brooks et al., 2008). AGS can be caused by mutations in either TREX1 or
RNASEH2, and is characterized by failure to degrade endogenous DNA in the absence of
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these nucleases, where upon undegraded endogenous nucleic acids activate an innate
immune response, resulting in increased proinflammatory cytokine IFN-a production (Brooks
et al.,, 2008;van Heteren et al., 2008;Stephenson, 2008). Secretion of IFN-a in the
extracellular space of the brain, and therefore into the cerebrospinal fluid (CSF), can act on
other brain cell types, including vasculature and oligodendrocytes, resulting in inflammation,
dysmyelination and brain calcification (Lebon et al., 2002;Brooks et al., 2008). Vascular
degeneration, particularly seen in microvessels, is present in CS (Weidenheim et al., 2009),
moreover, gene expression changes (Newman et al., 2006) and evidence of inflammation
has been observed in CS-cells (Weidenheim et al.,, 2009). The defective TC-NER may
contribute to the “vicious cycle” of neuroinflammation and cell death in CS brain. Overlap in
neurological symptoms between CS and AGS suggests that vascular changes, and perhaps
alterations in gene expression may play a role in the white matter phenotypes and brain
calcifications in both diseases (Brooks et al., 2008). This hypothesis of involvement of

inflammation in NER disorders await additional evidence.

Brain has less nuclear and mitochondrial BER activity than other somatic tissues, yet it uses
more oxygen than other organs and is vulnerable to ROS-induced damage (Intano et al.,
2001;Karahalil et al., 2002;Hegde et al., 2011). Age-associated decline of BER activity in the
central nervous system has been linked to neurodegenerative disorders, implying a role for
impaired BER in the pathogenesis of Alzheimer's disease (AD), Parkinson's disease (PD),
amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) (Xu et al., 2008;Coppede
and Migliore, 2010b). Impaired BER activity has also been demonstrated in tissues from AD
individuals (Coppede and Migliore, 2010b). In accordance with impaired BER, OGG1 showed
decreased activity in AD brain and ALS motor neurons. It has been suggested that increased
oxidative damage in AD patients could indirectly impair DNA repair proteins, e.g. by post-
translational oxidative induced modifications or degradation of OGG1 activity (Shao et al.,
2008;Hill et al., 2008). On the other hand, increased OGG1 levels were observed in the
substantia nigra of PD patients (Fukae et al., 2005), and OGG1 was linked to somatic CAG
repeat expansion in HD (Kovtun et al., 2007). On the contrary, increased PARP1 activity has
been observed in AD, PD and ALS brain tissues (Soos et al., 2004;Kim et al., 2004;Kauppinen
and Swanson, 2007), and increased APE1 expression was observed in AD brain regions and
ALS motor neurons (Tan et al., 1998;Shaikh and Martin, 2002;Davydov et al., 2003;Marcon et
al.,, 2009). The understanding of the involvement of DNA repair in AD and other

neurodegenerative diseases is currently at its beginning and need further research.
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3.2 NUCLEOTIDE EXCISION REPAIR AND CSA

