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Paper I  

In the Introduction section it should read ”Being a strong acid ( pKa1 1.27 and  pKa2 4.28), 

OX was therefore expected to be suitable for SPE with SAX material.” 

 

In Table I, it should read  ”Current procedure, LC-MSMS   3-11     67       ” 

 

In the Result and discussion section, under 3.1 SPE-LC-MSMS method development it 

should read “….sample loss; and the evaporation and chromatographic-separation times 

required…” 

 

In the Result and discussion section, under 3.7 Evaluation of oxalogenesis in fresh samples 

it should read “As can be seen, the mean concentration of OX increases from a value of  6 

to 49 �mol/L….” 
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Introduction  
 
 

1. Oxalic acid, hyperoxaluria, hyperoxalaemia and oxalosis  

 
Oxalic acid or oxalate is a small dicarboxylic acid with molecular mass 90.03 g/mol.  

It is a relatively strong acid with pKa1=1.27 and pKa2= 4.28.   

It is the physical property of its calcium salt which is very insoluble at physiological pH that 

is responsible for the life-threatening property of oxalic acid in humans1. 
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Figure 1. Oxalic acid 

 

The terms hyperoxaluria refers to increased urinary excretion of oxalic acid , 

hyperoxalaemia refers to increased concentration of oxalate in blood, and the term systemic 

oxalosis or simply oxalosis refers to the accumulation of oxalic acid  in tissues2.   

There are several different causes of hyperoxaluria, -aemia and oxalosis, and many of the 

causes are interactive. If the body burden of oxalate increases, hyperoxaluria will be the 

consequence. Hyperoxalaemia occurs when the body’s ability to excrete oxalate through the 

kidneys decreases, and oxalosis can be the consequence of long term or extensive 

hyperoxalaemia.  Hyperoxaluria/aemia increases the risk of precipitation of calcium oxalate 

crystals in the kidneys (renal oxalosis) and consequently the formation of calcium oxalate 

kidney stones. 

Environmental or secondary hyperoxaluria can be caused by increased ingestion and/or 

absorbtion of dietary oxalic acid, intestinal disease or surgery or alterations in intestinal 

flora. Increased endogenous oxalic acid production, e.g. by ethylene glycol poisoning, can 

also result in secondary hyperoxaluria/oxalosis. Finally, decreased clearance of oxalic acid 

from the body due to renal insufficiency can result in hyperoxalaemia and consequently 

oxalosis. 

Hyperoxaluria/oxalosis is only infrequently caused by genetic factors; the primary 

hyperoxalurias. The different topics will be discussed separately. 
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2. Biochemistry and metabolism 

 

Oxalic acid is a metabolic end product that is excreted almost solely in urine.    

In the body, oxalic acid is derived from two sources: the ingestion of oxalic acid or 

ingestion of precursors of oxalic acid, that is, compounds that are metabolized into oxalic 

acid in the body.  In the following oxalic acid from food is referred to as dietary oxalic acid 

and oxalic acid derived from metabolism of oxalic acid precursors as endogenous oxalic 

acid. From an analytical point of view, an additional source of oxalic acid is of major 

interest: The non-enzymatic conversion of ascorbic acid (vitamin C) into oxalic acid, known 

as oxalogenesis can lead to erroneously high oxalic acid quantified in body fluids.  

The different sources of oxalic acid will be discussed separately. 

 

Dietary oxalic acid 

 

There is considerably controversy surrounding the various factors determining the 

concentration of oxalic acid in urine 3. In 1995, Holmes et al estimated that a healthy diet 

rich in whole grain products, vegetables and fruit may contain close to 200mg of oxalate pr 

day, while a less healthy diet, rich in animal protein, refined sugar and fat may contain less 

than 100 mg of oxalic acid, and that 5-15% of the dietary oxalate is absorbed in the intestine 

depending on co-ingestion of calcium, magnesium and fiber, the latter apparently due to 

reduced transit time 4. The contribution of dietary oxalate to oxalate excreted in urine has 

been reported to be as high as 50% 5.  Many different foods contain oxalate. The high 

oxalate content of dark-green leafy vegetables like spinach and rhubarb is generally known. 

Consumption of 200g boiled rhubarb or spinach has been reported to increase urinary 

excretion of oxalate by 300-400% 6. However, despite high in oxalate content, it is 

important to take into account the relatively low amount of consumption of especially 

rhubarb. Other sources of dietary oxalate like black tea and cocoa (chocolate) may contain 

only moderate amounts of oxalate, but the daily consumption in many individuals might be 

comparably higher. The oxalate content of vegetables depends on the plants maturity and 

age, soil quality, and climate, complicating the accurate assessment of the amount of oxalate 

ingested in diets. As an example, using capillary electrophoresis (CE), the oxalate content of 

sweet potato purchased at three different occasions at the same supermarket was found to 

vary from 0.2 to 86.9 mg oxalate/100g7. Difficulties in obtaining reliable data of the oxalate 

content of food is also hampered by the fact that different analytical methods are used in 
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different studies8;9. Food oxalate analysis is challenging due to the wide range of interfering 

substances present in addition to both the potential loss and generation of oxalate during 

assay 9. Foods contain oxalate in both soluble and insoluble forms, and the ratio of the two 

may have influence on the intestinal absorption and bioavailability of oxalate from different 

food sources. Using different extraction conditions for total and soluble oxalate, Honow et 

al 9 developed a quantitative method for oxalate in foods by anion exchange 

chromatography and detection using an enzyme reactor with oxalate oxidase. The oxalate 

content of about 150 foods has been established using their methodology, some of which are 

found in Table 1.   

 

Table 1. oxalate content of some foods 8;9 

 

 

Food 

 oxalate content 

mg/100g 

  

Food 

 oxalate content 

mg/100g 

  Soluble  Total    Soluble  Total 

 

rhubarb 

  

380 

  

570-1900

  

white bread 

  

4.9-8.6 

  

spinach a   33.3-168  100-627  apple  0.3-1.8  0.4-5.8 

potatoes a  8.8-18.9  8.8-35.3  banana  0.1-2.2  0.1-2.2 

tomato  2.5-4.5  3.7-13.7  orange  0.2  1.8 

beans   1.5  13.9  rye bread  0.9   

asparagus a  0.5-1.1  1.8-3.1  black tea  2.5-6.2   

broccoli a  0.5-1.7  0.8-1.9  cocoa 

powder 

   154-980 

carrot a  2.3  4.9  Beer    1.7-1.8 

rice a  0.4  1.8  Coffee  0.5-0.7   

raspberry  2.7-5.9  11.3-25.7  apple juice  0.07-

0.35 

 0.8-0.9 

carambola  81.4-

185.6 

 212.6-

345.7 

 1 bar with 

chocolate 

 7.1  37.9 

strawberry  0.6-1.9  1.5-4.3       
a  Cooked           
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The oxalate content of the foods ingested will be only one of several variables that influence 

the amount of oxalate absorbed. Other factors will include the bioavailability of the ingested 

oxalate, the amounts of oxalate-binding cations, the inherited capacity to absorb oxalate, the 

transit time in the small and large intestines, and the activity of oxalate-degrading bacteria in 

the large intestine 7. 

 

Bioavailability of oxalic acid 

 

The bioavailability of oxalate in foodstuff depends on its interaction with other components 

of food, especially calcium10. Mixing oxalate containing foods with diary products can 

reduce the amount of oxalate available for absorption, presumably because calcium in the 

diary products precipitates oxalate, and calcium oxalate crystals formed might not at all be 

redissolved under normal gastric conditions 3.  

Soluble oxalate has generally been thought to have higher bioavailability than insoluble 

oxalate. However, a study on the bioavailability of oxalate from oca (oxalis tuberosa), a 

vegetable containing oxalate in soluble form only, was found to be in the same range 

(1.44%) as for spinach (2.44%), containing both soluble and insoluble oxalate. A large 

variation in oxalate uptake from oca among individuals was also found. Still, a reduced 

uptake of  

oxalate from oca was found when the vegetable was consumed with sour cream (containing 

calcium) 11.  

Historically, calcium oxalate stone formers have been advised to convert to a vegetarian 

diet, as the urinary excretion of oxalate was suggested to decrease with a low intake of 

animal proteins (containing oxalate-precursors). However, more recent results show that a 

vegetarian diet results in an increase in oxalate excretion 10;12. The higher urinary oxalate 

excretion in vegetarians most likely is due to an increased ingestion of vegetables rich in 

oxalate. 

Recent results from Thomas et al13 on the dietary influence of intestinal oxalate absorption 

and excretion in healthy volunteers confirmed the increase in oxalate excretion found with a 

vegetarian diet. They also tested the effect not only on vegetarian vs mixed diet, but also 

between low and high oxalate vegetarian diet (70 and 300 mg oxalate/day respectively) that 

was equal in calcium and other nutrients and fluids. Surprisingly, no significant correlation 

in oxalate absorption with dietary oxalate was found. However, this unexpected finding was 

recognized to stem from the fact that although the calcium content of the low and high 
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oxalate diets used in the study was the same, the calcium content of the single meals varied 

thus influencing the bioavailability of oxalate from each meal (tortellini with spinach in 

cream sauce used in the high oxalate-diet). These findings support the view that attention 

must be paid to not only having an adequate daily intake of calcium but also on the timing 

of ingestion in relation to the timing of consumption of foods rich in oxalate13. 

Although oxalate excretion is higher following a vegetarian diet, the calcium excretion is 

lower, even when comparing mixed and vegetarian diets with equal amounts of calcium. 

Calcium excretion is affected by animal protein levels (higher excretion following ingestion 

of animal proteins) resulting in an overall reduced risk of supersaturation and stone 

formation in this section of the population 12.  

 

Absorption of oxalate 

 

Traditionally, the absorption of oxalate has been investigated by use of the radioactive 14C2 

oxalic acid in the so called isotopic method, the use of load method or daily excretion 

method as reviewed by Holmes et al4. More recently, Voss et al described a harmless 13C2 

oxalic acid absorption test as alternative to the use of radioactive oxalate14.  

Oxalate absorption can occur along the entire gastrointestinal tract 4. By administrating an 

oxalate load with 13C2 oxalic acid and measuring the concentration of this isotopically 

labeled oxalate in urine in the following eight hours, a maximum peak of absorption was 

found 2-4 hours post load, which is compatible with absorption in the small intestine15. 

However, these studies of Knight et al also suggest that some individuals (stone formers and 

non-stone formers) have an enhanced absorption in the large intestine. The identification of 

the SLC (solute-linked carrier) gene superfamily has further helped in unrevealing the 

mechanism of intestinal oxalate handling. Several structurally similar proteins encoded by 

the SLC26 gene family are anion transporters having measurable affinity for oxalate and are 

expressed in the intestine. The importance of the anion transporters in oxalate homeostasis 

has been demonstrated by the use of a knock-out mouse model. In SLC26c6 (coding for the 

putative anion transporter PAT-1) knockout mice, the ileal oxalate absorption and 

subsequent urinary oxalate excretion was shown to be enhanced 16.  The complex roles and 

mechanisms of intestinal oxalate transport in oxalate homeostasis has recently been 

reviewed by Hatch et al17.  

Several members of the SLC26 family are expressed in the kidney as well18, and their role 

in renal anion transport is briefly discussed under “renal handling of oxalate”. 
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Oxalate degrading bacteria in the gastro intestinal tract 

 

Oxalobacter formigenes (OF) is an anaerobic bacterium that relies exclusively on 

metabolism of oxalate in the colon for energy. Colonization of the gut with OF has been 

associated with a reduction in risk of recurrent stone disease and significantly lower urinary 

oxalate excretion 19 20. In fact, a single oral dose of OF has been shown to reduce oxalate 

excretion in healthy adults administrating an oxalate load 21. A robust colonization with OF 

has a degrading capacity of up to 1g (11.1mmol) of oxalate/day in the human gut 22. Thus, 

using of OF’s complete dependence of oxalate is at least a theoretical potential tool to 

prevent recurrent stone disease and reduce hyperoxaluria.   

OF produces formate and CO2 (carbon dioxide) as an end product of metabolism. The 

membrane of the bacterium contains an oxalate2- formate1- antiporter that mediates the entry 

of oxalate and export of formate. Two enzymes are involved in the metabolism of oxalate 

into CO2 and formate: formyl-CoA transferase (transferring Coenzyme A from formyl-CoA 

to oxalate) and oxalyl-CoA decarboxylase (decarboxylating oxaloyl-CoA to formyl CoA 

plus CO2). CO2 then diffuses out of the cell 23. Using a polymerase chain reaction (PCR)-

based detection assay Sidhu et al 24 determined the presence of OF in the gastrointestinal 

tract of healthy children. A complete absence of OF in newborns and infants up to 6-9 

months was found, but the bacterium appeared when children reach about one year old, 

indicating that colonization starts when children start crawling about. By 3 to 4 years of age, 

all children were colonized with OF, declining to the adult level of 60-70% between 8 and 

12 years 24.  The reason for the loss of OF is not clear, but the therapeutic use of antibiotics 

may play an important role 23. In fact, the prevalence of colonization of OF has been shown 

to be lower in both healthy individuals and recurrent calcium oxalate stone formers who 

have used antibiotics to which OF is sensitive at any time in the past25. Oxalate secretory 

pathways for extra-renal oxalate elimination have been identified, and it has been 

hypothesized that OF can contribute to maintain a transepithelial gradient favouring passive 

oxalate movement from blood to the intestinal lumen 26. 
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Endogenous oxalate 

 

Approximately 10 to 20 mg of oxalate is produced in an adult human every day, and it is 

widely assumed that the main source of endogenously produced oxalate in humans is the 

liver 27. The major precursor of oxalate is sugars and amino acids, and about 40 percent of 

oxalate synthesis appears to be derived from glycine metabolism 2.  

There are still some unresolved issues in the biochemical reactions in human cells that 

culminate in the synthesis of oxalate 27 2 28. However, the biochemical hallmarks and the 

enzyme deficiencies involved in the metabolic diseases covered in this text, the primary 

hyperoxalurias, are well known. Figure 2 shows the major reactions involved in glycolate, 

glyoxylate and oxalate metabolism in the human hepatocyte 2;29.    
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Figure 2. Major biochemical pathways involved in oxalic acid metabolism in the human 

hepatocyte. 
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Most oxalate precursors are metabolized via glycolate and/or glyoxylate. Immediate 

precursors of the highly reactive glyoxylate are glycolate and glycine. Glycolate is oxidized 

into glyoxylate by glycolate oxidase (GO) or L-2-hydroxy acid oxidase A (not shown), 

while the oxidative deamination of glycine to glyoxylate can be catalyzed by D-amino-acid 

oxidase (DAO) or glycine oxidase (not shown).  Detoxification of glyoxylate by 

transamination into glycine is catalyzed by alanine:glyoxylate aminotransferase (AGT) in 

peroxisomes. In cytosol, the deamination into glycine is catalyzed by glutamate:glyoxylate 

aminotransferase (GGT). In human, AGT is liver-specific while GGT activity is widely 

dispersed. In cytosol, glyoxylate can also be reduced to glycolate by lactate dehydrogenase�

(LDH) or glyoxylate reductase (GR) which is also widely dispersed. Oxidation of glyoxylate 

into oxalate is catalyzed by GO in peroxisomes and by LDH in cytosol.  

Glycolate is an important precursor of glyoxylate, but the sources of glycolate has not been 

fully identified. Experiments with collagen ingestion suggests that the metabolism of 

hydroxyproline (an amino acid of collagen), principally occurring in mitochondria of 

hepatocytes and renal proximal tubule cells may be of importance30. AGT 2, converting 

glyoxylate to glycine, has no homology with AGT1 and is found in mitochondria of most 

tissues28. It has also been shown that the main route by which carbohydrates such as glucose 

and fructose are converted to oxalate is through hydroxypyruvate31-34. Hydroxypyruvate is 

converted to glycolaldehyde by hydroxypyruvate decarboxylase (HPD), an enzyme that is 

found in various tissues. The glycolaldehyde is then presumeably oxidized by aldehyde 

dehydrogenase (ALDH) into glycolate. In normal circumstances the in vivo relevance of the 

hydroxypyruvate-to-oxalate pathway is uncertain as most of the hydroxypyruvate would be 

expected to be reduced to D-glycerate catalyzed by D-glycerate dehydrogenase (DGDH)2.  

 

Ethylene glycol poisoning 

 

Ethylene glycol is a common constituent of antifreeze and de-icing solutions, and ethylene 

glycol poisoning can result in acute renal failure and death35;35;36. The toxicity of ethylene 

glycol is linked to its metabolism to oxalate, initially via alcohol dehydrogenase (ADH) to 

glycolaldehyde. Glycolaldehyde is rapidly converted to glycolic acid resulting in the severe 

metabolic acidosis often found in ethylene glycol poisoning. Glycolic acid is slowly 

metabolized to oxalate that can precipitate as calcium oxalate in the kidney. 

It is the calcium oxalate that is responsible for the renal toxicity of ethylene glycol. 
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As the conversion of ethylene glycol into it’s toxic metabolites is catalyzed by ADH, the 

treatment of ethylene glycol poisoning targets the inhibition of this enzyme. Historically, 

ethanol has been used as an antidote as ADH has a higher affinity for ethanol than for 

ethylene glycol. Today, drugs like fomepizole that effectively blocks ADH are used for 

treatment of ethylene glycol poisoning.     

