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Chapter 1

The Molecular Energy

In this Chapter, the relevant theory for the evaluation of the molecular electronic
energy in quantum chemistry is introduced in order to define a reference for further
discussions. A thorough description of quantum-chemistry models and the underlying
quantum-mechanics theory can be found in textbooks [1, 2, 3].

First, the Schrödinger equation is introduced in Section 1.1 followed by the Born–
Oppenheimer approximation in Section 1.2 and the variation principle in Section 1.3.
Expansions of approximate wave functions in Slater determinants are described in
Section 1.4 including the orbital approximation, Hartree–Fock theory and coupled-
cluster theory.

We then move on to density-functional theory (DFT) in Section 1.5, which is
the quantum chemical method of main interest in this work. Its foundation on the
Hohenberg–Kohn theorems is described before the practical DFT implementation of
Kohn–Sham theory. Some of the main classes of Kohn–Sham density functionals are
then described. Then, Kohn–Sham DFT effective potentials are treated before finally,
current-density-functional theory (CDFT) is discussed.

1.1 The Schrödinger Equation

The theory of quantum mechanics is one of the most well-tested theories in science and
it has not yet been proven wrong. The mathematical machinery of the theory may be
represented by the time-independent non-relativistic Schrödinger equation

Ĥψ = Eψ (1.1)

which describes the stationary states of a system of particles in the absence of time-
dependent fields. Here, the operator Ĥ is the Hamiltonian, which for an isolated

1
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molecule reads (in atomic units)

Ĥ = −1

2

∑
i

∇2
i −

1

2

∑
K

∇2
K

MK

−
∑
iK

ZK

riK

+
∑
i<j

1

rij

+
∑
K<L

ZKZL

rKL

. (1.2)

The sums over i and j run through all the electrons and the sums over K and L run
through all the nuclei of the molecule, rab denotes the distance between the particles
a and b and ZL is the charge and ML is the mass of nucleus L. The five terms in the
Hamiltonian operator Eq.(1.2) represent the electronic kinetic, the nuclear kinetic, the
electron–nucleus attraction, the electron–electron repulsion and the nucleus–nucleus
repulsion energies, respectively.

The function Ψ in Eq.(1.1) is the wave function which is dependent on all the space
and spin coordinates of all the particles in the system. It contains all the information we
can possibly have about the system. The wave function is subject to several constraints.
It must be normalizable, differentiable and single-valued. The Pauli-principle imposes
that the wave function of fermions should be antisymmetric with respect to interchange
of two particle coordinates.

Finally, in Eq.(1.1), E is the total energy of the system. Quantization arises from
the fact that the Schrödinger equation only has a distinct set of valid solutions with
corresponding wave functions (states) and energies. The state with lowest energy is
called the ground state, Ψ0, and its energy is the ground-state energy, E0.

The Schrödinger equation does not include a relativistic treatment of the particles.
Including the theory of relativity in the quantum-mechanical treatment of the particles
leads to the more complete Dirac equation, see for example Dyall and Fægri [4]. Rel-
ativistic effects are however small for molecules considered in this thesis, considering
only light atoms from the first and second rows of the periodic table, and we may to
a good approximation employ the Schrödinger equation. Further approximations are
introduced through the Born–Oppenheimer approximation in the next section.

1.2 The Born–Oppenheimer Approximation

The Born–Oppenheimer approximation is widely used in quantum chemical calcula-
tions. The validity of the Born–Oppenheimer approximation is based on the fact that
the nuclei are much heavier and move much slower than the electrons. This means that
to a good approximation, the nuclei can be considered to have a fixed geometry since
the electrons will instantaneously adapt to every nuclear configuration.
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Fixing the nuclei, which may be achieved by considering the nuclear mass to be in-
finitely large, results in a considerably simplified Hamiltonian operator Eq.(1.2). The
kinetic energy operator of the nuclei vanish due to the presence of the nuclear mass
in the denominator, and since the nuclear coordinates become parameters, the nu-
clear repulsion potential energy is reduced to a constant Vnuc, and the electron-nucleus
attraction potential becomes only parametrically dependent on the nuclear coordinates

Ĥel = −1

2

∑
i

∇2
i −

∑
iK

ZK

riK

+
∑
i<j

1

rij

+ Vnuc. (1.3)

The Schrödinger equation Eq.(1.1), together with the Hamiltonian Eq.(1.3) can now be
considered an electronic Schrödinger equation—it describes the states of the collection
of electrons moving in the potential set up by the spatially fixed nuclei. The electronic
energy as a function of the nuclear coordinates is termed the potential energy surface
of the molecule.

1.3 The Variation Principle

The energy of an approximate wave function, not necessarily an eigenfunction of the
Hamiltonian operator, can be evaluated as the expectation value

E = 〈Ĥ〉 =
〈ψ|Ĥ|ψ〉
〈ψ|ψ〉 (1.4)

where bracket notation is used for the integrals,

〈a|b〉 =

∫
a∗b dτ (1.5)

〈a|Ô|b〉 =

∫
a∗Ôb dτ (1.6)

where a and b are functions and Ô is an operator.
The variation principle states that all approximate wave functions have an energy

expectation value that is higher than that of the true ground-state wave function.

E0 =
〈ψ0|Ĥ|ψ0〉
〈ψ0|ψ0〉 ≤ 〈ψ|Ĥ|ψ〉〈ψ|ψ〉 (1.7)

where the zero subscript denotes a ground state. Thus, among approximate wave
functions, the variation principle can be used as a guide — the best approximation to
the ground-state wave function is the approximate wave function that has the lowest
energy. The minimum energy of an approximate wave function dependent on some
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parameters λ is then made a stationary point with respect to those parameters, that
is

dE

dλ

∣∣∣∣
λ=λ0

= 0 (1.8)

for the optimized parameters λ0.

1.4 Approximate Wave Functions

Exact analytic solution of the Schrödinger equation Eq.(1.1) is only possible for the
simplest systems, for example the hydrogen atom. To solve problems of chemical
interest, it is necessary to introduce approximate wave functions. We may divide the
approximate wave functions into two classes. Variational wave functions containing
parameters to be determined by minimization of the energy according to the variation
principle and non-variational wave functions where the parameters are determined in
some other manner without the use of the variation principle.

Here, some of the approximate wave functions used in quantum chemistry will
be presented. The orbital approximation is introduced in Section 1.4.1 before the
Hartree–Fock theory and coupled-cluster theory are presented in Section 1.4.2 and
1.4.3, respectively.

1.4.1 The Orbital Approximation

In the orbital approximation, wave functions are approximated usingmolecular orbitals,
that is one-electron functions dependent on the coordinates of only one particle. The
molecular orbitals φ are usually constructed in a basis of known functions

φi (r) =
∑

α

ciαχα (r) , (1.9)

where the sum runs over the number of basis functions, ciα are expansion coefficients
and χα (r) constitute a set of functions known as the basis set. Several choices can
be made for the functional form of the basis set. In this work we use atom-centered
Gaussian functions

χα (r) = MP (xα, yα, zα) exp
[−μ |rα|2

]
(1.10)

Here, μ is a constant (the exponent of the basis function),M is a normalization constant,
rα is the distance vector from the center of the basis function to the point r and P is
a polynomial in the components of rα (for spherical Gaussian functions, P is a solid
harmonic function Slm).
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1.4.2 Hartree–Fock theory

In Hartree–Fock theory, the wave function is approximated as a Slater determinant

ψHF = Φ (r1, r2, . . . , rN) =

∣∣∣∣∣∣∣∣∣∣∣

φ1 (r1) φ2 (r1) . . . φN (r1)

φ1 (r2) φ2 (r2) . . . φN (r2)
...

... . . . ...
φ1 (rN) φ2 (rN) . . . φN (rN)

∣∣∣∣∣∣∣∣∣∣∣
(1.11)

where N is the number of electrons. The Slater determinant represents the simplest
form of an antisymmetrized wave function constructed from a product of molecular
orbitals. The Slater determinant satisfies the Pauli principle.

Applying the variation principle Eq.(1.7) to the Hartree–Fock wave function, min-
imizing the energy with respect to the variational parameters ciα under the constraint
that the molecular orbitals are orthonormal, the minimum energy is found by solving
a set of one-electron equations, the Hartree–Fock equations

f̂iφi = εiφi (1.12)

where the Fock operator is

f̂i = −1

2
∇2

i −
∑
K

ZK

riK

+
N∑
j

(Jij −Kij) (1.13)

and εi are the orbital energies. The three terms in the Fock operator Eq.(1.13) represent
the kinetic energy, the nuclear attraction energy and an effective electron–electron
repulsion energy, respectively, for the electron in φi. The effective electron–electron
repulsion operator consists of the classical Coulomb operator J and the quantum-
mechanical exchange operator K

Jij =

∫
φ∗j (r′)φj (r′)

|r′ − ri| dr′ (1.14)

Kij =

∫
φ∗j (r′) P̂ijφj (r′)

|r′ − ri| dr′ (1.15)

where P̂ij is a permutation operator swapping i and j. Note that due to the permutation
operator, the exchange potential is not a purely multiplicative potential.

In solving the Hartree–Fock equations, an iterative approach must be used as the
Fock operator itself contains the solution—that is, the orbitals. This iterative procedure
may be the self-consistent-field (SCF) method:
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1. Input a set of trial orbitals

2. Construct the Fock operator from the orbitals

3. Solve the Hartree-Fock equations to give a new set of orbitals

4. Iterate from 2 till the orbitals do not change from last iteration (the orbitals are
self consistent)

The final N orbitals of lowest energy εi are occupied in the Slater determinant. The
remaining non-occupied orbitals are termed virtual orbitals.

The Hartree–Fock wave function is also termed the mean-field approximation point-
ing out that in this model, the Coulomb potential in Eq.(1.13) represents the time-
averaged classical electrostatic potential set up by the other electrons. Thus, the
Hartree–Fock model does not account for correlated motion of the electrons due to
instantaneous Coulomb interactions.

Fermi-correlation arising from the antisymmetry of the wave function, is however
included in the Hartree–Fock model. Fermi-correlation refers to the fact that two
electrons of the same spin can not have the same positions since the Slater determinant
wave function will then vanish. The correlation that is neglected in the Hartree–
Fock model, is included in correlated models (although approximately in approximate
methods) such as coupled-cluster theory which is described in the next section.

1.4.3 Coupled-Cluster Theory

Before describing coupled-cluster theory, we will take a detour to the full-configuration-
interaction (FCI) model. A fully correlated and exact model can be obtained (within
the completeness of the basis set) by extending the Hartree–Fock wave function in a
linear expansion of all possible Slater determinants constructed from the occupied and
virtual orbitals. This model is termed the FCI model and its wave function ΨFCI can
be written

ΨFCI = c0Φ0 +
∑
ia

ciaΦ
a
i +

∑
ijab

cijabΦ
ab
ij + . . . (1.16)

The determinant Φ0 is the reference determinant, possibly the Hartree–Fock ground
state determinant, Φa

i are the set of singly virtually excited determinants (created by
replacing an occupied orbital i with a virtual orbital a in Φ0), Φab

ij are the doubly
excited determinants and so on. The coefficients c may be determined variationally
to obtain the ground state FCI wave function, ΨFCI

0 . The FCI expansion in Eq.(1.16)
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quickly becomes very large and is intractable for all but the simplest molecular systems.
Simplifying the FCI expansion by truncation at some virtual excitation level gives
truncated CI wave functions. The truncated CI models do however not have the highly
desirable property of size-extensivity—that is, the correct scaling of the model (and
correlation energy) with increasing system size. For a discussion of size-extensivity, see
the review of Bartlett [5].

Coupled-cluster theory provides a means of including correlation in a truncated
form without the loss of size-extensivity. The coupled-cluster wave function can be
written in the exponential ansatz as

ΨCC = exp
(
T̂
)

Φ0 (1.17)

where Φ0 is a reference Slater determinant, and the cluster operator

T̂ = T̂1 + T̂2 + . . .+ T̂N (1.18)

generates all excited determinants, the singly excited determinants through T̂1, the
doubly excited determinants through T̂2 and so on. For example,

T̂1 =
∑
ia

tai κ̂ia, (1.19)

where κ̂ia generates a singly excited determinant Φa
i . The operators in Eq.(1.18) con-

tain excitation amplitudes tai , tab
ij . . . that are determined non-variationally by solving

the coupled-cluster amplitude equations. Truncating the cluster operator at T̂2 gives
the coupled-cluster-singles-and-doubles (CCSD) model. Inclusion of also the T̂3 oper-
ator yields the coupled-cluster-singles-doubles-and-triples (CCSDT) model. It is also
possible to treat the triples contribution using perturbation theory giving the CCSD(T)
model.

