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List of symbols used in the

chapters

(x, y, z) Cartesian coordinates
t time
∂x = ∂

∂x
partial derivative with respect to x

∇ = (∂x, ∂y) gradient operator
Δ = ∂2x + ∂2y Laplace operator
v = (vx,vy,vz) velocity field
p(x, y, z) pressure field
ρ mass density
g gravitational acceleration field
H width of a Hele-Shaw cell
Ψ Laplacian field in the Safmann-Taylor instability
μ fluid viscosity
h(x, t) interface undulation
V (0) velocity of a flat interface
ε expansion parameter in the perturbation analysis
h(1)(x, t) first order term in the morphological perturbation

h
(1)
k (t) Fourier coefficient of the perturbation
ω growth rate
k wavenumber
exp(ikx) Fourier mode
γ surface tension
κ interface curvature
μ[x, h(x)] chemical potential at a stressed surface
F Helmholtz free energy per unit volume
V molar volume
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6

σij elastic stress components
εij elastic strain components
u = (ux,uy) elastic displacement field
J interface mass flux
Vn normal interface velocity
U(x, y) BiLaplace field
(nx, ny) normal vector at an interface point
M positive mobility coefficient
τ0 constant shear stress
P0 hydrostatic pressure
G elastic shear modulus
E Young’s modulus
ν Poisson’s ratio
σ∞ normal load at infinity
εkk =

∑
k=x,y,z εkk trace of strain

Hi(x, y) linear shape functions for triangular elements
N (2, 6)-array with the shape functions
D (3, 2)-array with differentials operating on shape functions
D (3, 3)-array with the elastic coefficient for in-plane stress
B = DN 3, 6-array with the spacial derivatives of the shape functions
û displacement field at the nodes of the finite elements

f̂ body force in the finite element
ϕ(x, y, t) level set function
W surface velocity of the level set
f Helmoltz free energy per unit mole
σe effective contact stress
c concentration of the soluble component
T temperature
φ(x, t) porosity field
μ fluid bulk viscosity
k(φ) permeability
η solid bulk viscosity
τ = z − V t comoving coordinate
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List of symbols used in the

papers

Hereby, only the symbols which are additional to the previous list, or have a
different meaning are listed.

Paper I

Γ interface boundary

F̃ interfacial free energy per unit area
σ0 normal load at infinity

Paper II

φ(x, y, t) level set
e specific internal energy
Q reaction rate at the interface
s specific entropy
Πs entropy production at the interface
K mobility coefficient
W normal velocity at the interface
K curvature
L length of a 1D elastic bar
g specific Gibbs energy at the stressed interface
W work done on the interface by the normal stress
ϕ(z), χ(x) Goursat’s complex functions
ψ(z) = χ′(z) z-derivative of the χ(z) complex function
Φ(z),Ψ(z) perturbation fields to the Goursat’s functions
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Paper IV

F (t) stochastic force field
ε∗ energy dissipation rate
Δr(t) pair-distance between two advected particles at time t
ν kinematic viscosity
f random forcing in the shell models
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Chapter 1

Introduction

Figure 1.1: Grain-grain rough
interface in a limestone from
Mons, Belgium. Picture sup-
plied by courtesy of Francois
Renard.

Pattern formation in multiphase systems is
a central subject in research on nonlinear
dynamics. In geoscience, the interest has
been sparked by the ubiquitous appearance
of spectacular patterns on all scales in na-
ture, ranging from molecular levels to the
scale of the Earth. A common goal for re-
search on pattern formation has been to il-
luminate the fundamental physical mecha-
nisms and the coupling between them. Here
we shall demonstrate in a few model sys-
tems how basic physical principles can ex-
plain complex morphologies observed in de-
formable and reactive materials.

The evolution of grains and grain sur-
faces is usually governed by stress or/and thermally activated physical pro-
cesses. It involves mechanical deformation often coupled with chemical al-
teration e.g. surface growth by dissolution and precipitation. An aggregate
of crystals may evolve by local recrystallization, where one crystal can grow
at the expense of another in order to minimize the total (Gibbs) free energy.
When identical crystals in contact have different crystallographic orienta-
tions, the one in the more energetically favorable state tends to grow at the
expense of the other. This growth imposes a lattice preferred orientation
of the individual grains and leads to a large scale anisotropy. It is common
to observe such an anisotropy, for example in flowing ice [28] or in mineral
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12 CHAPTER 1. INTRODUCTION

olivine in the Earth’s upper mantle [15].
Surface instabilities triggered by evaporation and condensation in heated

polycrystal were first analyzed in a seminal work on thermal grooving in [43].
Here we shall consider a similar instability in systems where mass is trans-
ported by surface diffusion along gradients of chemical potentials. In stressed
systems, the surface diffusion is typically controlled by mass transported from
regions of relatively high stress (high chemical potential) to regions of low
stress (low chemical potential). This process corrodes the surface and gives
rise to an instability which has been extensively studied and is also known
as the Asaro-Tiller-Grinfeld instability [2, 25]. Often the mass transport is
mediated by an interstitial fluid via dissolution in stressed regions and the
subsequent precipitation at free sites, a process also known as ‘pressure solu-
tion‘ [65, 61]. The phenomenon of sutured grain boundaries in sandstone [62]
is one example where undulating surfaces are believed to be generated by
pressure solution (see Fig. 1 for an example of grain-grain rough bound-
ary). Stress-induced grooves due to ATG instability have been observed in
laboratory experiments on salt crystals [13, 7] or on helium crystals [63]. In
general, however, the effect of pressure solution on surface morphology can be
very case dependent and other mechanisms may prevail, such as dislocation
induced dynamics.

A fundamental problem in formulating a theory of large scale dynamics
of rock deformation is to establish a link between large scale properties and
the small scale structures, or how to make the transition from a discrete
to a continuum formulation. In porous solids, such as sedimentary rocks,
a continuum formulation is often based on a porosity field which represents
the volume fraction of the rock occupied by fluids. The fluids are assumed
to form a percolating and connected network and provide pathways for the
migration of the dissolved material. On the large scale, the pressure solution
is manifested in an effective viscous deformation mechanism by which the
overall porosity decreases [1, 18, 54, 51].

In compacted sedimentary rocks intricate localized patterns are com-
monly observed. One ubiquitous example is stylolites, which appear as
spontaneously generated seams formed perpendicular to the direction of com-
paction. The seams form a characteristic irregular surface with columnar or
teeth like structures typically filled with a residual material such as clay (see
Fig. 1). A morphological analysis of the stylolite surface has revealed a self-
affine structure over at least two decades where small scale features reoccur
on larger scales [56]. Despite intensive field studies on stylolites from the
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micro to the meters scales, little is known about the detailed mechanisms
controlling their formation. In fact only initial stages of stylolite formation
have been reproduced in experiments, e.g. from indentation experiments [24].
Also from a modeling point of view there seems to be little consensus on the
origin and roughening of the stylolites. In [17] it was argued that the disso-
lution surfaces nucleate from small heterogeneities or inclusions that grow in
a direction normal to the compaction, i.e. they act as ‘anti-cracks‘. It has
also been proposed, that the roughening is formed from local heterogeneities
that are pinning an initially flat seam [32]. Other models suggest that clay
may play an active role by enhancing the diffusion and transport along the
chemical potential gradient [65].

In the subsequent sections, we shall here treat in detail several funda-
mental questions related to the topics outlined above. One question relates
to the physical mechanism in the roughening of an interface in a stressed
heterogenous solid, and, in particular, whether this alone could explain the
columnar irregularities of stylolites. The other question is concerned with
the formation of localized patterns in a porous material and whether these
could emerge as a self-organization due to a nonlinear evolution of porosity.

The thesis comprises two chapters and four articles. The first chapter is
intended as the groundwork for the first three appended articles. The second
chapter elaborates on compaction by pressure solution and provides a one
dimensional analysis for the evolution of porosity. The first steps made in
this chapter are the basis for future work.

In the first chapter, we analyze several model setups of a moving inter-
face separating two dissimilar phases, namely a liquid-liquid, liquid-solid and
solid-solid interface. Analytical calculations for an infinitesimally perturbed
interface are combined with numerical simulations in order to study the evo-
lution of the interfacial morphology in the linear and nonlinear regimes re-
spectively. The analytical part is formulated as a BiLaplacian growth prob-
lem, which can be solved for a linearly perturbed interface. To study the
nonlinear growth regime, we developed a numerical scheme based on finite
element methods coupled with a level set method for tracking the evolution
of the interface.

The second chapter deals with reactive transport in porous materials
and the local evolution in porosity. The reaction by pressure solution is
localized at the grain-to-grain contacts and is manifested by the dissolution
and transport along the grain contacts and precipitation at the pore walls,
away from the contact. At the continuum scale, the pressure solution induces
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14 CHAPTER 1. INTRODUCTION

a viscous rheological response to stress. In this study, we investigated the
solitary solutions of the corresponding equation of porosity evolution.

In the first article, we study the evolution of a solid-solid coherent inter-
face driven by a stressed-induced mass exchange between two solid phases.
We show that for a coherent interface, which preserves the continuity of the
displacement field and the stress vector, the normal propagation velocity is
controlled by the jump in the Helmholtz free energy. In the limit where
the interfacial thickness goes to zero (sharp limit), the interface develops a
finger-like instability which propagates from the phase with higher Young’s
modulus (harder) into the phase with lower Young’s modulus (softer). The
fingers grow in the direction of the principal compaction direction unlike in
the ATG instability.

The second article provides a detailed analysis of the setup presented in
the first paper. Here we derived, from basic conservation laws and ther-
modynamics of irreversible processes, the governing equation of motion of
a coherent interface. We arrived at an expression which related the normal
velocity with the jump in the specific Gibbs energy. A linear stability analy-
sis of small morphological perturbations revealed that the roughening of the
interface depends on the Poisson’s ratios or the degree of incompressibility of
each phase. Typically, the interface propagates from the harder phase into
the softer phase. However, when the mass densities in the unstressed state
are the same and the Poisson’s ratios sufficiently large, we found that the
direction of propagation can be reversed.

The stability of fluid-solid contacts under both shear and normal loads
has been studied in the third article. The fluid flow past an undulating solid
surface induces a mass transport of diffusion along the surface from regions
with higher chemical potential to regions with lower chemical potential. The
shear flow has a stabilizing effect, whereas the hydrostatic pressure tends to
destabilize the interface. In the presence of both shear and normal stresses,
we found that the morphological stability depends on the Poisson’s ratio. We
applied this analysis to the stability of faults and established a relationship
between the static friction coefficient and the Poisson’s ratio, which remains
to be tested by field observations.