In our paper I, we describe the identification of a new mutation in the CSA protein, and
recapitulates the known CSA mutations at the time (Kleppa et al., 2007). Crystal structures of
CSA and CSB proteins are yet not available; however, the latter has been modelled. A recent
mutation update for CSA and CSB doubles the number of known disease causing mutations
and further discusses possible genotype-phenotype correlations and motif-function
correlations (Laugel et al., 2009). In the report, rare founder effects were identified in
specific populations, including the mutation we reported, CSA10NO. This homozygous splice
site mutation was confirmed in the CSA gene of three Somali patients in the UK (Laugel et
al., 2009). All known missense mutations in CSA are located in the WD motifs, of which half
of them are contained in WD motif 4. The WD motifs are required for protein-protein
interactions and to build the beta-propeller structure. Interestingly, the structure of another
WDA40-repeat protein, DDB2 in the UV-DDB complex, revealed that the DDB2 WD40
propeller exclusively binds the lesion, illustrated by either 6-4PP lesion or an abasic site in
the DNA duplex bound to the DDB1-DDB2 complex (Scrima et al., 2008). DDB1-DDB2
associates tightly with the CUL4A-RBX1 ubiquitin ligase complex (Scrima et al., 2008). DDB2
is one of many specific substrate-recognizing DDB1-CUL4 associated factors (DCAFs), and
CSA is one of the DCAFs taking the place of DDB2 in a similar ubiquitin ligase complex
(Sugasawa, 2009;Abbas and Dutta, 2011). The p.Ala205Pro mutation located in the fourth
WD motif has been shown to abolish binding of CSA to one of its interactors, DDB1 (Cao et
al., 2004;lin et al., 2006). The p.Trp361Cys mutation reported in a case of UV-sensitive
syndrome (UVSS) correlates with defective TCR but normal repair of oxidative DNA damage,
suggesting uncoupled roles for CSA in removal of UV-induced damage and oxidative damage
(Nardo et al., 2009). This mutation, positioned in the last putative WD repeat of CSA, does
not disrupt or destabilize the overall functions of CSA as it renders a partially functional CSA
in the UVSS proband. UVSS is a mild NER disorder characterized by photosensitivity and mild
skin abnormalities, with normal growth and neurological development, and without any
increased risk of cancer. Despite the mild symptoms, UVSS cells display the same TC-NER
defect as CS cells(Nardo et al., 2009). UVSS can be caused by the CSA mutation mentioned
above, but also by the complete lack of CSB protein, or by a complementation group
unknown to date (Fujiwara et al., 1981;ltoh et al., 1994;Horibata et al., 2004;Nardo et al.,
2009). The broad spectrum of phenotypes associated with mutated CSA and CSB and the

lack of a molecular explanation of the CS pathology emphasize the need of further research
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in this field (Weidenheim et al, 2009). Human CSA and CSB mutations have largely
overlapping phenotypes and are generally clinically indistinguishable (Stefanini et al., 1996).
To date, mutated CSA has not been described in the most severe type Il CS or in the prenatal
cerebro-oculo-facio-skeletal (COFS) syndrome. Mutated CSB is identified in all types of CS
and the very severe COFS, also, cataracts are often described in patients with mutated CSB
and are associated with severe disease, but rarely found in patients with mutated CSA
(Laugel et al., 2009). Although the phenotypes resulting from CSA and CSB mutations might
differ slightly, more patients would be needed to confirm any difference in clinical outcome
among mutated CSA or CSB. Csa and Csb mouse mutants display a much milder phenotype
than human CS patients. Yet, as for humans, the phenotypes of Csa and Csb mutants are

impossible to separate (van der Horst et al., 1997;van der Horst et al., 2002).

CSA ubiquitylates CSB for degradation. Thus, it seems contradictory that both lack of CSA
and lack of CSB cause CS (Groisman et al., 2006). If CSB is mutated, there is no functional
CSB, while no CSB degradation via the ubiquitin-proteasome pathway occurs when CSA is
mutated. Recently, CSA ubiquitylation and CSB function have potentially been connected
through the ubiquitin-binding domain (UBD) of CSB (Anindya et al., 2010;Gray and Weiner,
2010). Anindya and co-workers show that TC-NER proteins assemble at the site of DNA
damage but can not begin repair until CSB binds ubiquitin. Possibly, CSA ubiquitylates a
target in the TC-NER complex, which is recognized by CSB-UBD as a signal to disassemble the
initial TC-NER complex, leaving the core NER proteins to finish repair (Anindya et al., 2010).
Interestingly, the CSB homolog in yeast, Rad26, lacks the UBD domain. This correlates with
the dispensable role of a yeast homolog of CSA. The best homolog of CSA in yeast, Rad28, is
not required for TC-NER in budding yeast. Yet, CSA is absolutely required for TC-NER in
mammalian cells, along with the UBD of CSB (Venema et al., 1990;Bhatia et al., 1996).