It is worth noting that contrary to truncated CI wave functions, coupled-cluster
wave functions using a truncation of Eq.(1.18) contain contributions from all excited
determinants in Eq.(1.16). For CCSD, this can be seen from the expansion of the
exponential of the cluster operator in Eq.(1.17)

exp
(
T̂
)

= 1 +
(
T̂1 + T̂2

)
+

1

2

(
T̂1 + T̂2

)2

+ . . . (1.20)

where T̂ has been truncated at T̂2—for example, the resulting 1
2
T̂2T̂2 term from the

last term of Eq.(1.20) will give rise to quadruple excitations.
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1.5 Density-Functional Theory

In density-functional theory (DFT), the electron density, ρ (r), replaces the wave func-
tion as the identity that contains the information about the system. Although DFT be-
cause of this may appear to be a theory separate from wave-function methods described
in the preceding sections, the proof of the validity of DFT, just as the wave-function
methods, is rooted in the theory of quantum mechanics. In Section 1.5.1, these proofs,
called the Hohenberg–Kohn theorems are described.

The obvious advantage of working with the electron density instead of the wave
function is that the electron density is a much simpler function. It is only dependent
on three spatial coordinates, whereas the wave function is dependent on the three
spatial coordinates of all the electrons. Intuitively therefore, the solution of quantum
chemical problems should be simpler within DFT than within wave-function methods.
However, to obtain accurate results, DFT must today resort to the Kohn–Sham scheme
using molecular orbitals, a Slater determinant “wave function” and the solution of one-
electron equations using SCF procedures similar to Hartree–Fock theory. Still the
Kohn–Sham method has advantages over Hartree–Fock theory as it includes correla-
tion of the electrons, and in principle, the correlation description is exact. For practical
calculations however, the Kohn–Sham DFT must be approximated since one of the in-
gredients, the exchange–correlation functional, is not completely known. Approximate
exchange–correlation functionals lead to approximate descriptions of the electron cor-
relation in DFT applications. The development of more accurate exchange–correlation
Kohn–Sham DFT functionals is a major research interest in theoretical chemistry.

Following the Hohenberg–Kohn theorems, we outline Kohn–Sham theory in Sec-
tion 1.5.2 followed by a qualitative description of approximations to the exchange–
correlation functionals used for Kohn–Sham DFT in Section 1.5.3. In Section 1.5.4,
the optimized effective potential (OEP) of a functional is described before constrained-
search methods to obtain Kohn–Sham potentials from input electron densities are
treated in Section 1.5.5. Finally, in Section 1.5.6, current-density-functional theory
is discussed.

1.5.1 The Hohenberg–Kohn Theorems

The theoretical foundation for DFT was provided by Hohenberg and Kohn and con-
sists of the two Hohenberg–Kohn theorems [6]. It is important to note that the
Hohenberg–Kohn theorems are only valid for the set of physical (v-representable) elec-
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tron densities—that is, electron densities associated with the ground-state wave func-
tion from the solution of the Schrödinger equation using some potential v. Since it is
not possible to determine a priori whether an electron density is v-representable or not,
this restriction is a problem. It is, however, possible to generalize the Hohenberg–Kohn
theorems to overcome these difficulties [7, 8].

Consider the electronic Hamiltonian Eq.(1.3). For N electrons this Hamiltonian is
made distinct by the form of the nuclear potential set up by the nuclear charges (the
nuclear potential is a special case of a more general multiplicative external potential
vext). Therefore, also the wave function as the solution to Eq.(1.1) is made distinct by
the external potential. The first Hohenberg–Kohn theorem is a proof that there is a
one to one mapping between the external potential vext (apart from a trivial constant
potential) and the non-degenerate ground-state electron density. Consequently, the
ground-state electron density determines the external potential which in turn deter-
mines the wave function of the system and all its properties including the energy. The
ground-state energy can then be written exactly as a functional of the electron density,
E = E [ρ]. Hohenberg and Kohn then split up the energy functional in two parts

E [ρ] = F [ρ] +

∫
ρvext dr (1.21)

where the functional F is universal and contains the electron kinetic and repulsion
energy, T and Vee

F [ρ] = T [ρ] + Vee [ρ] (1.22)

and the last term in Eq.(1.21) is system specific, dependent on the external potential.

The second Hohenberg–Kohn theorem establishes the validity of the variation prin-
ciple for DFT. That is, given the exact form of the energy functional, any approximate
electron density will give an energy that is higher than that for the exact ground-state
electron density.

E0 = E [ρ0] ≤ E [ρ] (1.23)

where the equality only holds when the approximate density ρ is equal to the ground
state density ρ0.

1.5.2 Kohn–Sham Theory

It is difficult to find an accurate functional for the kinetic energy T [ρ] using the electron
density explicitly as the basic variable. To circumvent this problem, Kohn and Sham
set up a theory based on a fictitious system of non-interacting electrons [9]. In this
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case, the Schrödinger equation Eq.(1.1) can be solved exactly when the wave function
is expressed as a single Slater determinant Eq.(1.11) (termed the Kohn–Sham determi-
nant in Kohn–Sham DFT). The electrons are further assumed to move in an effective
potential, veff, constructed such that the electron density becomes equal to the exact
electron density for interacting electrons. The electron density is expressed as the sum
of squares of the occupied orbitals in the Kohn–Sham determinant

ρ =
N∑
i

φ∗iφi (1.24)

N being the number of electrons. The exact energy functional Eq.(1.21) can now be
written

E [ρ, φ] = F [ρ, φ] +

∫
ρvext dr = TS [φ] + J [ρ] + Exc [ρ] +

∫
ρvext dr (1.25)

where TS is the approximate kinetic energy evaluated from the system of non-interacting
electrons as an expectation value of the kinetic energy operator

TS [φ] = −1

2
〈Φ ∣∣∇2

∣∣Φ〉 = −1

2

N∑
i

〈φi

∣∣∇2
∣∣φi〉, (1.26)

J is the Coulomb repulsion part of the electron–electron interaction

J [ρ] =

∫ ∫
ρ (r) ρ (r′)
|r− r′| drdr′ (1.27)

and Exc is the exchange–correlation energy which by definition contains the remaining
parts of the kinetic and electron–electron repulsion energies

Exc = (T − TS) + (Vee − J) . (1.28)

Here, the first term on the right is the difference between the exact kinetic energy
T and the approximate TS, and the second term is the difference between the exact
electron–electron repulsion Vee and the Coulomb repulsion J (due to the the neglect
of exchange energy and the electron self repulsion in Eq.(1.27)). As a result of this
definition of Exc, the energy expression Eq.(1.25) is exact.

The orbitals are obtained by solving a set of one-electron equations, the Kohn–Sham
equations

f̂KSφi = εiφi. (1.29)

The orthogonal orbitals φi are occupied in the Kohn–Sham determinant according to
the aufbau principle, the eigenvalues εi being the orbital energies. The Kohn–Sham-
operator is

f̂KS = −1

2
∇2 + veff (1.30)
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where veff is an effective multiplicative potential which can be evaluated as the func-
tional derivative of the non-kinetic energy terms in Eq.(1.25). It is

veff (r) = vext (r) +

∫
ρ (r′)
|r− r′| dr

′ + vxc (r) . (1.31)

where the exchange–correlation potential vxc is defined as the functional derivative of
the exchange–correlation energy with respect to the electron density

vxc =
δExc

δρ
. (1.32)

In Hartree–Fock theory, each electron can be said to move in the average elec-
trostatic potential set up by the other electrons. Therefore, the form of the Fock-
operator Eq.(1.13) is equal for all the virtual orbitals where the potential contains all
electrons, but different for each occupied orbital as the potential contain only the repul-
sion from the other electrons. In Kohn–Sham DFT the situation is different. Here the
multiplicative potential veff is equal in all the Kohn–Sham equations, both for occupied
and virtual orbitals. The Kohn–Sham equations therefore treat all the electrons in a
physically appealing indistinguishable form.

1.5.3 Functionals

Numerous approximations to the exchange–correlation energy Eq.(1.28) have been de-
veloped. In this section, we will describe the functionals used in this work. A more
general exposition on functionals and their developments can be found for example in
Refs. [10, 11].

First, let us note that it is common to split the exchange–correlation energy func-
tional into a functional of exchange (X) and correlation (C) separately

Exc = EX + EC (1.33)

The exchange–correlation functionals may depend on several variables, for example,
the electron density, the gradient of the electron density and also different functional
forms constructed from the Kohn–Sham orbitals

Exc = Exc [ρ,∇ρ, φ] (1.34)

The density and orbital variables are often separated into two variables, one for each
type of electron spin, α and β (i.e. ρ → ρα, ρβ). Depending on which variables are
contained in the exchange-correlation functional, the functionals are separated into



12 CHAPTER 1. THE MOLECULAR ENERGY

different classes. The local density approximation (LDA) is dependent only on the
electron density. The generalized gradient approximations (GGA) are also dependent
on the density gradient. In this class we find the functionals KT1, KT2, BLYP and
PBE. The hybrid functionals include a proportion of Hartree–Fock-exchange

EHF
X =

∑
ij

∫ ∫
φ∗i (r)φi (r

′)φj (r)φ∗j (r′)

|r′ − r| drdr′ (1.35)

using the Hartree–Fock exchange energy expression. Functionals of this type are
B3LYP, PBE0, B97-2, B97-3 and CAM-B3LYP.

Other orbital-dependent variables used in exchange–correlation energy functionals
include the paramagnetic current density [12, 13] (see also Section 1.5.6)

jp = − i

2

∑
i

[φ∗i∇φi − (∇φ∗i )φi] (1.36)

and the kinetic energy density [14, 15]

τ =
∑

i

1

2
|∇φi|2 (1.37)

where the sums in Eq.(1.36) and Eq.(1.37) run over the occupied orbitals. A set of
relevant functionals are shortly described in the next sections.

LDA

The local density approximation (LDA) is based on the properties of a uniform electron
gas and is dependent on the electron density only. In this case the exchange energy
can be found exactly. It is [16]

ELDA
X [ρ] = −3

4

(
3

π

)(1/3) ∫
ρ4/3 (r) dr. (1.38)

The correlation energy EC, has been parameterized by Vosko, Wilk and Nusair (WVN) [17]
to fit the exact high and low density limits to the correlation energy in addition to
Monte Carlo simulation data by Ceperley and Alder [18].

BLYP

The BLYP functional is a GGA functional dependent on both the electron density and
its gradient. BLYP consists of the Becke functional (B) [19] for exchange and the Lee–
Yang–Parr functional (LYP) [20, 21] for correlation. The B exchange functional has
the correct asymptotic behavior of the exchange potential vX → −1

r
for large distances
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and contains one empirical parameter fitted to exact exchange energies of noble gas
atoms from Hartree–Fock calculations. The LYP correlation functional is based on the
expression for the correlation energy developed by Colle and Salvetti [21] (expression
in the electron density and the second-order reduced density matrix fitted to He atom)
which has been reformulated into a functional dependent on the electron density and
its second-order gradient.

PBE

The Perdew–Burke–Ernzerhof (PBE) functional is a GGA functional for both exchange
and correlation [22]. The main idea behind the functional development is to satisfy
exact conditions on the exchange and correlation functionals important for the energy
evaluation rather that fitting parameters to empirical data. The functional contains
no empirical parameters except the LDA correlation parameters of VWN.

KT1 and KT2

The KT1 and KT2 functionals were developed by Keal and Tozer [23] and the initial
emphasis was to reproduce high quality Kohn–Sham exchange-correlation potentials
rather than giving an accurate exchange–correlation energy. Although the KT func-
tionals cannot compete with the best functionals for thermochemistry, they are very
useful for calculation of magnetic properties (for example the NMR shielding constant)
which depend—directly and indirectly through the Kohn–Sham orbitals and orbital
energies—only on the Kohn–Sham potential, see Refs. [24, 25].

The KT1 functional is

EKT1
XC = ELDA

XC + γ
∑

σ

∫ |∇ρσ (r)|2
ρ

4/3
σ (r) + δ

dr (1.39)

where the parameters γ and δ are introduced and varied to reproduce near exact vXC
Zhao–Morrison–Parr (ZMP) potentials [26] constructed from coupled-cluster electron
densities (this procedure is described in Section 1.5.5). The γ and δ parameters were
then empirically re-fitted to reproduce as accurately as possible, also NMR shielding
constants of a set of molecules. The resulting parameters for KT1 are

γ = −0.006, δ = 0.1. (1.40)

The KT2 functional contains two more parameters α = 1.07173 and β = 0.576727

fitted empirically to improve geometry structures and thermochemical predictions. The
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expression is

EKT2
XC = αELDA

X + βELDA
C + γ

∑
σ

∫ |∇ρσ (r)|2
ρ

4/3
σ (r) + δ

dr (1.41)

where the γ and δ parameters are those of KT1 Eq.(1.40).