On a seemingly different topic, the fourth article is about turbulence and
superdiffusion of passively advected pair particles. The implicit linkage to
the previously mentioned topics becomes more apparent on a larger frame
where the inertial, nonlinear effects are added to an otherwise viscous flow.
Many hard to solve problems are posed once the flow is dominated by non-
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linear interactions across scales. Thus, the mainstream of turbulence studies
are mainly applied to a homogenous single phase. Multiphase turbulent flow
is to a large extent in its infancy. Broadly speaking, turbulence is a dy-
namical regime characterized by chaotic flow patterns and cascades across
inertial scales. Classical turbulence is usually described by the Navier Stokes
equation when the advection term dominates over the momentum diffusion
term. The strength of the inertial advection versus the dissipative forces is
measured by a dimensionless number called the Reynolds number, Re = UL

ν
,

where U and L are characteristic velocity and length scales respectively and
ν is the kinematic viscosity. As the Re number tends to infinity, the inertial
motion becomes dominant over a wide range of scales above a dissipative
lengthscale. Within the inertial range of a three dimensional turbulence, the
energy is cascading from the large scale where it is injected all the way down
to the dissipative molecular scale. The cascade is a self similar process and
follows the Kolmogorov scaling [33], 〈|v(x+ r, t)− v(x)|2〉 ∼ ε2/3r2/3, where ε
is the constant energy flux or the energy dissipation rate. In the Kolmogorov
theory, the rate of energy being cascaded stepwise from one scale to the next
one is kept constant and thus equal to the energy dissipation rate. In this
case, the scaling of the statistical quantities, i.e. structure functions or cor-
relation functions, can be deduced by dimensional analysis. However, the
statistics for a turbulent flow is known to deviate from the Kolmogorov the-
ory and this has to do with intermittent high amplitude bursts and long range
correlations across scales. Two-dimensional turbulence has its own particu-
larities because of the existence of a second quantity, namely enstrophy, which
is cascaded downscale while the energy is transported in the opposite direc-
tion. One fundamental problem in turbulence is to determine the corrections
to Kolmogorov scaling from the first principles, e.g. [39]. Particles advected
by a turbulent flow follow chaotic trajectories [16]. The pair particles are
known to follow the Richardson dispersion law [52], by which their relative
distance scales with time as 〈R2〉 ∼ εt3. In the article, we advanced the
idea that random uncorrelated force fields can generate turbulence motion
consistent with the classical Kolmogorov scaling and Richardson dispersion.
Multiscaling and intermittency in the turbulent velocity have to do with the
long range correlation and extreme events in the force field.

The thesis chapers are based on the papers and provide additional ex-
planatory material. However, the notation used in the chapters is not entirely
the same as the notation adopted in each paper. Therefore, a list of symbols
is attached at the beginning of the thesis. The relation between chapters and
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16 CHAPTER 1. INTRODUCTION

papers is emphasized in the table below.

Chapter sections Papers and sections

2.2 Liquid-solid III
2.2.1 Flat interface III, sec. 3.2
2.2.2 Perturbed interface III, sec. 3.3
2.2.3 Linear stability III, sec. 3.4
2.3 Solid-solid III, II, I
2.3.1 Wet interface III, sec. 4
2.3.2 Dry interface II, sec. II A
2.3.3 1st and 2nd order II, sec. II, sec. III
2.3.4 Nonlinear regime II, sec. IV, sec. V
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a)

b)

Figure 1.2: a) Sample of stylolite interface in sandstone in Spitsbergen, Sval-
bard. b) 3D view of a stylolitic surface in limestone in Northern Israel (coin
for the scale). Pictures supplied by courtesy of Francois Renard.

17



18 CHAPTER 1. INTRODUCTION

18



Chapter 2

Stability of moving interfaces

Fluid 1

Fluid 2 

x

y

z

H

g

Figure 2.1: Sketch of the setup
for Saffman-Taylor instability
of a two-phase Hele-Shaw flow.

Interfaces are transition regions over which
material properties (densities, rheological
properties, stress, velocity) undergo steep
gradients. In the limit where their thick-
ness is much smaller then the system size,
one may idealize their internal structure and
represent them as discontinuity surfaces or
sharp interfaces. When the velocity or dis-
placement field is continuous across a sharp
interface, we say that the interface is ma-
terial. In contrast, a non-material interface
moves with a velocity which is different from
the material velocity field, as in the case of a
reactive surface. Interfaces are omnipresent
in nature and their dynamics is intrinsically
related to the large dynamics of multiphase
materials.

In this chapter, we shall present in de-
tails the stability analysis of various reactive
sharp interfaces in two-phase systems. We
find that the interfacial stability is related to
material discontinuties, state of stress and its rheological response to stress
(viscous, elastic).

We start by reviewing the classical analysis of viscous fingering, where
the stability of a material interface depends on the direction of the flow
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20 CHAPTER 2. STABILITY OF MOVING INTERFACES

with respect to their relative density and viscosity. The subsequent sections
are devoted to study the interfacial dynamics due to stress-induced mass
transport. The linear stability analysis leads to a dispersion relation which
determines the criteria for the development of rough surfaces. For a solid-
solid interface, the onset of instability is validated in the finite amplitude
regime by numerical simulations. The numerical modeling combines finite
elements method for solving the bulk elastostatic equations with level set
method for tracking the moving interface.

2.1 Viscous fingering

Morphological instabilities develop not only along reactive interfaces, but also
material interfaces separating immiscible phases. The well-known example
for this is the viscous fingering instability in multiphase fluids.

When two immiscible fluids are transported by a pressure gradient through
a pipe, the stability of their interface depends on the direction of the flow.
Namely, a less viscous fluid (like water) migrates into a more viscous fluid
(like oil) by developing fingers which move ahead of the interface at various
speeds. Contrarily, the interface remains planar when the water is ahead in
the pipe and pushed by the oil. This instability is known as Saffman-Taylor
instability [55] or viscous fingering and is typically developed in other setting
as well where the interfacial dynamics is controlled by a Laplacian field, such
as in diffusion limited aggregation (DLA) and dendritic growth [36].

The governing equations for an incompressible viscous flow are given by
Stokes equations combined with the continuity equation,

μ∇2v−∇(p+ ρgz) = 0 (2.1)

∇2(p+ ρgz) = 0, (2.2)

where v = (vx, vy, vz) is the velocity vector field. For incompressible fluids,
mass conservation imposes that the velocity is a solenoidal field, ∇ · v = 0.
The fluid density is denoted by ρ assumed to be constant, and μ is the kine-
matic fluid viscosity. The gravitational field g is pointing downwards opposite
with respect to the vertical z-axis. When the flow is confined between two
parallel plates in the (x, z)-plane, the velocity in the y-direction vanishes (see
Fig. 2). For a single phase flow, we can assume a homogenous flow in the
x-direction and therefore obtain essentially an uniaxial flow in the z-direction
with vz(y, t). The usual boundary conditions are given by the no-slip velocity

20



2.1. VISCOUS FINGERING 21

at the boundary with the plates, vz(0) = vz(H) = 0 and a constant pressure
drop between inlet and outlet. The solution of the above equations for this
setup is given by a quadratic profile across the y-axis, namely

vz = −∂(p+ ρgz)

∂z

1

2μ
y(y −H), (2.3)

with constant pressure gradient. A linear flow law between the pressure drop
and the mass flux, also known as Darcy’s law, is obtained from the mean
velocity, Hv =

∫ H

0
vz(y)dy, and given as v = ∂zΨ where Ψ = − H2

12μ
(p + ρgz)

is the potential field which satisfies the Laplace equation,

∇2Ψ(x, z) = 0. (2.4)

As illustrated in Fig. 2, an interface between two viscous fluids extends along
the x-axis and is situated at z = zI . Fluid 1 occupies the upper half-plane
with z > zI and fluid 2 is below at z < zI . When the interface is flat,
i.e. zI = 0, the mean velocity v for each fluid is constant along the x-axis
and equal to a uniform translation velocity V (0), where the upper index 0
refers to a flat interface. V (0) is positive when pointing upwards and negative
otherwise. The interfacial velocity, however, may vary along an undulating
interface. This is seen for instance when we consider a small undulation along
the interface such as zI = h(x, t). Then the material velocity at the interface
is V (0)+∂th(x, t). The evolution of the interface is determined by solving the
Laplace equation Eq. (2.4) for each domain and matching the two solutions
through the interface boundary conditions given by the continuity of velocity
field and pressure (in the absence of surface tension), namely

∂Ψj

∂z

∣∣∣∣
z=h

= V (0) + ∂th (2.5)

12μ1

H2
Ψ1(x, h) + ρ1gh =

12μ2

H2
Ψ2(x, h) + ρ2gh, (2.6)

where the lower index j = 1, 2 refers to the upper and lower fluid phases.
A simple solution can be obtained for a small morphological perturba-

tions where h(x, t) = εh(1)(x, t) with ε � 1 and h(1) is the morphological
amplitude to linear order. In the linear regime, the potential fields can
be expanded in terms of ε as Ψj(x, z) = Ψ

(0)
j (x, z) + εΨ

(1)
j (x, z), where

j = 1, 2 is the fluid phase index, and the upper index 0 and 1 relates to
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22 CHAPTER 2. STABILITY OF MOVING INTERFACES

order of the expansion. For an infinite extension in the x-direction, the in-
terfacial shape can be decomposed into a superposition of Fourier modes
h(1)(x, t) =

∫
dkhk(t) exp(ikx), which may grow or decay at an exponential

rate as hk(t) = exp(ωt). The growth rate ω, which may depend on the
wavenumber k, determines the morphological stability of the interface.

The perturbed fields Ψ
(1)
j (x, z) satisfing ΔΨ

(1)
j (x, z) = 0 admit a generic

solution on the form

Ψ
(1)
j (x, z) =

∫
dkAj,k exp(∓kz + ikx), (2.7)

with an exponential decay at z-direction for each domain. The coefficients
Aj,k for j = 1, 2 are determined by the interfacial boundary conditions (see
Eqs. (2.5)-(2.6)), which to a linear order become

∂Ψ
(1)
j

∂z

∣∣∣∣
z=0

= ωh(1) (2.8)[
12μ1

H2
Ψ

(1)
1 − 12μ2

H2
Ψ

(1)
2

]
z=0

=

[
12(μ2 − μ1)

H2
V (0) + (ρ2 − ρ1)g

]
h(1).(2.9)

Solving the above system using Eq. (2.7) and the Fourier transform of h(1),
it follows that A1,k = −A2,k = −ω/k, and

ω

k
=
gH2

12

ρ1 − ρ2
μ1 + μ2

+ V (0)μ1 − μ2

μ1 + μ2

. (2.10)

From the above relation, we see that the stability of the interface depends
on the direction of the flow (by the sign of V (0)), the relative density ρ1 − ρ2
and relative viscosity μ1−μ2. The interface becomes unstable when the flow
is under gravity with the denser fluid on the top of a lighter fluid or when
the flow is upwards with a positive V (0) and the less viscous fluid at the
bottom is migrating into the more viscous fluid above it. The growth rate
is linearly proportional to the wavenumber, and therefore there is no mode
selection, e.g. the interface is either stable or unstable at all lengthscales. In
the presence of surface tension, there will be an additional term in the growth
rate related to the curvature and surface tension. It can be shown that this
term is stabilizing the interface perturbations with wavelengths smaller than
a critical value equal to 2πH

√
γ[12V (0)(μ1 − μ2) + (ρ1 − ρ2)gH

2]−1/2, with γ
being the surface tension [55]. At finite morphological amplitude, the nonlin-
ear interactions give rise to tip-splitting and side-branching instabilities [30],

22



2.2. LIQUID-SOLID INTERFACE 23

in addition to the coarsening of fingers into a single dominant finger spanning
the system size (e.g. [36]).