 

Vitamin C 

 

The potential effect of Vitamin C (ascorbate) on endogenous oxalate production and urinary 

oxalate levels is uncertain and investigation of endogenous oxalate production is difficult as 

this requires the ingestion of a diet entirely free of oxalate. However, by comparing the 

urinary oxalate excretion in calcium oxalate stone formers and healthy individuals on a 

totally controlled low-oxalate diet, with and without vitamin C supplement, the stone 

formers, but not the controls, were found to have increased endogenous oxalate production 

and secretion suggesting that vitamin C supplementation might be a risk factor for 

individuals that are predisposed to kidney stones 37. A recent study on oxalate excretion 

following intravenous administration of large doses of ascorbic acid (0.2 to 1.5g/kg body 

weight) in subjects with normal renal function revealed that only about 0.2% of the ascorbic 

acid appeared as oxalate in the urine38.  
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3. Renal handling of oxalate 

 

In the nephron, oxalate is freely filterable at the glomerulus. Further processing of oxalate in 

the tubules may involve tubular reabsorption and secretion modifying the ultimate renal 

excretion of oxalate. However, despite a number of studies published on the renal handling 

of oxalate (e.g. 39;40), relatively little is truly known due to technical difficulties in 

performing such studies (Professor Ross P. Holmes, Department of Urology, Wake Forest 

University School of Medicine, Winston-Salem,USA, personal communication).  

 

Tubular reabsorption and secretion 

 

According to Robertson41 oxalate is reabsorbed in the early proximal tubules. Transcellular 

reabsorption of oxalate depends on anion exchangers, and several members of the 

multifunctional anion exchanger family SLC26 are expressed in the kidneys18. In proximal 

tubules the transporter SLC26a1 is responsible for sulfate and oxalate transport.  

Verkoelen et al42 concluded after reviewing published reports that oxalate is also actively 

secreted in the proximal tubule. Also according to Robertson oxalate is secreted in the late 

proximal tubule 41. Oxalate secretion is associated with the SLC26a6 is a Cl-/anion 

exchanger involved in proximal tubular sodium and chloride absorption with exchange for 

oxalate leading to net oxalate excretion 43;44. 

Apart from kidney function determining the filtration of oxalate, the net renal excretion 

depends also on the degree of tubular reabsorption and secretion. These factors may not be 

constant over time. Actually the renal oxalate handling has been reported to vary with the 

amount of oxalate ingested (from reabsorption during fasting and secretion during high 

oxalate intake) indicating that after an oxalate rich meal the kidney could be secreting 

oxalate for an extended period of time15.  

 

Calcium oxalate stone formation 

The first description of calcium oxalate crystals identified in urine dates back to 183945, but 

as early as in 1810 certain renal stones were found to contain calcium oxalate46. It is not 

surprising that salts may form crystals and stones in the renal tubules and urinary tract since 

the glomerular filtrate is up to 100- fold concentrated during the passage of the nephron with 

modest water intake. 
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The physiochemistry of stone formation in general is complex, and for calcium oxalate 

several mathematical models has been developed to describe the process 41. However, it is 

generally agreed that the initiation and growth of a crystal involves a chemical precipitation 

from a solution that has become supersaturated with respect to stone-forming solutes as the 

glomerular filtrate traverses the nephron, and that factors increasing the transit time 

increases the risk of a crystal to become lodged at some point in the nephron 41;47-49. 

Consequently, hyperoxaluria contribute to calcium oxalate stone formation simply by 

increasing the urinary saturation of calcium oxalate.  
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4. Primary hyperoxaluria 
 
Primary hyperoxaluria (PH) includes two rare, well characterized autosomal reccesive 

diseases: primary hyperoxaluria type 1 (PH1) and primary hyperoxaluria type 2 (PH2) 2;29;50.  

In addition, a third type of primary hyperoxaluria has been suggested 51;52.  

The incidence of PH1 is 1:120 000 live births in Europe 53. Less attention has been paid to 

the elucidation of PH2, probably due to its even greater rarity than PH1. PH2 is often 

considered to be a milder disease than PH1 and a ratio of PH1 to PH2 of  20:1 has been 

estimated54. 

PH is characterized by overproduction and accumulation of oxalate in tissues. The first 

identification of PH was published in 192555, but it took another 25 years before PH was 

first described in detail in a report of oxalosis in a child who died of renal failure56. A few 

years later, in 1954, the familial nature of the disease was emphasized with a report of 

oxalosis and hyperoxaluria in identical twins 57.   

The main elimination of oxalate from the body is by urinary excretion, resulting in the 

characteristic increased urinary concentration of oxalate found in PH.  The excess oxalate 

binds to Ca2+ and forms insoluble calcium oxalate that deposits in the kidney and urinary 

tract.  

To expand knowledge of PH by accumulating information regarding a larger number of 

patients, Lieske et al58 at Mayo Clinic College of Medicine, Rochester, Minn., USA have 

developed an international registry for PH that can be found at59:  

http://mayoresearch.mayo.edu/mayo/research/nephrology/registry.cfm 

By April 2009 (latest update available on the website) 203 patients had been registered. 

 

 

PH1 

 

PH1 is caused by deficiency of the liver specific peroxisomal enzyme AGT (see Figure 2). 

Approximately one-third of the PH1 patients have significant levels of AGT catalytic 

activity, but a unique intracellular protein trafficking defect result in AGT being located in 

mitochondria instead of peroxisomes.  

AGT deficiency has a major impact on glyoxylate detoxification, and failure to detoxify 

glyoxylate within the peroxisomes results in either more glyoxylate being oxidized into 

oxalate by GO or more glyoxylate diffusing into the cytosol. Once in the cytosol, glyoxylate 
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can be oxidized to oxalate by LDH, transaminated to glycine by GGT or reduced to 

glycolate by GR or LDH. The resulting excessive hepatic production of oxalate and 

glycolate is the biochemical hallmark of PH1.  

In PH1, more than 90% of the cases present with symptoms referable to the urinary tract, 

and the most common is calcium oxalate stone disease29. 

According to Cochat et al 53, PH1 typically fits five presentations: 

1) an infantile form with early nephrocalcinosis and kidney failure 

2) recurrent urolithiasis and progressive renal failure leading to a diagnosis of PH1 in 

childhood or adolescence 

3) a late onset form, with occasional stone passage in adulthood 

4) diagnosis given by post-transplant recurrence 

5) pre-symptomatic subjects with family history of PH1 (usually siblings) 

 

A number of case reports have been published on patients presenting with recurrent 

urolithiasis or end stage renal failure who later become diagnosed with PH160-62. Case 

reports describing the extremely rare severe infantile form of PH1 presenting as a life 

threatening condition with end stage renal disease (ESRD) and nephrocalcinosis in a 3-

month old baby63 and the late onset form presenting as chronic pain in both hands in a 61 –

year old man64  are  examples on the enormous spread in the ages at which the disease 

become apparent.   

   

PH 2 

 

PH 2 is caused by a deficiency of the cytosolic enzyme DGDH/GR (see Figure 2). The 

conversion of hydroxypyruvate to D-glycerate catalyzed by DGDH is heavily weighted 

towards the reduction reaction. Thus the biochemical consequence of the enzymatic defect 

in PH2 is a buildup of hydroxypyruvate that instead is reduced to L-glycerate by LDH.  

L-glycerate is normally not detectable in urine.  The exact mechanism of excessive oxalate 

synthesis in PH 2 is not known, and several hypotheses have been advanced. Still, the fact 

that DGDH and GR are different catalytic activities of the same enzyme is regarded the 

most plausible explanation of hyperoxaluria found in PH2. The lack of GR activity in PH2 

is thought to prevent the reduction of glyoxylate to glycolate with the subsequent conversion 

of excess glyoxylate to oxalate by LDH65.    
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Clinical and biochemical diagnosis of PH 

 

In PH, progressive deposition of calcium oxalate often leads to deteriorating kidney function 

and finally ESRD 2;29.The kidneys ability to excrete oxalate then drops, and the plasma 

concentration increases. Supersaturation with respect to calcium oxalate occurs when the 

plasma concentration of oxalate reaches approximately 40 �mol/L in adults66 resulting in 

deposition of calcium oxalate in other organs, especially bones. This systemic oxalosis is a 

common finding in PH. There is an average 5-year time interval from symptom onset to 

diagnosis of PH58. The rarity of the disease and insufficient knowledge about inherited 

urolithiasis is thought to be the explanation of this delayed diagnosis of PH53. Stone forming 

activity in PH2 is lower than in PH1 and systemic oxalosis exceptional. However, 

myocardial oxalosis in a PH2 patient has been reported 54. 

The accumulation of calcium oxalate in PH patients starts when the renal function is only 

slightly impaired and the resulting systemic oxalosis is associated with pathology according 

to the tissue concerned, e.g. bone pain when deposition of calcium oxalate is within the 

bone.  

 

Biochemical findings 

 

PH is most commonly diagnosed by measuring oxalate excretion, and the oxalate excretion 

in PH is in general grossly elevated. In addition, increased urinary glycolic acid in PH1 and 

L-glyceric acid in PH2 are normally found. However, in PH1 the increased concentration of 

oxalate in body fluids is not always associated with increased concentration of glycolic acid. 

Differences in relative contributions made by the different enzymes involved in oxidation 

and reduction of glycolic acid (GO, LDH and GR) is a possible explanation for the 

considerable biochemical heterogeneity in PH1 with respect to the ratio of glycolic acid and 

oxalate excreted in urine.  

In PH, when glomerular filtration rate (GFR) falls below 30-50ml/min pr 1.73 m2   systemic 

oxalosis starts to occur 53 (see “Kidney failure and hyperoxalaemia” on page 36 for 

explanation of GFR). The major compartment of the insoluble oxalate pool is bone, and the 

bone content of oxalate has been reported to be much higher in PH1 patients than in patients 

with ESRD due to other causes. 67.   

Concomitant with the decreasing urinary excretion of oxalate following renal insufficiency 

is the increase in plasma oxalate.  
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Thus, the biochemical findings in PH vary during the course of the disease (See  Figure 3). 

With sufficient renal function, a normal or close to normal plasma level of oxalate combined 

with a grossly elevated urinary oxalate excretion are the typical laboratory findings. 

However, significantly increased plasma concentration of oxalate has been reported in 

children with PH despite even with a normal kidney function68. With deteriorating kidney 

function, oxalate excretion can drop to normal values while the plasma concentration 

increases dramatically. As a consequence, analysis of oxalic acid in both plasma and urine 

are important in laboratory diagnosis of PH. 
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Figure 3. Dependence of kidney function on the biochemical findings in PH.  
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Enzymatic diagnosis 

 

Differential diagnosis between the two subtypes of PH is essential if liver transplantation is 

considered, as the defect in PH1 is a liver specific enzyme and in PH2 the deficient enzyme 

is widely dispersed. For definite diagnosis of PH1, measurement of the activity of AGT in 

liver needle biopsies can be performed 2, and by immunoelectron microscopy the subcellular 

distribution can be determined 69. There is no clear relationship between clinical severity 

and residual AGT catalytic activity62. For definitively diagnosis of PH2, measurement of the 

GR activity in a liver biopsy has traditionally been performed although the deficient enzyme 

in PH2, DGDR/GR, is expressed in virtually every tissue in the body. As a result, the 

utilization of more readily available cells for enzymatic diagnosis of PH2 has been 

suggested. A relatively simple assay for spectrophotometric quantification of GR and 

DGDR activity in blood mononuclear cells has been described that could potentially be used 

as a minimally invasive diagnostic test for PH270;71. 

 

Molecular genetics of PH 

 

The deficient enzyme in PH1, AGT,  is encoded by a single gene, AGXT, and the gene 

comprised of 11 exons, spanning approximately 10kb, and maps to chromosome 2q37.372. A 

total of 146 mutations scattered across the gene have been described, with all exons 

represented. Major or minor deletions and insertions account for 25% of the mutations, 

while the majority (75%) is point mutations 73. The first mutation to be described and also 

the most common is a Gly170Arg replacement which is found in about 30% of PH1 mutant 

alleles 74. This common mutation enhances the strength of a functionally weak 

mitochondrial targeting sequence generated by a Pro11Leu polymorphism and together, the 

mutation and the polymorphism are responsible for the peroxisome-to-mitochondria  

mistargeting of AGT75. 

PH2 

The deficient enzyme in PH2, GR/HPR, is encoded by the GRHPR gene with 9 exons, 

spanning 9kb, and maps to chromosome 976. Fifteen mutations spread throughout the nine 

exons have been described 77. 
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Treatment of PH 

 

Following the general order of disease progression, the first strategy in the treatment of PH 

is to reduce the amount of oxalate in the body. Dietary restrictions in intake of oxalate-

containing foods is not regarded as being very efficient in PH62, but reduction of oxalate 

absorption by co-ingestion of calcium can at least theoretically reduce the dietary oxalate 

contribution to the total corporeal oxalate load2. The ability of the bacteria OF to both 

stimulate secretion of endogenous produced oxalate and degrade it in the intestine has been 

proposed as a potential tool for the treatment of PH1 22.  

By orally administrating OF for 4 weeks as frozen paste or enteric-coated capsules 

(delivering OF past the very acidic conditions in the stomach) to a total of 16 PH patients, a 

marked reduction in urinary oxalate or plasma oxalate was observed in the majority of 

patients. In addition, two of the PH patients with systemic oxalosis reported amelioration of 

clinical symptoms during OF therapy 22. The findings of Hoppe et al22 has suggested 

applicability of  OF treatment of PH patients at all stages of the disease, but especially in 

those who are on maintenance dialysis and in renal failure78.   

Many strategies to normalize endogenous oxalate production in PH by reduced intake of 

oxalate precursors or inhibition of the enzymes involved in the production of oxalate (see 

Figure 2) have been proposed, but few has reached general acceptance and use2.  

The role of hydroxyproline derived from meat and gelatin has been given some attention in 

recent years as it has been estimated that up to 20% of the endogenously produced oxalate 

excreted in urine is derived from metabolism of hydroxyproline through the glycolate – 

glyoxylate –oxalate pathway28;30;79.   

Although most attempts at treatment by metabolic intervention and pharmacologic 

manipulation has had limited success, the administration of pyridoxine (vitamin B6) is an 

exception. The effect of pyridoxine in decreasing urinary oxalate excretion in some, but not 

all, PH patients has been known for almost 50 years80. Although attributed to its role as a 

cofactor of AGT, the molecular basis concerning the mechanism of action of pyridoxine still 

remains unknown. The predictability of response has also been largely unknown but recent 

findings indicate that two mutations resulting in peroxisomal-to-mitochondrial mistargeting 

of AGT are associated with pyridoxine response 81. Following these findings, genotyping to 

predict pyridoxine response has been suggested 82.  

If the urine oxalate concentration does not normalize following the strategy mentioned 

above attempting to reduce total body oxalate burden, the second strategy for the treatment 
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of PH is the prevention of calcium oxalate crystallization by hydration or use of 

crystallization inhibitors. If prevention of crystallization fails, the agglomerations may be 

removed by lithotripsy or open surgery, or if renal failure develops the third strategy will be 

dialysis or kidney transplantation2. Clinically the patients present at all stages of the disease, 

thus the order of implementation of treatment strategies in PH varies.  

 

 

 

Organ transplantation in PH1 

 

Early diagnosis and intensified conservative treatment is the main goal in PH, but if 

unsuccessful, several transplantation (TX) strategies are available 83. 

Kidney transplantation alone does not cure the disease, but rather attempts to recover from 

the consequences of lost kidney function and not the basic defect in the liver of PH1 

patients. Following single kidney transplantation, the endogenous oxalate synthesis 

therefore remains elevated. Although in some cases the transplanted kidney can survive for 

a significant length of time, poor prognosis due to recurrence of oxalosis in the graft has 

been well documented and particularly with deceased donor grafts. 61; 84-86.   

Liver transplantation can be regarded as a form of gene therapy as well as enzyme 

replacement therapy as it will supply the missing enzyme in the correct organ (liver), cell 

(hepatocyte) and cell compartment (peroxisome).  However, liver transplantation as a form 

of gene therapy is far from ideal as it involves the replacement of thousands of perfectly 

normal genes just to replace the one that is abnormal. As the function of the liver is normal 

except from the missing AGT activity in PH1 patients, the liver harvested from such a 

patient has been used as a donor organ for a subsequent graft in a second liver recipient in a 

so-called domino procedure. As could be expected, the domino liver recipient rapidly 

developed hyperoxaluria as PH1 in this case was transferred from the donor to the recipient 
87. 

The concept of curing the metabolic defect in PH1 before renal damage occurs by 

performing preemptive liver transplantation has received considerable attention.  Thus, for 

prevention of ESRF and treatment of PH1, preemptive liver transplantation is regarded as a 

powerful tool, however ideal timing and patient selection is regarded difficult as the risk 

associated with surgery and long-term immunosuppression have to be weighed against 

complications related to oxalosis and morbidity88.  
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For PH1 patients with advanced renal insufficiency or ESRD, combined liver/kidney 

transplantation has the advantage of not only correcting the underlying metabolic defect but 

also replacement of renal function 60;85;89.  Combined liver/kidney transplantation can be 

performed concurrent (simultaneous) or sequentially (first liver, then kidney)89.  

The rate of endogenous oxalate synthesis would be expected to drop to normal levels 

immediately after combined liver/kidney transplantation, but it may take months or years to 

normalize the urinary oxalate excretion, depending on the time span of renal insufficiency 

and subsequent oxalate pool size built up prior to transplantation60;85. The accessibility of 

the calcium oxalate stores to the blood stream will influence on the resolubilization rate, and 

thus deposits in slow-turnover bone would be expected to be slowly dissolved. In one 

patient with huge stores of oxalate accumulated in the skeleton prior to transplantation, the 

urinary oxalate excretion was found to drop until month 7 post transplantation but 

reascended in the following months90, probably due to resolubilization of the oxalate stored 

in bones.  

At Oslo University Hospital Rikshospitalet, combined liver/kidney transplantation was 

performed in two PH1 patients in the late 80-ies. They were between 20 and 30 years of age 

at that time. Both patients have been retransplanted with kidneys 4 times. It appears that the 

body load of oxalate is so huge in adult patients that kidney failure occurs in transplants also 

after correction with a liver transplantation. This argues in favor of early liver 

transplantation, especially since the prognosis has improved substantially over the last 

years91  

In Figure 4, the predicted effects of kidney alone and combined kidney/liver transplantation 

on oxalate synthesis, urinary excretion, plasma concentration and total body burden of 

oxalate shown.  
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Figure 4. Effect of kidney alone and combined kidney/liver transplantation on oxalate 

dynamics in PH1. Dotted line represents upper normal level. 