B3LYP

The popular Becke-3-parameter-Lee–Yang–Parr B3LYP functional is an admixture of
the LDA, B exchange, LYP correlation and Hartree–Fock exchange energy Eq.(1.35)
and it contains three empirical parameters [27]. The inclusion of 20% Hartree–Fock
exchange energy makes it a hybrid functional. In the original paper by Becke, the
PW91 correlation functional [28] was used in the expression

EB3PW91
XC = ELDA

XC + a0

(
EHF
X − ELDA

X

)
+ aXΔEB

X + aCΔEPW91
C (1.42)

The parameters a0 = 0.20, aX = 0.72 and aC = 0.81 were fitted to thermochemical
data. Later Stevens et al. [29] found a slightly better performance when replacing
PW91 with LYP, and the resulting functional is B3LYP.

PBE0

The PBE0 functional [30, 31] is a hybrid functional based on the PBE functional, that
contains 25% Hartree–Fock exchange energy,

EPBE0
xc = EPBE

xc +
1

4

(
EHF
x − EPBE

x

)
. (1.43)

It is claimed to contain no empirical parameters as the factor 1
4
in Eq.(1.43) can be

determined from perturbation theory [32].

B97-2 and B97-3

The hybrid B97-2 [33] and B97-3 [34] functionals are based on the B97 functional of
Becke [35]. The B97-2 functional contains 21% of Hartree–Fock exchange and is fitted
to empirical thermochemical data as well as accurate exchange–correlation potentials
determined by wave function electron densities and the ZMP approach. The B97-2
functional contains 10 empirical parameters.

The B97-3 functional is another hybrid functional with 27% exact exchange. It
is an extension of the B97-2 functional containing 16 empirical parameters which has
been fitted to a larger set of empirical data than B97-2.
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CAM-B3LYP

The CAM-B3LYP functional [36] belongs to the class of range separated functionals,
meaning that the exchange interaction is described by different mechanisms for short
and long interelectron distances. It is possible to write 1

r12
as

1

r12

=
[α+ βerf (μr12)]

r12

+
1− [α+ βerf (μr12)]

r12

(1.44)

where α, β and μ are parameters and erf is the error function. The parameterization
Eq.(1.44) allow the partitioning of two different exchange energy expressions EX,LR and
EX,SR both dependent on 1

r12

EX (r12) = EX,LR

(
α+ βerf (μr12)

r12

)
+ EX,SR

(
1− [α+ βerf (μr12)]

r12

)
(1.45)

where EX,LR is the exchange functional whose importance increases at long range and
EX,SR is the exchange functional whose importance increases at short range when α,
β and α + β take values between 0 and 1. In CAM-B3LYP, the long range EX,LR is
the exact Hartree–Fock exchange energy and the short range EX,SR is the Becke 1988
functional EB

X. Since the Becke 1988 functional is not explicitly dependent on 1
r12
, it

must be re-derived replacing the 1
r12

operator with 1−[α+βerf(μr12)]
r12

. A general scheme
for this re-derivation of GGA functionals has been developed using the one particle
density matrix expressed in the inter-electronic distance r12 [36, 37, 38, 39].

The correlation energy in CAM-B3LYP is described by the B3LYP correlation con-
tribution. The fitted parameters are α = 0.19, β = 0.46 and μ = 0.33a−1

0 , with a0

being the Bohr radius. The sum α + β determines the amount of Hartree–Fock ex-
change at long range which should be equal to 1 for the correct asymptotic behavior of
the exchange potential. The performance of CAM-B3LYP for a number of properties
was investigated in Paper III.

1.5.4 Optimized Effective Potentials

In the Kohn–Sham operator Eq.(1.30), the effective potential is a multiplicative poten-
tial. The functional derivative Eq.(1.32) should therefore be a multiplicative function.
However, for orbital-dependent functionals, and in particular the hybrid functionals
containing Hartree–Fock exchange, the evaluation of Eq.(1.32) by taking the func-
tional derivative with respect to the electron density directly is not possible. Instead,
in conventional applications, the exchange–correlation potential is approximated using
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the functional derivative with respect to orbitals using the identity

vxcφi =
δExc

δφ∗i
. (1.46)

This approach does however not give a multiplicative potential for functionals that are
not locally dependent on the electron density, and is therefore outside the Kohn–Sham
scheme.

To come back to the original Kohn–Sham scheme, it is necessary to find the multi-
plicative potential associated with the orbital-dependent functional. Among all multi-
plicative potentials, the optimized effective potential (OEP) is the one that minimize
the energy when the corresponding orbitals are inserted into the energy expression.
The equations to obtain the OEP for Hartree–Fock exchange was first developed by
Sharp and Horton [40] after inspiration by Slater [41] and numerical calculations were
first performed by Talman and Shadwick on atoms [42].

The OEP may be derived from several starting points, see the review by Engel [43].
We here start by requiring that the OEP minimizes the total energy and therefore the
energy is a stationary point with respect to variations in the multiplicative potential
when the potential is equal to the OEP

δE

δveff

∣∣∣∣
veff=vOEP

= 0. (1.47)

An expression for the functional derivative δE
δveff

may be obtained using the chain rule
for functional differentiation

δE

δveff (r)
=

∑
k

{∫ [
δE

δφ∗k (r′)
δφ∗k (r′)
δveff (r)

+ c.c.
]

dr′ +
∂E

∂εk

δεk
δveff (r)

}
, (1.48)

where the summation runs over all orbitals and “c.c.” denotes the complex conjugate of
the preceding term. On the right hand side, all the functional derivatives can be given
an explicit expression in terms of veff, the orbitals and their eigenvalues [43]. Combining
these expressions with Eq.(1.47) and Eq.(1.48) results in the following equation∫

χs (r, r
′) vxc (r′) dr′ = Λxc (r) , (1.49)

where χs is the Kohn–Sham response function, given by

χs (r, r
′) =

∑
ia

φ∗i (r)φa (r)φ∗a (r′)φi (r
′)

εi − εa
, (1.50)

which measures the change in the electron density as a result of a change in the effective
potential δρ

δveff
, and the right hand side of Eq.(1.49) is

Λxc (r) =
∑

k

{
−

∫ [
φ∗k (r)Gk (r, r′)

δExc

δφ∗k (r′)
+ c.c.

]
dr′ + |φk (r)|2 ∂Exc

∂εk

}
, (1.51)
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where the Gk are Green’s functions

Gk (r, r′) =
∑
l �=k

φl (r)φ
∗
l (r′)

εl − εk
. (1.52)

The solution of Eq.(1.49)—the potential vxc— is the optimized effective exchange–
correlation potential of the energy functional for a given a set of orbitals and orbital
energies.

We continue, restricting the non-local orbital-dependent functional to be the exact-
exchange functional Eq.(1.35). The stable solution of the integral equations Eq.(1.49)
is difficult due to often-encountered singularities in the Kohn–Sham response function.
Because of this, several approximations have been developed to find the OEP, see for
example the recent review of Kümmel and Kronik [44]. The approach used for calcu-
lations in this thesis is that of Yang and Wu [45, 46], where the effective multiplicative
potential to be used in the Kohn–Sham operator Eq.(1.30) is written

veff (r) = vnuc (r) + vref (r) +
∑

t

btgt (r) . (1.53)

Here vnuc is the nuclear attraction potential, and vref is a fixed reference potential for
example constructed from a Hartree–Fock-optimized electron density in the Fermi–
Amaldi potential [47]

vref =
N − ξ

N

∫
ρ (r) ρ (r′)
|r− r′| dr′. (1.54)

where ξ is the fraction of Hartree–Fock exchange in the functional (e.g. ξ = a0 = 0.2

for the B3LYP functional Eq.(1.42)). The purpose of vref is to account for a large
proportion of the electron–electron interaction part of veff, and also to ensure the cor-
rect long range behavior of the effective potential. The third term in Eq.(1.53) is an
expansion in an auxiliary basis set gt with expansion coefficients bt. In the Yang–Wu
OEP scheme, since the only parameters in the potential Eq.(1.53) that may vary are
the bt coefficients, the functional derivative of the stationary condition Eq.(1.47) can
be written

δE

δveff
=
∂E

∂bt
=

∑
i

∫ [
δE

δφ∗i (r′)
δφ∗i (r′)
δveff (r)

∂veff
∂bt

+ c.c.
]

dr′. (1.55)

The sum is over the occupied orbitals i and the term corresponding to the last term
of Eq.(1.48) does not appear in Eq.(1.55) since ∂E

∂εk
= 0 when the non-local functional

form consists of Hartree–Fock exchange. Evaluating the terms in Eq.(1.55) yields [45]

∂E

∂bt
=

∑
ia

∫ [
δE

δφ∗i (r′)
φa (r)

< φa|gt|φi >

εi − εa
+ c.c.

]
dr (1.56)
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where a runs over the virtual orbitals. The optimization of the bt coefficients may now
be performed by iterative techniques exploiting the derivative energy expression and
the stationary condition Eq.(1.47). When the auxiliary functions gt in Eq.(1.53) are
chosen to be Gaussian functions, the calculation of the gradient Eq.(1.56) requires the
evaluation of three-center overlap integrals over Gaussian basis functions in
< φa|gt|φi >.

For a practical OEP calculation, the computational strategy can be as follows:

1. Input a set of trial orbitals and orbital eigenvalues {φk, εk}

2. Construct the OEP determining equations from the input orbitals and orbital
eigenvalues

3. Solve the OEP equations iteratively to find the OEP

4. Using the the OEP, solve the Kohn–Sham equations to yield new orbitals and
orbital energies

5. Iterate from 2 till the orbitals do not change from last iteration (the orbitals are
self consistent)

The OEP Kohn–Sham calculation is therefore more involved than the regular SCF op-
timization of the Kohn–Sham orbitals (similar to the procedure described for Hartree–
Fock theory in Section 1.4.2), requiring also the iterative solution of the OEP potential
in each SCF iteration in step 3.

1.5.5 Density-Corresponding Potentials

We define here the density-corresponding potential (DCP) as the solution to the fol-
lowing problem: Given an electron density, find the corresponding Kohn–Sham ef-
fective potential (the DCP), orbitals and eigenvalues. In this thesis, the motivation
for using DCPs is to obtain accurate exchange–correlation potentials from accurate
coupled-cluster electron densities, and then to use the resulting DCP for calculations
of magnetic properties.

Several schemes have been developed to find the DCP, see the references in [48].
Some solutions to the DCP problem, including the Zhao–Morrison–Parr (ZMP) [26]
and the Wu–Yang (WY) methods [48], are based on the Levy constrained-search func-
tional [7]. The Levy constrained-search functional,

Q [ρ] = min
Ψρ

< Ψρ|T̂ + V̂ee|Ψρ >, (1.57)
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minimizes the sum of the kinetic and electron–electron repulsion energies, searching
over all antisymmetric wave functions Ψρ that yield a density ρ. The functional Q
is in fact a generalization of the Hohenberg–Kohn functional F of Eq.(1.22) where,
for Q, the constraints on ρ are less severe. The requirement in the Hohenberg–Kohn
functional that ρ is v-representable is replaced in Eq.(1.57) with the requirement that
ρ is N -representable—that is, ρ is obtained from an antisymmetric wave function.

The Kohn–Sham orbitals corresponding to an electron density can be found by
minimizing the noninteracting kinetic energy [49]

Ts = min
Φ→ρ

< Φ|T̂ |Φ > (1.58)

under the constraint that the electron density is given by the sum of squares of the occu-
pied orthonormal orbitals, Eq.(1.24). In Eq.(1.58), Φ is the Kohn–Sham determinant,
and the right hand side corresponds to the Levy constrained-search functional Eq.(1.57)
without V̂ee (this term is constant for a fixed density assuming that the electron–electron
interaction depends locally on the electron density). In a constrained optimization of
the orbitals determining the minimum Ts, using the method of Lagrange multipliers for
the constraints ρ =

∑
i φ
∗
iφi and < φi|φj >= δij, the Kohn–Sham equations are recov-

ered where the Lagrange multiplier for the density appears as the effective Kohn–Sham
potential and the multipliers for the orthonormality of the orbitals appear as orbital
energies [7]. The effective potential that yields the desired electron density must then
be searched for in some manner. Assuming this effective potential (the DCP) is found,
the corresponding exchange–correlation potential can be obtained by subtracting the
nuclear-attraction and Coulomb-repulsion potentials from the DCP.

In this thesis, the WY-scheme [48] has been applied to obtain DCPs. Here, the
effective potential is written in the form of Eq.(1.53) and varied to minimize the kinetic
energy under the constraint that the electron density is equal to the input electron
density. For the constrained minimization, the Lagrangian function

Ws [Φ, v (r)] =
∑

i

< φi|T̂ |φi > +

∫
v (r) (ρ (r)− ρinp (r)) dr (1.59)

is set up, where v (r) is a Lagrange multiplier for the constraint that the electron density
ρ is equal to the input electron density ρinp. It can be shown that the non-interacting
kinetic energy is found by a combined minimization and maximization of Eq.(1.59) [48]

Ts [ρinp] = max
v(r)

{
min

φi,<φi|φi>=1
Ws [Φ, v (r)]

}
(1.60)

Using the potential form Eq.(1.53), the determination of Ts [ρinp] turns into an un-
constrained maximization of Ws with respect to the expansion coefficients bt. The
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maximization can be performed when the derivatives of Ws with respect to the bt are
known. Analytical expressions for the derivatives are given in Ref. [48]. Once the
coefficients bt are known, the DCP is given by Eq.(1.53).