The mechanisms by which CSA and CSB influence repair of oxidative damage are puzzling. It
has been speculated that CSA might be indirectly involved in oxidative damage repair. CSA is
part of an ubiquitin ligase known to be involved in TCR of bulky lesions. The requirement of
ubiquitylation for repair of oxidative damage is an interesting possibility, however, this lacks
experimental evidence (Cramers et al, 2011). CSB could have a general role in
transcriptional control through chromatin maintenance or remodeling (Cramers et al., 2011).
CS-deficient cells are hypersensitive to several types of oxidative DNA damaging agents. This

hypersensitivity is associated with accumulation of oxidative base modifications, including 8-
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0x0G, 8-0xo0A, and 5-hydroxy-2’-deoxycytidine in both CSA and CSB mutant genomic DNA
(Tuo et al., 2001;D'Errico et al., 2007;Ropolo et al., 2007;Pascucci et al., 2011). Moreover,
impaired host cell reactivation of plasmids containing a single 8-oxoG was observed in CS-
deficient cells (Spivak and Hanawalt, 2006). SV-40-transformed CSA and CSB mutant cells did
not confirm the hypersensitivity to oxidative DNA damaging agents seen in CS deficient
primary cells (D'Errico et al., 2007). Thus, one should be cautious in extrapolating data on
oxidative stress sensitivity in transformed cells, where different cell responses are defective
compared to normal cells. A possible role of the CS proteins in protection from oxidative
damage was recently shown by functional increase of CSA and CSB inside mitochondria (mt),
and complex formation with mtDNA, mtOGG-1, and mt single-stranded DNA binding protein
(mtSSBP)-1 upon oxidative stress in human cells, linking BER and NER (Kamenisch et al.,
2010). Impaired repair of oxidative lesions throughout the genome is suggested to
contribute to the CS phenotype, as reduced GGR was observed in CSA and CSB deficient
human cells (Cramers et al., 2011). TCR, on the other hand, is not involved in the processing
of ionizing radiation induced oxidative lesions, and defective TCR is thus highly unlikely to
underlie the radiation sensitivity of CS (Cramers et al., 2011). The involvement of GGR, TCR
and chromatin remodeling proteins in UV-induced repair has been proposed to depend on
the developmental stage of cells (Lans et al., 2010). GGR predominates in germ cells and
dividing cells to keep the entire genome free of lesions, while in non-dividing somatic cells

the priority is to maintain active genes through TCR (Lans et al., 2010).

33 FEN1, - ITS ROLE AND REGULATION IN DNA REPLICATION AND DNA REPAIR

FEN1 is absolutely required for removal of RNA/DNA primers during Okazaki fragment
maturation in lagging strand DNA synthesis and for cleavage of flap-substrates generated
during LP-BER. In paper Il and Il we characterized three different FEN1 knock-in mice. The
first mutated in the conserved FEN1 nuclease domain, the second mutated in the conserved
PCNA-interacting protein (PIP) domain and the third encoding a fluorescently tagged FEN1,
FEN1- YFPHisgHA (entitled FEN1-YFP) fusion protein. The nuclease mutant is characterized
with high incidence of lymphoma, whereas a mutation of the PCNA-interaction domain
causes early embryonic lethality. In line with our results, Zheng and colleagues show that
F343AF344A mutations in the PIP domain of FEN1 in mice disrupts FEN1’s ability to interact
with PCNA (Zheng et al., 2007a;Zheng et al., 2011a). The heterozygous F343AF344A mutant
mice encompass both defect RNA primer removal and LP-BER, resulting in numerous DNA

strand breaks (Zheng et al., 2011a). Moreover, Zheng et al. show that heterozygous