A similar perturbation analysis technique is applied to study the mor-
phological instability of reactive interfaces where mass is being transported
along or across the interface. When one phase is replaced by an elastic solid,
the field equation in the corresponding domain is relapled by a BiLaplace
equation.

2.2 Liquid-solid interface

Fluid

Solid

n

p
shear

y

x

Figure 2.2: Illustration of a
fluid-solid interface, when the
fluid above is under uniform
shear with the far field shear
stress τ0.

Multiphase systems subjected to non-
hydrostatic stresses often undergo morpho-
logical or structural changes. As the sim-
plest multiphase system, we consider a two-
phase body with an interface and a chemical
component which is able to migrate between
phases. The far-field applied stresses induce
bulk deformations or creep and may acti-
vate interfacial processes such as chemical
transport along a stress-dependent chemi-
cal potential gradient. It is known that
ripples and grooves are developed along a
liquid-solid interface, when the system is lat-
erally compressed, such that the liquid is
kept at rest and the solid deforms elasti-
cally [63, 19, 58, 29]. The interfacial insta-
bility, commonly referred to as Grinfeld or
ATG instability [2, 25], is driven by surface
gradients in a stress-dependent chemical po-
tential. At an undulating interface, the ma-
terial tends to dissolve in the troughs (from
the solid side) with higher chemical potential, diffuse along the interface
and precipitate on the crests with lower chemical potential. This positive
feedback leads to surface roughening up to the scale where the stabilizing
curvature effects become important. The theory of stress-induced chemi-
cal transport was developed similarly with that of thermal grooving [43] or
solidification fronts due to thermal gradients as in Mullins-Sekerka instabil-
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ity [44]. In stressed solids, surface diffusion may occur due to a gradient in
the normal stress vector. The stability of a surface under stress corrosion
was performed [25, 60] and found to be linearly unstable.

When a stressed solid is in contact with a saturated fluid, the chemical
potential along the interface has the form [50, 58]

μ[x, h(x)] = F [x, h(x)]V − σnn[x, h(x)]V , (2.11)

where h(x) is the interface coordinate and V is the specific molar volume
of the soluble component at the solid surface. The Helmholtz free energy
per unit volume is denoted by F . In this formulation, we assume that the
elastic deformations as well as the interfacial mass transport occur at a con-
stant temperature. The thermodynamics of linear elastic deformations in
isothermal conditions is described by the Helmholtz free energy F equal to
the elastic strain energy [35]

F =
1

2
σijεij, (2.12)

with σij being the elastic stresses are linearly related to the elastic strains
εij by the Hook’s law. We treat the limit where the temperature effects can
be decoupled from the mechanical and chemical effects. The normal stress
vector at the interface is denoted by σnn relates to the interfacial traction
on moving an atom along the interface. For a free surface σnn = 0, while
if the surface is in contact with the fluid then σnn = −p, with p being the
hydrostatic pressure in the fluid.

An explicit evaluation of the chemical potential involves the solution of
the elasticity problem associated with a moving boundary. Namely, the in-
terface is moving due to mass diffusion along its surface. The dynamical
equation describing its motion is derived below.

The force acting on atoms along the interface is given as −∂μ/∂s, where
s is the interfacial arc length. Assuming a Fick’s law, the atomic flux along
the interface can be written as [43]

J = − D

kTV
∂μ

∂s
, (2.13)

where [Ds] = m2 · s−1 is the mass diffusivity involved in the surface diffusion
process, [kT ] = Pa ·m3 is the thermal energy, [V ] = m3 ·mol−1 is the molar
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volume. The conservation of mass requires a kinematic constraint such that
the normal velocity of the interface is

Vn = −V2a
∂J

∂s
=M

∂2μ

∂s2
, (2.14)

where [a] = mol ·m−2 is the surface density of atoms and M = DsaV/kT is
a positive mobility coefficients measured in units of [M ] = Pa−1s−1.

Since mass diffusion is a slow processes, the interfacial velocity is much
smaller than the speed of sound. Hence, it is reasonable to assume that,
on the timescale of the interfacial process, the bulk phases are quasistatic.
Hence, the solid phase is in elastostatics and satisfies

∇ · σ = 0, (2.15)

where σij are the tensorial elastic stress components. Hereby, the analysis
will be carried out for two dimensional systems. In-plane elastostatics can
be described by the Airy’s stress field U(x, y) which satisfies the biLaplace
equation [45]

∂4U

∂x4
+ 2

∂4U

∂x2∂y2
+
∂4U

∂y4
= 0, (2.16)

and from which the stresses are defined as

σyy =
∂2U

∂x2
, σxx =

∂2U

∂y2
, σxy = − ∂2U

∂x∂y
. (2.17)

The mechanical equilibrium translates into a set of two equations for stresses
or displacements in x, respectively y direction, which are often harder to solve
analytically. Representing the stresses in terms of a scalar field U(x, y) makes
the problem sometimes more tractable. The analytical solvability depends
to a large extent on the boundary conditions and the geometry of the solid.

Linear stability analyses were carried out for free surfaces in [60] or for
surfaces in contact with a hydrostatic fluid [19, 10]. The nonlinear mor-
phological evolution leads to cusp-like singularities in finite time [68, 67].
When the solid phase is subjected to biaxial stress, where the applied stress
is tensile in one direction and compressive in the other, there is a pattern
selection from stripes to diamond-like morphology depending on the non-
linear interactions and the ratio between the compressive strength and the
tensile strength [6, 49]. Previous analyzes considered the case of no shear
forces present at the interface in the assumption that the fluid is at rest. We
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hereby expand on the previous studies and consider a setup where we allow
for shear forces at the fluid-solid interface due to fluid flow. The generic
setup is sketched in Fig. 2.2 and its relevance to geological interfaces (such
as fault planes, grain boundaries) is discussed in Paper III.

Hereby, the solid is in contact with a fluid which is able to flow due
to a constant shear at infinity τ0. We assume a Newtonian fluid with a
linear viscous rheology, namely σfl

ij = −pδij + μ(∂ivj + ∂jvi), where μ is the
kinematic fluid viscosity, p(x, y) is the fluid pressure, vx(x, y) and vy(x, y) are
the horizontal, respectively vertical fluid velocities. At low Reynolds number,
the fluid flow is dominated by the viscous effects and thus satisfies Stokes
equations given as

μ

(
∂2vx
∂x2

+
∂2vx
∂y2

)
=

∂p

∂x
(2.18)

μ

(
∂2vy
∂x2

+
∂2vy
∂y2

)
=

∂p

∂y
(2.19)

∂2p

∂x2
+
∂2p

∂y2
= 0. (2.20)

The solution of the elastic deformations coupled with the viscous flow is
determined by the conditions at the fluid-solid interface positioned at h(x, t)
and the far field boundary condition at y = −∞.

At interface, we assume the continuity of the stress vector and the no-slip
velocity (because the inertial effects in the solid are disregarded), namely

σnn(x, h) = −p(x, h) + 2μ
∂vn(x, h)

∂n
(2.21)

σnt(x, h) = μ

[
∂vt(x, h)

∂n
+
∂vn(x, h)

∂t

]
(2.22)

vn(x, h) = vt(x, h) = 0, (2.23)

where (nx, ny) = (−∂xh, 1)/
√

1 + (∂xh)2 and (tx, ty) = (1, ∂xh)/
√
1 + (∂xh)2

are the normal, respectively the tangent vector at a point on the interface
and h is a short hand notation for h(x, t). Hereby, the normal vector points
into the fluid phase.

The evolution of the elastic solid described by the BiLaplace equation
requires two extra boundary conditions in addition to the force balance at
the interface. Here, we consider that the solid phase is loaded at infinity as
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σyy(x,−∞) = −P0 and σxx(x,−∞) = 0. A more general treatment with a
non-zero lateral compression is analyzed in Paper III.

The problem is solved using the perturbation technique in a similar man-
ner as in the Saffman-Taylor instability, described in the previous section.
That is, we treat the regime where the interface amplitudes are small enough,
so that only the linear terms in the expansions are kept. We linearize the
interface around a flat profile centered at the origin h(x) = εh(1)(x), where
ε � 1 is the expansion parameter and h(1)(x) is the local deviation from
flatness. The upper index refers to the order of the expansion. In this
limit the gradient along the interfacial arc length can be approximated by
∂s = [1 + ε2(∂xh

(1))2]−1/2∂x ∼ ∂x. Also, the field variables are expanded
around the reference state associated with a flat interface, namely

F (x, y) = F (0)(x, y) + εF (1)(x, y), (2.24)

where F (x, y) denotes any of the field variables U(x, y), p(x, y), v(x, y) and
F (1)(x, y) is the contribution due to the interfacial morphological perturba-
tion. For a point on the interface the fields are expanded as follows

F (x, εh(1)) = F (0)(x, 0) + ε
[
h(1)∂yF

(0)(x, 0) + F (1)(x, 0)
]
. (2.25)

Thus, chemical potential at the perturbed surface takes the form

μ(x, εh(1)) = μ(0) + εμ(1)(x, 0), (2.26)

where the second term from the expansion disappeared because, in the ref-
erence state, μ(0) is independent of the x-coordinate. The evolution of the
interfacial perturbation is captured in the linearized version of Eq. (2.14),
namely

∂

∂t
h(1)(x, t) =M

∂2

∂x2
μ(1)(x, 0). (2.27)

The absence of spacial gradients at a flat interface implies that the reference
state is given by a stationary fluid-solid interface.

2.2.1 Flat interface: Zero order

To the zeroth order, the fluid flow is decoupled from the elastic deformations.
The solution is, therefore, the same as for a shear flow past a planar wall,
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namely

v(0)x (x, y) =
τ0
μ
y (2.28)

v(0)y (x, y) = 0 (2.29)

p(0)(x, y) = P0. (2.30)

The stress boundary conditions for the solid are therefore

σ(0)
yy (x, 0) = −P0 (2.31)

σ(0)
xy (x, 0) = τ0, (2.32)

and the Airy’s stress function satisfying these boundary conditions is given
by

U (0)(x, y) = −P0
x2

2
− τ0xy. (2.33)

The reference state is given by a homogenous solution, where the elastic
stresses are constant and equal to the boundary values.