1.5.6 Current-Density-Functional Theory

In the presence of a magnetic field, the original Hohenberg–Kohn theorems are no longer
valid. This is due to the fact that the electron density only determines the external
scalar potential, and not the external vector potential associated with the magnetic
field. There is consequently no longer a unique mapping between the electron density
and the external potentials. As a result, the Hamiltonian and wave function can no
longer be determined by the electron density alone.

The Hohenberg–Kohn theorems may be generalized to be valid also in the presence
of a magnetic field by extending the theory to also consider the electron current-density.
That is, together the ground-state electron density and current-density determines the
scalar and vector potentials uniquely. This formalism, where the exchange–correlation
energy functional is a functional of both the electron current-density and the electron
density is named current-density-functional theory (CDFT).

Clearly, to calculate the response of an electronic system to a perturbing magnetic
field in a formally correct manner, it is necessary to work within CDFT. Nevertheless,
most DFT calculations on magnetic properties in the literature are performed using the
regular DFT functionals, effectively setting the current dependence of the exchange–
correlation energy to zero. It is widely believed that the current-density dependence
of the exchange–correlation functional has a very small effect on the computed val-
ues. This is mainly based on the calculations of Handy and co-workers [50, 51, 52],
where the Vignale–Rasolt–Geldart (VRG) current-density functional [12, 53] was used
(added to a regular DFT functional) to calculate magnetizabilities and NMR shielding
constants. The error in the regular density functional was found to swamp the effect of
adding the current-dependent VRG contribution, and also disappointingly, the current
contribution shifted the results further away from experimental values. These studies
have discouraged the use of the more complicated CDFT for calculations of magnetic
properties. Indeed, practitioners of DFT magnetic property calculations are often stat-
ing in the literature that the current dependence is small and therefore does not need
consideration. In this thesis, CDFT has not been used, but observations have been
made indicating that the CDFT contributions should be reconsidered, see Paper VIII
and Ch. 5.



Chapter 2

Benchmark of DFT Methods

When an approximate theory is used to predict values for molecular properties, it is
important to know the expected accuracy of the result. Without this knowledge, it
is impossible to establish to what degree the result of the calculation can be trusted,
thereby rendering the calculation meaningless. For DFT methods, which lack a proce-
dure for systematic improvement towards an exact solution of the electronic problem,
measures of the expected accuracy can only be achieved by performing benchmark
studies where the results of the DFT methods are tested against accurate benchmark
data. It is important to carefully consider also the quality of the benchmark data
— the benchmark data should not contain errors so large that the error measures of
the tested functional is affected significantly. This would lead to false conclusions and
misunderstanding, hampering the development of new and better density functionals.

In this Chapter, some general considerations when testing the performance of DFT
methods are presented. We begin by discussing the discrepancy between the exact
electronic solution within the Born–Oppenheimer approximation and experimentally
measured values in Section 2.1. Next, in Section 2.2, the discussion considers the
discrepancies between the exact electronic solution and practical DFT calculations of
properties. Finally, in Section 2.3, a general discussion of the choice of benchmark data
for testing DFT methods is given.

2.1 The Experiment and the Exact Electronic Solu-

tion

Experimental measurements of molecular properties are performed under widely var-
ious conditions. For example, the experiment may be performed in solid, liquid or
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gas phase. Also, depending on the experimental situation, the molecule under study
will be surrounded by solvent molecules which in various ways affect the result of the
measurement. In addition, the measurement will depend on the thermodynamic vari-
ables such as temperature, since the population of states varies with these variables. In
summary, we may say that experimental measurements are affected by solvation and
temperature effects.

When performing a calculation with an exact model on a single molecule within
the Born–Oppenheimer approximation, we obtain the exact result for a non-vibrating,
non-rotating molecule unaffected by surroundings. Clearly, the calculation will not give
the same result as experiment — there is a discrepancy between theory and experiment
due to solvation, vibrations and rotations and also possibly experimental errors.

The situation is illustrated in Figure 2.1, where the red top line represents the
experimental value for the property and the thickness of the line represents the ex-
perimental uncertainty. On the left of the figure, the result of a calculation using the
exact theory within the Born–Oppenheimer approximation is represented by the blue
box. The discrepancy between experiment and theory is separated into two contribu-
tions, those arising from nuclear motions and those arising from effects caused by the
surroundings.

2.2 Approximate Calculations and the Exact Elec-

tronic Solution

In a practical calculation, using for example DFT, there are additional sources of
error between theory and experiment, related to the incomplete description of the
electronic system. First, when using a limited basis set to expand the one-electron
functions Eq.(1.9), the incompleteness of the basis set give source to the basis-set
error, represented by the yellow box in Fig. 2.1. The size of the basis-set error can be
estimated by investigating the convergence of the property with systematic extension
of the basis set.

Secondly, the intrinsic error of the method, represented by the blue box in Fig. 2.1,
is, in DFT, due to the inaccurate form of the exchange–correlation functional, or for a
wave-function method, the truncation of the many-electron space Eq.(1.16). For wave-
function methods, it is possible to estimate the size of the intrinsic error by studying
the convergence of the properties when systematically increasing the number of de-
terminants in the wave function (i.e. increasing the excitation level in the truncated
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cluster operator for CC methods) . For DFT methods, this approach is not possible
and testing against high quality benchmark data is necessary to obtain information
about the intrinsic error.

Part of the intrinsic method error may be due to a non-relativistic treatment of
the electronic structure problem, the so called relativistic effects. Relativistic effects
are generally small for first and second row atoms and we do not study molecules
containing heavier nuclei here.

It is worth noting that for a practical calculation, the different sources of error found
in Figure 2.1 may have opposite signs, thereby fortuitously canceling each other. A
well known example is the good results obtained by Hartree–Fock theory in connection
with a small double-zeta basis set, where the basis-set error and the method error often
cancel very well.

2.3 Benchmark values

To be able to test DFT methods in the ability to predict some property, a set of assumed
correct benchmark values must be chosen for comparison. There are two main sources
of benchmark values: Experimental measurements and accurate wave function results.
There are problems with both choices which will be discussed below.

Let us first point out that the aim of a DFT calculation must be to reproduce as
accurately as possible the result of the exact electronic solution. Therefore, the direct
comparison with experimental data is only appropriate when the experimental error
bars are not too large and when the ro-vibrational and solvation effects are small or
corrected for, see Figure 2.1. If these errors are large, the benchmark values will be of
low quality, leading to error measures of the tested functionals that are inaccurate or
even misleading, as the real intrinsic DFT errors are disguised by large errors in the
benchmark data.

So, to be able to compare results with experiment, ro-vibrational and solvation
effects should be accounted for. These effects may in some cases be measured or
estimated in experiment, however, in general they are not known and must be modeled
by calculations. These calculations are usually expensive, and also in many cases
difficult to treat accurately.

With the aforementioned difficulties of using experimental values for the benchmark
data in mind, it may seem better to use accurate wave function methods to produce
benchmark values. In this case, the problems related to solvation, rotations and vibra-
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tions are removed as both the DFT methods and the wave function methods can be
performed within the Born–Oppenheimer approximation on single isolated molecules.
It is then possible to calculate the property at a single nuclear geometry, comparing the
results directly. There are, however, also difficulties using this approach. The accuracy
of the wave function method used should be estimated by studying the convergence of
the property with regard to the correlation treatment and the one-electron basis. For
well converged results, at least the CCSD(T) method should be used and in some cases
even better wave functions must be employed. The cost of these calculations are large,
and benchmark data can only be obtained for small molecules. This highlights one of
the advantages of using experimental data, which can be obtained for a wider range of
both large and small molecules.
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Chapter 3

Molecular Properties

In this Chapter, the molecular magnetic properties studied in this thesis will be intro-
duced. The properties are identified as derivatives of the energy in Section 3.1. Then,
the theory for the calculation of magnetic properties is described, setting up the Hamil-
tonian in the presence of magnetic fields in Section 3.2, describing the gauge-origin de-
pendence problem in Section 3.3 and finding analytical energy derivative expressions in
Section 3.4 using linear response theory in Section 3.5. The expressions for the energy
derivatives are also described by perturbation theory in Section 3.6. The magnetic
properties are finally given a qualitative description in Section 3.7.

3.1 Identification of Spectroscopic Constants

Many spectroscopic constants can, in the static case, be identified as energy derivatives
with respect to perturbing magnetic or electric fields. To see this, we first write the
energy as a Taylor expansion in a perturbing field F

E (F) = E0 +
dE

dF
F

∣∣∣∣
F=0

+
1

2
FT d2E

dFdF
F

∣∣∣∣
F=0

+ . . . (3.1)

Here, E0 is the energy in the absence of a perturbing field, and all the derivatives are
taken at zero perturbing field.

Although F may represent any perturbation, the interests in this work are different
perturbing magnetic fields, in particular, an external homogeneous magnetic field B,
the magnetic field MK associated with the spin of a nucleus IK and its gyromagnetic
ratio γK

MK = γKIK (3.2)

27
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and also, the magnetic like perturbation associated with the total angular momentum
J of a rotating molecule. We may collect all these perturbations into a vector

F = {B,MK ,J} (3.3)

Comparing the expression Eq.(3.1) (where F is replaced according to Eq.(3.3)), with
effective Hamiltonian expressions in the presence of B, MK and J perturbations where
the electron behavior appears as parameters [54, 55, 56] (including only second-order
terms since the first-order terms vanish for closed shell molecules)

Heff = −
∑
K

BT (1− σK)MK +
1

2

∑
K �=L

MT
K (DKL + KKL)ML (3.4)

+
1

2
JTI−1

eff J− μnJ
TgB− 1

2
BTξB− JTCKMK ,

it is possible to identify and define the following tensors

g = − 1

μn

d2E

dJdB

∣∣∣∣
J,B=0

(3.5)

ξ = − d2E

dBdB

∣∣∣∣
B=0

(3.6)

CK = − d2E

dJdMK

∣∣∣∣
J,MK=0

(3.7)

σK =
d2E

dBdMK

∣∣∣∣
B,MK=0

+ 1 (3.8)

KKL =
d2E

dMKdML

∣∣∣∣
MK ,ML=0

−DKL (3.9)

where the three-by-three tensors are the rotational g-tensor g, the magnetizability
tensor ξ, the spin-rotation tensor CK , the nuclear shielding tensor σK and the reduced
indirect nuclear spin–spin coupling tensor KKL. Note that the sign of the spin-rotation
constant used here is opposite of the sign convention of Flygare [56] but the same
convention as used by experimentalists. In Eq.(3.4), the tensor DKL represents the
direct coupling of the magnetic dipole moments of the nuclei, Ieff is the moment of
inertia tensor of the molecule and μn is the nuclear magneton.

3.2 The Hamiltonian and the Energy in Magnetic

Fields

Having identified the second-order magnetic properties in Section 3.1 in terms of energy
derivatives Eq.(3.5) – (3.9), we proceed to the calculation of such derivatives. The first
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step in finding expressions for the energy derivatives is to find the expression for the
energy itself. The energy is determined by the form of the Hamiltonian operator.