41



Discussion

F343AF344A mutant mice display a higher incidence of aneuploidy-associated cancer (Zheng
et al., 2011a). FEN1 is thought to be both a tumor suppressor protein and an enzyme
upregulated in hyperproliferating cancer cells. In accordance with increased FEN1 expression
in cancer cells, decreased CpG2 methylation of the FEN1 promoter is associated with breast
cancer (Singh et al., 2008;Lahtz and Pfeifer, 2011). Thus FEN1 can promote cancer in two
different ways; mutated FEN1 can increase genomic instability and initiate malignant
transformation, while FEN1 overexpression gives the tumors a growth advantage (Zheng et
al., 2011b). Furthermore, the mutant mouse models suggest two different cancer causing
mechanisms as presented by Zheng and Shen (Zheng and Shen, 2011). One mechanism
which could lead to cancer is illustrated by the F343AF344A mutant, with aneuploid cancer
arising from deficient RNA primer removal. The second mechanism is originating from
impaired editing of polymerase a incorporation errors during Okazaki fragment maturation,
exemplified by the E160D mutant. Mutated FEN1 with disrupted PCNA interaction is thought
to cause retarded processing of RNA/DNA primers due to a partial defect in recruitment of
FEN1 to replication foci (Zheng et al., 2011a). Another role of the FEN1/PCNA interaction is
for PCNA to ensure the appropriate dissociation of FEN1 from nicked DNA after flap cleavage
(Zheng et al., 2011a). F343AF344A mutant FEN1 may remove nucleotides from the 5’ end
nicked DNA ends, causing unwanted cycles of gap filling, DNA cleavage and ligation (Zheng et
al., 2011a). The defects in RNA primer removal and LP-BER result in frequent DNA breaks,
activation of G2/M checkpoint protein Chk1, and induce aneuploidy (Zheng et al., 2011a).
While the F343AF344A mutant is not thought to result in a mutator phenotype, the FEN1
E160D mutant presented by Zheng et al. displayed a strong mutator phenotype, with a 25-
fold increase in rates of base substitution in MEF cells carrying the FEN1 nuclease-defective
mutation (Zheng et al., 2007c). In normal cells, mis-incorporated bases may be proofread by
DNA polymerase 6, removed by FEN1 if displaced into the 5’ flap, or removed by 5’
exonuclease activity of FEN1 if not displaced in the flap. Incorporation errors can also be
removed by the mismatch repair pathway (Zheng and Shen, 2011). The sole contribution of
BER deficiency to formation of spontaneous cancer in FEN1 E160D mice is difficult to assess,
due to other DNA metabolic defects in these mice, including apoptotic DNA degradation
deficiency (Zheng et al., 2007c). Chemical-induced DNA damage by hydrogen peroxide
(H,0,) and methylnitrosourea (MNU) treatment resulted in DNA strand breaks, chromosome
instability and chromosomal breakage in the E160D nuclease deficient cells (Xu et al., 2011).
In mice treated with MNU, an alkylating agent similar to a tobacco-specific carcinogen, FEN1

E160D mice were significantly more susceptible to MNU exposure and developed lung
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adenocarcinoma (Xu et al., 2011). Using nuclear extracts and reconstituted purified proteins,
Xu et al. demonstrate that the E160D FEN1 mutant is deficient in processing LP-BER
intermediate structures (Xu et al., 2011). Thus, the E160D mutation results in a nuclease-
deficient FEN1 impaired in processing of intermediate DNA substrates formed during LP-BER,
which again lead to DNA breaks, leaving E160D cells susceptible to DNA damage (Xu et al.,
2011).

Recent biochemical and genetic studies provide evidence that post-translational
modifications of the FEN1 protein are involved in regulation of protein-protein interactions
and also determine the cellular localizations of FEN1 (Zheng et al., 2011b). Acetylation
(Hasan et al., 2001), phosphorylation (Henneke et al., 2003) and methylation (Guo et al.,
2010) are three modifications found to regulate FEN1 in vivo, where methylation of residue
R192 in FEN1 prevents phosphorylation at its residue S187 (Guo et al., 2010). Methylated
FEN1 interacts with PCNA, whereas phosphorylated FEN1 dissociates from PCNA (Guo et al.,
2010). This provides novel insight into the mechanism for the FEN1 nuclease to dynamically
associate with and dissociate from PCNA and the DNA substrate. It has been proposed a
model of sequential actions where methylated FEN1 replaces the DNA polymerase and
access PCNA and the flap structure, upon flap cleavage FEN1 is demethylated by an
unknown mechanism, allowing phosphorylation of the nuclease which then falls off PCNA
leading to ligase recruitment (Zheng et al., 2011b). FEN1 acetylation has an inhibitory effect
on its enzymatic activity (Hasan et al., 2001;Friedrich-Heineken et al., 2003). Acetylation of
FEN1 and DNA2 nuclease/helicase promotes the formation of longer flaps thought to involve
further processing by RPA and DNA2 (Balakrishnan et al., 2010). Recent findings indicate that
the cell use acetylation of BER and replication proteins to allow controlled removal of a
greater number of nucleotides with high accuracy (Hasan et al.,, 2002;Bhakat et al.,
2003;Bhakat et al., 2006;Balakrishnan et al., 2010). Our kinetic study on the FEN1-YFP fusion
protein to sites of DNA damage in live cells (paper Ill), revealed a fast accumulating FEN1
with high turnover, in line with the dynamical regulation of FEN1 by post-translational

modifications.