 

 

In PH2, liver transplantation has not been reported.  

This is probably due to the fact that PH2 is regarded as a milder disease than PH1, and in 

addition the liver must contain a significant proportion of the body’s requirement for the 

missing enzyme, GR/DGDH, for liver transplantation to work as an enzyme-replacement 

therapy2. The tissue distribution of GR/DHDG is uncertain, but it has been shown that the 

liver may contain much of the body’s GR activity 92. 

However, isolated kidney transplantation in PH2 has been reported93.  
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5. Secondary hyperoxaluria and/or hyperoxalaemia 

 

As mentioned earlier, secondary hyperoxaluria is due either to excessive dietary oxalate 

intake or increased intestinal oxalate absorption. Secondary hyperoxalaemia is primarily 

associated with decreased renal function. 

 

Hyperoxaluria in recurrent  non-PH calcium oxalate stone formers 

 

The presence of moderate hyperoxaluria in adult recurrent calcium oxalate stone formers is 

controversial. In one study,  supersaturation with regards to calcium oxalate in the urine of 

stone formers and non-stone formers was reported to be not significantly different, but the 

total particle volume in the stone formers were found to be elevated indicating that this 

group have less inhibitory activity of crystal growth94. In other studies, the prevalence of 

hyperoxaluria in calcium oxalate stone formers has been estimated to be in the range of 10-

50%95-97, with no95, or a strong98 correlation between urinary calcium and oxalate.  

In children, the frequency of hyperoxaluria in urolithiasis and/or nephrocalcinosis has been 

reported to be approximately 20% (21 out of 106) 99. Of the 21 children with increased 

urinary oxalate excretion found in the above study, eleven had PH (PH1 in nine and neither 

PH1 or PH2 in two), secondary hyperoxaluria was found in six (two enteric and four 

dietary) and four could not be classified. In the non-PH patients the colonization of OF in 

the gut was tested and found absent in all but one. 

The reason for the discrepancy in the estimation of hyperoxaluria prevalence in stone 

formers is not obvious, but differences in methodologies used for oxalate measurements 

may play a role. In addition, if urinary stones are present at the time of urine collection, the 

urine sample might be depleted of lithogenic substances as the stones continuously increase 

in size by incorporating material from urine100. 

As a result, substantially lower concentrations e.g. of oxalate might be determined resulting 

in false interpretation of urinary risk profile. 

The plasma level of oxalate in paediatric calcium stone formers with normal renal function 

has been reported to be higher (that is, secondary hyperoxalaemia) than in controls, 

especially in those with increased urinary oxalate, indicating that the intestinal oxalate 

absorption might be a significant variable influencing plasma oxalate101. 
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Epidemiology of kidney stones 

 

Epidemiological studies has revealed that the probability of forming kidney stones 

(nephrolithiasis)  differ in various parts of the world being lowest in Asia, medium in 

Europe and highest in Saudi Arabia 102. The chemical composition of urinary stones varies 

with geographical area, sosioeconomic conditions and climate. The incidence of 

nephrolithiasis in western countries has been progressively increasing over the past century, 

which has been attributed to changes in dietary habits and lifestyle 12. The lifetime risk of 

nephrolithiasis is about 10-15% in the developed world and throughout adult life is slightly 

more common in males than in females 49. 

Regarding stone composition, calcium oxalate and/or mixed stones are more frequent in 

young people 103. Overall, calcium oxalate (alone or in combination) accounts for 60-80% of 

all urinary stones and is thus by far the most common constituent 48.  

Interestingly, kidney stones is known to be more frequent in white subjects than in black 

subjects but the underlying mechanisms of the racial difference are not clear102.  Urinary 

calcium has been reported to be lower in black subjects compared to white subjects on 

similar diets 104;105. In addition to the racial difference in urinary calcium, higher pH is found 

in urine from black women compared to white106. By testing the effect of five different 

dietary and supplemental challenges on urinary risk factors for calcium oxalate stones in 

comparable groups of healthy white and black subjects, Lewandowski et al105 found that the 

white subjects were much more sensitive to dietary changes. Based on these findings they 

speculated that Blacks apparent immunity to nephrolithiasis are due to a renal or 

gastrointestinal homeostatic adjustment keeping urinary concentration of lithogenic 

substances in balance105.  

 

Factors affecting calcium oxalate nephrolithiasis 

 

A number of factors affect calcium oxalate nephrolithiasis. The role of diet, colonization 

with OF and the role of calcium will be discussed in the following. 

The role of dietary oxalate in the pathogenesis of calcium oxalate nephrolithiasis is not 

clear15. In a prospective study of more than 240 000 adults, food frequency questionnaires 

were used to asses oxalate intake and the incidence of nephrolithiasis. The mean oxalate 

intakes were found to be 214 mg/d in men, and 185 and 183 mg/d in older and younger 

women, respectively. No significant difference in oxalate intake between stone formers and 
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non-stone formers was observed107, implying that dietary oxalate is not a major risk factor 

for nephrolithiasis. 

In a different study designed to assess the role of dietary oxalate on hyperoxaluria in 

calcium oxalate stone patients, 24-h weighed dietary record and 24-h urine from 93 stone 

formers with, and 93 stone formers without increased urinary oxalate was compared. 

Interestingly, no significant differences in the amount of dietary oxalate or calcium were 

found between the groups suggesting that hyperoxaluria in calcium oxalate stone formers at 

least partly results from intestinal hyperabsorption of oxalate108.  

This hypothesis was further supported by Voss et al14 who compared the absorption of  13C2 

oxalic acid in 120 idiopathic calcium oxalate stone formers and 120 controls. They found 

that the intestinal oxalate absorption was higher in the stone formers than in the healthy 

controls. Oxalate absorption greater than 10% was found in 45.8% of the stone formers in 

comparison to 28.3% in healthy volunteers and they suggested that the harmless 13C2 oxalic 

acid absorption test should be routinely used to identify patients with higher oxalate 

absorption to assist recommendations for individual therapy. Greater oxalate absorption in 

stone formers than non-stone formers was also reported in other studies 14;37, while one 

study found no difference in either intestinal absorption or renal handling of oxalate 

between these groups of individuals 15. 

Regarding the role of calcium, based on studies on normal and stone-forming populations 

there is a general agreement that the mean calcium excretion in stone formers is higher than 

in the normal population5;15. 

The historical underestimated role of oxalate in determining the risk of forming calcium 

oxalate stones has been suggested to result from the difficulties in detecting and measuring 

oxalate reliably in urine. During the same period, the measurement of urinary calcium was 

performed with reasonable accuracy, and thus patients with calcium containing stones were 

assessed by hypercalciuria, and decreased intake of calcium was a dietary advice3. 

However, among others, Holmes et al5 reported a significant decrease in oxalate excretion 

with increased calcium intake. Recently it was shown that gastrointestinal binding of oxalate 

by inclusion of calcium-containing foods in meals was an effective clinical strategy for 

prevention of hyperoxaluria. By increasing the calcium intake in calcium-oxalate stone 

formers, both oxalate excretion and calcium oxalate supersaturation was found to decrease 

while urinary calcium excretion remained unchanged97. The decrease in urinary oxalate with 

increased calcium intake was also found by Matsumoto et al in healthy subjects on liberal 

oxalate intake, but they reported a higher saturation of calcium oxalate following higher 
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calcium intake as the decrease in urinary oxalate did not overcome the effect of increased 

calcium109. They therefore concluded that a high calcium diet and liberal oxalate intake may 

pose an increased risk of calcium oxalate stone formation. It seems reasonable to conclude 

that a combination of mild dietary oxalate restriction in combination with a normal calcium 

intake would give the best protective effect.  

The oxalate to calcium molar ratio in urine is about 1:10, thus an increased intestinal 

absorption of oxalate may lead to hyperoxaluria that significantly enhances the risk of 

formation of urinary stones 13. The reason for the much stronger effect of an increase in 

urinary oxalate compared to an increase in calcium on the supersaturation of urine is 

complicated, but basically it can be explained in the following way: As oxalate (C2O4
2-) is 

present in a much lower concentration than calcium (Ca2+), an increase in oxalate does not 

significantly reduce the concentration of Ca2+ by complexation, and the product [Ca2+] x 

[C2O4
2-] rises almost proportionally to the increase in oxalate concentration. In contrast, an 

increase in the concentration of ionized calcium is almost entirely offset by a proportional 

decrease in that of oxalate. As a result, the product of [Ca2+] x [C2O4
2-] remains almost 

constant in the range of normal to elevated urinary calcium98. 

Regarding the role of colonization with OF, Kaufman et al25 performed a case-control study 

of 247 adult patients with recurrent calcium oxalate stones and 259 matched control subjects 

and found that colonization with OF was associated with a 70% reduced risk of being a 

recurrent calcium oxalate stone former. 

 
 

Enteric hyperoxaluria 
 

Intestinal overabsorption of oxalate with attendant hyperoxaluria has been reported in 

several medical conditions with malabsorption. Under normal circumstances calcium binds 

to most of the intestinal oxalate. Intraluminal free fatty acids can form complexes with 

calcium, but in malabsorption the concentration of intraluminal free fatty acids is increased 

and this completely inhibits the precipitation between dietary oxalate and calcium thus 

leading to more oxalate being available for absorption110.  

 

Intestinal disease or surgery 

 

After bariatric surgery for weight loss a high prevalence of hyperoxaluria in adult patients 

without a history of kidney stones has been reported 111;112. Even non-reversible renal failure 
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due to oxalate induced nephropathy has been reported 113.The reason for the observed 

hyperoxaluria in these patients has not been defined, but probably involves malabsorption of 

fatty acids and bile acids resulting in an increased intestinal absorption of oxalate114.  

As mentioned under ”absorption of oxalate”, non-hereditary elevated urinary oxalate but 

also acute renal failure with findings of oxalosis on renal biopsy following bariatric surgery 

has been documented111;112 and suggests that hyperoxaluria may be a common underlying 

risk factor for calcium oxalate nephrolithiasis following this surgical procedure114.  

Children with chronic diarrhoea and short bowel syndrome has been shown to be at risk of 

developing enteric hyperoxaluria due to malabsorption110. Cuvelier et al described a patient 

who received two consecutive renal transplants, both with early graft failure. Biopsies of 

both grafts revealed widespread oxalate deposition suggesting acute oxalate nephropathy. 

The diagnosis of chronic pancreatitis (leading to fat malabsorption) causing enteric 

hyperoxaluria was then made 115. Renal transplantation as a successful treatment of end 

stage renal disease secondary to enteric hyperoxaluria in a patient with Chrohn’s disease has 

also  

been described 116.  

A possible link between the use of the immunosuppressive drug mycophenolate and acute 

renal failure in a recipient of a simultaneous kidney-pancreas transplant has been suggested. 

The patient had prolonged mycophenolate-assosiated diarrhoea and presented with acute 

renal failure caused by oxalosis. By replacing mycophenolate with a different 

immunosuppressant (azathioprine), symptoms greatly improved 117. However, the link 

between mycophenolate and hyperoxaluria has been questioned by others118.  

 It has also been shown that the use of a weight loss drug orlistat (a gastrointestinal lipase 

inhibitor), decreasing dietary fat absorption, increases oxalate absorption and leads to a 

significantly increased urinary oxalate levels that again may increase the risk of stone 

formation. The lipase inhibitor increases the amount of free fatty acids that binds to calcium 

in the intestinal lumen, hereby decreasing the availability of calcium for binding of oxalate. 

As a result the concentration of soluble oxalate increases resulting in increased absorption 
119.  “Orlistat-induced acute oxalate nephropathy” has recently been described 120. 

 

Pancreatic insufficiency 

 

Several cases of alcohol-related chronic pancreatic insufficiency causing diabetes and 

steatorrhea presenting with rapidly progressive renal failure has been published. The high 

� 35



rate of deterioration of renal failure in these patients it thought to be a result of the synergy 

between enteric hyperoxaluria and a reduction in renal excretory function caused by early 

diabetic nephropathy121. In a case of late renal transplant dysfunction due to acute oxalate 

nephropathy, a diagnosis of enteric hyperoxaluria secondary to pancreatic insufficiency was 

made. This had occurred because the patient had been non-compliant with his pancreatic 

enzyme replacement therapy. After treatment to reduce the amount of circulating oxalate 

was initiated (haemodialysis, low oxalate and fat diet, appropriate pancreatic enzyme 

replacement therapy), graft function subsequently recovered122.  

 

 

Kidney failure and hyperoxalaemia 

 

Glomerular filtration rate (GFR) describes the flow rate of filtered fluid through the kidney.  

Adjusted for body surface area, typical GFR values in adults are 100-130 ml/min/1.73M2. 

Calculation of GFR can be done by measuring any compound that has a steady level in the 

blood, and that is freely filtered but neither reabsorbed nor secreted by the kidneys. 

Creatinine, a break down product of creatine phosphate in the muscle, is freely filterable but 

actively secreted in only very small amounts. The plasma concentration of creatinine is 

therefore commonly used as an indirect marker of kidney function.��It has been found that in 

patients with renal failure unrelated to primary hyperoxaluria, the retention of oxalic acid 

increases rapidly when GFR decreases below about 20 ml/min123.� 

When the plasma oxalate is increased formation of calcium oxalate crystals may cause 

tubular injury. As renal the function decline, the urinary excretion of oxalate falls causing a 

further increase in plasma oxalate setting up a vicious circle. 

 

Kidney transplantation and hyperoxalaemia 

 

After renal transplantation in end-stage renal patients, accumulated oxalate will be excreted 

creating an increased risk of tubular precipitation, especially in the presence of allograft 

dysfunction as indicated in several biopsy studies 124-126.  

Controversy exists regarding the degree of oxalosis as a complication of chronic renal 

failure. By studying and comparing the occurrence of renal and myocardial oxalosis at 

autopsy in patients with normal renal function, acute renal failure, chronic renal failure, and 

chronic renal failure supported by haemodialysis or peritoneal dialysis, Salyer et al127 found 
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that the incidence and severity of oxalosis was related to the duration of renal failure. 

Extensive renal and myocardial deposits were frequently found in patients with renal failure 

of long duration, but in those on haemodialysis (but not on peritoneal dialysis) less oxalosis 

was found suggesting that haemodialysis ameliorated the oxalosis to some extent127. 

The effect of haemodialysis on oxalosis was further studied by Fayemi et al128. The 

incidence and organ distribution of oxalosis in a group of 80 patients with chronic renal 

failure maintained on haemodialysis for periods ranging from three weeks to seven years 

was examined.  The most frequently involved organs were the kidneys, thyroid, and 

myocardium, and moderate to severe renal oxalosis was found more frequently in patients 

maintained on haemodialysis for longer periods of time128. In the above study, bone oxalosis 

was not studied, but in a patient maintained on haemodialysis for more than four years 

severe oxalosis of bone was found129. Surprisingly, although there was a history of “renal 

disease” in this patient’s brother, it seems that the possibility of primary hyperoxaluria in 

this patient had not been considered. 

To study the magnitude of oxalosis in bone in cases of ESRF, Marangella et al67compared 

the bony content of oxalate on biopsies of the iliac crest in uremic PH-patients and non-PH 

patients who had been on dialysis treatment for several years. In PH patients, but not in the 

non-PH patients, the amount of oxalate accumulated in bone was significantly related to 

time on dialysis. In the non-PH patients, only slightly increased bone oxalate was found 

compared to controls (0.8, 5.1 and 362 �mol oxalate/g bony tissue in controls, non-PH and 

PH patients, respectively). In addition, no relationship was found in either group between 

bony oxalate and pre-dialysis plasma levels. The authors concluded that oxalate deposition 

in bone was not a progressive disorder in non-PH patients with ESRF67, in agreement with 

the earlier findings of Tomson et al130 (see under). In contrast to the above findings, oxalosis 

extensively involving bone in patients with chronic renal failure of long duration has been 

reported 131;132.   
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6. Plasma oxalate concentration and oxalosis 

 

The first study on the association between plasma oxalate concentration and tissue 

deposition in non-PH patients was reported in 1988. Plasma oxalate was measured 

postoperatively in a group of patients undergoing renal transplantation, and in a group of 

patients with chronic renal failure in whom plasma oxalate had been measured before death. 

Mild to grossly elevated plasma oxalate was detected in both groups. Renal deposition of 

oxalate was found in half of the patients and was associated with a plasma oxalate 

concentration of >20 �mol/L  

(upper reference limit with the reported methodology: 1,5 �mol/L). Although many 

different tissue types were examined (but not bone), no extra-renal deposits were found in 

any of the patients. The authors concluded that non-PH patients with chronic renal failure is 

not at great risk of extra-renal oxalosis 130. In a different study, the same researchers found 

that the elevated plasma oxalate found in ESRF was not an important risk factor for cardiac 

disease or vascular calcification in patients maintained on continuous ambulatory peritoneal 

dialysis133.  Borland et al134 compared serum oxalate in patients with chronic renal failure 

given low-protein diet and treated with chronic haemodialysis, peritoneal dialysis as well as 

in others not yet under dialysis treatment. They found that serum oxalate did not reach 

abnormal levels until a very late stage in chronic renal failure 134. However, they used a 

method for oxalate measurement involving initial alkalization of serum and reported an 

upper reference limit of� ���mol/L which seems erroneously high. 