When a rotating molecule is placed in a magnetic field and is under influence of the
magnetic dipole moments of the nuclei, the Hamiltonian operator Eq.(1.3) must include
new energy terms arising from the interactions of the magnetic fields and the moving
charged particles. This analysis must also include the interaction of the magnetic fields
with the magnetic moments of the electrons mi,

mi = −si (3.10)

where si is the spin of the electron.
To allow for the rotation of the nuclei in the molecule implies a partial lifting of the

Born–Oppenheimer approximation Eq.(1.3). Here we only allow the nuclear framework
to rotate rigidly and neglect nuclear vibrations. The nucleus–nucleus repulsion of the
full Hamiltonian Eq.(1.2) is then a constant and the kinetic energy operator of the
nuclei is constrained to the kinetic energy operator of rigid rotations of the nuclear
framework. A presentation of the derivation of the Hamiltonian for a rotating molecule
in the presence of an external magnetic field and nuclear magnetic moments has been
given by Flygare [56]. The terms arising from nuclear spin–spin interactions is for
instance discussed by Ramsey [57] and McWeeny [58]. The Hamiltonian is

H = H0 (3.11)

+
1

2
B · LO +

1

8
BT

(∑
i

r2
iOI3 − riOrTiO

)
B (3.12)

+α2
∑
K

MK ·
∑

i

liK
r3
iK

+
α4

2

∑
K

∑
L�=K

MT
K

∑
i

(
riKrTiL

)
I3 − riKrTiL

r3
iKr

3
iL

ML(3.13)

+
α2

2

∑
K

MT
K

∑
i

(
(riO · riK) I3 − riKrTiO

r3
iK

)
B (3.14)

+
1

2
JTI−1

n J− JTI−1
n LCM +

1

2
LT

CMI−1
n LCM (3.15)

−1

2
BT

∑
K

(
ZKr

2
K,CMI3 − rK,CMrTK,CM

)
I−1
n (J− LCM) (3.16)

+
1

8
BT

∑
K

Z2
K

MK

(
r2
K,CMI3 − rK,CMrTK,CM

)
B (3.17)

−α
2

2

∑
K

∑
L�=K

MT
K

ZL

r3
KL

(
r2
KLI3 − rKLrTKL

)
I−1
n (J− LCM) (3.18)

−
∑
K

MK ·B +
∑

i

mi ·B (3.19)
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+
∑

i

mT
i

[∑
K

(
−α2 r

2
iKI3 − 3riKrTiK

r5
iK

+
8πα2

3
δ (riK) I3

)
MK

]
(3.20)

+
1

2

∑
K

∑
L�=K

MT
K

r2
KLI3 − 3rKLrTKL

r5
KL

ML. (3.21)

H0 is the Hamiltonian of a non-rotating molecule in the absence of magnetic fields Eq.(1.3)
and I3 is the three-by-three identity matrix. The terms in Eq.(3.12)–(3.14) originate
from the introduction of the generalized momentum operator for the electrons

πi = −i∇i + A (3.22)

which must replace the momentum operators of Eq.(1.2) when the particles move in a
magnetic field represented by the vector potential A. Here A is the vector potential
associated with the external magnetic field and the nuclear magnetic moments

A = Aext + Anuc (3.23)

Aext =
1

2
(B× riO) , Anuc =

∑
K

α2MK × riK

r3
iK

. (3.24)

In Eq.(3.24), α is the fine structure constant and riO is the distance vector between
the point ri and the physically arbitrary chosen gauge origin O of the vector potential.
Gauge origins are discussed in more detail in Section 3.3. Further, in Eq.(3.12), the
total electronic orbital angular momentum is

LO =
∑

i

liO = −i
∑

i

riO ×∇i (3.25)

where i runs over all electrons. In Eq.(3.12) are the terms giving rise to the param-
agnetic and diamagnetic magnetizability, respectively. Similarly, in Eq.(3.13) are the
terms that give rise to the paramagnetic spin–orbit and diamagnetic spin–orbit contri-
butions to the indirect NMR spin–spin coupling constants. The term in Eq.(3.14) is
responsible for the diamagnetic contribution to the NMR shielding constant.

Further, in Eq.(3.15) are extra terms to the kinetic energy from the rotational
movement of the molecule. In Eq.(3.15), I−1

n is the inverse of the nuclear moment
of inertia in the principal axis system. CM denotes the center of mass. The second
term of Eq.(3.15) gives contributions to the rotational g-tensor and the spin–rotation
constants as a result of the non-Born–Oppenheimer coupling of nuclear and electronic
motion.

In Eq.(3.16) and Eq.(3.17) are terms arising from the generalized momentum treat-
ment of the rotating nuclei, and Eq.(3.18) is a sum of terms describing the interaction
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of the magnetic moment of a nucleus with the the magnetic field generated by the other
moving nuclei due to the molecular rotation. These terms, Eq.(3.16)–(3.18), give rise to
the nuclear contributions to the rotational g-tensor, magnetizability and spin–rotation
constants, respectively.

Next are the terms in Eq.(3.19) describing the interactions between the external
magnetic field and the magnetic moments of the nuclei and the electrons. In Eq.(3.20)
are terms from the interactions of the magnetic dipoles of the nuclei with the magnetic
dipoles of the electrons. The content of the square brackets is the magnetic field from
nuclei, obtained by taking Bnuc = ∇×Anuc, and contains a dipole–dipole interaction
term and a contact term giving rise to the spin–dipolar and Fermi–contact contributions
to the indirect NMR spin–spin coupling constants.

Finally, in Eq.(3.21) are the direct magnetic dipole–dipole interactions of the nuclei.
In liquid and gas phase measurements, these couplings vanish due to the rotation of
the molecule.

3.3 Gauge-Origin Dependence

A homogeneous magnetic field B may be represented by the vector potential

AO =
1

2
B× (r− rO) . (3.26)

as already noted in Eq.(3.24), where rO is the position of the gauge origin, the point
where the vector potential vanish. The position of the gauge origin is physically arbi-
trary as it corresponds to a gauge transformation of the vector potential. In quantum
chemical calculations using a finite conventional basis set however, the result of a cal-
culation is dependent on the gauge origin [59]. This unphysical behavior is undesirable
and is known as the gauge-origin problem. As a byproduct of the gauge-origin prob-
lem, large basis sets must be employed to obtain converged results for magnetic field
perturbations.

Several schemes has been proposed to handle the gauge-origin problem, see the
discussion in Ref. [55]. The most robust method has shown to be gauge-invariant
atomic orbitals (GIAO’s) or London atomic orbitals,ωα , first used by London [60]
(and later in an efficient analytical derivative implementation by Wolinski, Hinton and
Pulay [61]) where the regular basis functions Eq.(1.10) are equipped with complex
phase factors containing the magnetic field

ωα (B) = exp
[−iAB

α · r
]
χα (3.27)
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where
AB

α =
1

2
B× (Rα − rO) , (3.28)

and Rα is the distance vector to the nuclear center where the basis function is centered.
The London atomic orbitals ensure that for atomic systems, the unperturbed wave
function is an eigenfunction of the perturbed Hamiltonian to first order in the magnetic
field [55]. In addition to give results for molecular properties independent of the choice
of gauge origin, the basis-set convergence is also much faster with the London atomic
orbitals.

Taking advantage of the similarity of the magnetic field perturbation and the per-
turbation of rotational motion, Gauss, Ruud and Helgaker [62] proposed the rotational
London atomic orbitals

ωα (B,J) = exp
[−i

(
AB

α + AJ
α

) · r]χα (3.29)

to improve also the basis-set convergence in the calculation of spin-rotation constants
and rotational g-tensors. The additional term in the phase factor is

AJ
α = −I−1J×Rα (3.30)

and I−1 is the inverse of the moment of inertia tensor. All calculations in this work are
done using (rotational) London atomic orbitals.

The inclusion of the rotational London atomic orbital phase factor in the basis
functions makes the basis functions dependent on B and J and therefore dependent on
these perturbations. This means that molecular orbitals constructed from rotational
London atomic orbitals do not automatically stay orthonormal when the magnetic
field or the rotational angular momentum change. To preserve orthonormality, we may
introduce a connection matrix T such that [63, 64]

φOMO
i (B,J) =

∑
r

T (B,J)ir φ
UMO
r (B,J) (3.31)

where the unorthonormal orbitals φUMO
r (B,J) are constructed in the regular manner

as in Eq.(1.9) and the orbitals φOMO
i (B,J) are orthonormal for any B or J. The

connection matrix should satisfy the equation

TT (B,J)S (B,J)T (B,J) = 1 (3.32)

where S is the overlap matrix. Eq.(3.32) can easily be seen to hold for T = S−1/2,
however any T that fulfills Eq.(3.32) can be used. A numerically more stable T, the
natural connection, has been discussed by Olsen et al. [65].
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3.4 Energy Derivatives

We follow here closely the exposition of Helgaker et al. [55]. To evaluate the energy
derivatives in Eq.(3.5)–(3.9), we start by writing the energy as a function of the varia-
tional parameters and the perturbing fields

E = E (λ,F) (3.33)

where λ are the variational parameters and F represent the perturbing fields Eq.(3.3).
The variational parameters λ are dependent on the external field, and for each field
strength, there is a set λ0 giving the lowest energy such that

E0 = E (λ,F)|λ=λ0
(3.34)

fulfilling the variational condition Eq.(1.8) for all field strengths.
In the next, we assume that the energy derivatives are taken at zero perturbation,

F = 0. The first derivative of the energy with respect to the external field is

dE0

dF
=
∂E0

∂λ

∂λ

∂F
+
∂E0

∂F
(3.35)

where the first term is zero since from Eq.(1.8), the derivatives of the energy with
respect to the variational parameters are zero at the optimized parameters. The second
derivative is then

d2E0

dFdF
=

∂2E0

∂λ∂F

∂λ

∂F
+

∂2E0

∂F∂F
. (3.36)

The second derivative of the energy is consequently a sum of two terms, the first
involving the response of the wave function to the perturbation ∂λ

∂F
, and the second

term dependent on the unperturbed wave function only. To find the response of the
wave function, we use linear response theory described in Section 3.5.

3.5 Linear Response Theory

The first-order response of the wave function to an external perturbing field can be
found by linear response theory. For a variational wave function, we start by differen-
tiating the variational condition Eq.(1.8) with respect to the perturbation

d

dF

∂E0

∂λ
=

∂2E0

∂λ∂λ

∂λ

∂F
+

∂2E0

∂F∂λ
= 0. (3.37)

Rearranging yields the response equations

∂2E0

∂λ∂λ

∂λ

∂F
= − ∂2E0

∂F∂λ
, (3.38)
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or more compactly
GλF = −XF. (3.39)

To find the response λF it is thus necessary to calculate the electronic Hessian G and
the differentiated gradient XF. At first sight, it might be tempting to rewrite the
response equations in the form λF = −G−1XF to solve the equations. The inversion of
the electronic Hessian is however a time consuming task and becomes impossible when
the number of variational parameters becomes large. Therefore, the response equations
are solved iteratively using the conjugate-gradient method avoiding the inversion of the
large Hessian matrix.

Magnetic perturbations that give rise to imaginary singlet perturbations to the wave
function (magnetizabilities, shielding constants, spin–rotation constants and rotational
g-tensors) require only the knowledge of the imaginary part Gi of the electronic Hessian
in Eq.(3.39)—that is, {

Gi}
ia,jb

=
∂2E

∂λiiaλ
i
jb

, (3.40)

where "i" denotes that the variational parameter λiia is imaginary and the subscripts
denote that the variational parameter mix the occupied orbital φi with the unoccu-
pied orbital φa. In DFT, when the exchange–correlation potential is multiplicative,
the imaginary part of the electronic Hessian has a simple diagonal form and can be
constructed from the orbital energies [50, 66].{

GDFT,i}
ia,jb

= (εa − εi) δia,jb (3.41)

The solution of the response equations Eq.(3.39) is in this case simple and require only
one iteration. The situation for real perturbations, arising for example from electric
fields and also for the real triplet perturbations of spin–spin coupling constants, is more
complicated since the real part of the Hessian is not diagonal.

In addition, for the real perturbations, the evaluation of the electronic Hessian
requires the knowledge of the derivative of the exchange–correlation potential. For this
reason, the calculation of spin–spin coupling constants using OEP or DCP methods is
much more complicated than for the imaginary perturbations. Indeed, only imaginary
second-order properties have been calculated with such potentials since here, only
the undifferentiated exchange–correlation potential is needed (although polarizabilities
have been calculated using finite difference methods [67, 68]). The development of
analytical differentiated OEP potentials should be possible, and it will be interesting
to see their application to indirect spin–spin coupling constants and electric properties
in the future.
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3.6 Perturbation Theory

Expressions for the energy derivatives may also be found by perturbation theory. For a
set of exact states ψn = |n〉 (for which Eq.(1.1) holds) with energies En the expressions
for the derivatives of the ground state energies are

dE

dF
= 〈0

∣∣∣∣dHdF
∣∣∣∣ 0〉 (3.42)

d2E

dF2
= 〈0

∣∣∣∣d2H

dF2

∣∣∣∣ 0〉 − 2
∑
n�=0

〈0 ∣∣dH
dF

∣∣n〉〈n ∣∣∣(dH
dF

)T∣∣∣ 0〉
En − E0

(3.43)

where 0 denotes the ground state and the sum is over all excited states of appropri-
ate symmetry. In Eq.(3.43), the first term on the right is known as the diamagnetic
contribution and the second term as the paramagnetic contribution. The different prop-
erties are found by inserting the appropriate derivatives of the Hamiltonian operator,
Eq.(3.11). The derivatives are

dH

dB
= horb + hspn =

1

2
LO +

∑
i

mi (3.44)

dH

dJ
= hrot = −I−1

n · LCM (3.45)

dH

dMK

= hpso
K + hsd

K + hfc
K = α2

∑
i

liK
r3
iK

− α2
∑

i

mi
r2
iKI3 − 3riKrTiK

r5
iK

+
8πα2

3

∑
i

miδ (riK)

(3.46)

d2H

dBdB
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1

4

(∑
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iOI3 − riOrTiO

)
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1

4

∑
K

Z2
K
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(
r2
K,CMI3 − rK,CMrTK,CM

)
(3.47)

d2H
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2
K,CMI3 − rK,CMrTK,CM

)
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n (3.48)
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r3
iK
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− 1 (3.49)

d2H

dJdJ
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n (3.50)
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.