2.2.2 Perturbed interface: First order

The stress at a perturbed interface is evaluated by an expansion around its
value at a planar interface following Eq. (2.25), as

σij(x, εh
(1)) = σ

(0)
ij (x, 0) + εσ

(1)
ij (x, 0). (2.34)

The term dependent on surface gradients vanishes since the reference stresses
are constant. Computing the normal stress vector using the zeroth order
solution, we find that

σnn(x, εh
(1)) = −P0 + ε

[−2τ0∂xh
(1) + σ(1)

yy (x, 0)
]

(2.35)

σnt(x, εh
(1)) = τ0 + ε

[−P0 + σ(1)
xy (x, 0)

]
. (2.36)

Similarly, the normal stress vector evaluated from the fluid phase becomes

σfl
nn(x, εh

(1)) = −P0(x, 0) + ε
[−p(1)(x, 0)− 2τ0∂xh

(1) + 2μ∂yv
(1)
y (x, 0)

]
σfl
nt(x, εh

(1)) = τ0 + ε
[
∂xv

(1)
y (x, 0) + ∂yv

(1)
x (x, 0)

]
.
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Inserting these perturbations into the interfacial conditions from Eqs. (2.21)-
(2.23) and retaining the first order terms, we obtain the following relations

σ(1)
yy (x, 0) = −p(1)(x, 0) + 2μ∂yv

(1)
y (x, 0) (2.37)

−∂xh(1)P0 + σ(1)
xy (x, 0) = μ

[
∂xv

(1)
y (x, 0) + ∂yv

(1)
x (x, 0)

]
(2.38)

v(1)y (x, 0) = 0 (2.39)

v(1)x (x, 0) + h(1)
τ0
μ

= 0. (2.40)

The perturbation fields satisfy Eq. (2.16) and Eqs. (2.18)-(2.20), combined
with the above interfacial conditions. Assuming periodic boundary condi-
tions in the x-direction or that the interface has an infinite extension, we can
then use the Fourier analysis by decomposing the perturbation amplitudes
as a superposition of Fourier modes, namely h(1)(x) =

∫
dkh

(1)
k exp(ikx) and

F (1)(x, y) =
∫
dkF

(1)
k (y) exp(ikx). The problem can be solved in the Fourier

space and has the following solution

U
(1)
k (y) = hk (−P0 + 2iτ0) ye

ky (2.41)

p
(1)
k (y) = 2ihkτ0ke

−ky (2.42)

v
(1)
x,k(y) =

hkτ0(ky − 1)

μ
e−ky (2.43)

v
(1)
y,k(y) =

ikhkτ0y

μ
e−ky. (2.44)

The fields are computed in the real space by integrating up all the Fourier
modes,

F (x, y) = F (0)(x, y) + ε

∫
dkF

(1)
k (y) exp(ikx). (2.45)

2.2.3 Linear stability analysis

Recalling the definition of the surface chemical potential from Eq. (2.11) and
retaining the first order term, we have that

μ(1)(x, 0) = [F (1)(x, 0)− σ(1)
nn (x, 0)]V . (2.46)

The normal stress vector is calculated from the Airy’s stress function given
in Eq. (2.41) and projected to the interface with the normal vector n ≈
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(−ε∂xh(1), 1). From Eq. (2.35), we have that the Fourier coefficient of the
perturbed normal stress is given by

σ
(1)
nn,k = σ

(1)
yy,k − 2ikhkτ0 = −2ikτ0hk. (2.47)

Hereby, we consider the stability for in-plane strain elasticity, where the
elastic energy density is defined as

F(x, y) =
1

4G

[
(1− ν)(σ2

xx + σ2
yy)− 2νσxxσyy + 2σ2

xy

]
, (2.48)

where G is the shear modulus and ν is the Poisson ratio. A similar analysis
can be done in the in-plane stress assumption. Evaluating it at the interface
and linearising the expression, we therefore obtain that

F(x, εh) = F (0)(x, 0) + εF (1)(x, 0), (2.49)

where,

F (0) =
1

4G

[
(1− ν)P 2

0 + 2τ 20
]
, (2.50)

F (1) =
1

2G

{
[νσ(1)

xx − (1− ν)σ(1)
yy ]P0 + 2τ0σ

(1)
xy

}
. (2.51)

The energy perturbation is decomposed into Fourier modes as the other field
variables, F (1)(x, 0) =

∫
dkF (1)

k exp(ikx). Using the expressions for the stress
perturbations calculated from the Airy’s stress function from Eq. (2.41) and
Eq. (2.17), we obtain that

F (1)
k = αkhk, (2.52)

where α = [i(1 + 2ν)τ0P0 − P 2
0 ν + 2τ 20 ]/G.

Now, inserting the expressions for normal stress and elastic energy density
into chemical potential and using Eq. (2.27) for the evolution of the interface,
we arrive at∫

dk
∂hk
∂t

exp(ikx) = −MV
∫
dk(α− 2iτ0)k

3 exp(ikx). (2.53)

For an exponentially growing mode hk = exp(ωt), the above expression yields
a dispersion relation given by

ω = −MV(α− 2iτ)k3. (2.54)
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Figure 2.3: The growth rate
as a function of the perturba-
tion wavenumber k when cur-
vature effects are considered.
The curvature effect restricts
the unstable domain to a finite
value of wavenumbers with a
maximum growth at k∗ =
27/128 · k3c (νP 2

o − 2τ 20 ).

The linear stability is determined by the
sign of the real part in the growth rate
which, using the definition of α, is given by

�(ω) =MV(νP 2
0 − 2τ 20 )k

3. (2.55)

We notice that the interface becomes un-
stable if the following inequality between
stresses is satisfied

τ0
P0

<

√
ν

2
. (2.56)

The linear stability thus depends on the
competition between the magnitude of the
shear stress τ0 and the hydrostatic pressure
P0. Namely, the interface is linearly unsta-
ble if the pressure/normal load P0 dominates
over the shear stress and stable otherwise.
So far, the interfacial energy or curvature
has not appeared into the equations. Gen-
erally, the interfacial structure has a stabi-
lizing role on the morphological evolution. In Paper III, we also include the
effect of an isotropic surface tension and advance a discussion on the depen-
dence of the friction coefficient at the onset of slip on the Poisson’s ratio with
its implications to geological interfaces. In Fig. 2.2.3, we show the depen-
dence of the growth rate on the wavenumber, the the surface tension effect
is taken into account.

2.3 Solid-solid interface

2.3.1 Wet interface

The stability of a thin fluid film between two elastic half-planes can be ob-
tained using the previous analysis for a solid-liquid interface. When the fluid
is at rest, we can take the limit of a fluid film thickness going to zero. In
this limit, the presence of fluid is required only through the interfacial con-
dition that the normal stress from both sides equals the fluid pressure p. Let
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us assume for simplicity that the two elastic parts have the same material
properties.

Solid 2

Solid 1

Fluidp

Figure 2.4: Illustration of
a solid-fluid-solid interface,
when the thickness of the
fluid film is much smaller than
the system size. The fluid
is at rest with hydrostatic
pressure p acting upon each
solid boundary.

If the interface was a material surface, it
would sustain shear stresses and would not
be visible in a homogenous solid. However,
we assume that, at the interface, the fluid
film is at rest and therefore the shear stresses
must vanish. The interfacial conditions
translate into the continuity of the stress
vector, with the normal component being
equal to the hydrostatic pressure and the
tangential component set to zero, namely

σnn,j = −P0 (2.57)

σnt,j = 0, (2.58)

for each phase denoted by the lower index
j = 1, 2 (see Fig. 2.3.1). In this case, we
need to solve the BiLaplace equation in each
domain and match the solutions through the
above interfacial boundary conditions. Like
in the previous analysis, we emply a per-
turbation scheme to first order and Fourier
transform the linear term. The solution to
the Fourier modes of the Airy’s stress func-
tion perturbations are given as

U
(1)
1,k (y) = −hkP0ye

ky (2.59)

U
(1)
2,k (y) = hkP0ye

−ky, (2.60)

and the corresponding stress components follow directly by using Eq. (2.17).
The elastic energy density at the interface becomes equal to

F(x, εh) =
1− ν

4G
P 2
0 − ε

ν

G
P 2
0

∫
dkh

(1)
k k exp(ikx). (2.61)

From Eq. (2.47), we see that the normal stress perturbation vanishes to
linear order when the shear stress is set to zero, thus the chemical potential
at the interface is determined by the elastic energy contribution. For an
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exponentially growing mode at a rate ω, the dispersion relation is therefore
given by

ω =
ν

G
k3MVP 2

0 , (2.62)

which suggests that all modes are linearly unstable up to a cutoff introduced
by surface tension effect. A similar setup with finite size elastic parts has
been studied recently in [8], where the minimum energy criteria and the
variational calculus for shape perturbations were employed to show that the
interface is linearly unstable.

2.3.2 Dry interface

In this section, we discuss the kinetics of stress-induced phase transforma-
tions at a dry solid-solid interface. The two solid phases may have different
mass densities ρ and elastic properties (ν,G). We consider the limit where the
values of the material properties are discontinuous across the phase bound-
ary. This discontinuity surface defines the sharp interface. We subject the
system to a far field compression load σ∞ < 0 transversal to the interface as
sketched in Fig. 2.3.2. This brings the two stressed solids out of equilibrium
with each other. Due to a mismatch in the material properties, the solids
deform differently to the applied stress, such that one solid is in a higher
energy state than the other. As a relaxation to equilibrium, the metastable
solid phase tends to transform into the stable solid phase. We consider the
particular case where no third phase is nucleated. Consequently, the inter-
face is a phase transformation front which moves into the unstable solid at
a nomal speed which can be determined from the reaction kinetics at the
interface. A thermodynamical derivation for the normal growth is proposed
in Paper II, where we assume entropy production at the interface and linear
response regime with thermodynamic fluxes being proportional to thermo-
dynamic forces. The driving force of phase transformation kinetics is given
by the jump in the chemical potential at the interface and the mass flux is
related to the normal velocity. Thus, we have that the interfacial velocity is
given by

Vn =M

�F
ρ
− σnn

ρ

�
, (2.63)

where M > 0 is a positive defined mobility coefficient. Here we introduce
the jump in a quantity a from one phase to another �a� := a1 − a2, where
aj is the evaluated from phase j = 1, 2 in the limit of approaching the
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interface. We allow for volumetric changes in the mass densities due to
elastic deformation. Thus, the mass density in the deformed state is related
to the mass density in the referential state by ρ ≈ ρ0/(1 + εkk), where εkk
is the trace of the strain equal to the relative volume change. For in-plane
stress, εkk = 1−2ν

2G(1+ν)
(σxx + σyy). Inserting this expansion into Eq. (2.63), we

obtain an equivalent expression given by

Vn =M

�F
ρ0

− σnn
ρ0

(
1 +

1− 2ν

2G(1 + ν)
(σxx + σyy)

)�
. (2.64)

Similar to the diffusive transport at a liquid-solid interface, the interfacial
kinetics can be explicitly evaluated by solving the corresponding elastic prob-
lem. This translates into finding the Airy’s stress functions Uj(x, y) as so-
lutions to the BiLaplace equation in the corresponding solid phase j = 1, 2.
The solutions are then matched at the interface from the continuity of the
stress vector and displacement field expressed as

�n · σ� = 0, �u� = 0, (2.65)

where u = (ux, uy) is the elastic displacement field related to the strain by
εij = 1/2(∂iuj + ∂jui). The Helmholtz free energy per unit volume F , and
the normal stress σnn, are calculated directly from the Airy’s stress functions
Uj(x, y) using Eq. (2.17).