For the formation of calcium oxalate crystals to occur, a state of supersaturation with respect 

to this salt is necessary. It is therefore reasonable to assume that exceeding the solubility 

limit in plasma represents an actual risk for the deposition of calcium oxalate crystals in 

body tissues. Theoretically, a selective accumulation of calcium and oxalate within a tissue 

is an alternative mechanism of the crystal formation.  By measuring and comparing the 

serum supersaturation with respect to calcium oxalate in adult patients who were either 

uremic or had chronic renal insufficiency not requiring dialysis, and healthy controls, 

Worcester et al66 concluded that supersaturation was common in chronic renal failure. The 

calcium oxalate supersaturation was found to correlate strongly with oxalate concentration, 

and above oxalate levels of about 40 �mol/L supersaturation occurred. Further, a regression 

relationship between plasma creatinine (as indicator of the level of renal failure) and plasma 

oxalate in adults was constructed indicating that a plasma creatinine of 9 mg/dL (795 
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�mol/L) would almost universally result in supersaturation66. A slightly different result was 

found by Marangella et al135 who calculated the state of saturation with respect to calcium 

oxalate monohydrate before and after dialysis in PH patients and non-PH patients on regular 

dialysis treatment. As expected the plasma oxalate concentrations found were elevated in all 

patients and fell after dialysis, but in contrast to the samples from the PH-patients, samples 

from the non-PH patients were only slightly supersaturated before dialysis. These finding 

indicated that dialysis treatment may maintain body fluids below the risk of calcium oxalate 

crystallization, unless the underlying disease is PH. In agreement with Worcester et al, the 

major determinant of the state of saturation with respect to calcium oxalate was found to be 

the plasma oxalate concentration 135. The discrepancy between the level of supersaturation 

reported in the two studies may at least partly be due to differences in analytical methods 

used and consequently normal range reported for oxalate in plasma, mean normal 

concentration 3,8 �mol/L in 135  and 10 �mol/L in 66.  

In children with chronic renal failure not due to PH, systemic oxalosis is not a common 

finding, but supersaturation with respect to calcium oxalate has been observed when the 

renal function is only moderately reduced, and occurs when the plasma oxalate levels 

reaches about 30 �mol/L (Ion chromatography, mean normal concentration 6,43��mol/L) 68. 

Even in children with ESRD, systemic oxalosis is not a common finding unless the 

underlying disease is PH. The plasma concentration of crystal inhibitors like citrate and 

sulphate in children has been reported not to differ between PH and non-PH ESRD-patients 

but the plasma oxalate concentration is considerably higher in PH suggesting that plasma 

oxalate measurement alone is sufficient for determining the risk of systemic oxalosis136. The 

reason why plasma calcium oxalate supersaturation does not result in development of 

oxalosis in non-PH patients with ESRD is not fully understood, but may be due to a 

combination of the observed return to calcium oxalate undersaturation after dialysis in non-

PH patients but not in PH patients and perhaps the presence of unknown, protective factors 

that prevent the risk of systemic oxalosis in non-PH children with ESRD136.   

The discrepancy between the findings in different studies on renal failure and oxalosis may 

be partly due to the fact that other factors than the plasma saturation of calciumoxalate may 

play an important role in oxalosis. It has been showed that the occurrence of prior tissue 

damage could represent a crucial predisposing factor in the deposition of calcium oxalate 

crystals137. In rats with chronic renal failure, the effect of increased plasma oxalate, elevated 

plasma ionized calcium and local myocardial tissue damage on myocardial deposition of 

� 39



calcium oxalate was investigated. Interestingly, neither increased plasma levels of calcium, 

oxalate, or both, induced myocardial calcium oxalate crystal deposition (but massive renal 

deposition was found). But, after heterotropic cardiac transplantation (by transplanting into 

the abdomen a heart allograft), elevated oxalate resulted in significant oxalosis in the heart 

allograft, but not in their own heart, indicating that the lack of integrity of local tissue may 

play an important role in oxalosis137.   
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7. Renal transplantation in Norway 

 

Oslo University Hospital Rikshospitalet is the only transplant centre in Norway. It is by far 

the biggest kidney transplant centre in Europe and the number of kidney transplants 

performed approaches 300 during a year. For patients with ESRF, renal replacement therapy 

(RRT) by haemodialysis, peritoneal dialysis or kidney transplantation is active treatment 

options. Transplantation has in general been considered the treatment of choice, after the 

introduction of the kidney transplant program in Norway in 1969. Best results have been 

obtained with a living related donor. The acceptance criteria for transplantation have been 

generous, and in principle transplantation is offered to all patients considered to profit from 

it.  No strict upper or lower age limit has been applied. The results from transplantation of 

patients beyond 70 years have been surprisingly good during the last decade 138. Pre-emptive 

transplantation, that is, transplantation performed before the initiation of chronic 

maintenance dialysis, has always been preferred since the start of an organized 

transplantation programme in Norway 139. For data presented in this thesis, patients were 

recruited during the years 2004 and 2005. Some key numbers related to renal replacement 

therapy and kidney transplantation in Norway for the years 2004, 2005, and 2008140-142 are 

summarized in Table 2. 
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Table 2. Key numbers in renal replacement therapy (RRT) and renal transplantation in 

Norway, 2004, 2005, and 2008. 

 

Variables Year 

 2004 2005  2008 

Patients receiving RRT 3498 3383  4225 

%  males/females  63.9/36.1 64.5/35.5  67.7/32.3 

New patients entering RRT 459 459  533 

Patients starting dialysis who were 

previously unknown to the renal unit  

 

23 % 

 

29% 

  

30% 

Death in RRT (% of total in RRT) 254 (7.3) 314 (8.4)  330 (7.8) 

Renal transplants at  

OUH Rikshospitalet 

 

265 

 

229 

  

278 

First/second/third/fourth grafts 229/29/7 191/33/4/1  224/48/6 

Graft from living donor   (%) 95 (35.8) 87 (38)  98 (35) 

Pre-emtive transplantation 29 % 33%  43% 

Age range, first graft recipients.  

Years (mean) 

 

2-73 (41.7) 

 

2-75 (44.7) 

  

6-74 (46.7) 

Graft from diseased donor 170 142  180 

Pre-emtive transplantation 18 % 16%  22% 

Age range, first graft recipients. 

years (mean) 

 

1.5-78 (55.8) 

 

8-80 (56.5) 

  

22-82(55) 
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8. Determination of oxalic acid in biological samples 

 

Reliable determination of oxalic acid in biological matrices has over the years proven to be 

very difficult, as evident from the very large number of methods which have been published 

on this topic only to be discarded and replaced by others. 

Methods based on a wide range of analytical principles have been used, and in the 1980’ties 

and 90’ties several review articles on the different methods available up until then was 

published 143-147.  

Some methods have been based on detection of the native compound (oxalic acid itself), 

some on determination of the products of a chemical reaction between oxalic acid and other 

compounds (e.g. H2O2 formed by enzymatic conversion of oxalic acid), and some on 

detection of chemically modified oxalic acid (e.g. di-esters formed by derivatization). 

For most of the methods, some sort of sample preparation was needed to remove interfering 

compounds. For urine, this has generally been achieved by precipitation of oxalate as its 

calcium salt, by liquid-liquid or solid phase extraction, ion chromatography or adsorption 

chromatography. For plasma, removal of proteins is a common initial step of the sample 

preparation procedure either by ultrafiltration or precipitation by acid/heat. The resulting 

deproteinized plasma could then undergo the same procedure as urine. The concentration of 

oxalic acid in plasma is considerably lower than in urine and in addition the sample matrix 

is more complex and thus more extensive sample preparation procedures are often required. 

A phenomenon known as in-vitro oxalogenesis also contributes to the difficulty in obtaining 

reliable measurement of oxalic acid, especially in plasma. As a result the number of 

methods published on determination of oxalic acid in plasma is considerably lower 

compared to methods for urine analysis.  

 

8.1. In-vitro oxalogenesis 

 

In-vitro oxalogenesis, or simply oxalogenesis, is a process in which compounds present in 

the sample is converted to oxalic acid after sample collection and/or during assay. The result 

of oxalogenesis is erroneously elevated oxalic acid measured. As early as in 1933 it was 

reported that ascorbic acid could be oxidized to oxalic acid 148, but this fact was in the 

following decades apparently forgotten by the analytical chemists developing methods for 

oxalic acid determination. The instability of oxalic acid in biological fluids was observed, 

but the identity of the precursor(s) of oxalic acid responsible for oxalogenesis was for a long 
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time not known. However, it was known that glycolic acid could be oxidized to oxalic acid 

and in 1980 Akcay et al published data suggesting that glycolic acid was the source of 

oxalogenesis. 

Several researchers tried, but failed to reproduce these findings 149;150. The fact that ascorbic 

acid (vitamin C) could be oxidized into oxalic acid was rediscovered in the mid 1980’ties151, 

and since then it has been generally accepted that ascorbic acid is the main source of in vitro 

oxalogenesis152;153. The breakdown of ascorbic acid into oxalic acid (and threonic acid) goes 

through several steps in which the last is highly pH dependent and only taking place at 

alkaline pH. A number of different sample preparation procedures including removal of 

ascorbic acid or acidification of sample have been suggested and adapted to prevent 

oxalogenesis.  

 

An overview of the different sample preparation procedures and analytical systems reported 

up to date for oxalic acid determination in plasma and urine follows.  

 

8.2. Sample preparation 

 

The sample preparation procedures used in methods for oxalic acid determination differs 

widely depending on the proceeding analysis technique (e.g. chemical analysis or gas 

chromatography). Therefore, details on the sample preparation procedures adapted are in the 

following given together with the analytical procedure described.   

However, a brief description on the three most commonly used sample preparation 

principles for oxalic acid determination, calcium oxalate precipitation, liquid-liquid 

extraction and solid-phase extraction, will first be presented.  

 

Calcium oxalate precipitation 

 

The precipitation of oxalic acid at alkaline pH as its calcium salt was by far the most 

commonly used cleanup process for the earlier methods of oxalic acid determination. The 

solubility of calcium oxalate is strongly pH dependent being practically insoluble at alkaline 

and neutral pH but soluble at low pH. The main drawback of calcium oxalate precipitation is 

the very long time needed for quantitative precipitation, the co-precipitation of other salts 

such as calciumphosphate, incomplete precipitation, and losses of calcium oxalate during 

washing145.  
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Liquid-liquid extraction and solid-phase extraction 

 

Extraction procedures are typically used as part of a sample preparation procedure to reduce 

the complexity of a biological sample prior to further analysis.  

Liquid-liquid extraction is a sample cleanup process that is based on separation of 

compounds according to their relative solubility in two immiscible liquids, usually water 

and an organic solvent. In the earlier methods for oxalic acid analysis especially in urine, 

liquid-liquid extraction was widely used. The fact that oxalic acid is very water soluble 

makes it difficult to extract into organic solvents, and thus very long extraction times or 

repeated extraction had to be done to obtain acceptable recoveries.  

 

Solid phase extraction (SPE) is a sample cleanup process that is used to remove compounds 

from a mixture by using the chemical and physical properties of the analyte. 

SPE is typically used to purify and concentrate the analyte before further analysis. The 

principle of SPE is liquid chromatography (see later); it is based on the affinity of the 

analyte dissolved in a liquid (mobile phase) for a solid (stationary phase) through which the 

sample is passed.  

A variety of stationary phases are available for SPE. Most of them are based on silica 

bonded to a specific functional group such as quarternary ammonium groups for anion 

exchange SPE and hydrocarbon chains of variable length like octadecyl or octyl carbon 

chain (C18 and C8, respectively) for reversed phase SPE.  

Depending on the choice of SPE conditions, either the analyte of interest or the undesired 

impurities can be retained on the SPE material. For oxalic acid, the use of anion exchange 

SPE is an example of setup where the analyte is retained on the stationary phase, while the 

use of a C18 resin will allow the oxalic acid to pass through the material unretained while 

neutral and hydrophobic components in the sample are retained.  

If the analyte is retained on the stationary phase, a washing step is typically subsequently 

performed to remove unretained and weakly retained compounds. Finally an elution step is 

performed in which a solution that disrupts the interaction between the analyte and 

stationary phase is used to elute the analyte in a small volume.  
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8.3. Analytical methods for determination of oxalic acid 

 

In the following an overview, including discussion on main advantages and disadvantages, 

of the majority of methods that has been developed for oxalic acid determination up until 

today is given.  

 

8.3.1. Chemical techniques 

 

Oxalic acid has been measured directly by quantification of it s oxidation products, or after 

initial reduction to glyoxylic acid or glycolic acid, and this was the basis of many of the 

early methods described. 

 

Oxidation in combination with titrimetry or manometry 

 

Oxalic acid can be oxidised by acidified potassium permanganate: 

5H2C2O4 + 2KMnO4 + 3H2SO4 = K2SO4 + 2MnSO4 + 8H20 + 10CO2 

 

This reaction has been the basis for many of the early methods for oxalate determination 

after initial precipitation of oxalate as calcium oxalate. As an alternative to precipitation of 

calcium oxalate, the precipitation of oxalate from serum as its cerium salt has also been 

suggested 154. However, this procedure was criticized by several authors and the existence of 

oxalate in the precipitate questioned 155.  

In the titrimetric methods, typically the persistence of the pink colour of potassium 

permanganate was used to determine the end-point of the titration. For analysis of oxalate in 

urine, an initial sample cleanup by liquid-liquid extraction of the acid into boiling peroxide-

free ether before precipitation of calcium oxalate was suggested to remove interfering 

compounds in the sample. Satisfactory recovery was obtained only after 18 hours of 

extraction 156.  

For serum, manometric determination of the CO2 evolved in the permanganate reaction has 

also been used to quantify oxalate. After an initial acidic precipitation and removal of 

plasma proteins, calcium oxalate was precipitated, supernate removed and precipitate 

redissolved with sulphuric acid before addition of permanganate and manometric 

determination of the CO2 produced157. An alternative sample preparation procedure for the 
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oxidation-manometry method was later described in which oxalate was quantitatively 

extracted from serum by esterification and distillation 158.   

In general, the methods based on precipitation of oxalate followed by oxidation by 

permanganate were very time consuming and great care had to be taken to standardize the 

temperature of the reaction. The fact that permanganate reacts with many other reducing 

substances especially in urine resulted in a general underestimation of oxalate concentration 

in methods based on the permanganate reaction. 

 

Reduction in combination with fluorimetry or colorimetry 

 

Oxalic acid can be reduced to glyoxylic acid in the presence of zinc and hydrochloric acid:     

  HO-CO-CO-OH + H2 = H-CO-CO-OH + H2O 

A fluorimetric method that initially was developed for quantification of glyoxylic acid159, 

was adapted for determination of oxalate in serum and urine. Proteins from serum or urine 

were removed by acid/heat precipitation. Before calcium oxalate precipitation, the samples 

were processed by liquid-liquid extraction with tri-n-butyl phosphate as this solvent was 

found to have a much higher partition coefficient for oxalate than e.g. diethyl ether. Oxalic 

acid was then reduced in the presence of zink and hydrochloric acid. The resulting glyoxylic 

acid was allowed to react with resorcinol, forming a fluorescent glyoxylic acid-resorcinol 

complex that had maximum emission at 530 nm160.        

The conditions used for the reduction of oxalate to glyoxylate was critical as the reaction 

was difficult to control at the glyoxylate stage, and most workers therefore preferred to 

utilize the reduction of oxalic acid into glycolic acid : 

HO-CO-CO-OH + 2H2 = HO-CH2-CO-OH + H2O 

The glycolic acid produced could readily be detected with colorimetry. By heating glycolic 

acid with concentrated sulphuric acid and chromotropic acid, the formaldehyde formed from 

breakdown of glycolic acid formed a purple complex with chromotropic acid and this 

complex was detected at 570 nm. In 1961 Hodgkinson and Zarembski described a method 

for determination of oxalate in urine using this principle. Continuous extraction of acidified 

urine with peroxide-free boiling ether for 6 hours was performed. The extracted oxalic acid 

was then precipitated as the calcium salt, reduced to glycolic acid by boiling with zinc and 

sulphuric acid and determined colorimetrically after addition of chromotropic acid156. 

However, the initial heating of acidified urine was thought to cause positive interference by 

converting oxaluric acid present in urine to oxalic acid.  Ten years later an improved method 
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for oxalate in urine was published by the same research group, based on two previous 

procedures (156 and 160).  Solvent extraction was omitted and the oxalic acid was co-

precipitated directly from urine with calcium sulphate and ethanol. The precipitated oxalic 

acid was then converted to glycolic acid and determined colorimetrically as before 161. 

Glucose in the concentration found in diabetic urine was found to cause significant 

interference. The same did glycolic acid present in concentrations found in primary 

hyperoxaluria.  

Using this method, normal men were found to excrete from 17-43 mg oxalic acid per day. 

The reduction/colorimetric procedure have also been used for determination of oxalic acid 

in plasma. Instead of liquid-liquid extraction, solid phase extraction using an ion-exchange 

resin was used for removal of interfering substances from plasma 162.  In general, the 

chemical methods involved time consuming sample preparation based on precipitation or 

continuous liquid-liquid extraction and also the use of strong acids. Since the end of the 

70’ties the chemical methods for determination of oxalic acid was largely replaced by 

enzymatic methods and also by methods based on chromatography and mass spectrometry. 

 

8.3.2. Isotope dilution techniques 

 

Isotope dilution techniques are analytical techniques that involve the addition to a sample of 

an isotopically labeled compound, either stable or radioactive. Long before isotopes were 

discovered, zoologists started using catch and release methods for estimation of fish 

populations in ponds. The principle behind this was very simple: a certain number of fish 

was caught, labeled, and released back into the pond. After the released fish was 

intermingled with all other fish in the pond, a second catch was performed and the ratio of 

labeled and unlabeled fish recorded. Since the total number of labeled fish was known, this 

ratio allowed estimation of the total fish population in the pond 163.  As an example, with 

five labeled fishes and a ratio of labeled to unlabeled fish in the second catch being 1: 4, an 

estimated 25 fish was in the pond. In isotope dilution, a known amount of labeled fish would 

be added to the pond and then the ratio of labeled-to-unlabeled measured from a 

representative sample, and this demonstrates the working principle of isotope dilution. 