(3.52)
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The perturbation-theory expressions Eqs.(3.42) and (3.43) illustrate better than do
the expressions of Section 3.4 the mechanisms responsible for the energy derivatives
and properties in terms of the ground state, the excited states and operators. They
are, however, not useful for practical calculations since explicit expressions for all the
excited states are needed. In the next sections, the explicit perturbation expressions
will be given for each property to illustrate which mechanisms are responsible for the
different properties.

3.7 Qualitative Description of Magnetic Properties

In this Section, a qualitative description of the molecular properties defined in Section
3.1 is presented. First, the rotational g-tensor is considered in Section 3.7.1 followed by
the magnetizability in Section 3.7.2. Then, the close relation between the rotational g-
tensor and the magnetizability is shown in Section 3.7.3. The NMR shielding constant,
the spin-rotation constant and their relation are presented in Sections 3.7.4, 3.7.5 and
3.7.6, respectively. The indirect NMR spin–spin coupling constant is finally treated in
Section 3.7.7.

3.7.1 The Rotational g-tensor

The rotational g-tensor term in Eq.(3.4) describes the interaction energy between the
magnetic moment set up by a rotating molecule

μrot = μnJ
Tg (3.53)

and an external magnetic field B [56, 69]. The rotational g-tensor may be split into two
terms, a positive contribution arising from the rotation of the nuclei gn and a negative
contribution from the rotation of the electrons ge

g = ge + gn. (3.54)

Inserting the operators of Eqs.(3.44), (3.45) and (3.48) into the second-order per-
turbation expression of Eq.(3.43), the g-tensor can be evaluated as

g = − 1

μn
〈0 ∣∣hnrot

∣∣ 0〉+
2

μn

∑
nS �=0

〈0 ∣∣horb
∣∣nS〉〈nS ∣∣∣(hrot)

T
∣∣∣ 0〉

EnS − E0

. (3.55)

Since in the diamagnetic term, hnrot is only dependent on the nuclear coordinates,
the operator may be taken outside the integral yielding the nuclear contribution to
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the g-tensor gn = − 1
μn

hnrot. In the paramagnetic contribution, which is equal to the
electronic contribution ge, there is no contribution from total electron spin operator
hspn from Eq.(3.44) since this operator, when working on the closed shell ground state
gives zero. The operators horb and hrot give singlet states when they operate on the
closed shell ground state. It is therefore only necessary to consider singlet excited states
nS in the summation of Eq.(3.55).

In experiment, the interaction between the rotational magnetic moment and an
external magnetic field can be observed as a Zeeman splitting of the rotational spectrum
in molecular beam and microwave spectroscopy, that is, it appears as a shift in the
rotational spectrum when a magnetic field is present. From these measurements, it is
possible to determine all the diagonal elements of the rotational g-tensor.

The accuracy of measurements in microwave spectroscopy is impressive, up to 10
significant digits can nowadays be recorded in the resonance frequencies. This accu-
racy is also reflected in the accuracy of measured rotational g-tensors. For diamagnetic
molecules, experimental error bars are very small, usually below 0.1% of the total
g-tensor element. Thus, the rotational g-tensor is particularly attractive for testing
theoretical models against experiment. In addition to providing accurate measure-
ments, the experiments are done in the gas phase. This means that it is not necessary
to consider solvation effects in the quantum chemical calculations. Rotational effects
are also small as the measured g-tensor is obtained from transitions between known
rotational states of low angular momentum, in many cases from the J = 0 → 1 transi-
tion. To compare calculations to experiment, it is therefore not necessary to consider
ensembles of rotational states at a given temperature. So, provided that the effects
of zero point vibrations on the g-tensor elements are small, the bare experimentally
measured g-tensors provide an accurate benchmark data set to assess the performance
of different quantum chemistry models.

3.7.2 The Magnetizability

The magnetizability describes the second-order response of the molecule to an exter-
nal magnetic field. Inserting Eqs.(3.44) and (3.47) into Eq.(3.43), we obtain for the
magnetizability tensor

ξ = −〈0 ∣∣hdma
∣∣ 0〉+ 2

∑
nS �=0

〈0 ∣∣horb
∣∣nS〉〈nS ∣∣∣(horb

)T∣∣∣ 0〉
EnS − E0

. (3.56)
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The nuclear contribution hnma in Eq.(3.47) is neglected as it is small [56] and also does
not contribute to the magnetizability for a non-rotating molecule within the Born–
Oppenheimer approximation. In the paramagnetic term, hspn from Eq.(3.44) vanishes
when working on the ground-state closed-shell wave function.

The isotropic magnetizability is the average of the diagonal magnetizability tensor
elements

ξiso =
1

3
Trξ (3.57)

The direct measurement of the magnetizability is made difficult for several rea-
sons. In gas phase, a very low oxygen contamination of the sample may influence the
measurement significantly. In addition, there are difficulties related to the calibration
standards used in the experiments. Together these effects lead to large experimental
error bars for the isotropic magnetizability [70]. In addition to experimental difficulties,
measurements are often done in the liquid phase which are not directly comparable to
calculated magnetizabilities of single molecules. Solvation effects must therefore be
taken into account for the comparison between experiment and theory. In summary,
experimental magnetizabilities do not provide good data for benchmarking purposes.

More accurate measurements of the magnetizability may be obtained from mi-
crowave spectroscopy, however, only two independent magnetizability tensor compo-
nents, that is the magnetizability anisotropies, may be observed directly by experi-
ment [71]. If the moment of inertia is known for the molecule, then the paramag-
netic contribution to the individual diagonal tensor elements may be derived. The
independent diagonal elements of the total magnetizability can then be obtained in a
semi-experimental manner by adding a theoretically derived diamagnetic contribution
to the magnetizability tensor.

3.7.3 Relation Between the g-tensor and the Magnetizability

The g-tensor and the magnetizability are closely related properties. In fact, the elec-
tronic contribution to the g-tensor can be derived from the paramagnetic magnetiz-
ability and vice versa since the effect of a magnetic field on a system of electrons is
proportional to the effect of a molecular rotation [69]. This similarity is also reflected
in the operators horb and hrot when the gauge origin of horb is placed at the center of
mass

hrot = −2I−1
n horb

CM (3.58)
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The relation between the electronic part of the rotational g-tensor and the magnetiz-
ability is [56]

gexx = −4Mp

Ixx

ξpxx (3.59)

where ξp is the paramagnetic magnetizability and the proton mass is Mp.
The relation Eq.(3.59) takes the following form when using rotational London

atomic orbitals [62]

g = −4Mp
(
ξLAO − ξd (CM)

)
I−1
n + gn. (3.60)

The LAO denotes that the total magnetizability ξLAO has been calculated using London
atomic orbitals, whereas ξd (CM) is the diamagnetic contribution to the magnetizability
calculated without London atomic orbitals and with the gauge origin at the center of
mass.

3.7.4 The Shielding Constant

The nuclear shielding constant is of great importance in chemistry, used in molecu-
lar structure determination in nuclear magnetic resonance (NMR) spectroscopy. The
shielding constant is a result of the interaction between an external magnetic field and
the magnetic moment of the nucleus. This interaction is determined by the strength of
the magnetic field at the nucleus which consists of the external magnetic field modified
by the magnetic field set up by the electrons. The shielding constant describes the
modification of the magnetic field at the nucleus due to the electronic motions.

Using Eqs.(3.8), (3.44), (3.46), (3.49) and (3.43), the perturbation expression for
the shielding constant is

σK = 〈0 ∣∣hdsh
K

∣∣ 0〉 − 2
∑
nS �=0

〈0 ∣∣horb
∣∣nS〉〈nS ∣∣∣(hpso

K )T
∣∣∣ 0〉

EnS − E0

. (3.61)

In the paramagnetic contribution, the horb is the only surviving part of Eq.(3.44) since
hspn|0 >= 0. The horb operator generates singlet imaginary states and couples only to
the singlet imaginary generating hpso

K operator of Eq.(3.46). The hsd
K and hfc

K operators
give real triplet states when acting on the ground state and do not couple with horb.

The isotropic shielding constant is

σK =
1

3
TrσK (3.62)

In the NMR experiment, the chemical shift δK relative to a reference nucleus is observed

δK = σK − σref. (3.63)
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The chemical shifts can be determined to good accuracy in experiment with uncertain-
ties of around 0.01 ppm. The accuracy of the measured isotropic shielding constant on
an absolute scale is lower—the accuracy is restricted by the accuracy of the reference
σref, relative to the bare nucleus in question. The accuracy to which σref is known varies
among nucleus types, usually the accuracy is lower for heavier nuclei. Wave function
methods can be used to obtain σref, however, to be useful in experimental measure-
ments, the calculated σref must account for solvation and ro-vibrational effects valid
for the particular experimental setup, and also relativistic effects for heavy nuclei. The
calculation of σref is therefore a challenging task.

The paramagnetic contribution to the absolute shielding of Eq.(3.62) can be deter-
mined accurately in experiment from measurements on the spin–rotation constant, see
Section 3.7.6. An alternative for obtaining the total absolute shielding of a nucleus is
then to calculate the diamagnetic contribution from theory and add the experimental
paramagnetic contribution.

Although there are some NMR experiments that have been performed in the gas
phase, most measurements are done in liquid and solid state. The limited amount of gas
phase data makes it necessary to consider liquid phase experiments when comparing
to calculated numbers. For a critical comparison with experiment therefore, both
solvation and ro-vibrational effects should be accounted for in the calculations.

3.7.5 The Spin-Rotation Constant

The spin-rotation constant describes the interaction between the magnetic moment of
the nucleus and the magnetic field arising from the rotational motion of the molecule.
As for the g-tensor, the spin-rotation constant may be separated into nuclear and
electronic contributions

CK = Ce
K + Cn

K . (3.64)

Inserting the perturbation expression Eq.(3.43) with the operators Eqs.(3.51), (3.45),
(3.46) in the spin–rotation constant expression Eq.(3.7), we obtain

CK = −〈0 |hnsr
K | 0〉+ 2

∑
nS �=0

〈0 |hrot|nS〉〈nS
∣∣∣(hpso

K )T
∣∣∣ 0〉

EnS − E0

. (3.65)

and the diamagnetic contribution reduces to the nuclear contribution Cn
K = −hnsr

K as
the hnsr

K operator is only dependent on the nuclear coordinates. In the paramagnetic
contribution, as for the shielding constant, only hpso

K in Eq.(3.46) has the correct sym-
metry for coupling to hrot, therefore hfc

K and hsd
K do not appear in Eq.(3.65). The
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experimental measurement of spin–rotation constants can be performed with good ac-
curacy in microwave spectroscopy.

3.7.6 Relation Between the Spin-Rotation Tensor and the Shield-

ing Tensor

A similar relation is found between the spin-rotation constant and the shielding tensor
as with the rotational g-tensor and the magnetizability Eq.(3.59). The electronic part
of the spin-rotation tensor is related to the paramagnetic contribution to the shielding
constant

Ce
K,xx = 2γKσ

p
K,xxI

−1
xx (3.66)

where γK is the gyromagnetic ratio of the Kth nucleus. When using rotational Lon-
don atomic orbitals, the relation between the spin–rotation constant and the shielding
constants is [62]

CK = 2γK(σLAO
K − σd

K(rK))I−1
n + Cn

K (3.67)

where σd
K(rK) is the diamagnetic contribution to the shielding tensor calculated using

conventional basis functions with the gauge origin at the nucleus K and σLAO
K is the

total shielding constant calculated using London atomic orbitals.

3.7.7 The Indirect Nuclear Spin–Spin Coupling Constant

The NMR spin–spin coupling constant is the second parameter, in addition to the
shielding constant, that is responsible for the resonance pattern in NMR spectroscopy.
It describes the interaction of the magnetic moments of the nuclei. This interaction can
be of a direct nature—that is, a magnetic dipole–dipole interaction between the two
magnetic moments of the nuclei, or of an indirect nature mediated by the magnetic
moments of the electrons due to their spin. The much larger direct dipole–dipole
interaction cancels out in a gas or liquid phase NMR experiments as a result of the
rotational movement of the molecules. Therefore, the spin–spin coupling constant
observed in gas and liquid phase experiment is the indirect nuclear spin–spin coupling
constant.