In Paper II, we solve the two-phase elasticity problem for in-plane stress,
but the same tehnique works also for in-plane strain approximation. The
Airy stress function is obtained using Goursat’s formalism [45], where the
BiLaplace equation in the complex plane, z = x+ iy, has a generic solution
given as U(z, z) = �{zφ(z)+χ(z)} where z = x− iy. The two complex fields
φ(z) and χ(z) are defined in each phase domain and determined from the
far field and interfacial conditions 1. The same morphological perturbation
technique as for a liquid-solid system is employed here. The calculation is
presented in the Appendix of Paper II.

The reference solution corresponds to a flat interface moving with a uni-
form translational velocity given by

V (0) =M

� |σ∞|
ρ0

− |σ∞|2
4

1− 3ν

ρ0G

�
. (2.66)

1In the appendix of Paper II, there is a misprint below Eq. (B2). The new field ψ(z)
is defined as ψ(z) = χ′(z).
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Solid 1
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Figure 2.5: (Right) Illustration of a solid-solid interface with continuous
stress vector and displacement field. The system is under normal far-field
stress. (Left) Numerical simulations of the interfacial evolution in the regime
of finite size amplitudes. The bottom figure shows the initial interface with
a random perturbation and the top figure depicts an evolving interface. In
both figures we have plotted the elastic energy density in logarithmic scale.
The lighter color corresponds to a higher elastic energy density and that is
localized at the peaks of the interface on the softer side.

The direction of propagation depends on the jump in the material prop-
erties, in a similar way as in the Saffman-Taylor instability of viscous fin-
gering. When the referential densities are different, the above expression is
dominated by the first term and predicts that the phase transformation is
directed from the denser phase into the lighter phase. In the case where the
referential densities are the same ρ0,1 = ρ0,2, the second term becomes the
leading order and, for ν < 1/3, it gives a reverse propagation from the softer
phase (higher G) into the harder phase (lower G).

The stress field around an undulating interface is calculated by following
the perturbation scheme proposed in [20]. We consider a cosine perturbation
of the interface as h(x, t) = εh(1)(t) cos(kx) with ε � 1, wavenumber k and
an exponentially growing mode h(1)(t) = exp(ωt) where ω is the growth rate.
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To the first order expansion, the Airy’s stress functions can be written as a
superposition of the reference solution (flat interface) and a small correction

due to surface undulation, Uj(x, y) = U
(0)
j (x, y) + εU

(1)
j (x, y) for each phase

j = 1, 2. The perturbation fields U
(1)
j (x, y) decay to zero away from the

interface and are determined from the interfacial conditions Eq. (2.65). For
a wavenumber k much smaller than the cutoff introduced by the surface
tension, the solution of the perturbation can be expressed as

U
(1)
1 (x, y) =

−|σ∞|h(1)(α1y + β)

k(G2κ1 +G1)(G1κ2 +G2)
e−ky cos(kx)

U
(2)
2 (x, y) =

|σ∞|h(1)(α2y − β)

k(G2κ1 +G1)(G1κ2 +G2)
eky cos(kx) (2.67)

where κj =
3−νj
1+νj

and the material specific constants defined as 2

α1 = −k(1− ν1)(G2 −G1)(G1κ2 +G1)

α2 = k(1− ν1)(G1 −G2)(G2κ1 +G1)

and

β = 2G2
1

1− ν2
1 + ν2

− 2G2
2

1− ν1
1 + ν1

+ 4G1G2
ν1 − ν2

(1 + ν2)(1 + ν1)
.

From the Airy stress functions, we calculate the stress components and eval-
uate the elatic energy density at the interface. By expanding to linear order
in Eq. (2.64), and using an exponential growing mode h(1) = exp(ωt), we
obtain a linear dispersion relation given as follow

ωh(1) =M

�
F (1)

ρ0
− σ

(1)
yy

ρ0

(
1 +

1− 2ν

2G(1 + ν)
σ∞

)
− σ∞

ρ0

1− 2ν

2G(1 + ν)
(σ(1)

yy + σ(1)
xx )

�
.

The growth rate is a function of the six material parameters (νj, μj , ρj) with
j = 1, 2 and the external stress σ∞. However, the stability of the grow-
ing interface is invariant under the interchange of the solid phases, thus the
controlling parameters for stability are reduced. To further simplify the ex-
pression, we normalized the stress at infinity as σ∞ = −1 in arbitrary units
and have the shear modulus measured in the units of it.

2In Paper II, there is a misprint in the equation defining α1, namely that there is a
minus sign missing. This has been correct in the thesis.
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2.3.3 First and second order phase transitions
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Figure 2.6: Panel (A), stability diagram for two solids materials with identical
Poisson’s ratio of ν = 0.25. Panel (B), diagram for solids with Poisson’s ratios
of ν1 = 0.45 and ν2 = 0.40.

Whenever the system is stressed, only one of the two phases will be stable,
i.e. the two phase system will evolve to a global equilibrium state consisting
of a single phase. In the absence of stress it is possible for two phases to
coexist without any phase transformation taking place at their interface. In
Paper II, we propose an analog 1d model, where the specific Gibbs energy
relates to the stress applied to the system σ by

g(σ) =
σ2

2Eρ0
− σ

ρ0

(
1 +

σ

E

)
, (2.68)

where E is the Young’s modulus. Hereby we adopt the Ehrenfest classifi-
cation of the phase transitions, namely that the nth order phase transition
has a finite discontinuity in the nth derivative of the free energy with respect
to any of its arguments at the critical point3. We define a first order phase
transformation process when the first derivative of the specific Gibbs energy
with respect to σ is discontinuous at σ = 0. From the above relation, we see

3Note that the Ehrenfest classification of the phase transitions assumes that the sin-
gularities at the critical point are only discontinuities. In general, this is not true in
continuous phase transitions where the second order derivative of the free energy, e.g.
specific heat, diverges at the critical point [23].
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that this happens when the two phases have different referential mass den-
sities. By a second order phase transition, we mean that the first derivative
exists at σ = 0 and that there is a finite jump in the second order derivative,
which is related to the discontinuity of the Young modulus, E. We adopt the
same terminology for the interfacial phase transformation in two dimensions.

For second order phase transition where both solids have the same refer-
ential densities ρ0,1 = ρ0,2 = ρ0. When the Poisson’s ratios ν1 = ν2 = ν are
identical, the dispersion relation assumes a simple form given by

ω

kM
=

(3ν − 1)(1− ν)(G1 +G2)(G2 −G1)
2

ρ0G1G2(G1 +G2κ)(G2 +G1κ)(1 + ν)
(2.69)

where κ is the fraction introduced above and k the wavenumber of the per-
turbation. The expression reveals an interesting behavior where the interface
is stable for Poisson’s ratio less than 1/3 and is unstable for Poisson’s ratio
larger than 1/3. Fig. 2.6 shows stability diagrams for the specific case where
G1 = 1 and ρ0,1 = 1 (in arbitrary units). In panel (A) the diagram is cal-
culated for two solids that have the same Poisson’s ratio and with a value
ν = 1/4. The second order phase transition occurs along the horizontal cut
ρ0,2 = 1 and is marked by a dashed grey line. We observe that ω/k is neg-
ative along this line and the interface is therefore stable. For ν larger than
1/3 (not shown in the figure) the horizontal zero level curve will flip around
and the grey dashed line will then be covered with unstable regions. In order
to see this flip, we expand Eq. (2.3.2) around the point (1,1), i.e. in terms of
ρ0,2 − 1 and G2 − 1, and achieve the following expression for the zero curve

ρ0,2 ≈ 1 +
(1− 2ν − 3ν2)(G2 − 1)

ν(7 + ν)
. (2.70)

Note that the right hand side is in units of ρ0,1. We directly observe that the
horizontal zero curve flips around at the critical point ν = 1/3. In the case
when the two solids are identical, i.e. at the point (1,1) in the stability dia-
gram, all modes will as expected remain unchanged and the interface there-
fore remains unaltered. The other parts of the zero levels lead to marginal
stability but will in general induce a motion of the interface with a constant
velocity.

We now consider a cut in the stability diagram where the two solids
have the same shear modules, G1 = G2 = G, but different densities (first
order phase transition) and Poisson’s ratios. For different Poisson’s ratios
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the dispersion relation Eq. (2.3.2) becomes

ω

Mk
=

(ν2 − ν1)(ν1ρ0,2 − ν2ρ0,1 + 2(ρ0,2 − ρ0,1)G)

4ρ0,1ρ0,2G
. (2.71)

From this expression we see that the vertical zero line observed in Eq. (2.69)
and in Fig. 2.6 panel (A) only exists for identical Poisson’s ratios. When the
solids have different Poisson’s ratios, the separatrix or intersection of the two
zero curves located at (1,1) in panel (A) will split into two non-intersecting
zero curves. In panel (B) we show a stability diagram for solids with Poisson’s
ratios ν1 = 0.45 and ν2 = 0.40.

In general the stability diagram is characterized by four quadrants, two
stable and two unstable, delimited by neutral zero curves. The physical
regions would typically correspond to the quadrants I and III under the as-
sumption that higher density implies higher shear modulus. In these quad-
rants the growth rate is typically positive (i.e. the interface is unstable)
except for a thin region at the borderline between a first and second order
phase transition, i.e. when ρ2 � ρ1.

2.3.4 Nonlinear regime

Linear stability theory is able to predict the critical values of the parameters
for the onset of instability, such that an infinitesimal perturbation of a certain
wavelength will initially grow exponentially in time. Fig. 2.6 shows the stable
versus unstable domains in the parameter space predicted from the linear
stability analysis. We find that the morphological stability of a flat interface
depends non-trivially on the jumps in the material properties of the solids.

From the dispersion relation in Eq. (2.71), we can infer about a pre-
ferred wavelength selection by searching for the critical wavelength with the
maximum growth rate. In the absence of surface tension, the growth rate
is linearly proportional with the wavenumber, thus there is no k-dependent
maximum growth, i.e. no wavelength selection in the linear regime. This is
not surprising since the interfacial dynamics is driven by the stresses deter-
mined in the linear elasticity theory where there is no intrinsic lengthscale.
However, a finite surface tension brings a quadratic k-dependence of the
growth rate. The lengthscale at which the elastic contribution balances the
surface tension is related to any selected wavelength in the dynamics.