For determination of oxalic acid, both isotope dilution with the radioactive isotope 14C and 

the stable isotope 13C has been used. In early methods for determination of oxalic acid in 

urine by isotope dilution, 14C2 oxalic acid was added to urine followed by overnight 

precipitation as calcium oxalate. The precipitate was washed, dried, and dissolved in 
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sulfuric acid with added zinc for reduction of oxalic acid to glycolic acid. After separating 

glycolic acid from other compounds on an ion-exchange column, aliquots were taken for 14C 

counting in a scintillation counter, and for colorimetric determination of glycolic acid164. 

The content of oxalic acid in urine was then calculated from the specific activity of the 

isolated glycolic acid (derived from oxalic acid) and the total counts of 14C2 oxalic acid 

added to the specimen ( total counts of 14C2 oxalic acid – specific activity of derived 14C 

glycolic acid = oxalate content of the specimen). Using this technique, the daily urinary 

excretion of oxalate pr 1.73 m2 of body surface in healthy children averaged 32.9mg, in 

children with PH 149-375 mg was found, and in healthy adults 18-47 mg.  

The concentration of oxalic acid in plasma is considerably lower than in urine, and in 

general far more methods have been described for oxalate urine analysis compared to 

plasma. At the same time methods for direct determination of oxalate in urine was readily 

available, but direct determination of oxalic acid in plasma was difficult and this led to the 

development of methods for indirect estimation of oxalic acid in plasma by use of isotope 

dilution. In this indirect method, radioactive oxalate, 14C2 oxalic acid, was administrated to 

the patient himself. Afterwards blood and urine samples were collected. In plasma, only 

radioactivity was measured, while in urine both radioactivity and oxalate concentration was 

measured by e.g. colorimetry 165. The concentration of oxalic acid in plasma was then 

estimated as: (14C2 oxalic acid activity pr unit volume of plasma) x (concentration of oxalic 

acid in urine)/ (14C2 oxalic acid activity pr unit volume of urine). 

Normal plasma concentrations in the range 0.5 – 1.9 �mol/L was typically found using this 

technique 166, and 9-19 �mol/L in PH patients166. The plasma concentrations estimated using 
14C2 oxalic acid isotope dilution was and still is of the lowest reported using any technique.   
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8.3.3. Enzymatic techniques 

 

Enzymes have the advantage of specificity when used as analytical tools in the laboratory. 

Two enzymes have been used for quantitation of oxalate; oxalate oxidase and oxalate 

decarboxylase.   

Oxalate decarboxylase 

 

Oxalate decarboxylase (EC 4.1.1.2) catalyzes the reaction: 
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Oxalate decarboxylase can be purified from the wood-rot fungus Collybia velutipes and both 

products of the enzymatic reaction have been used for quantitation of oxalate as outlined in 

Figure 5. 
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Figure 5. Different approaches for determination of oxalic acid by use of oxalate 

decarboxylase. 

 

Initially oxalate decarboxylase was used for quantitation of oxalate in plasma, and the CO2 

produced was measured by Warburg manomentry 167. A few years later the same 

manometric procedure was used for urine analysis after initial precipitation of oxalate as 

calcium oxalate that was redissolved in potassium citrate buffer 168. Phosphate and sulphate 

which are normal constituents of urine are inhibitors of oxalate decarboxylase, but by using 
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a higher concentration of the enzyme this limitation could be overcome thus making initial 

sample preparation unnecessary. The CO2 produced was released into an alkaline buffer and 

the pH change measured169. A modified version of this method was also adapted for 

plasma170. A radioenzymatic assay using oxalate decarboxylase has also been described for 

plasma oxalate. 14C labelled oxalate was added to plasma and the sample was ultrafiltered, 

calcium oxalate was then precipitated and redissolved followed by liquid-liquid extraction 

using diethylether, evaporation and redissolving in a citrate buffer. Oxalate decarboxylase 

was then added and the progress of the enzymatic reaction followed by measuring the 14CO2 

evolved in a 14C labelled oxalate standard with and without the addition of the extract from 

plasma containing unlabelled oxalate171. The radioenzymatic assay was further optimized by 

performing a direct rapid precipitation of calcium oxalate172. For urine analysis, the 

preparation of an enzyme electrode with oxalate decarboxylase entrapped in polyacrylamide 

gel retained over a CO2 sensor has been reported 173.  

Quantitative methods for oxalate based on measurement of the formate produced by oxalate 

decarboxylase have also been described. The formate produced can be measured 

spectrophotometrically by using nicotinamide adenine dinucleotide (NAD+)-requiring 

formate dehydrogenase, and this double enzyme system has been used for both serum and 

urine analysis174;175.   For plasma analysis, even a triple enzyme system has been described 

in which the NADH produced by formate dehydrogenase is determined by a bacterial 

oxidoreductase/luciferase system emmiting light that can be quantified in a luminometer 176. 

Plasma was treated with a cation exchange resin to adjust pH and remove cations before 

analysis. An immobilized version of the triple enzyme system has also been described177. 

 

 

 

 

Oxalate oxidase 

 

Oxalate oxidase (EC 1.2.3.4) catalyzes the reaction: 
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The enzyme can be purified from many different sources such as barley roots, several 

species of moss, and from grain sorghum leaves. As shown in Figure 6, analytical methods 

have been developed based on the quantitation of both of the products formed.  

 

 

 HO-C  C-OH

O  O oxalate
oxidase

2 CO2+ H2O2

pH change
in alkaline buffer

peroxidasechromogens

spectrophotometry
coloured complex

amperometry

HO-C  C-OH

O  O oxalate
oxidase

2 CO2+ H2O2HO-C  C-OH

O  O

HO-C  C-OH

O  O oxalate
oxidase

2 CO2+ H2O2

pH change
in alkaline buffer

peroxidasechromogens

spectrophotometry
coloured complex

amperometry

 

 

 

 

 

 

 

Figure 6. Different approaches for determination of oxalic acid by use of oxalate oxidase. 

 

As for oxalate decarboxylase, the change in pH of a weak alkaline buffer arising from 

trapping of the CO2 evolved has been used for quantitation of oxalate, but the oxalate 

oxidase reaction has the advantage of producing two moles of CO2 for each mole of oxalate. 

After deproteinizing by addition of hydrochloric acid and heating, plasma oxalate has been 

quantified by this technique178. 

A number of methods have been described based on measurement of the H2O2 produced by 

the oxalate oxidase reaction. The use of a second enzyme, horseradish peroxidase that 

converts H2O2 to O2 and H2O has been the basis of several methods for oxalate 

measurement. By mixing the peroxidase with chromogens the O2 released causes oxidative 

coupling of the chromogens resulting in the formation of a coloured complex that can be 

measured spectrophotometrically at 520 or 590 nm:  
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Oxalate oxidase is inhibited by both divalent metals and several sodium salts including 

chloride, phosphate and citrate and thus different sample preparation procedures has been 

described to overcome this limitation. In addition to the potential conversion of ascorbate to 

oxalate during assay and storage, ascorbate interferes directly with the peroxidase step and 

needs to be removed prior to analysis. The divalent cations can be removed by an ion 

exchange resin and ascorbic acid can be eliminated by charcoal treatment, addition of 

sodium nitrite that converts ascorbate to dehydroascorbate or the use of ascorbate oxidase.  

For urine analysis of oxalate, a spectrophotometric method using the oxalate 

oxidase/peroxidase/coloured dye system in combination with an ion exchange and a 

charcoal cleanup step was described in 1980179. A few years later an immobilized version of 

this system that allowed reuse was reported. The sample preparation procedure included the 

initial precipitation of oxalate as calcium oxalate as the authors claimed that alternative 

methods for removal of interfering components like charcoal and ion exchange were not 

sufficient180.  A similar immobilized enzyme system was later developed for plasma 

analysis in which plasma was first ultrafiltered, acidified and then had sodium nitrite added 

for ascorbate  

elimination 181. A method suitable for the spectrophotometric determination of oxalate in 

different biological matrices using the oxidase/peroxidase/coloured dye system was then 

described in1988. Both plasma and urine could be analyzed, however the sample treatment 

used was very different including ultrafiltration and precipitation of calcium oxalate for 

plasma analysis and dilution and pre-treatment with a reversed phase cartridge for urine. 

The authors found that the use of sodium nitrite interfered with the colour development and 

the use of this reagent for ascorbate removal was therefore omitted 182. An immobilized 

version of this method was later described in which the enzyme was placed in an enzyme 

coil as part of a continuous flow system. For both urine and ultrafiltered plasma, sodium 

nitrite was added just before assay 183. 

For urine analysis a kit was introduced in 1989 employing an initial alkalization and 

addition of ethylenediaminetetraacetic acid��(EDTA) (avoiding precipitation of calcium 

oxalate) in combination with charcoal treatment184.  The kit reagents were later used for 

plasma analysis. Plasma was ultrafiltered into acid to avoid oxalogenesis and was further 

treated with ascorbate oxidase for elimination of ascorbate that otherwise caused negative 

interference probably due to H2O2 being reduced by ascorbate 185.  

For plasma analysis the removal of proteins by use of sulfosalicylic acid has also been used 

followed by charcoal treatment of the supernate before assay 186. The use of oxalate oxidase 
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purified from sorghum leaves has also been reported. The main benefit of using this source 

of the enzyme was its insensitivity to chloride present in the sample. Plasma could be 

analyzed after ultrafiltering into acid and addition of sodium nitrite 187. Analytical systems 

based on the immobilization of both oxalate oxidase and peroxidase on glass beads that 

could be reused has been described for plasma analysis 188. By affixing the glass beads on a 

plastic strip the method was further improved 189.  

In addition to the number of methods based on the peroxidase-mediated colorimetric 

procedure, the use of amperometric detection of the H2O2 produced has been reported by 

several investigators. In-line systems with immobilized enzyme (immobilized enzyme 

reactors, IMER) combined with amperometric detection was introduced for plasma and 

urine analysis in the 1990’ties. Both ion-pair chromatography and anion-exchange 

chromatography, respectively, have been combined in-line with the IMER/amperometric 

H2O2 detection 190;191. For the ion-pair chromatography procedure both plasma and urine 

was purified using a C18-cartridge after plasma was deproteinized by acid and heat 190. For 

the anion-exchange chromatography procedure the C18 cleanup was not necessary, and 

plasma was analyzed only after ultrafiltering into acid 191;192 and for urine thymol and 

isopropanol was added for preservation191. “Amperometric biosensors” for urine analysis 

has also been described in which the oxalate oxidase has been immobilized onto an 

electrode. Samples had to be diluted many times to overcome the need for removing 

reductive agents present in urine. The H2O2 produced reacted with hexacyanoferrate (II) in 

the buffer solution of a flow-injection system to yield hexacyanoferrate (III) that was 

reduced back to hexacyanoferrate (II) at an gold electrode193, or the oxalate oxidase was 

immobilized on the surface of a chromium hexacyanoferrate-modified graphite electrode194. 

SIRE technology (sensors based on injection of the recognition element) has also been used 

for urine analysis of oxalate, but the technique was not sensitive enough for plasma analysis. 

In the SIRE biosensor, the oxalate oxidase was injected into a reaction chamber containing 

an integrated electrode. A small amount of enzyme was thus used for one measurement and 

then discarded which greatly increased the lifetime of the biosensor 195.  

In summary, out of the many methods published on the use of oxalate oxidase and oxalate 

decarboxylase, only a few has proven useful for analysis of both plasma and urine. The 

reported methods are in general labour intensive and special precautions must be made to 

avoid interference by endogenous substances present in biological samples. The integrated 

methods with in-line reactors or electrodes involve either the use of special custom made 

devises and/or the use of enzyme that has been purified in the lab from harvested plants.   
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8.3.4 Chromatographic techniques 

 

Chromatography is a collective term for a set of techniques used for separation of mixtures. 

A mixture dissolved in a mobile phase is passed through a stationary phase, and different 

degree of interaction between the different compounds in the sample and the stationary 

phase leads to separation of the compounds. In liquid chromatography the mobile phase is a 

liquid, and in gas chromatography the mobile phase is a gas.    

Both liquid chromatography and gas chromatography in combination with several different 

detection principles has been developed for determination of oxalic acid in biological fluids. 

 

Gas chromatography 

 

Oxalic acid itself is not suitable for gas chromatography (GC) and therefore needs to be 

chemically modified (derivatized) into a less polar, thermally stable and more volatile 

compound as part of the sample preparation procedure. 

Several methods for oxalic acid determination combining GC and flame ionization detection 

(FID) were described in the 1970’ties. For GC-FID of oxalic acid in urine, a solid phase 

extraction procedure with an anion –exchange resin was described for sample clean up. A 

recovery of  95% of oxalic acid from the anion-extraction resin was found using a 

radioactive tracer. After elution from the resin, preparation of o-ethyl oxime derivates (to 

stabilize the sample) was performed before freeze drying over night. The acids in the dried 

sample were then derivatized into trimethylsilyl esters that was separated and detected by 

GC-FID196. A similar procedure was adapted for plasma analysis, but the acids were 

derivatized into dimethyl esters before GC-FID analysis196.  

For urine, a GC-FID method without the initial extraction was also described in which 

30mL of urine was evaporated to dryness under reduced pressure with a rotating vacuum 

evaporator followed by ethylation by ethanol/sulphuric acid and GC-FID analysis197. A 

combined method for plasma and urine was also published involving initial evaporation to 

dryness, liquid-liquid extraction with ether and overnight derivatization with isopropanol 

and hydrochloric acid followed by GC-FID. The normal concentration found in plasma was 

8.9-41 �mol/L and in urine 100-488 �mol/24 h (detection limit 7.5 and 20 �mol/L in plasma 

and urine, respectively)198. A modified version of this urine and plasma method using 

capillary GC column and without the initial evaporation to dryness was also published. 
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Ethyl acetate was used for direct repeated liquid-liquid extraction of oxalic acid from 

acidified urine or plasma. Plasma proteins were found to precipitate in the conditions used 

during extraction and repeated extraction with the precipitate in place was needed to obtain 

reliable results. In healthy volunteers, a mean urinary oxalic acid extraction of 230 �mol/24 

h was found and plasma concentration in the range 1.3-5.3 �mol/L150. GC in combination 

with electron capture detection has also been used for determination of a chlorinated 

derivative of oxalic acid in urine after precipitation of calcium oxalate199. 

In most of the GC methods mentioned so far, endogenous compounds present at low 

concentrations in body fluids, such as malonic acid, was used as internal standards for 

quantification of oxalic acid. Difference in extraction efficiency and reactivity towards 

derivatization reagents was an obvious drawback of this approach. The use of GC in 

combination with mass spectrometry allowed the use of isotopically labeled internal 

standard that greatly increased the selectivity (See gas chromatography-mass spectrometry 

below).   

 

Liquid chromatography 

 

In all liquid chromatography (LC) methods the mobile phase is a liquid, but a number of 

different stationary phases can be used. LC-techniques can be classified according to the 

polarity of the stationary and mobile phase. In reverse phase chromatography the mobile 

phase is more polar than the stationary phase, and opposite in normal phase chromatography 

where the stationary phase is more polar than the mobile phase. 

For reversed phase chromatography, stationary phases with hydrocarbon chains of different 

lengths like C18 or C8 are typically used. The mobile phase contains a mixture of water or 

aqueous buffers and organic solvents that are miscible with water, like methanol or 

acetonitrile.  

Relatively few reports on the use of reversed phase chromatography for oxalic acid are 

published. The retention of the highly polar oxalic acid is low on a reverse phase system, but 

in some reported methods for oxalic acid this was overcome by adding quarternary 

ammonium ions to the mobile phase as counter ions, hence increasing the retention of oxalic 

acid200. This reversed phase ion-pair LC system with a low pH mobile phase in combination 

with ultraviolet (UV) detection at 210-220 nm has been used for oxalic acid measurement in 

urine. Interfering substances had to be removed either using a C18-cartridge201 or by protein 

precipitation202 before analysis on a C8 or C18 column, respectively. The urinary oxalic acid 
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excretion found in healthy controls was in the range 100 – 225 �mol/24h 202. Although 

suitable for urine analysis, poor detection limit (15 �mol/L) did not allow determination of 

oxalic acid in plasma. Methods based on derivatization of urinary oxalic acid into better 

retained, more UV-absorbing compounds have also been proposed. By reacting acidified 

urine with o-phenylenediamine, a highly UV-absorbing oxalic acid derivative was formed 

that could be detected at 314 nm after chromatography on a C8 column. However, a large 

background signal was present of unknown origin and thus two separate determinations of 

each sample had to be performed; one after the urine hade been treated with oxalate oxidase 

(to remove oxalic acid from the sample) and one without enzyme treatment. The difference 

in peak area between the two determinations was used for calculation of oxalic acid 

concentration in urine 203. A different derivatization approach was also reported using 

liquid-liquid extraction of urine by tri-n-butyl phosphate followed by derivatization with 9-

anthryldiazomethane and C18 chromatography. The resulting fluorescent compound was 

measured at 410nm with excitation at 254 nm. The derivatized oxalic acid decomposed 

upon standing and the analysis therefore had to be done within 10h after preparation. 204.    

Ion-exchange chromatography, in which the stationary phase is charged, is used for 

separation of polar or charged molecules. The stationary phase surface displays ionic 

functional groups that interact with analyte ions of opposite charge leading to retaining of 

the analyte. Mobile phases typically consists of species that are similarly charged as the 

analyte and that will displace the analyte ions from the stationary phase.    

In combination with conductivity detection, this LC-technique has been the basis for several 

methods developed for determination of oxalic acid.  