Using the definition of the reduced indirect nuclear spin–spin coupling constant
Eq.(3.9), and inserting Eqs.(3.46) and (3.52) into the second-order perturbation ex-
pression Eq.(3.43), the reduced indirect nuclear spin–spin coupling constant is found
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to be

KKL = −〈0 ∣∣hdso
KL

∣∣ 0〉+ 2
∑
nS �=0

〈0 |hpso
K |nS〉〈nS

∣∣∣(hpso
L )T

∣∣∣ 0〉
EnS − E0

+2
∑
nT �=0

〈0 ∣∣hsd
K + hfc

K

∣∣nT〉〈nT ∣∣∣(hsd
L

)T
+

(
hfc

L

)T∣∣∣ 0〉
EnT − E0

. (3.68)

The sum over states terms are separated into sums over singlet states nS and triplet
states nT reflecting the singlet symmetry of the states that result when the hpso

K operator
act on the closed shell ground state and the triplet symmetry of the states that result
from hsd

K and hfc
K . The diamagnetic part of Eq.(3.68) is the diamagnetic spin-orbit

(DSO) contribution, the sum over singlet states is the paramagnetic spin-orbit (PSO)
contribution and the sum over triplet states constitutes the spin-dipolar (SD) and
Fermi-contact (FC) contributions to the spin–spin coupling constant.

The indirect nuclear spin–spin coupling tensor JKL that is usually reported in the
literature is related to the reduced tensor KKL by

JKL = h
γK

2π

γL

2π
KKL. (3.69)

where γK is the gyromagnetic ratio of nucleus K and h is the Planck constant. The
isotropic spin–spin coupling constant is

JKL =
1

3
TrJKL (3.70)

Due to the presence of the triplet operators hsd
K and hfc

K , the spin–spin coupling con-
stant stand out as different to the other properties studied in this thesis. For a good
description of the spin–spin coupling constant, also the triplet states must be well de-
scribed by the theoretical model. Triplet states at the Hartree–Fock level of theory are
poorly described due to triplet instabilities—the model predicts erroneously low energy
triplet states or even negative triplet excitation energies. The result is that predictions
of spin–spin coupling constants using Hartree–Fock theory are meaningless. Since DFT
show triplet instabilities to a much smaller extent, DFT is the only successful low cost
alternative for calculations of indirect spin–spin coupling constants.

The experimental accuracy of spin–spin coupling constants varies a lot with the
nucleus types that are coupled. Nuclei having a spin IK larger than 1

2
, give broad

resonance peaks in the NMR spectra, and the spin–spin coupling becomes hard to
measure accurately. As for the NMR shielding constants, measurements are usually
done in liquid phase and solvation effects together with ro-vibrational effects must be
accounted for when comparing the results to calculated spin–spin coupling constants.



Chapter 4

Ro-vibrational Effects

Property calculations that are performed within the Born–Oppenheimer approximation
are valid for non-vibrating, non-rotating molecules. However, even at a temperature
of 0 K, molecules will exhibit zero-point vibrations (ZPV). Depending on the type of
property and the molecule, the rotational and vibrational motion will affect the value
of the property to different degrees. In some cases, the ro-vibrational effects are highly
significant. Therefore, for a critical comparison with experiment, it is important to
consider the ro-vibrational effects.

In this Chapter, we will outline the theory for calculation of vibrational corrections
used in this thesis. Some general considerations are given in Section 4.1, then the
approaches used in this work are described in Section 4.2.

4.1 General Considerations

In the Born–Oppenheimer approximation, the nuclear positions are treated as param-
eters, and all properties P , including the energy, are functions of the nuclear geometry

P = P (R), (4.1)

where R represents a nuclear geometry. If the property in question is the energy, P (R)

becomes the potential energy surface. To account for the effect of nuclear motion on
the properties, it is necessary to average P (R) over the nuclear wave function Ψn,i(R)

(defined later). At a temperature of 0K the averaging can be performed over the
ground-state nuclear wave function Ψn,0(R)

Pave,0 = 〈Ψn,0(R)|P (R)|Ψn,0(R)〉, (4.2)
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where the integration is over the nuclear coordinates. The ground-state nuclear wave
function describes the zero point vibrations of the molecule. The zero-point vibrational
contribution (ZPVC) to the property, PZPVC, is

PZPVC = Pave,0 − Peq (4.3)

where the property calculated at the equilibrium geometry within the Born–Oppenheimer
approximation, Peq, has been subtracted from the vibrationally averaged property
Pave,0. For temperatures above 0K, the vibrational averaging must include excited
states of the nuclear wave function through a Boltzmann averaging.

The nuclear wave functions are the solutions to the nuclear Schrödinger equation
[
−

∑
K

∇2
K

2MK

+ VPES(R)

]
Ψn,i(R) = En,iΨn,i(R) (4.4)

where VPES(R) is the potential energy surface and i is a label to distinguish the nu-
clear wave function states and the corresponding energies En,i. The first term in the
square brackets, the kinetic energy operator, takes different forms depending on which
coordinate system is used to describe the nuclear motion, see for example Ref. [72].
Having found a representation of the kinetic energy operator and the potential energy
surface, the nuclear vibrational wave function may be obtained in different ways for
example using a variational self consistent field wave function [73] or other variational
methods [72].

A different approach than the variational method is to find the vibrational wave
function from perturbation theory, as used in this thesis [74, 75, 76, 77, 78]. The
applicability of this approach is more limited compared to the variational treatment —
the vibrations must not have so large amplitudes that the perturbation theory breaks
down. The perturbation treatment is however still useful for the calculation of ZPVC
to molecular properties provided that the vibrations do not cause very large nuclear
displacements. In Section 4.2, two approaches based on the perturbation treatment
that have been employed in this work will be described.

Another alternative is to treat the vibrational effects directly using the full non-
Born–Oppenheimer Schrödinger equation Eq.(1.1) with the Hamiltonian Eq.(1.2) treat-
ing the nuclei and electrons on an equal footing. The ro-vibrational motion of the nuclei
is then an integral part of the wave function, and the vibrational contribution can not
be considered separate from the electronic contribution. These calculations are however
very expensive and only applied to very small molecules like H2 and LiH [79, 80].
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4.2 Perturbation Expansion Treatment

The vibrational wave function and the ZPVC to properties can be obtained using
perturbation theory. Here, we express the nuclear motions in normal coordinates Qk

at the molecular equilibrium geometry. In normal coordinates, the harmonic oscillator
Hamiltonian can be separated into a sum of Hamiltonians, one for each coordinate [81]

Hharmonic =
1

2

∑
k

(
− ∂2

∂Q2
k

+ κkQ
2
k

)
(4.5)

where κk are the force constants and the sum runs over the 3K normal coordinates, K
being the number of nuclei. Six (five for linear molecules) of the normal coordinates
correspond to translation and rotation of the molecule and there are consequently 3K−
6(5) vibrational normal coordinates in the harmonic approximation. The eigenvalues
Ek of the Hamiltonian Eq.(4.5) are sums of harmonic oscillator eigenvalues Ek

Ek =
∑

k

Ek =
∑

k

(
nk +

1

2

)
ωk (4.6)

where the vibrational frequencies ωk =
√
κk and nk = 0, 1, 2, . . . are quantum numbers

specifying the vibrational state of the k’th normal mode. The eigenfunctions, Ψharmonic
n,k

of Eq.(4.5) are products of harmonic oscillator wave functions written in terms of
Hermite polynomials Hnk

(Qk)

Ψharmonic
n,k =

∏
k

ψn,k =
∏

k

NkHnk
(Qk)e

− 1
2
Q2

k (4.7)

where Nk are normalization constants. Part of the ZPVC can in fact be calculated
by inputing the harmonic oscillator wavefunction Eq.(4.7) into Eq.(4.2), however, also
anharmonic vibrations are important. The anharmonic contributions can be obtained
from perturbation theory.

Having decided on the coordinate system in terms of normal coordinates, we con-
tinue by expanding the potential energy surface as a Taylor series around some arbitrary
expansion point Qref

V (Q) = E(Qref) +
∑

k

dE

dQk

ΔQk +
1

2

∑
kl

d2E

dQkdQl

ΔQkΔQl

+
1

6

∑
klm

d3E

dQkdQldQm

ΔQkΔQlΔQm

+
1

24

∑
klmn

d4E

dQkdQldQmdQn

ΔQkΔQlΔQmΔQn + . . . (4.8)
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where the electronic energy E and its derivatives are evaluated at Qref and ΔQk =

Qk −Qk,ref.
Using standard time-independent perturbation theory, we split the perturbed Hamil-

tonian, wave function and energy into orders in the perturbation

H = H(0) +H(1) +H(2) + . . . (4.9)

Ψn = Ψ(0)
n + Ψ(1)

n + Ψ(2)
n + . . . (4.10)

E = E(0) + E(1) + E(2) + . . . (4.11)

which, when inserted into the Schrödinger equation, results in a set of equations, one
for each order

H(0)Ψ(0)
n = E(0)Ψ(0)

n (4.12)(
H(1) − E(1)

)
Ψ(0)
n =

(
E(0) −H(0)

)
Ψ(1)
n (4.13)(

H(2) − E(2)
)
Ψ(0)
n +

(
H(1) − E(1)

)
Ψ(1)
n =

(
E(0) −H(0)

)
Ψ(2)
n (4.14)

These equations may be solved to yield the perturbed energies and wave functions. The
next sections describe the solution to these equations based on two different choices of
the expansion point Qref.

4.2.1 Potential Expansion Around the Equilibrium Geometry

The ZPVC obtained from expansion of the potential energy surface around the equi-
librium geometry has been described by Kern and Matcha [74, 75, 76]. Expanding the
potential energy surface around the equilibrium geometry, Qref = 0, setting E(0) = 0,
yields

V (Q) =
1

2

∑
k

d2E

d2Qk

Q2
k +

1

6

∑
klm

d3E

dQkdQldQm

QkQlQm

+
1

24

∑
klmn

d4E

dQkdQldQmdQn

QkQlQmQn + . . . (4.15)

as the first derivative vanishes at the stationary equilibrium geometry. The second
derivative of the energy is diagonal in the normal coordinates.

We can now set up the Hamiltonians

H(0) = Hharmonic (4.16)

H(1) =
1

6

∑
klm

kklmQkQlQm (4.17)

H(2) =
1

24

∑
klmn

kklmnQkQlQmQn (4.18)
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where kklm and kklmn are the cubic and quartic force constants, respectively

kklm =
d3E

dQkdQldQm

(4.19)

kklmn =
d4E

dQkdQldQmdQn

. (4.20)

The summations are over the 3N−6(5) vibrational normal coordinates—the rigid rota-
tion of the nuclear framework and its coupling to the anharmonic vibrational movement
is omitted from H since we are here only interested in zero point vibrations with rota-
tional quantum number J = 0.

The zeroth-order ground-state wave function is, inserting Eq.(4.16) into Eq.(4.12)

Ψ(0)
n = Ψharmonic

n . (4.21)

To construct the first order wave function, consider a general virtual excitation from
Ψharmonic
n

Ψrst...
abc... (4.22)

where the excitation levels of normal mode a, b, c . . . in Ψharmonic
n has been replaced by

the excitation levels r, s, t, . . .. The first order wave function is expanded in all possible
virtual excitations from Ψharmonic

n

Ψ(1)
n =

∑
a

∞∑
r

α(1)
ar Ψr

a +
∑
ab

∞∑
rs

β
(1)
abrsΨ

rs
ab +

∑
abc

∞∑
rst

γ
(1)
abcrstΨ

rst
abc + . . . (4.23)

where α(1)
ar , β

(1)
abrs and γ

(1)
abcrst are expansion coefficients. The first order expansion coeffi-

cients are found by solving the second-order perturbation equation. The result, when
truncating H at H(2), is that only four types of coefficients do not vanish [74]

α
(1)
a1 = − 1

4
√

2 (ωa)
3/2

∑
b

kabb

ωb

(4.24)

α
(1)
a3 = −

√
3

36 (ωa)
5/2
kaaa (4.25)

β
(1)
ab21 = − 1

4ωa
√
ωb

kaab

2ωa + ωb

(4.26)

γ
(1)
abc111 = −

√
1

12
√

2ωaωbωc

kabc

ωa + ωb + ωc

(4.27)

The force constants in these equations may be calculated by analytical derivative tech-
niques as in linear response theory (for harmonic frequencies), by numerical methods
or a combination of both. The expressions here in normal coordinates using a Taylor
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expansion of the PES look different from the expressions in Ref. [74] where the equa-
tions are expressed in reduced normal coordinates and a power series is used instead of
a Taylor series for the PES.

Having obtained a form of the nuclear wave function, truncating Eq.(4.10) at Ψ
(1)
n ,

we proceed by expressing the property as a function of the nuclear coordinates in a
Taylor series in the normal coordinates

P = P0 +
∑

k

αkQk +
1

2

∑
kl

βklQkQl +
1

6

∑
klm

γklmQkQlQm . . . (4.28)

where P0 is the equilibrium geometry value for the property and αk, βkl and γklm are
expansion coefficients determined as first, second and third derivatives with respect to
normal mode displacements of the nuclei, respectively—for example, αk = dP

dQk
.

Inserting Eqs.(4.10) and (4.28) in to Eq.(4.2), the ZPVC can be calculated as [74]

PZPVC =
1

4

∑
k

1

ωk

d2P

dQ2
k

− 1

4

∑
k

1

ω2
k

dP

dQk

∑
l

kkll

ωl

. (4.29)

To obtain the ZPVC, it is therefore necessary to calculate the first derivative and
the diagonal part of the second derivative of the property with respect to normal
coordinates as well as the vibrational frequencies and the semi-diagonal part of the
cubic force field.