To investigate the interfacial dynamics beyond the instability threshold,
the nonlinear effects need to be included. There are in fact two approaches.
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One way is to determine the nature of bifurcation, signaled by the change
in the stability of the planar front, by studying the stability in the weakly
nonlinear regime where the next order terms in the perturbation expansion
are taken into account. This type of analysis has been carried out in the finite
amplitude regime of a liquid-solid interface dynamics driven by mass diffusion
due to stress gradients (ATG instability) [48], or temperature gradients (MS
instability) [44, 10]. It is known that up to the third order expansion, the
ATG bifurcation is subcritical [48], whereas the MS bifurcation changes from
a subcritical to a supercritical branching depending on the front velocity
and the mobility coefficient [66]. The fact that the bifurcation is subcritical
implies that the interface can be unstable at finite amplitude undulations
when the linear theory predicts stability to infinitesimal perturbations. This
is closely related to cusp-like singularities developed at finite amplitudes in
the ATG instability [48, 68] and dendritic growth and cellular structures in
the directional solidification [41, 10].

The alternative approach is to solve the problem numerically without
any prior expansions. In this work, we have adopted this later approach by
employing numerical methods to explore the validity of the linear stability
for finite size amplitudes. That is, we select a point in the parameter space
which is predicted to be either linearly stable or unstable. For this particular
configuration we integrate numerically the interfacial dynamics and follow the
evolution of the interface into its nonlinear regime. We find that the linearly
stable domains in the parameter space are also stable in the nonlinear regime,
whereas in the linearly unstable domains, the interface evolves into finger-like
patterns.

Numerical approach

The moving boundary problem is solved numerically in two stages at each
time step. At time t, each phase occupies a domain delimited by the fixed
outer boundaries and the moving interface. First, we compute the stress com-
ponents in each phase domain by solving the elastostatic equations. Then,
we advance the interface from t to t + dt with a normal velocity, which is
determined by the jump in the chemical potential. Thus, at time t+ dt, the
solid phases occupy slightly different domains, and, consequently, the stress
is differently distributed. This would affect the normal velocity for the next
time step.

The domain occupied by each solid phase is discretized into a set of trian-
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Figure 2.7: (Left) Level set function ϕ(x, y, t) for tracking an interface with
periodic undulations. (Right) A triangularization of the 2D domain with an
unstructured grid.

gular elements of variable sizes and orientations, which form the underlying
unstructured grid. This type of meshing is particularly helpful for a good
representation of irregular boundaries. To improve the accuracy of the in-
terface shape, we use a local grid refinement on a thin band surrounding
it. The triangularization is performed using an open source routine, called
”triangle.c” 4. An illustration of the triangular meshing is shown in Fig. 2.7
(Right). The domain is remeshed after each time step in the dynamics of the
interface.

We solve the elastic problem by using the Galerkin finite element method
(see for e.g. [34]). Our finite elements are triangles characterized by linear
shape functions, Hi(x, y) and i = 1, . . . 3 nodes. The shape functions rep-
resent a set of basis functions in which the field variables are decomposed.
Namely, the displacement field is decomposed into

ux(x, y) =
3∑

i=1

Hi(x, y)ai (2.72)

uy(x, y) =
3∑

i=1

Hi(x, y)bi, (2.73)

where ai and bi correspond to discrete displacements at the nodes of a tri-

4The source file can be downloaded from http://www.cs.cmu.edu/ quake/triangle.html
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angular element. The two degrees of freedom per node can be collected
into a (6, 1)-vector as û = [a1, b1, a2, b2, a3, b3]

T , which stores the values of
the displacements at the nodes of a triangle. In a matrix formulation, it is
convenient to arrange the shape functions into a (2, 6)-array as

N =

[
H1 0 H2 0 H3 0
0 H1 0 H2 0 H3

]
, (2.74)

and define a (3, 2)-differential operator D as

DT =

[ ∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

]
. (2.75)

For the in-plane stress, the strains and stresses are denoted as

σ = [σxx, σyy, σxy]
T (2.76)

e = [εxx, εyy, 2εxy]
T , (2.77)

and εzz = − ν
2G(1+ν)

(σxx + σyy). The Hooke’s law relating them, can then be

expressed as σ = De, where D is a (3, 3)-matrix given by

D =
2G

1− ν

⎡
⎣ 1 ν 0
ν 1 0
0 0 1−ν

2

⎤
⎦ . (2.78)

The strains can be computed from the nodal displacement variables as e =
Bû, where B is a (3, 6)-array obtained by differentiating the shape functions,
namely B = DN . Thus, the stresses can also be determined from the nodal
displacement vectors as σ = DBû. The weak formulation of the elastostatic
equation, ∇ · σ = 0, reduces to the following matrix equation [34],[∫

V

BTDBdΩ

]
û =

∮
∂V

Nf̂dΓ, (2.79)

where dΩ is the area element, V is the volume of the integration domain and
dl is the line element for the contour surface ∂V . The boundary conditions
are incoded as body forces acting on the inner or outer boundaries, thus
defining the rhs of the above equation. On the horizontal outer boundaries
parallel to the interface we apply a constant normal force, thus f̂2i = σ∞, for
i = 1 . . . 3. The surface tension acting along the interface is converted into a
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body force in a narrow band surrounding the interface [9]. Thus, for elements
within the band, f̂2i−1 = γκnx, f̂2i = γκny, where i = 1 . . . 3, γ is the isotropic
surface tension and κ is the local curvature of the interface obtained from the
mean curvature of the level set, presented below. We impose lateral periodic
boundary conditions to minimize the possible influence of the finite system
size in the x-direction. The solution of Eq. (2.79) gives us the displacement
vector at the nodes of each element. From that, we can then evaluate the
stresses and strains everywhere in the domain. The discontinuous jumps
appearing in the normal interfacial velocity are computed at the outer border
of the band. The next step is to propagate the interface with a normal
velocity that depends on the normal stress vector and elastic energy jump.

Various front tracking methods have been developed to solving specific
moving boundary problems. One of the difficulties in having a universal
solver for moving interfaces is the topological changes, i.e. merging or break-
ing of surfaces. Another troublesome issue is how to properly resolve the
internal structure of a diffuse interface and its singular limit when it be-
comes sharp. Dendritic growth and solidification problems have been studied
numerically using phase-fields methods for the propagation of diffuse inter-
faces (e.g. [31]). Phase field modeling has also been applied to stress induced
instabilities and surface diffusion at liquid-solid interfaces [29], [69]. These
methods are able to resolve the topological changes of interfaces with a small
finite thickness. However they become more troublesome in the limit of a
sharp interface, where an asymptotic analysis is required to match the phase-
field equations with the sharp-interface equations [31]. The level set method
is a computational approach which is able to handle both the topological
changes as well as the propagation of sharp interfaces [59]. It is conceptually
similar with the phase-field models in that the interface is represented as the
zero level of a function ϕ(x, y, t), which has its own equation of motion. The
level-set function evolves through an advection equation. Unlike in the phase
field models, the interface is not required to have a finite thickness or width,
and thus acts as a discontinuity surface across which the material properties
may have finite jumps.

We have implemented a level set method for tracking the solid-solid in-
terface and coupled it with the finite element solver. The level set function
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ϕ(x, y, t) is a phase indicator which satisfies that

ϕ(x, y, t)

{ > 0, if (x, y) belongs to Solid 1
< 0, if (x, y) belongs to Solid 2
= 0, if (x, y) is on the interface

, (2.80)

as shown in Fig. 2.7 (Left). The normal propagation of the interface is
captured by the evolution of the zero level of ϕ(x, y, t). This is achieved with
a passive advection of the entire level set according to

∂ϕ

∂t
+W |∇ϕ| = 0, (2.81)

where W is the extension velocity on ϕ(x, y, t) and is required to match the
normal velocity given by Eq. (2.63) on the interface itself where ϕ(x, y, t) = 0.
Any function satisfying Eq. (3.29) is a potential candidate for a level set func-
tion. However, numerically the level set is often a signed distance function
defined as the shortest distance from a point on the surface to the interface
with the property that |∇ϕ| = 1. The advection velocity in Eq. (2.63) can
be reconstructed from the interfacial velocity by solving [59]

∇W · ∇ϕ = 0, (2.82)

with the prescribed boundary condition for the velocity at the interface. The
level set is updated by iterating Eq. (2.81) on a rectangular grid. A point on
the unstructured grid is located on the regular grid by local interpolation.

Numerical results

In the numerical simulations, we have explored the long time dynamics for
various regions in the parameters space. Numerical results validate the sta-
bility domains in the parameter space. That is, for a set of parameter values
where the interface is predicted to be linearly stable, the numerical simu-
lations show that the interface will flatten also when we start with a finite
size perturbation. For a set of parameter values in the unstable domain, the
interface evolves into a finger-like pattern in the non-linear regime.

In Figs. 2.8-2.9, we present numerical simulations using parameter regions
where the interface is either stable or unstable. Fig. 2.8 shows the time
evolution of an initial cosine morphological pertubation. In the left panel, we
apply a normal load, whereas in the right panel the load is tilted at an angle
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Figure 2.8: Simulations of the temporal evolution of a solid-solid interface
in the parameter space where the interface is predicted to be unstable. The
profile of the interface is plotted at different times and the time arrow sug-
gests the direction of propagation into the upper domain. We have used
(ρ0,1, ρ0,2) = (2, 1), (ν1, ν2) = (0.35, 0.35), (G1, G2) = (6.75, 1.35) × 103 and
σ∞ = −1. We start with an initial cosine perturbation. (Left) The system
is loaded only in the normal direction. (Right) The system is sheared on the
horizontal boundary with σxy = 0.5, so that the principal compaction direc-
tion is at an angle with the normal. As a consequence, the fingers become
tilted and aligned with the loading direction.

with respect to the vertical direction. The principal compression direction
determines the orientation of the fingers as shown in the two panels. In both
cases, the interface propagates into the lighter (softer) phase at a uniform
speed. At the same time, the initial undulations grow into fingers that have
smoother tips (seen when the normal points into the upper solid) and steeper
valley sides.