In general, the chromatographic column was packed with anion-exchange material and the 

mobile phase typically consisted of a carbonate/bicarbonate buffer with boric acid. Initially 

this technique was used for oxalic acid in urine, after only dilution with water and 

filtering205. Sulphate present in urine eluted close to oxalic acid and sulphate therefore had 

to be added to the aqueous standards used for preparation of the calibration curve in order to 

overcome the potential problem of peak overlap. For plasma analysis, sample preparation 

typically involved ultrafiltering to remove proteins that otherwise results in clogging of the 

chromatographic column. However, it was shown that the time of acidification (before or 

after ultrafiltering) and the molecular weight cut-off of the ultrafilter used were of 

significant importance. Sample loss close to 50 % was observed when ultrafiltering was 

performed with a 30.000 dalton cut -off filter on plasma acidified to pH 3 due to binding of 

oxalic acid to plasma proteins at this pH. At physiological pH or at extremely low pH, 
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protein binding was not seen. At the same time oxalogenesis was observed during 

ultrafiltering if plasma was not first acidified, and initial strong acidification was therefore 

adapted to obtain satisfactory results206.  

The very pH dependent recovery and the need to acidify to avoid oxalogenesis was a 

drawback of the method. However, others claimed that plasma did not have to be acidified 

prior to ultrafiltering, and alternative sample preparation was then proposed in which 

unacidified plasma was ultrafiltered into acid207, or into a cation-exchange resin for 

reduction of pH to about 1208. Chloride present in urine could cause interference in the 

chromatogram and was removed by passing the acidified plasma ultrafiltrate through a 

silver cation-exchange resin before chromatography. The method was also used for urine, 

after passing the sample through a C18 cartridge for clean up. In healthy controls, urine 

excretion in the range 107-560 �mol/day was found and plasma levels in the range 0.8 – 3.2  

�mol/L208. A simpler sample preparation procedure for plasma oxalate was also described in 

which proteins were removed from plasma by precipitation with acetonitrile209. For work up 

of unacidified plasma the use of a 10 000 dalton cut-off filter has also been suggested as it 

reflects the sieve micro architecture of renal glomeruli. Using this procedure, observations 

suggesting binding of oxalic acid to plasma proteins with a molecular weight higher than the 

cut off limit was suggested210, but this was later reported to be apparent and not real by the 

same researchers211.  

Regardless of the choice of sample purification, a major concern using the ion-

chromatographic – conductivity detection methods for oxalic acid is oxalogenesis occurring 

during chromatography, in the column, from ascorbic acid present in the sample. Ascorbic 

acid therefore has to be removed before chromatography by e.g. enzymatic oxidation or 

addition of boric acid to the mobile phase 206.  

 

Although controversy exists on both the impact of in-column oxalogenesis, strategies to 

prevent it, and choice of sample pretreatment procedure, ion chromatography with 

conductivity detection is one of the most used analytical systems for determination of oxalic 

acid in use today. 

As an alternative to a charged stationary phase used in ion-exchange chromatography, a 

custom made solvent-generated ion-exchange chromatographic system with amperometric 

detection at a copper electrode has been described for measurement of oxalic acid in 

urine212.   
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Capillary electrophoresis 

 

In addition to the number of LC-methods, a CE method using indirect UV-detection has also 

been reported for analysis of oxalic acid in urine 213. Although simple and robust, the 

relative poor sensitivity of CE limited its use to urine analysis.  

 

8.3.5 Mass spectrometry 

 

The principle of mass spectrometry (MS) consists of ionizing a chemical compound in gas 

phase to generate charged molecules or molecule fragments and subsequent measurement of 

their mass-to-charge ratio (m/z).  A number of different ionization techniques are available 

like electron impact ionization typically used with GC, or the softer, electrospray ionization 

(ESI), typically used with LC.  

 The power of MS lies in the fact that the mass spectra of many compounds are sufficiently 

specific to allow their identification with a high degree of confidence. If the analyte is part 

of a complex mixture such as urine or plasma, however, all compounds present in the 

sample will produce ions and the mass spectrum obtained will be complex. If in addition the 

analyte is a minor component of the sample, identification with an acceptable degree of 

certainty is difficult.   

The combination of the capability of chromatography to separate compounds in a mixture 

allowing pure compounds to be introduced into the MS, with the identification capability of 

MS is clearly advantageous.     

After the initial use of isotope dilution with the radioactive isotope, a number of methods 

based on the use of the stable isotope of oxalic acid, 13C2 oxalic acid (1,2-13C2 oxalic acid) 

was described. Typically, 13C2 oxalic acid was added to the sample to work as an internal 

standard as the labeled analog behaved like the natural compound throughout the analytical 

procedure hereby correcting for any sample loss. The difference in molecular mass between 

the 12C  and 13C -oxalic acid  makes them easy to detect individually in mass spectrometry.  

The internal standard, 1,2-13C2oxalic acid, has a molecular weigh 2 atomic mass units (u) 

higher than the natural compound (92.03 and 90.03 g/mol, respectively).  

Interfaces for connection of GC with MS was commercially available much before 

interfaces for connection of LC and MS, and commercially available ESI interfaces has only 

been available during the last 20 years 214. The reason for the much earlier routine use of 

GC-MS is the compatibilities of the two techniques. 
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Compounds analyzed with GC have to be both volatile at the temperatures needed to 

achieve separation, and thermally stable. These are by far the same requirements needed to 

produce mass spectra from an analyte in the MS. Thus, the vast majority of compounds 

amendable to GC separation can efficiently be transferred to the MS. 

This is not the case when LC is interfaced with MS, due to the incompatibilities of the two 

techniques. Thus, an interface must be used with its prime purpose being the removal of the 

mobile phase.  

After the analyte has been ionized, the ions of different m/z ratios produced are separated 

and detected.  Several different mass separation devices are used in MS. A triple quadrupole 

mass analyzer is commonly used in combination with LC and ESI.   

   

 

 

Gas chromatography-mass spectrometry 

 

Several methods based on gas chromatography-mass spectrometry (GC-MS) using 13C2 

oxalic acid have been described. In a GC-MS method for urine analysis published in 1979, 

the 13C2 oxalic acid internal standard was added followed by ethanol and CaSO4. After 

overnight precipitation and drying of calcium oxalate, derivatization reagent was added to 

the residue followed by heating. The resulting di-propyl ester of oxalic acid was then 

extracted into hexane and injected on the GC-MS. Oxalic acid eluted after less than 3 

minutes from the GC and the protonated molecule formed in the MS after chemical 

ionization was at m/z 175.0 (endogenous oxalic acid) and 177.0 (13C2 oxalic acid). 

Using selective ion monitoring, the ratio of the m/z 177.0 and 175.0 was used to quantify 

oxalic acid in the urine sample215. Several similar methods but with different derivatization 

procedures was later reported for urine analysis, e.g. with the formation of the di-isopropyl 

ester of oxalic acid that could be quantified at m/z 194 and 192 (ammonium-adduct of the 

molecule) for the internal standard and endogenous compound, respectively216. As an 

alternative to the precipitation of calcium oxalate, liquid-liquid extraction of urine with ethyl 

acetate has been reported followed by lyophilizing and an overnight derivatization 

procedure resulting in the formation of bis-(tert.-butyl-dimethylsilyl) derivates of oxalic acid 

that could be quantified by GC-MS with electron-impact ionization. The latter method was 

developed to monitor intestinal absorption of oxalic acid by administrating 13C2 oxalic acid 

and isotopically labeled malonic acid was actually used as internal standard for both labeled 
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and unlabeled oxalic acid. The use of ethyl acetate for extraction was not very efficient, and 

only about 50% of the oxalic acid was retained in the ethyl acetate phase after washing. A 

mean excretion of 0.335 mmol oxalic acid/24h was found in healthy female volunteers, and 

absorption of ingested 13C2 oxalic acid in the range 1-48% 217. Stable isotope-dilution GC-

MS determination of oxalic acid in plasma has also been described. After initial addition of 

the isotopically labeled internal standard, plasma was acidified followed by solvent 

extraction with ethyl acetate and derivatized into trimethylsilyl-derivates that was quantified 

in the MS218.  

 

 

 

 

 

 

Tandem mass spectrometry 

 

Tandem mass spectrometry (MSMS) is a term that covers techniques in which one stage of 

MS is used to isolate an ion of interest and second stage of MS is then used to probe the 

relationship between this ion with others from which it have been generated or generate on 

decomposition.   

The triple quadrupole is probably the most widely used MSMS-instrument. As the name 

suggests, the hardware consists of three sets of quadrupole rods in series.  The second set of 

rods is not used as a mass separation device but as a collision cell where fragmentation of 

ions transmitted by the first set of quadrupole is carried out.  

The most used MSMS experiments in LC-MSMS are product ion scan, precursor ion scan, 

constant neutral loss scan, and selected decomposition monitoring or multiple reaction 

monitoring (MRM).  

In MRM, the fragmentation of a selected precursor ion to a selected product ion is 

monitored.  

This is performed by setting the first quadrupole to let only ions of one m/z (typically the 

molecular ion) pass on to the second quadrupole. This so called precursor ions is then 

fragmented into product ions in the second quadrupole and the third quadrupole is set to 

allow only fragments of one m/z pass on to the detector. The m/z of the precursor (first 
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quadrupole) and the selected product (third quadrupole) is often referred to as the MRM-

transition. 

Figure 7 is a schematic of a triple quadrupole used in MRM mode.  

 

 

ion 
source

quadrupole 1 quadrupole 2
collision cell

quadrupole 3 detectorion 
source

quadrupole 1 quadrupole 2
collision cell

quadrupole 3 detector

 

 

 

 

Figure 7. Schematic of a triple quadrupole mass spectrometer in multiple reaction 

monitoring (MRM)-mode. 

 

 

 

Liquid chromatography-tandem mass spectrometry 

 

The combination of LC and MSMS is a powerful hybrid analytical method, and the growth 

in applications of this technique is exponential. For LC-MSMS analysis of compounds in 

biological samples, an isotopically labeled internal standard is typically added followed by 

some sort of sample clean up to remove proteins or reduce ionic strength. The analyte is 

then either analyzed directly or derivatized and separated from interfering compounds on a 

reversed phase column. MS-detection is often performed in MRM-mode. 

During the work on this doctoral thesis, one method for determination of oxalic acid in urine 

using LC-MSMS was published. Urine was analyzed after only dilution and addition of 13C2 

oxalic acid and injected on a reversed phase/weak anion exchange column without prior 

derivatization. The native oxalic acid and isotopically labeled internal standard was detected 

by MRM in negative ionization mode. However, the method was not sensitive enough for 

plasma determinations as the lower limit of quantitation was 100 �mol/L219.   
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Objectives of the Thesis 

 
Reliable quantitation of oxalic acid in body fluids is of great importance in several medical 

conditions, both inherited and acquired. For laboratory diagnosis of the inborn errors of 

metabolism primary hyperoxaluria type I and II (PH I and PH II), elevated concentration of 

oxalic acid is the biochemical hallmark. Environmental or secondary hyperoxaluria can be 

caused by increased ingestion and/or absorption of dietary oxalic acid, intestinal disease or 

surgery or alterations in intestinal bacterial flora. Oxalic acid is eliminated from the body by 

the kidneys, and excess oxalic acid can precipitate as calcium oxalate and cause tissue 

damage. Therefore, end-stage renal failure can be expected to involve a risk of elevated 

body burden of oxalic acid, regardless of the underlying disorder. 

Despite the importance of quantitation of oxalic acid, no analytical method has been 

available with satisfactory performance characteristic for both plasma and urine analysis to 

be used in a routine clinical lab. The combination of different pre analytical and analytical 

factors has lead to an extensive variation in normal ranges of oxalic acid reported using 

different analytical procedures. For urine analysis of oxalic acid, the use of 24-h urine 

collection has traditionally been performed. Especially in children this is cumbersome and 

non-compliance is common.  

For diagnosis of PH, a normal or close to normal 24-h urinary excretion of oxalic acid may 

be observed with deteriorating kidney function. However, the oxalic acid/creatinine ratio 

remains elevated.  

      

The main aim of the thesis was to (1) develop a state of the art method for determination of 

oxalic acid for analysis of both plasma and urine and (2) estimate the normal range of the 

metabolite in a healthy population, to (3) gain knowledge of oxalic acid dynamics following 

kidney transplantation in non-PH patients and (4) to investigate the diurnal excretion patter 

of oxalic acid to assess the usefulness of relating oxalic acid to creatinine in spot urine as an 

alternative to the traditional 24 h-urine collections.   
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Specific objectives of the projects: 

 
Paper I 

The aim of this study was to develop a reliable and user friendly method for oxalic acid 

determination in plasma and to evaluate the performance characteristics of the method. To 

be able to recognize elevated levels of oxalic acid, the normal range of the metabolite in a 

healthy population also had to be established.  Further, the impact on pre analytical factors 

on the quantitative results was investigated including delayed processing and variable 

storage conditions.   

 

Paper II 

It is well recognized that in PH patients calciumoxalate deposits in the kidneys can lead to 

organ damage and eventually ESRF. Following kidney transplantation in PH, 

resolubilization of oxalic acid from extra-renal deposits may result in recurrence of kidney 

failure and repeated kidney transplantation may therefore bee needed. Theoretically, oxalic 

acid may be harmful in all patients with ESRF regardless of the underlying disorder. 

Elevated levels of plasma oxalic acid in non-PH patients with ESRF have been reported. 

However, little has been known about the oxalic acid dynamics following kidney 

transplantation in these patients. The aim of this study was therefore (1) to find out to what 

extent plasma oxalic acid was elevated in non-PH kidney transplant recipients and the effect 

of kidney transplantation on plasma oxalic acid levels and (2) to try and identify 

determinants of plasma oxalic acid following kidney transplantation by collecting and 

analyzing data on relevant demographic and laboratory parameters.     

 

 
Paper III 

The aim of this study was to evaluate the usefulness of the plasma method for analysis of 

oxalic acid in urine. Secondly, as the collection of 24-h urine is cumbersome it was 

desirable to investigate weather 24-h urine collections could be substituted with the much 

simpler spot urine collection. The establishment of precursory reference intervals for spot-

urine oxalic acid/creatinine-ratio in both children and adult, without diet restrictions was 

investigated.   
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Methods 

 
Paper I 

LC-MSMS is a powerful analytical tool routinely used in hospital laboratories for 

quantitation of a number of metabolites in biological samples. The use of MSMS in MRM 

mode allows detection with a high degree of confidence. The use of isotopically labeled 
13C2-oxalic acid as internal standard can compensate for eventual sample loss during sample 

preparation and is easily separated from the native compound in MRM. Therefore, LC-

MSMS in MRM mode with 13C2 oxalic acid as internal standard was the natural choice as a 

starting point for method development. Some sort of sample preparation is needed to reduce 

the complexity of the sample and avoid clogging of the chromatographic column. Being a 

strong acid, oxalic acid is readily retained on a strong anion-exchange (SAX) solid phase 

extraction (SPE) material and as this sample preparation technique can easily be automated 

it was chosen as the preferred sample preparation procedure. Native oxalic acid can be 

ionized in negative ionization mode in the mass spectrometer, but the ionization efficiency 

is low and thus low sensitivity is obtained. Fortunately, oxalic acid is easily derivatized by 

heating with acid and alcohol, and the resulting di-esters are readily ionized in positive 

ionization mode in the mass spectrometer. In addition they produce fragments with high 

abundances that can be used for MRM measurements. Di-esters of different chain lengths 

were therefore prepared and tested. Compared to the native compound, the di-esters are also 

much more hydrophobic and thus a reversed phase chromatographic system was adapted for 

the LC separation. 

The method was validated in terms of assessment of limit of quantitation, linearity, within-

day repeatability, LC-MSMS repeatability and long-term reproducibility. Absolute recovery 

during the steps of sample preparation was investigated using a radioactive isotope of oxalic 

acid, 14C2-oxalic acid, and recovery relative to the internal standard was tested. 

The impact of delayed processing of plasma after intake of the main contributor to in vitro 

oxalogenesis, vitamin C, was also assessed. Finally, the impact of storage temperature on 

long term stability of samples was investigated.    

Once the analytical method was validated including establishment of pre-analytical 

procedure, the normal range of oxalic acid in plasma was established by analyzing samples 

from healthy individuals. Samples from some PH patients were also analyzed.      
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Paper II 

A total of 213 patients admitted for kidney transplantation at Oslo University hospital 

Rikshospitalet were recruited during a period of 15 months. One patient with a plasma 

oxalic acid of 157 �mol/L at time of transplantation was later found to have PH1 and was 

excluded from the study. Relevant demographic data for all patients were collected. The 

mean recipient and donor age were 51 and 49 years, respectively, and 64 % of the patients 

were men. Approximately half of the patients received a transplant from a live donor. One 

third of the patients were transplanted preemptively (did not receive dialysis treatment at 

time of transplantation) and 14 % had non primary function (did receive dialysis treatment 

up to 10 weeks follow up). The median time in renal replacement therapy (dialysis 

treatment) prior to transplantation was one year. Samples for oxalic acid were collected at 

the same time as samples for standard laboratory evaluation both pre transplantation and at 

10 weeks follow up. However, to avoid oxalogenesis, the vials with plasma for oxalic acid 

determination were processed quickly after collection and stored at -70 if not assayed 

immediately. Data on plasma creatinine, calcium, phosphate, albumin, hemoglobin, and urea 

were also collected at both time points and GFR at follow up. Adequate samples for oxalic 

acid were obtained for 99 and 167 out of the 213 at transplantation and follow up, 

respectively. Univariate relationships were evaluated by means of Spearman’s correlation 

coefficients. The determinants of oxalic acid were investigated by multivariate regression 

analysis, and values for plasma oxalic acid, creatinine, urea and PTH had to be log 

transformed to be normally distributed before entering the statistical model. 