4.2.2 Potential Expansion Around an Effective Geometry

In a different but related approach that is used to determine ZPVCs in this thesis, the
property and potential surface expansions are not done around the equilibrium geom-
etry but around a variationally determined effective geometry [77, 78]. The effective
geometry is found by minimizing the function

Ẽ(Qref) = E0(Qref) + 〈Ψn
∣∣H(0)(Qref)

∣∣Ψn〉 = E0(Qref) +
1

2

∑
k

ωk(Qref) (4.30)

with respect to the expansion point Qref. The effective geometry corresponds to the
geometry where the sum of the electronic energy and the harmonic vibrational energy
takes a minimum.

Since the effective geometry is not a stationary point on the PES, the first order
Hamiltonian Eq.(4.17) must include also the forces on the nuclei dE

dQk

H(1) =
∑

k

dE

dQk

Qk +
∑
klm

kklmQkQlQm (4.31)
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All expansion coefficients in the first order wave function as compared to Eq.(4.24)–
(4.27), stay unaltered except α(1)

a1 [77]

α
(1)
a1 = 0. (4.32)

At the effective geometry, the leading first order term in the vibrational wave function
vanishes.

The ZPVC is then found to be the difference between the the property evaluated at
the effective and equilibrium geometries plus a harmonic term from the perturbation
treatment at the effective geometry [78]

PZPVC = Peff − Pe +
1

4

∑
k

1

ωk

d2P

dQ2
k

(4.33)

The anharmonic contributions to the ZPVC are accounted for by evaluating the prop-
erty at the effective geometry and expanding the potential energy surface around the
effective geometry.
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Chapter 5

Discussion of Papers

The papers included in this thesis are here introduced and discussed shortly. Inves-
tigations of indirect NMR spin–spin coupling constants and their ZPVCs have been
considered in Paper I, II, III, IV and V. NMR shielding constants have been calculated
in Paper III, IV and V. Rotational g-tensors have been investigated in Paper VI, VII
and VIII. In Paper VIII, also magnetizabilities are considered.

The work presented in the papers is to a large extent related to Fig. 2.1 in that it is
focused on understanding better and revealing the size of the different sources of error
for magnetic property calculations using DFT—in particular, the basis-set error, the
intrinsic method error, and vibrational effects are adressed.

5.1 NMR Properties

In Paper I, indirect NMR spin–spin coupling constants for a set of 10 small and medium
sized organic molecules were studied using the B3LYP functional. The results were
compared to experimental values for the couplings, taking into account also vibrational
effects on the spin–spin coupling constants. The B3LYP calculations in Paper I were
found to overestimate the spin–spin couplings in the molecules by approximately 10%.
This overestimation was particularly systematic for the one-bond 1JCH coupling con-
stants. The remaining discrepancy is expected to originate from the intrisic error of
B3LYP and also the solvent effects which were not considered. The vibrational correc-
tions to 1JCH were typically around 5 Hz, and this value was used in a later benchmark
study of several DFT functionals for the calculation of 1JCH couplings [82].

The basis-set dependence of the calculated couplings was investigated carefully, and
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the Huz-IIIsu3 and Huz-IVsu41 basis sets can be recommended for DFT calculations of
spin–spin couplings since these basis sets is shown to give well converged values. Both
before and after the publication of Paper I , several other studies of basis-set conver-
gence of spin–spin coupling constants have appeared in the literature, for example, for
DFT [83, 84, 85] and wave-function methods [86, 87]. Several of the DFT studies take
the correlation-consistent basis sets of Dunning [88] as a starting point before making
modifications tailored to the demands on the basis set for spin–spin coupling calcula-
tions. The correlation-consistent basis sets have the possibility of systematic extension
but are constructed for correlated wave-function methods and are unneccesarily large
for DFT calculations. For DFT calculations therefore, the smaller Huzinaga basis sets
used in Paper I offer a low cost alternative that still yields well-converged spin–spin
coupling constants.

In Paper II, the main focus is the calculation of ZPVCs to NMR spin–spin coupling
constants. They were investigated at the DFT B3LYP level using perturbation theory
as described in Section 4.2.1. The ZPVCs to the spin–spin coupling constants are
found to be large, sometimes more than 10% of the experimentally measured coupling,
in agreement with previous studies [89, 90]. The large ZPVCs to spin–spin coupling
constants makes it clear that it is important to take vibrational corrections into account
when comparing experiment and theory. The results of Paper II have been widely
used in the scientific community for comparing calculated spin–spin coupling constants
with experimental results, taking also vibrational effects into account, see for example
Refs. [82, 91, 92].

Recently, Hansen et al. [93] published vibrational effects on spin–spin coupling
constants at the DFT level (B3LYP) where more accurate variationally optimized vi-
brational wave functions were used instead of a perturbation treatment. Very good
agreement between vibrational contributions in Paper II and the work of Hansen et al.
was found, confirming the adequacy of the computationally less expensive perturbation
theory for this problem. Also, the ZPVC to 3JHH in HCCH, for which the DFT result
of Paper II deviated from the SOPPA(CCSD) result of Ref. [94], was found to be in
better agreement with Paper II correction than the SOPPA(CCSD) correction.

A comparison of available results of correlated wave-function methods for spin–spin
coupling constants in Paper II with experimental data did not give a clear cut picture
of which method gives the best agreement with experiment. Clearly, there are more

1The notation of adding sun after the regular basis-set name means that the s-functions of the
basis set are uncontracted, and that n s-functions with large exponents are added.
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significant sources of error in the calculation of indirect spin–spin coupling constants
and the comparison with experiment that are not yet taken into account. Solvent
effects are in many cases found to be important (see for example [95, 96]) and should
be modeled to mimic the experimental conditions in each case. Also, few benchmark
calculations at the robust coupled-cluster level are available in the literature due to
the high computational cost of calculation of spin–spin coupling constants, but some
studies have been performed [97, 98, 99]. There is also a lack of accurate experimental
data for small molecules where the CC methods can be applied. In addition, the usual
reference method CCSD(T) is found not to be a good choice for benchmarking as it
can be affected by triplet instabilities [100]. All these issues need further investigations
before the difference between experiment and theory is completely understood.

Next, in Paper III, the performance of the CAM-B3LYP functional was tested for
the calculation of several chemical parameters—thermochemical data, structures and
spectroscopic constants. For the properties of most interest here, the indirect nuclear
spin–spin coupling constants (11 small organic and inorganic molecules tested) and
NMR shielding constants (22 molecules tested), CAM-B3LYP was found to give a
slight improvement over B3LYP. By contrast, the CAM-B3LYP functional was found
to give a substantial improvement over B3LYP for long-range interaction properties,
e.g. Rydberg and charge transfer excitation energies. For results on other properties,
we refer to the Paper III.

In Paper IV, the challenging o-benzyne molecule was investigated, calculating the
NMR shielding and spin–spin coupling constants at the CCSD and various DFT levels
of theory. The o-benzyne molecule has a low-lying triplet state which makes it prone to
triplet instabilities and inaccurate predictions of triplet properties like the SD and FC
contributions to the spin–spin coupling constants. Part of the focus of the paper was
the intrinsic error of DFT methods for the calculation of indirect spin–spin coupling
constants due to triplet instabilities. It was shown that the problems related to the
triplet instability were greatly reduced when the calculations were performed at the
optimized and not at the experimental geometry of the molecule. This is a simple
but yet important observation, since it suggests a procedure to minimize the triplet
instability problems in other biradical molecules. Of the functionals tested, the PBE
functional gave the best agreement with experimental results for spin–spin coupling
constants. The hybrid functionals had large errors, probably related to the triplet
instability, also at the optimized geometry. Partly inspired by the work of Auer and
Gauss [100], further investigations on the triplet instability problems of different DFT
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functionals is in progress [101], the preliminary results confirming the stability of LDA
and GGA functionals compared to hybrid functionals.

In Paper IV, the shielding constants for o-benzyne were also investigated where the
KT1 and KT2 functionals performed best, in agreement with other density functional
assessments [102, 103]. The experimental determination of the NMR parameters in
o-benzyne is performed on molecules incarcerated in molecular containers. The agree-
ment between PBE, KT1, KT2 and CCSD suggests that the remaining discrepancy
from experiment is due to incarceration.

Following the conclusions from the study on o-benzyne, the NMR parameters of the
bowl, ring and cage isomers of the C20 molecule were investigated in Paper V, using
the successful PBE, KT1 and KT2 functionals from Paper IV at optimized geometries.
The three isomers of C20 are nearly isoenergetic and their relative stability has been
the subject of a number of theoretical studies giving various results for different basis
sets and methods. Also, the strained multiple bonds found in these isomers indicate
low-lying triplet states, providing a tough challenge for electronic structure methods.
Overall, PBE was found to perform best in this study.

5.2 Rotational g-tensors and Magnetizabilities

In Paper VI, VII and VIII, the rotational g-tensor has been studied. As noted in
Section 3.7.1, the rotational g-tensor is suited for the benchmarking of electronic struc-
ture methods because of the high accuracy obtained in experiments. The first DFT
calculations of the rotational g-tensor using rotational London atomic orbitals were
presented in Paper VI for four small molecules known for large correlation effects.
Calculations at the Hartree–Fock and multi-configurational-self-consistent-field levels
of theory were also performed. The BLYP and B3LYP functionals showed a better
performance than LDA, and the DFT calculations showed fair agreement with both
experiment and MCSCF calculations.

Then, for the first time, OEP calculations of rotational g-tensors were presented in
Paper VII for a large set of molecules and compared to experiment. The OEP method
has given improved results for other magnetic properties (see for example [25, 102,
104, 105]), and therefore an improved description of also the rotational g-tensor was
expected. It was found that the OEP method gave rotational g-tensors in much better
agreement with experiment than the underlying hybrid functionals, also improving
upon the KT2 functional which was found to perform well in Ref. [106]. Also, for
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a subset of molecules, coupled-cluster electron densities were used to calculate DCPs
with the WY method, and the resulting potential was used as input to rotational g-
tensor calculations. The performance using the WY DCPs was found to be slightly
better than the OEP performance.

Finally, in Paper VIII, rotational g-tensors together with magnetizabilities were
calculated using a wide variety of functionals and comparing the calculated tensors to
high level CCSD and CCSD(T) calculations and also experimental numbers including
vibrational corrections. The basis-set limits of the properties were estimated using
extrapolation techniques. Comparing the calculated g-tensors directly to experiment
as was done in Paper VII, revealed that the DFT calculations performed very well
and far better than even CCSD(T). When adding vibrational corrections the picture
was inverted: CCSD(T) agreed perfectly with the vibrationally corrected experiments
while the DFT methods deteriorated. For a critical comparison with g-tensor ex-
periments therefore, it is important to consider vibrational corrections as the DFT
calculations will otherwise benefit from a cancellation of errors. At the same time,
since the CCSD(T) method shows such a good performance compared to the accu-
rate vibrationally corrected g-tensors, it is clear that benchmarking DFT, comparing
density-functional methods to CCSD(T) calculations is a highly attractive option. In
this case, the same geometry can be used for the CCSD(T) and DFT calculations
removing all the problems related to vibrations, solvation, and other experimental un-
certainties. This is particularly attractive for properties that are difficult to measure
accurately like the magnetizability and the opportunity was made to also compare DFT
magnetizabilities to CCSD(T) magnetizabilities. A similar study to that in Paper VIII
for NMR shielding constants and spin-rotation constants is in preparation [107].

In Paper VIII, it was found that the magnetizabilities obtained using high quality
WY DCPs with CCSD(T) electron densities as input were close to magnetizabilities ob-
tained from the CCSD(T) method in the same basis set. Importantly, the discrepancy
was found to be of the same magnitude as the current-density-functional contribu-
tion calculated by Handy and co-workers [52] (although the CDFT contribution has
the wrong sign). These observations encourage further investigations of the current-
density-functional exchange–correlation energy in calculations of magnetic properties.
The statement that the CDFT contribution is small is, at the present development
level of DFT, wrong.
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5.3 Summary

To conclude, the work presented in this thesis is a contribution to the understanding
and testing of DFT functionals (and also other computational methods) for the calcu-
lation of second-order magnetic properties. Vibrational contributions to the properties,
in addition to be interesting in their own right, are highly important in the benchmark
process in order to bridge quantum-chemical calculations to experimental measure-
ments. Several DFT functionals and basis sets have been tested for magnetic property
calculations and give directions on the choice of functional and basis set for practical
application work. For the rotational g-tensor and magnetizability, a benchmark set of
high quality coupled-cluster calculations has been developed and is available for future
benchmark studies. The proper benchmarking of DFT methods gives directions to
both new functional developments and the choice of functional in applications.
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