If a BER complex exists remain to be elucidated, however, Jaiswal and Narayan argue in a
recent study that a complex with all the essential BER-components, including FEN1,
assembles on abasic DNA in nuclear extracts from human colon cancer cells (Jaiswal and

Narayan, 2011). FEN1 recruitment onto the AP-site was found to be as fast as that of APE1,
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and did not change with the time course of the assembly of the complex (Jaiswal and
Narayan, 2011). Further in support of FEN1 in a BER multiprotein complex, Hanssen-Bauer et
al. suggest that XRCC1 organizes BER into multiprotein complexes of varying size, depending
on the nature and context of the DNA damage (Hanssen-Bauer et al., 2011). A model of
three modes of BER is presented, FEN1 is thought to take part in the BER complex at high
levels of DNA damage and in replication-associated BER, but not in the classic BER at
endogenous and low levels of induced DNA damage (Hanssen-Bauer et al., 2011). It has also
been proposed that LP-BER function by sequential enzyme actions in the context of a
multienzyme complex that remains structurally intact during the repair process
(Balakrishnan et al., 2009). Yet, another suggestion is that preformed BER complexes
predominantly repair endogenous base lesions, while repair via hand-off mechanism by

sequential recruitment could occur with induced DNA damage (Hegde et al., 2010).

3.4 METHODOLOGICAL ASPECTS

To examine the mobility and kinetics of FEN1 in vivo we generated a knock-in mouse
expressing EYFP-tagged FEN1 from the endogenous Fenl locus (Paper Ill). When evaluating
the results, we have to take into account that we observe a tagged FEN1 protein, which
possibly could be disturbed as compared to its wild-type state. The aim when generating a
fluorescently labeled protein was expression of the fusion protein at levels comparable to
those for the native unlabeled protein, which targets to the correct compartment in the cell,
and exhibits a behavior similar to that of the native protein in terms of half-life, dynamics,
and protein-protein interactions. EYFP and other fluorescent proteins have the ability to fold
even after fusion to another protein, thus enabling the study of proteins in vivo. In addition,
EYFP gives a bright fluorescent signal, and it can be used in conjunction with far red
fluorescent labeling, enabling simultaneous imaging of two fluorescent proteins, possibly
colocalizing, without false positive signal or bleed-through fluorescence. The size of EYFP, 27
kDa, with a B—barrel 3nm in diameter and 4nm long, represents a significant addition to a
protein and thus may have steric consequences for protein folding, function, or targeting
(Yang et al., 1996). Therefore, one needs to be cautious when evaluating results of the
fusion protein when it comes to localization, protein-activity and protein-protein

interactions, and compare to, if known, these characteristics of the native untagged protein.