       

 

 
Paper III 

The analytical method from paper I was adaptable for urine analysis only after dilution of 

urine 1:9 with water. Within batch precision was tested, and relative and absolute recoveries 

were investigated using the same protocol as for plasma. As precipitation of calciumoxalate 

is highly pH dependant, absolute recoveries of oxalic acid at different sample pH were also 

assessed. An enzymatic kit based on oxalate oxidase is commercially available for urine 

analysis of oxalic acid. The current method was compared to the kit by analyzing the same 

urine samples with both methods and comparing the results by t-test on ratios. To 

investigate the possible use of spot urine oxalic acid/creatinine-ratio, the diurnal patterns of 
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oxalic acid and creatinine were investigated in a group of healthy individuals who collected 

every void during 24 h in separate containers. 

Finally, spot urines from children presumably healthy with respect to hyperoxaluria 

disorders and healthy adult males and females were collected and analyzed and precursory 

reference intervals for oxalic acid /creatinine-ratio estimated by linear regression.     
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Main findings 
Paper I 

Derivatization of oxalic acid into di-butyl esters of three different chain lengths were 

initially tested (propyl, butyl, and pentyl). The di-butyl ester gave the most satisfactory 

result and was used for further method development. In the MS, the di-butyl ester of oxalic 

acid and the internal standard 13C2-oxalic acid produced molecular ions corresponding to the 

protonated molecules (MH+) at m/z 203 and 205, respectively. The main fragments 

produced in the collision cell were due to the loss of one butyl group (m/z 57). The 

transition from the molecular ion to the butyl fragment was chosen as MRM transitions; 

205.1 – 57.1 and 203.1-57.1 for the internal standard and native compound, respectively. 

Satisfactory sample cleanup was obtained by SAX-SPE and elution with acidified organic 

solvent. Initially, hydrochloric acid in methanol was used, but due to the potential formation 

of methyl esters in the proceeding derivatization (if the solvent was not removed properly), 

acetonitrile was instead used. Chromatographic performance was obtained using a regular 

C-8 reverse phase column and a mobile phase of 60 % acetonitrile in water. The assay was 

found to be linear up to 200 �mol/L using aqueous standards, and the limit of quantitation in 

plasma was 0.5 �mol/L. For within-day repeatability, an average coefficient of variation 

(CV) of 4.5 and 6.9% was found for an aqueous standard and for plasma, respectively. Due 

to oxalogenesis, a real plasma sample could not be implemented as long-term quality 

control, and the use of artificial plasma was not compatible with the chromatographic 

system. As an alternative, an aqueous standard was implemented as quality control, and over 

a 3 moths period a CV of 5% was found. 

Relative recovery, as tested by spiking plasma with 5-200 �mol/L oxalic acid, resulted in a 

satisfactory recovery of over 90% at all concentrations tested. Absolute recovery, as tested 

by addition of radioactive oxalic acid, revealed that sample loss was minimal during SPE 

and the first evaporation step. In contrast, the sample loss during the second evaporation 

step, after derivatization, was found to be substantial and only about 25% of the oxalic acid 

originally present in the sample was recovered. These experiments clearly showed that the 

dibutyl-ester was far more volatile than the native compound and that the second 

evaporation step had to be performed under very mild conditions. 

The level of oxalogenesis in fresh plasma was tested with and without vitamin C. 

Significantly higher oxalogenesis was observed both when vitamin C was ingested and 
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when it was added directly to the sample. The results revealed that samples must be 

processed without delay following collection to avoid significant oxalogenesis.  

The effect of storage time up to eight weeks on samples stored at -20 and -70°C was also 

investigated. Oxalogenesis was observed after storage at both temperatures, and the absolute 

increase measured was found to be negatively related to the initial value.   

Finally, the normal range of oxalic acid in plasma was found by analyzing plasma from 67 

apparently healthy adult men and women without any dietary restrictions. No statistically 

significantly differences in plasma oxalic acid between the genders or age dependency were 

found. The data were log-normally distributed and by regression analysis the normal range 

was found to be 3-11 �mol/L, which is in the middle range of normal ranges reported in the 

literature. In three PH-patients, plasma concentrations in the range 50-170 �mol/L were 

found. 

 

Paper II 

At transplantation, 98 % of the plasma oxalic acid concentrations were above the upper 

reference limit. The saturation limit for calcium oxalate in plasma has been reported to be in 

the range 35-40 �mol/L meaning that at higher levels there is a risk for precipitation. 

Almost 40% of the patients had plasma levels above 40 �mol/L. At 10 weeks post 

transplant, still more than one third of the patients had oxalic acid levels above the upper 

reference limit. In patients with elevated oxalic acid at follow up, a higher average 

creatinine value (144 �mol/L) compared to those with oxalic acid within the normal range 

(108� �mol/L) was found. The correlation analysis of the data at transplantation revealed that 

oxalic acid was statistically significantly correlated both to preemptive transplantation, 

phosphate and creatinine. However, in the subsequent multiple regression analysis only 

preemptive transplantation and creatinine retained significance. This finding supports the 

hypothesis that oxalic acid concentration increases with declining kidney function.  At 10 

week follow up, both phosphate, creatinine, urea, albumin, and hemoglobin at 10 weeks, 

recipient and donor age, rejection episodes, GFR, and baseline PTH were found to correlate 

significantly with oxalic acid. Although all these parameters were entered into the 

subsequent regression model, only donor age, creatinine and GFR were retained as 

significant determinators of oxalic acid. These results revealed that the plasma level of 

oxalic acid at transplantation was not important for the reduction in plasma oxalic acid 
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observed following transplantation, but that establishment of adequate kidney function is the 

major determinant for excretion of the excess oxalic acid. 

 

Paper III 

The method originally developed for plasma was found to work excellent for urine after 

only dilution of the sample. The within batch CV did not exceed 6.9 % at any concentration 

tested (4.5 – 105 �mol/L in diluted sample). A satisfactory mean relative recovery of 97% 

was found for urine spiked with 5-200 �mol/L oxalic acid. In regard to absolute recovery, 

the same pattern as for plasma was observed; minor loss of oxalic acid during SPE and the 

first evaporation step but significant loss of the derivatized oxalic acid in the second 

evaporation step emphasizing the importance of evaporation using low gas flow and 

moderate temperature. Extreme acidification of urine resulted in higher sample loss during 

SPE, but the absolute recovery for the whole analytical procedure did not show any strong 

pH dependence.  From the analysis of 21 urines evenly distributed from 21 -1025 �mol/L  

by both the current method and the enzymatic kit, it was found that the current method gave 

7.9 % higher values than the enzymatic kit, independent of the oxalic acid concentration. 

Quantitation of oxalic acid and creatinine in every void during 24 hours from 9 healthy adult 

volunteers (giving a total of 57 samples) revealed no significant time dependent variation in 

oxalic acid/creatinine-ratio. These data suggested that random spot-urines could be used as 

an alternative to timed urine collection. The variation of oxalic acid, creatinine and oxalic 

acid/creatinine-ratio in 47 children (age 1 month-17years) presumably healthy with respect 

to hyperoxaluria disorders revealed that oxalic acid excretion did not differ significantly 

between boys and girls. However, the strong age dependency of creatinine excretion 

resulted in a decrease in oxalic acid/creatinine-ratio with age. In 56 healthy adults (age 24-

76 years) a slightly decreasing oxalic acid excretion with age was observed, but regression 

analysis revealed no age dependence in oxalic acid/creatinine-ratio. Men were found to have 

slightly higher oxalic acid excretion compared to women, but as a result of the significantly 

higher creatinine excretion in men, this gender had significantly lower oxalic acid/creatinine 

-ratio. Using linear regression, precursory reference intervals for children and adults were 

calculated as 95% central intervals. For children under one year age, 78-160 �mol oxalic 

acid/mmol creatinine was found as the normal range, dropping to 17-34 �mol oxalic 

acid/mmol creatinine at age 17 years which concurred with the values found in the adult 

population. 
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Conclusions of the Thesis 

 
A state of the art SPE-LC-MSMS method for determination of oxalic acid in plasma and 

urine has been developed, characterized and validated. The method is based on an initial 

addition of an isotopically labeled internal standard 13C2-oxalic acid followed by a sample 

cleanup step using a strong anion exchange resin. Oxalic acid is retained on the material 

while neutral and positively charged interferences are not thus reducing the complexity of 

the resulting sample obtained when the analyte is eluted off the resin with acidic 

acetonitrile. After evaporated to dryness, derivatization is performed with addition of acidic 

butanol and heating for 15 minutes. The resulting di-butyl esters are volatile and removal of 

excess derivatization reagent must be performed under mild conditions to avoid 

unacceptable sample loss. The analyte is separated from the main matrix components by 

reversed phase LC connected to a triple quadrupole MSMS, and oxalic acid and the internal 

standard quantified using MRM. Using the developed method, the normal range of oxalic 

acid in plasma following an unrestricted diet was found to be 3-11 �mol/L, which is in the 

middle range of normal ranges reported in the literature. Vitamin C results in significant 

oxalogenesis in plasma if samples are left at room temperature for extended periods of time. 

After collection, samples must therefore be assayed latest within one hour or stored at -

70°C. Even in frozen samples oxalogenesis occurs, and samples should therefore be stored 

for no longer than one week before analysis to obtain reliable results. 

In patients with end-stage renal failure not due to PH and who were admitted for kidney 

transplantation, significantly elevated plasma levels of oxalic acid was found in 98% out of 

the 212 patients included in the study. More than one third of the patients had oxalic acid 

levels above the saturation limit for calciumoxalate in plasma, indicating a potential risk of 

oxalosis.  

The independent determinants of oxalic acid at transplantation were found to be plasma 

creatinine and preemptive transplantation, pointing to the important role of the kidney in 

removing oxalic acid from the body; when the kidneys ability to excrete oxalic acid drops, 

the plasma level increases.   

As expected following kidney transplantation the oxalic acid levels dropped substantially 

and to concentrations below the saturation limit. However, almost 40% of the patients still 

had oxalic acid levels above the upper normal limit 10 weeks after transplantation. The level 

of oxalic acid before transplantation turned out not to be of importance for the subsequent 
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reduction. The independent determinants of oxalic acid after kidney transplantation were 

found to be GFR, creatinine and donor age. Both plasma creatinine and GFR are measures 

of kidney function, and both creatinine and oxalate and GFR at 10 weeks follow up were 

significantly correlated. A possible explanation for the fact that both creatinine and GFR 

were retained in the subsequent regression model can be that the two parameters have 

different accuracy with respect to predict oxalate levels at different levels of the two 

parameters. 

Three of the patients had extremely elevated oxalic acid levels before transplantation. In 

one, the plasma level remained elevated after transplantation and the patient was later 

diagnosed with PH.  In the other two, plasma oxalic acid dropped to close to normal levels 

after transplantation. One had a history of gastro intestinal surgery and kidney stones 

making enteric hyperoxaluria a possible explanation of the elevated oxalic acid.  

For quantitation of oxalic acid in urine, no significant time dependency in the ratio of oxalic 

acid excretion relative to creatinine excretion was found.  This indicates that creatinine and 

oxalic acid are treated similar by the kidney and that spot urine can be used as an alternative 

to 24-h urine. However, ingestion of a meal extreme in oxalic acid or its precursors may  

theoretically lead to transient elevated oxalic acid/creatinine-ratio that do not reflect the 

patients true oxalate status. In healthy children, the oxalic acid/creatinine-ratio was the same 

for boys and girls and decreased from birth and up to age 17 years due to the increase in 

creatinine excretion with age. In adults, no age dependency was found but men excreted 

more of both oxalic acid and creatinine leading to a slightly lower oxalic acid/creatinine-

ratio in this gender.   
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Future Perspectives 

 
In addition to the elevated oxalic acid found in PH, elevated glycolic acid is found in PH1 

and L-glyceric acid in PH2. Glyceric acid is normally not detectable in plasma or urine. 

In contrast to glycolic and glyceric acid, oxalic acid is elevated in several other medical 

conditions than PH. Thus, quantitation of glycolic and glyceric acid together with oxalic 

acid may provide important information in laboratory diagnosis of PH. Glycolic acid (HO-

CO-CH2-OH  mw 76.05 g/mol) and glyceric acid (HO-CH2-CH (OH)-CO-OH, mw 106.08 

g/mol) both contains one acid group and should in theory be suitable for anion exchange 

SPE, esterification and reversed phase LC like oxalic acid. Isotopically labeled analogs are 

available that can be used for reliable quantitation by MSMS in MRM-mode.  

Thus, the developed method for oxalic acid might be suited for determination of glyceric 

and glycolic acid in both plasma and urine as well, and this possibility should be 

investigated. If successful, the next step would be to estimate the normal range of glycolic 

acid in a healthy population.  

For spot urine analysis, more samples from healthy individuals should be analyzed to 

confirm the precursory reference intervals. With more data it will also be easier to conclude 

whether the slightly different oxalic acid/creatinine-ratios in men compared to women 

observed should result in the use of gender specific reference limits.  

As the current work is based on measurement of oxalic acid without any special dietary 

restrictions, it would also be interesting to test the effect in plasma and urine of ingestion of 

meals with can be expected to cause temporary increase in oxalic acid.  

The study on plasma oxalic acid following kidney transplantation in non PH patients 

revealed that the majority of these patients have pre-transplantation oxalic acid levels that at 

least in theory induce a risk of precipitation of calciumoxalate. Available reports on the 

magnitude and role of oxalosis in renal failure are not conclusive, and relatively little is 

known about oxalosis following kidney transplantation. The saturation of plasma with 

calcium oxalate may be only one out of several factors that leads to oxalosis. By 

heterotropic cardiac transplantation in rats it has been showed that the occurrence of prior 

tissue damage could represent a crucial predisposing factor in the deposition of calcium 

oxalate crystals137. Following these observations, one can only speculate on the possible 

impact of kidney tissue damage on renal oxalosis.  
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Whether the elevated plasma oxalic acid seen in the kidney transplant patients has long term 

consequences on graft function is not known today. Perhaps there is a greater risk for 

precipitation of calcium oxalate in a transplanted kidney.   

An expanded study involving assessment of oxalic acid and other relevant laboratory and 

clinical data, in combination with biopsy studies to reveal the eventual presence of calcium 

oxalate deposits would have the potential to expand our knowledge of the role of oxalic acid 

in renal failure.         
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Abstract   

Background: Patients with primary hyperoxaluria may need repeated kidney transplants due 

to damage from oxalic acid (oxalate) deposits. However, oxalate may also be potentially 

harmful in all transplant recipients. Determinants of oxalate following transplantation have 

not been well studied. 

Methods: 212 recipients admitted for transplantation were included in the study. Blood 

samples for measurement of oxalate and other relevant laboratory parameters were collected 

at baseline and subsequently 10 weeks after transplantation. We examined the bivariate 

association between plasma oxalate at transplantation and preemptive transplantation, time 

on dialysis, recipient age, creatinine, urea, phosphate, hemoglobin, PTH, albumin and 

calcium. Oxalate 10 weeks after transplantation was tested likewise including also laboratory 

parameters at baseline, primary non-function, rejection episodes, live versus deceased donor, 

donor age, and GFR at follow-up.  

Results: Median plasma oxalate concentration at transplantation was 35.0 μmol/L ( 95% 

confidence interval(CI) = 10.4- 93.9) and 98% of the values were above normal limits (2.6-

11.0). Oxalate concentration after 10 weeks was 9.0 μmol/L (4.0- 25.5), still 37% being 

above upper normal value.  

Multiple regression analysis revealed established dialysis treatment (p= 0,002) and creatinine 

(p<0,000001) as independent positive determinants of oxalate at transplantation. Oxalate at 

10 weeks was negatively associated to 51Cr-EDTA absolute GFR (p= 0,023) and positively to 

donor age (p=0,027) and plasma creatinine at 10 weeks (p= 0,03).  

Conclusion:�At transplantation plasma oxalate was on average 3 times increased and above 

the upper normal limit in 98% of patients and were still above normal in 37% after 10 weeks.�
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The reduction after 10 weeks is determined by GFR and donor age. Whether increased 

plasma oxalate following kidney transplantation may have long-term consequences needs 

further study. 
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Key words : dialysis, end stage renal failure, kidney transplantation, oxalate. 

 

Short summary:   

Plasma oxalate concentration and determinants of oxalate at time of kidney transplantation 

and at 10 weeks follow up were examined. Oxalate values were increased and above normal 

limits in 98% and on average 7-fold increased compared to normal. After 10 weeks still 37% 

had oxalate above the upper normal value. Multiple regression analysis revealed established 

dialysis treatment and creatinine as independent positive determinants of oxalate at 

transplantation, while oxalate at 10 weeks was found to be negatively associated to 51Cr-

EDTA GFR and positively to donor age and plasma creatinine at 10 weeks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4



 

Introduction 

Primary hyperoxaluria (PH) includes two rare, well characterized autosomal reccesive 

diseases: primary hyperoxaluria type 1 (PH1) and primary hyperoxaluria type 2 (PH2). PH1 

is caused by deficiency of the liver specific peroxisomal enzyme alanine:glyoxylate 

aminotransferase and PH2 by a deficiency of the cytosolic enzyme glyoxylate reductase/ D-

glycerate dehydrogenase1. Both enzyme deficiencies results in an excess production of oxalic 

acid (oxalate), a metabolic end product that is excreted in urine. Oxalate binds to calcium 

forming calciumoxalate that is virtually insoluble at physiological pH. In PH1, progressive 

deposition of calciumoxalate often leads to deteriorating kidney function and can result in 

end stage renal disease 2. The biochemical hallmark of PH is severe hyperoxaluria, but with 

deteriorating kidney function hyperoxalemia develops.  Kidney transplantation is not 

regarded as a successful treatment option in PH1 as in most cases the disease rapidly leads to 

oxalate deposits in the transplant and subsequent graft loss is common 2;3. Therefore a 

combined liver and kidney transplant has emerged as therapy of choice since the metabolic 

defect is then also restored 3. However, still recurrence of deposits in the kidney is a problem 

due to high accumulated oxalate stores which can result in high plasma levels of oxalate 4. 