Fig. 2.9 (Left) panel illustrates the evolution of a random morphological
perturbation. The interface front develops fingers which grow at different
rates depending on their amplitude. In the transitory period, the small scale
irregularities grow at an exponential rate with a growth rate predicted by the
linear stability analysis. After they reach a certain amplitude, the bumps
start interacting with each other. During their competition, some bumps
may overshadow the growth of their neighbours and eventually assimilate the
smaller ones. In this regime, we see a crossover, from an exponential growth
to a power-low growth. The mearging of fingers leads to a coarsening effect
in the long time behaviour. Asymptotically, one would expect to observe
only the largest fingers spanning the system size. In the right panel, we show
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Figure 2.9: Simulations of the temporal evolution of a solid-solid interface in
the parameter space where the interface is predicted to be unstable (Left) or
stable (Right). The profile of the interface is plotted at different times and
the time arrow suggests the direction of propagation. (Left) We have used
(ρ0,1, ρ0,2) = (2, 1), (ν1, ν2) = (0.35, 0.35), (G1, G2) = (6.75, 1.35) × 103 and
σ∞ = −1. We start with an initial random perturbation. The fingers grow in
amplitude at different rates depending on the wavenumber. The competition
between fingers leads to overshadowing and merging that have a coarsening
effect on the long term evolution.(Right) We have used (ρ0,1, ρ0,2) = (1, 1),
(ν1, ν2) = (0.25, 0.25), (G1, G2) = (6.75, 1.35) × 103 and σ∞ = −1. We start
with an initial cosine undulation (red line). This decays to a flat interface.

the morphological evolution in a stable parameter region. In this case, the
initial undulations are flatten out and in the long time the flat interface is
propagating with a uniform velocity into the metastable phase.

2.4 Discussions

We have provided a study of mass transport at an interface between two
phases with a single mobile component. We analyzed the morphological
dynamics in the diffusion limited regime for a liquid-solid interface and in the
reaction limited regime for a solid-solid interface. In both cases, the driving
force of mass transport is controlled by the spacial variations in normal stress
and elastic energy at the interface. The interface properties are incorporated
in the theory by assuming an isotropic surface tension and considering the
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stabilizing effect of curvature gradients.
Since many active processes in nature are described by the coupling of

diffusion mechanisms to mechanical deformations, we believe that our theory
is relevant to various situations ranging from nanostructures (e.g. quantum
dots [47] or epitaxial growth [21]) to geology (e.g. grain to grain bound-
aries [24, 7]). However, the thermodynamical conditions for Earth processes
are often determined both by stress or pressure and temperature. In the
present formulation, we consider the limit where the effect of stress prevails
over that of temperature. This assumption is valid at low temperatures below
the critical phase transitions values for both phases and in a regime where
temperature is continuous across the interface. A normal jump in the tem-
perature gradients induces melting or solidification along the interface and
leads to the Mullins Sekerka (MS) instability. The interfacial cellular pat-
tern due to this instability occurs at a scale which is roughly estimated from
thermal diffusion length and chemical capillary length given as γTm/LΔT
where L is the latent heat, ΔT is the temperature jump (miscibility gap),
Tm is the melting temperature and γ is the surface tension. The selected
lengthscale λMS is typically in the 10 − 100 μm range. On the other hand,
the ATG grooves can occur either in the range of 10 − 100 nm scales if the
elastic energies are balanced by the surface tension λATG ∼ γE/σ2

∞ or in
the range of 0.1 − 1 cm when the preferred scale is calculated by balancing
the elastic force with the gravitational force λATG ∼

√
γ/gδρ, where g is the

gravitational acceleration and Δρ is the jump in the mass density. As the
two instabilities occur on well-separated lengthscales, one may think that the
two effects can be decoupled. However, previous studies in [14, 10] suggest
a strong coupling between thermal and stress induced instabilities in direc-
tional solidification fronts. The temperature gradients effectively increases
the effective gravity such that it brings down the ATG instability in the same
range as the MS instability. The coexistence of the two effects is predicted
to change the bifurcation stability condition and the selected pattern.

Future work is required to refine our models by considering thermal gra-
dients and thermoelastic effects on the morphological instability.
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Chapter 3

Porosity evolution by pressure

solution

In this chapter, we discuss the large-scale effect of stress-enhanced local dis-
solution at the grain contacts. Fluid assisted dissolution and diffusion along
stressed contacts, also known as pressure solution, are taking place at a dis-
crete microscopic level, and induce a viscous creep effect at a macroscopic
level of a porous media. In the continuum formulation, we derive the ef-
fective viscous creep describing the evolution of the porosity due to pressure
solution. For a one dimensional porous column, the equation becomes analyt-
ically amenable and is characterized by solitary wave solutions. An analogy
with the KdV equation is provided and numerical simulations are used to
complement the analysis.

3.1 Pressure solution at the grain scale

Pressure solution refers to a mechanism by which compressed grains may
dissolve at their stressed contact surfaces, diffuse along the contact in a thin
fluid film and precipitate on the free surfaces [65]. Compared to other mass
transport mechanisms driven by stress (Coble creep [11], Nabarro-Herring
creep [46, 26]), pressure solution is assisted by a thin fluid film present in the
contact between grains. The picture one has in mind when discussing the
pressure solution operating at the grain scale is depicted in Fig 3.1.

The macroscopic effect of pressure solution is an overall compaction and
deformation by viscous creep of a grain aggregate under stress [65, 54, 53].
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Geological evidences support the idea that pressure solution is an active
process in the formation of sedimentary rocks under compaction and that it
may lead to localized patterns, such as stylolites and dissolution seams [61].

A thermodynamical formulation of pressure solution calls for an appro-
priate definition and use of the thermodynamics concepts associated with
stressed solids. The thermodynamics of a stressed solid in contact with a
fluid was fundamentally laid out by Gibbs [22], and refined by later works
in [64, 28, 50] etc. The local chemical equilibrium in a heterogenous system
requires that the chemical potential for each component is constant across
interfaces. Here we shall treat the case of two phases which can exchange
one component where the chemical potential equals the specific Gibbs free
energy. It has been argued that the chemical potential at a stressed solid
surface can be defined as [58]

μ = f − σnnV , (3.1)

where σnn is the normal stress vector at the interface, and f is the Helmholtz
free energy per mole and V is the molar volume of the component in the
stressed state. When the solid is stressed hydrostatically with the sur-
rounding fluid pressure p, the chemical potential at its surface is given by
μ0 = f0 + pV0, where the subindex refers to the hydrostatic state. Eq. (3.1)
can be written relative to the hydrostatic reference state as [53]

Δμ = Δf − σnnΔV − σe
nnV0, (3.2)

where Δf = f − f0, ΔV = V − V0 and σe
nn = σnn − (−p) is the effective

stress acting along the solid contact. Δμ is the work per atom needed for a
reversible exchange of matter between the stressed solid surface and the fluid
film. The chemical equilibrium in the contact channel is achieved when there
is no jump in the Helmholtz free energy, the molar volume of the dissolved
component is the same as in the solid state and the contact stress equals the
pore fluid pressure (no exceeding stress at the contact).

Pressure solution, as an out-of-equilibrium process, is associated with the
dissolution in the grain contact, subsequent mass transport by diffusion along
the contact and precipitation to the surface at the pore fluid pressure. Even
though the change in Helmholtz free energy as well as the volumetric changes
suffice to drive a chemical reaction process, it can be shown that the effective
contact stress σe

nn is the leading term and therefore the other contributions
are of higher order, Δμ ≈ −σe

nnV0. The mass transport is confined along the
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grain contact and is mediated by diffusion in a thin fluid film with a mass
flux proportional to the chemical potential gradient, namely

J = −M ∂

∂x
Δμ = MV0

∂σe
nn

∂x
, (3.3)

where M is a positive defined mobility coefficient. In the steady state regime
with no transport by fluid advection, the diffusion along the grain boundary
balances the dissolution rate Q (Q being positive valued for dissolution and
negative valued for precipitation) and this implies therefore that

MV0
∂2σe

nn

∂x2
= Q. (3.4)

The above equation can be easily integrated in the assumption that Q is
constant along the grain boundary to obtain a solution for the effective stress
given by

σe
nn =

Q

MV0

(x2 − a2), (3.5)

with the boundary conditions that the effective stress vanishes at the contact
edges. We see that the contact stress is maximum, in its absolute value, at the
middle of the grain-to-grain contact and relaxes to the hydrostatic pressure at
the edges. Integrating out the spatial dependence, we then obtain a relation
for the average effective stress at the contact given by

σ̄e
nn = − 2a2

3MV0

Q. (3.6)

The dissolution rate Q can be associated with the amount of surface removal
per unit time and, thus, is proportional to the normal velocity with which the
grains converge to each other. The normal velocity at the contact is related
to the normal strain rate ε̇nn = ∂nvn, and therefore the dissolution rate can
be expressed as proposed in [54] as Q = −2aε̇nn/d. With this definition of
the reaction rate in mind, we rewrite the original Eq. (3.6) as

σ̄e
nn =

4a3

3dMV0

ε̇nn. (3.7)

Eq. (3.7) refers to an overall viscous creep of an aggregate of grains subjected
to a compressional load. The pressure solution creep is controlled by the
diffusional mass transport along the grain contact and this is reflected in the
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dependence of the bulk viscosity on the mobility coefficient and the geometry
of the grain-to-grain contact, η = 4a3

3dMV0

.
In principle, a similar derivation may be carried out for stress induced

precipitation, when the material tends to be deposited where the stress is
high. The enhanced stress at the grain contact acts as a force of crystalliza-
tion [65].

The above analysis is worked out in the limit where the fluid film is at
chemical equilibrium with the pore fluid and its neighboring solid surface.
The classical scenario of pressure solution applies thus for closed pores with
a pore fluid acting as a “chemical bath” for the contact fluid film. The
other crucial assumption is that the pore fluid is at equilibrium with the
grain surface surrounding it. In other words, the fluid flows through the pore
network at a pace that will allow for chemical equilibration with the pore
walls. Thus, the walls are not corroded by the flow. The picture that we
have in mind is the following. Imagine a set of thin channels, representing
the fluid film at the grain contacts, which end into a set of pores. The pore
fluid is at equilibrium with its walls and with the fluid channel, but the later
can corrode its straight walls which represent the contact boundary between
the grains. In this picture, the channels are neutral with respect to each
other and hence it is enough to study just a single channel. One can relax
the equilibrium assumption between the contact fluid and the pore fluid by
allowing for supersaturation or undersaturation in the contact relative to the
pore space. This will induce a relative concentration gradient between the
channels, and thus a coupling between them through the pore space. The
pore fluid is still in equilibrium with the surrounding grains which implies
that the chemical potential in the fluid is the same as at the grain surface,

μ0 = RT ln c0 = f0 + pV0. (3.8)

However, the contact fluid may not be in equilibrium with the pore fluid,
thus its chemical potential

μc = RT ln c, (3.9)

may differ from that in the pore fluid μ0.
Mass transport by diffusion along the grain-to-grain contact is now con-

trolled by the difference in the chemical potential between the contact fluid
and the fluid film, namely

μ− μc = (μ− μ0)− (μc − μ0) = −σe
nnV0 −RT

Δc

c0
, (3.10)
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where we have used the dilute approximation for ln(c/c0) ≈ Δc/c0. The
reaction-diffusion equation in the steady state along the grain contact is
then given by

MV0
∂2σe

nn

∂x2
+RTM 1

c0

∂2Δc

∂x2
= Q. (3.11)

We solve it with the additional boundary conditions that the concentration
at the contact edges matches the pore concentration, i.e. c(a) = c(−a) = c0.
By averaging the solution over the contact, we obtain therefore an effective
grain rheology given as

MV0σ̄
e
nn +RTMΔc̄

c0
=

4a3

d
ε̇nn. (3.12)

From the above expression we see that the grains will be compressed when
the grain-to-grain stress is higher than the pore fluid pressure or when the
fluid film is supersaturated compared to the pore fluid.