Although genome maintenance mechanisms in mice and humans are highly conserved,

differences exists in certain aspects of DNA repair, metabolic rate, immune system, telomere
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length and life span (Hasty et al., 2003;Mestas and Hughes, 2004;Demetrius, 2005). While
mouse models provide a unique biological perspective for tissue-specific effects of DNA
damage, some limitations exist in modeling human disease in the mouse. This is particularly
problematic in the nervous system, in which the mouse appears to be more resistant to DNA
damage compared to humans (Niedernhofer, 2008). For example, Csa or Csb mutations do
not appear to lead to demyelination and other severe neurological decline in mice, in
contrast to the detrimental neurological abnormalities seen in human. Although no good
model of the main CS phenotype exists, the single knock-out mouse model seems to
correspond to mild UVSS, while TCR/GGR double knock-out mouse models, deficient for
either Csb and Xpa or for Csb and Xpc, seem to correspond to the severe COFS
(Niedernhofer, 2008;Cleaver et al., 2009). Further analysis is needed to find out whether the
primary defect is neurodegeneration (XP) or demyelination (CS). As mouse models become
more refined, current limitations could be overcome by for example using combinatorial
gene inactivation approaches to mimic the neuropathology seen in human diseases. The
general observation of milder phenotypes, especially less neuropathology, of NER-deficient
mice versus humans deprived of functional NER may mean that the level of damage is
influenced by environmental factors. The most pronounced hallmark of NER-deficient mice
is elevated rates of UV-induced skin cancer, regardless of which NER gene being deficient. In
humans, on the other hand, there is a clear distinction between gene deficiencies that result
in cancer and those that result in neurological defects (Niedernhofer, 2008). This discrepancy
could well be due to the short lifespan of mice, and by the high UV doses assessed.
Conversely, unprotected XP-patients develop skin cancer at an early age (Cleaver et al.,
2009). While NER knock-outs provide several mouse models of human disease, the BER
knock-outs are mostly embryonic lethal, with the exception of mice lacking individual DNA
glycosylases which initiate the BER pathway. However, work with BER SNPs and meta-
analysis have provided evidence for a role of BER in human disease (Maynard et al., 2009).
Through heterozygous mouse models of the essential BER-proteins, and viable homozygous
nulls for the glycosylases, BER-deficiency and its influence on lifespan and health is modeled
in rodents (Xu et al., 2008). Mice deficient in BER-function display severe phenotypes,
including cancer, premature aging and metabolic defects (Mostoslavsky et al,
2006;Vartanian et al., 2006;Chan et al., 2009). Tissue-specific knockdowns and combination
of mouse models heterozygous or homozygous for BER-genes with mouse models deficient
in cell cycle check point or apoptosis genes may reveal variability among tissues, impact of

BER on aging and on fitness, and the corresponding molecular mechanisms.
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4. FUTURE PERSPECTIVES

Increasing the genotype-phenotype knowledge through diagnosis of CS patients both at the
molecular and clinical level will possibly reveal distinct biological roles of the CSA and CSB
proteins. However, the missing correlation seen between mutation and disease-outcome to
date necessitates investigations at the protein level, to clarify the functional and
coordinating roles of CSA and CSB alone and in the TCR-complex. Fluorescently tagged
proteins in live cells could be an important tool in the study of mutated CS proteins and their
interactions and involvement in DNA repair, elegantly shown by Anindya and coworkers
(Anindya et al., 2010). Combining the fluorescent CSB with fluorescent CSA or another TCR-
protein to image recruitment and colocalization to stalled RNAPII, or failure of it, in mutants
as compared to wild-type protein, could thus elucidate which protein(s) is bound by the CSB-

UBD and who is ubiquitylating whom.

The FEN1-YFP mouse has the potential of use in several fields, due to FEN1’s involvement in
many metabolic pathways, and its two-sided role in cancer. Further characterization of the
FEN1-expression levels in different tissues and during development, from early two-cell
stage via blastocyst and embryogenesis, until differentiated and eventually post-mitotic cells
could be done in vivo, and the expression compared among tissue-types, developmental
stages and other repair proteins. Crossing FEN1-YFP mice with other fluorescently tagged LP-
BER proteins could be used for in vivo studies of protein-protein interactions and
colocalization at DNA damage sites. To investigate further the role of FEN1 in proliferative
cells, partial hepaectomy could be performed, and FEN1-YFP expression monitored in the
rapid regenerating liver tissue. Also, tumor cells or tissues expected to have upregulated
FEN1 in the hyperproliferating cells, would be interesting to evaluate and visualize. FEN1-YFP
is not by itself expected to increase the risk of cancer development, so either spontaneous
or chemically/radiation induced tumor would be prerequisite. Another option is to study
heterogenous mice, by crossing FEN1-YFP either with a heterogenous BER-deficient mouse
or a cancer mouse model. Moreover, the kinetic studies of FEN1 initiated in our paper Il
could be expanded, including measurements to obtain K,, and K. data, increase number of
cells monitored for long-time fluorescence recovery, treat cells with more DNA-damaging
agents and do FRAP, compare FRAP on LD for FEN1 in different tissues, e.g. brain and skin,
both in cell cultures and in tissue slices. By combined effort of computational modeling and

quantitative analysis of the mammalian BER components in live cells, similar to what was
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done for the NER-machinery (Luijsterburg et al., 2010), one might be able to tell if there is a

BER complex, and if so, how it assembles and function on DNA repair intermediates.
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