PH2 causes similar, but usually milder symptoms. Non-hereditary elevated plasma oxalate 

due to increased enteric absorption may occur with diseases of the intestine and after bariatric 

surgery 5. This may also lead to  kidney oxalate deposition and eventually renal failure and 

may also cause graft loss after kidney transplantation 6. Another major cause of oxalate 

retention is kidney failure per se, since the main excretion pathway of oxalate is glomerular 

filtration and secretion 7. When end-stage renal patients are successfully treated with a kidney 

transplant, stored oxalate may be excreted by the graft and potentially harm the transplant as 

indicated in several biopsy studies 8-10. The retention of oxalate in non-hyperoxaluria patients 
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with end-stage renal failure has not been well studied 11. We therefore initiated a prospective 

study and measured plasma levels of oxalate at the time of kidney transplantation and early 

post-transplant to assess the magnitude of hyperoxalemia in a larger series of patients. We 

also aimed to address potential determinants of plasma oxalate.  

 

 

Subjects and Methods  

Study design 

In this single centre prospective study we measured plasma oxalate at arrival in the transplant 

center and also in a stable phase on average 10 weeks after transplantation in altogether 213 

kidney recipients. The patients were recruited from February 2004 throughout May 2005. 

Due to lack of back-up for pre-analytical laboratory handling at all times, baseline samples 

could not be obtained in all cases. Samples for oxalate measurement that were not collected 

or stored correctly were excluded from the study (see “Plasma oxalate measurements”). Out 

of 213 patients, we received adequate oxalate samples at baseline for 100 patients and for 168 

patients at 10 weeks. One patient with a plasma oxalate value of 157 μmol/L at 

transplantation was later found to have primary hyperoxaluria type 1 and was excluded from 

the study leaving 212 for observation in the present study. A test for homogeneity (ANOVA) 

was performed after subdivison into three separate groups (I = oxalate data obtained only at 

transplantation, n = 45; II = oxalate data obtained both at baseline and follow-up, n = 54; III 

= oxalate data only available at follow-up, n = 113).  The test did not reveal any significant 

differences between these groups for all relevant demographic and laboratory parameters.  To 

obtain meaningful analysis of determinants of oxalate at baseline and at follow-up we 

examined only 2 groups, those with oxalate data at transplantation (n= 99) and those with 

oxalate data at follow-up (n=167). Between these two groups, the only difference found was 
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a higher proportion of live donor and preemptive transplants in the baseline cohort than those 

tested at 10 weeks, probably due to better availability of blood samples in these elective 

patients.  

The patients generally received a triple based immunosuppressive regimen comprising CNI 

inhibitor (CsA 80%, tacrolimus 20%), MMF and prednisolone. 

The demographic data of the overall cohort is shown in Table 1.   All patients signed an 

informed consent form and the study was approved by the Regional Ethics Committee.  

Statistics 

Univariate relationships were examined by means of Spearman’s correlation coefficients. To 

ensure that continuous laboratory data were normally distributed before entering multivariate 

regression analyses (backward and forward procedures), values for plasma creatinine, urea, 

oxalic acid and PTH were log transformed. SPSS version 16 was used for statistical 

calculations. Two-tailed tests were applied, and significance level=0.05 was adapted. 

 

Plasma oxalate measurements 

The plasma oxalate measurements were done on fresh samples of heparinized plasma. To 

avoid  in vitro oxalogenesis (non-enzymatic conversion of plasma constituents into oxalate), 

resulting in falsely high plasma oxalate, efforts were made to ensure optimum pre-analytical 

conditions; after collection, the samples were centrifuged without delay and the plasma was 

assayed within one hour or stored at -70°C for no longer than one week. All samples were 

assayed in duplicate. The oxalate was measured by means of solid phase extraction followed 

by derivatization and liquid chromatography – tandem mass spectrometry (LC-MSMS) as 

recently validated and described in detail 12.  

GFR at 10 weeks was measured by plasma disappearance of 51Cr-EDTA and normalized to 

1.73m2 body surface. Hemoglobin was measured on a CELL-DYN 4000 automatic 
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haematological analyzer (Abbott Diagnostics, CA, USA). All other laboratory parameters 

were measured by standard procedures on Modular Automatic Analyzer (Roche Diagnostics, 

Basel, Switzerland). Due to the vast variability in kidney function early after transplantation 

urinary parameters were not assessed. 

 

 

Results  

Median plasma oxalate concentration at transplantation was 35.0 μmol/L (CI = 10.4- 93.9) 

with 98% of the values above the upper normal value (reference: 3.0 -11.0)12. More than one 

third of the values (39%) were higher than 40 μmol/L which is considered to represent the 

saturation limit for calcium oxalate (CaOX)13. After 10 weeks oxalate concentration was 

significantly lower, with a median of 9.0 μmol/L (CI= 4.0- 25.5). Still 37% of the values 

were above the upper normal limit. In the patients with elevated plasma oxalate at follow up, 

a mean creatinine of 144 �mol/L (CI: 81-309) was found versus those with plasma oxalate 

values within normal limits who had a mean creatinine of 108 �mol/L (CI: 57-187). 

Two patients had extremely high oxalate values at transplantation that fell from 156 to 10 

μmol/L after 10 weeks in one and from 124 to 16 μmol/L in the other. 

 All oxalate values are depicted in Figure 1. The laboratory and biochemical data at 

transplantation and after 10 weeks are shown in Table 2.  

 

We examined univariate relationships between plasma oxalate at transplantation and 

corresponding values for creatinine, urea, phosphate, PTH, albumin, total calcium, 

hemoglobin, preemptive transplantation, time on dialysis, and recipient age. Oxalate at 

transplantation was found to be significantly correlated to both preemptive transplantation 

phosphate, and creatinine but only preemptive transplantation and P- creatinine retained 
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significance in a subsequent multivariate regression analysis: lg [oxalate at TX] = -1.0471 + 

0.8918·log [creatinine] + 0.1136· [preemptive transplantation; no = 1; yes = 0]; P-values for 

the regression coefficients were 0.0016, < 0.0001, and 0.0021 respectively. Standardized 

results from the multivariate analysis are shown in Table 3. The relationship between plasma 

oxalate and plasma creatinine at the time of transplantation is shown in Figure 2.  Patients 

who received  preemptive transplantation and patients transplanted after start of dialysis are 

shown separately. The increase in plasma oxalate with increasing creatinine values is similar 

in the two patient groups although patients receiving dialysis had oxalate values about 6.5 

�mol/L higher than the preemptive patients. 

 

Oxalate at 10 weeks was tested likewise, with all laboratory parameters at 10 weeks, but also 

including all laboratory parameters at baseline, primary non-function, rejection episodes, live 

versus deceased donor, donor age and GFR at 10 weeks. Both phosphate, creatinine, albumin, 

urea, and hemoglobin at 10 weeks, baseline PTH, recipient and donor age, rejection episodes 

and GFR were found to correlate significantly with oxalate at 10 weeks. In the subsequent 

multivariate regression analysis, only GFR, creatinine and donor age retained the significance 

as determinants of oxalate:  lg [oxalate at 10 weeks] = 0.9277 – 0.4241.·log [GFR] + 

0.002224· donor age + 0.3273·log [creatinine]; P-values = 0.12, 0.02, 0.028 and 0.032 

respectively. See also Table 3.  
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Discussion 

This is the first study of a larger cohort of patients addressing plasma oxalate in kidney 

failure patients before and after transplantation. This is also the first study to address the 

determinants of plasma oxalate in these patients. The data confirm earlier more limited 

observations of very high levels of oxalate in patients with end-stage kidney failure 11. The 

increase was sevenfold compared with healthy persons.  The independent determinants of 

oxalate in multivariate regression analysis were creatinine and established dialysis treatment, 

supporting the hypothesis of increasing values with declining kidney function.  It has 

previously been shown that oxalosis, the deposition of CaOX in tissues, can be a 

complication of chronic renal failure. CaOX crystals have been found both in kidneys and 

myocardium of these patients at autopsy 14. Supersaturation of CaOX in plasma occurs when 

plasma oxalate level raises beyond 40 �mol/L 13. More than one third of our patients had 

values beyond this limit at admission for kidney transplantation despite the fact that many 

had preemptive transplantation implying some residual capacity for renal excretion of 

oxalate. It was interesting to note that at time of transplantation, two of the patients had 

oxalate concentrations in the same range as found in the patient who was later diagnosed with 

primary hyperoxaluria. In one of these patients the elevated plasma oxalate might have been 

due to enteric hyperoxaluria. Distal parts of ileum and coecum had been removed due to 

accidental thrombosis 25 years before transplantation and she developed several kidney 

stones and was transplanted with a live donor a year after start of dialysis. The other patient 

with grossly elevated plasma oxalate at transplantation had no history of gastrointestinal 

disease or GI surgery and had a clinical diagnosis of nephrosclerosis. However, at 10 weeks 

follow up, the two non-PH patients had oxalate values at, or slightly above the upper 

reference limit, while the PH patient still had oxalate values tree times the upper reference 

limit (results not shown).  
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The severity of oxalosis has also been found to be related to the duration of renal 

insufficiency 14. However, we could not demonstrate that plasma oxalate concentration at the 

time of transplantation was significantly associated with the time on renal replacement 

therapy.   Our results might have been biased in patients who had started regular dialysis 

treatment since it is well recognized that plasma oxalate is readily removed by dialysis 15, and 

is thus reduced after each treatment session and increases by refilling from extra-vascular 

stores until the next dialysis session .Therefore the time elapsed since last dialysis session 

may have influenced the results. We have limited information on the time elapsed from the 

last dialysis session to the time of blood sampling at admission for transplantation. However, 

analysis of data from preemptive patients revealed the same relationship between oxalate and 

creatinine substantiating that increasing retention of oxalate occurs with declining kidney 

function. 

Median plasma oxalate at 10 weeks was 9 �mol/L indicating some 75% reduction of plasma 

oxalate compared with the values at admission for transplantation. This finding was not 

surprising but has not previously been reported in the literature. Interestingly more than one 

third of the patients still had values above the upper reference limit for healthy controls, and 

one had a value beyond the supersaturation level of 40 �mol/L. This is in contrast to findings 

in a previous small study of 8 patients undergoing living related kidney transplantation 11 

where plasma oxalate was found to be in the normal range three days post transplant although 

a tendency for higher oxalate levels was observed when compared with controls. The lack of 

statistical significance might be attributed to the inter-individual variability and the fact that 

the above mentioned study only comprised eight patients. Episodes of kidney stones were not 

recorded in any patient. Episodes of urinary tract obstruction were caused by lymphocele or 

uretheral necrosis, in no case was obstuction caused by stone in the transplant urinary tract. 
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We demonstrated that kidney function at 10 weeks as measured by plasma 51EDTA GFR 

(and also plasma creatinine) and donor age were the only determinants of oxalate in 

multivariate regression analysis. Baseline level of oxalate was not a predictor for the 

reduction at 10 weeks indicating that the plasma load of oxalate at the time of transplantation 

is not important for the subsequent reduction in plasma oxalate. By contrast establishing of 

an adequate kidney function for excretion of the excess oxalate load is obviously of 

importance. However we could not find that primary non-function of the kidney transplant 

was of importance as long as an acceptable function was established within the first few 

weeks. 

The measurement of oxalate in biological fluids has been challenging, especially due to in 

vitro oxalogenesis, leading to erroneously high plasma oxalate from the autooxidation of 

ascorbate into oxalate after sampling and even during assay 16. Thus, to obtain reliable 

quantitative results, samples for oxalate determination must be processed expeditiously.  

We found that 37% of the patients studied had plasma-oxalate above the upper reference 

limit after 10 weeks. This could at least theoretically have been attributed to oxalogenesis, if 

sample collection and pretreatment had not been standardized. However, all samples included 

in this study have been handled according to protocol. The few samples that had not been 

correctly treated (e.g left at room temperature after collection etc) were excluded from the 

present analysis.  

 

 

 

Strengths of the study 

The study is prospectively performed and the analyses are well validated 12. This is the first 

study of a larger cohort of patients with kidney failure measuring plasma oxalate before and 
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after transplantation. This is also the first study of the determinants of plasma oxalate in these 

patients.       

 

Limitations 

The plasma concentrations of oxalate may not be representative of the tissue damage 

observed in biopsy and autopsy studies. The importance of the hyperoxalemia in these 

patients remains obscure and needs follow-up studies of clinical endpoints or simultaneous 

protocol biopsies addressing oxalate deposits in the kidney transplants.     
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Table 1. Demographic and transplant data for 212 kidney transplant patients 

 
Variables 

 

 
Number of patients 

  
212 

 
Recipient age 

 
51 (11-81) 

 
Sex male/female (%) 

 
135/77 (64/36) 

 
Donor age, years (range) 

 
49 (1-77) 

 
Live donor transplants  (%)  

 
118 (49) 

 
Preemptive transplantation   (%) 

 
53 (25) 

 
Dialysis time, median in months (range) 

 
12,8 (0 – 369) 

 
Non primary function  (%) 

 
29 (14) 
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Table 2. Laboratory data for 212 kidney transplant patients at transplantation and after 10 weeks. 
  

At TX 
  

After 10 weeks 
  

Ref. interval 
  

N 
 

Median 
 

95% central 
interval 

 
%  

below lower/ 
above upper  

ref. limit 

 
N 

 
Median 

 
95% central 

interval 

 
%  

below lower/  
above upper  

ref. limit 

  

P-oxalate (�mol/L) 99 35 10.4 – 93.9 0/98 167 9 4.0 – 25.5 0/37  3 – 11 
 
P-creatinine (�mol/L) 
�>15y: 
�>15y: 

 
212 

 
 

597 
619 

 
 

284 – 968 
252 – 1110 

 
 

0 / 100 
0 / 100 

 
167 

 
 

95 
122 

 
 

54 – 163 
64 – 303 

 
 

0 / 60 
0 / 72 

  
 

50 – 90 
60 – 105 

 
P-Calcium (mmol/L) 

 
212 

 
2.38 

 
2.01 – 2.78 

 
10 / 18 

 
167 

 
2.41 

 
2.05 – 2.83 

 
5 / 23 

  
2.15 – 2.51 

 
P-Phosphate (mmol/L) 
�>16y: 
� 16-49 y: 
��50y: 

 
212 

 
 

1.7 
1.75 
1.6 

 
 

0.8 – 2.81 
0.66 – 3.1 
0.89 – 2.55 

 
 

0 / 63 
0 / 50 
0 / 60 

 
167 

 
 

0.8 
0.9 
0.8 

 
 

0.4 – 1.29 
0.6 – 1.28 
0.39 – 1.40 

 
 

60 / 0 
25 / 0 
28 / 0 

  
 

0.9 – 1.5 
0.8 – 1.7 
0.8 – 1.4 

 
P-Albumin (g/L) 
18-39y 
40-69y 
   �70y: 

 
211 

 
 

42 
40.5 
40 

 
 

33.8 – 47 
31 – 47 
32 – 46 

 
 

6 / 0 
12 / 8 
11 / 6 

 
167 

 
 

42 
40 
38 

 
 

34.4 – 46.9 
32.0 – 44.0 
26.0 – 40 

 
 

2 / 0 
7 / 0 
7 / 0 

  
 

36 – 48 
36 – 45 
34 – 45 

 
P-Urea  (mmol/L) 
� 18-49y: 
� �50y: 
� 18-49 y: 
��50y: 

 
212 

 
 

22.5 
17.9 
19.2 
19.3 

 
 

9.16 – 45.6 
7.5 – 34.1 
8.72 – 36.8 

5.88 – 36.58 

 
 

0 / 100 
0 / 100 
0 / 100 
0 / 96 

 
167 

 
 

8.55 
9.35 
8.45 
11.9 

 
 

3.5 – 15.9 
3.20 – 23.10 
2.75 – 16.17 
3.83 – 31.24

 
 

0 / 61 
0 / 65 
0 / 54 
0 / 70 

  
 

2.6 – 6.4 
3.1 – 7.9 
3.2 – 8.1 

3.5 – 8.10 
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Table 3. Multivariate regression analysis of oxalate at transplantation and after 10 
weeks.  
  

At TX 
  

After 10 weeks 
 

 
 
Variables 

 
Standardized 
coefficients 

 
 

p-value 

  
Standardized 
coefficients  

 
 

p -value 

 

Preemptive 
transplantation 
 

 
0.243 

 
0.0021 

   
NS 

 

Recipient age 
 

 NS   NS  

Donor age 
 

 NA  0.167 0.028  

Rejection 
 

 NA   NS  

GFR 
 

 NA  -0.248 0.02  

P-creatinine a,b 

 
0.591 a <0.0001   0.229 b 0.03  

P-phosphate a,b 

 
 NS   NS  

P-albumin b 

 
 NS   NS  

P-urea b 

 
 NS   NS  

P-oxalate a 

 
 NS   NS  

NA= not applicable; NS,not statistically significant; a At transplantation;  b After 10 weeks  
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Legend to Figure 1. 

All plasma oxalate measurements at transplantation (n=99) and after 10 weeks (n=167).  The 

horisontal dashed line indicates the upper normal reference limit for plasma oxalate. Two 

exceptionally high values at baseline (124 and 156 �mol/L) are indicated by an asterix (�). 

Paired observations in the same patient are connected with lines. 
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Legend to Figure 2: 
 
Variation of plasma oxalate with plasma creatinine at the time of transplantation (� = 
patients on dialysis, � = preemptive patients). Trend lines (solid for dialysis and dotted for 
preemptive), with formulas and corresponding correlation coefficients are shown.  
Two exceptionally high oxalate values (124 and 156 �mol/L) are indicated by an asterix (�). 
 
 
 
Figure 2: 
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