In the subsequent section, we show that the local grain boundary migra-
tion due to pressure solution amounts to a large scale creep law. We derive
the continuum equations for the porous media from the local conservation
laws of mass and momentum. The pressure solution creep comes in as a
constitutive law.

3.2 Pressure solution in porous media

In the continuum hypothesis of a porous medium, the smallest element we are
looking at is an arbitrary volume element, also called representative volume
element or RVE, which is represented by a point at position x and time t
(see Fig. 3.1 for a sketch of the RVE). However, in a physical sense, the
RVE must be large enough to incorporate a significant collection of pores
and grains, so that the statistical averages are well-defined. On the other
hand, its volume size is sufficiently small, such that the field fluctuations
and gradients across it can be neglected. In each RVE we distinguish two
phases each occupying a certain volume fraction. One phase corresponds
to the fluid in the pores and the other phase is given by a collection of
grains, the constituents of the solid skeleton. The local volume fraction
of pores is a continuous field described by the porosity density φ(x, t). In
the following analysis, we treat the particular case of fully saturated and
connected pores (see e.g. Schrefler [57] for a recent review on the mechanics
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and thermodynamics of (un)saturated porous media). By full saturation we
mean that the pores are filled up entirely by a single phase which is different
from the porous medium. Therefore, the porosity is also a direct measure of
the volume fraction of the hosted phase. If we take a sponge as an example
of a porous medium, then a fully saturated sponge is obtained by immersing
it into water until all its pores are completely filled up. However, the sponge
is partially saturated if some of its pores contain both air and water. The
pore network is said to be connected when the contained phase is able to
migrate from one pore region to another one. This is opposite to having a
set of separated inclusions imbedded into a matrix. As a matter of notation,
we denote the quantities associated with the solid matrix by the index s and
those related to the fluid pore phase by the index f .

The two-phase continuum formulation is similar to the classical field de-
scription for homogenous media (see e.g. Malvern’s textbook [40] for an
introduction to the mechanics of homogenous continuum media). At the
pore scale the two phases are well separated by the pore walls and the grain
contacts, but this may not be the case at the continuum scale.

The porous material is set in a uniform gravitational field g or may be
subjected to additional external stress fields. One of the main questions
raised in this setup is related to how the material compacts as a response
to gravitational forces and its internal stresses. There are several plausible
mechanisms of compaction that have been proposed. One mechanism is due
to the fluid expulsion and pore collapse due to the relative motion between
phases. Thermal gradient or stress induced dissolution and precipitation may
be active agents in the solid deformation. These mechanisms may coexist and
contribute in different proportions to the overall compaction. However, the
complexity of the equations emerged from their coupling makes it difficult to
understand the behaviour of the solutions. Therefore, the numerous oversim-
plified models dealing with these mechanisms separately. The other question
that is often raised concerns the type of dynamic instabilities developed dur-
ing compaction, namely the existence of localized dissolution bands and their
stability.

Hereby, we try to provide a theoretical framework for compaction in a
porous material undergoing pressure solution. Previous analyses targeted
the porosity evolution during a viscous creep by pressure solution in a closed
porous solid [12] and an open system under sedimentation [18]. Our approach
is to combine the continuum balance laws of mass and momentum with the
thermodynamical formalism of pressure solution. Balance laws for porous
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materials have been derived and studied previously in various setting and
using various homogenization techniques like in modeling of compaction of
partially molten rocks [42] or a more general viscous compaction [5]. We
use a similar homogenization technique as proposed in [38] to derive the
macroscopic effective grain boundary stress in relation to the grain shortening
or strain rate.

3.2.1 Mass balance

The total mass of a porous rock with fluid emersed into its pores is assumed
to be constant. Equivalently, the rock is treated as a closed system, i.e. there
is no mass exchange between the rock and its environment nor any fluid can
enter or escape through the rock boundaries. However, the fluid may be ex-
pelled from one rock region to another, as a result of compaction. We assume
that the compaction is slow enough to allow for dissolution at the grain con-
tacts and precipitation at the pore walls. To simplify things, we decouple the
thermal effects from the chemical effects by having a temperature well below
the critical melting temperature. Henceforth, the discussion is focussed on
the chemical effects on the overall compaction.

The evolution of a mass element that occupies a certain volume fraction,
namely φ for the fluid phase and 1−φ for the solid phase, has been derived, for
example, in [5, 42] based on phase averaging over the RVE. The differential
forms for the mass balance of the phase averaged quantities are given as

∂

∂t
[(1− φ)ρs] +∇ · [(1− φ)ρsvs] = 0 (3.13)

∂

∂t
(φρf ) +∇ · (φρfvf ) = 0 (3.14)

where vf = 1
δV

∫
δVf

v̄fdv and vs = 1
δV

∫
δVs

v̄sdv denote the fluid velocity,

respectively solid velocity averaged over the phase volume occupied in the
RVE. The variables with a bar above represent microscopic quantities defined
inside a RVE. A generic balance law relates the rate of change of a quantity
contained in an arbitrary volume (in this case the mass of each phase) with its
flux through the surface of the control volume and the leaking or income due
to interactions. The mass densities ρf and ρs are defined with respect to the
volume occupied by each phase inside the control volume. Upon summation,
we obtain the continuity equation of a closed systems with a mass density
ρt = φρf + (1 − φ)ρs. Mass balance equations take a simpler form if we
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assume constant mass densities. This implies that the phase constituents,
i.e. grains and interstitial fluid, are intrinsically incompressible, and therefore
their microscopic velocities, v̄f and v̄s, are solenoidal. However, since the pore
density changes locally with time, the phase averaged velocities, i.e. vs, vf ,
cease to be solenoidal [5]. Upon dividing in Eq. (3.13) by ρ1 and Eq. (3.13) by
ρ2, and summing up the resulting equations we obtain the following constrain
between the phase velocities,

∇ · [φ(vf − vs) + vs] = 0. (3.15)

The relative concentration Δc̄ represents the oversaturation or undersatura-
tion along the grain contacts as compared to the pore fluid. Its averaging
is less straightforward since it involves both the pore volume fraction and
the total contact surface in a RVE. The evolution of Δc̄ is influenced by the
transport in the pore space, through diffusion and advection, as well as by
the interaction between the contact channels. However, we limit our pre-
sentation here to the case where Δc̄ = 0 and leave aside this extension to a
future study.

3.2.2 Momentum balance

We assume that the pore fluid is moving relative to the solid skeleton accord-
ing to the Darcy’s law [5]

φ(vf − vs) = −k(φ)
μ

(∇pf − ρfgẑ) , (3.16)

where μ is the fluid bulk viscosity and k(φ) is the matrix permeability de-
termined by measuring the average velocity of a fluid moving through a
permeable solid. Theoretical calculations of spherical grain packing suggest
that the permeability is a monotonously increasing function with porosity
and in the low porosity limit can be approximated by k(φ) = k0(φ/φ0)

n,
where n ≈ 3. k0 is typically of the order of 10−17 − 10−16 in dense limestone
and 10−14−10−16 in sandstone [37]. The permeability is usually measured as
the averaged velocity over a given volume and, therefore, the relative velocity
is multiplied by the volume fraction of pores in that volume.

The stress sustained by each grain σij satisfies the equilibrium condition
∂iσij = 0 (in the absence of external forces and negligible inertia effects)
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and, by averaging it over the volume Vs inside the RVE, it upscales to a
macroscopic stress given by

〈σij〉 = 1

V

∫
Vs

σijdv =
1

V

∫
∂Vs

σiknkxjdA, (3.17)

where ∂Vs is the surface of the grain aggregate which is made of the total
contact surface Sgb and the surface exposed to the pore fluid Sfs. The stress
at Sfs is matched by the pore fluid pressure. By writing the contact stress
relative to the hydrostatic pressure, we can express the averaged stress in
relation to the effective grain-to-grain stress as [38]

〈σij〉 = − 1

V

∫
∂Vs

pnixjdA+
1

V

∫
Sgb

σe
iknkxjdA. (3.18)

The first term amounts to the pore pressure averaged over the volume oc-
cupied by the grains and thus equals to p(1 − φ), where φ is pore volume
fraction. In the previous section, we found that the effective contact stress is
related to the grains creep for vanishing supersaturation in concentration as

σ̄e
nn = ηε̇nn, (3.19)

with η being the viscosity coefficient. Upon inserting into the above equation,
we therefore obtain that the macroscopic effective stress is given by

〈σe
ij〉 = 〈σij〉+ (1− φ)p = γη〈ε̇ij〉, (3.20)

where γ is a measure of the total grain contact area relative to the control
volume. Since we can not resolve this contact area because of the difficulty
in tracking all possible contacts in a grain aggregate, we choose to eliminate
it by redefining η → γη. The mean strain rate is related to the macroscopic
solid velocity by 〈ε̇ij〉 = 1/2(∇jvi +∇ivj).

The total macroscopic stress defined as 〈σij〉t = 〈σij〉−φpδij balances the
gravitational forces ∇ · 〈σij〉t = −ρtgδi,3δj,3. As a consequence, the effective
stress is related to the pore fluid pressure by

〈σe
ij〉 = −ρtgzδi,zδj,z + pδij. (3.21)

For the sake of simplicity we reduce our calculations to a one dimensional
setup where we look at the porous solid in the z-direction along the gravi-
tational field. The pore pressure p can be eliminated from the momentum
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equations by substituting Eqs. (3.21) and (3.20) into Eq. (3.16), and therefore

φ(vf − vs) = −k(φ)
μ

(
η
∂2vs
∂z2

+ (1− φ)Δρg

)
, (3.22)

where Δρ = ρs − ρf . Furthermore, we can eliminate the fluid velocity vf by
combining the above equation with Eq. (3.15) to obtain

∂vs
∂z

=
∂

∂z

[
k(φ)

μ

(
η
∂2vs
∂z2

+ (1− φ)Δρg

)]
. (3.23)

For a one dimensional column, the above equation can be integrated once
when additional boundaries conditions are known. In particular, we consider
the case where at the top surface z = 0, the porosity is constant φ0 and the
fluid can reach the top surface due to buoyancy. The Darcy’s flow driven
by the density contrast balances the solid velocity by Eq. (3.15), thus at the
surface vs(0) = k(φ0)(1 − φ0)Δρg/μ and ∂2vs

∂z2
= 0. Under these conditions,

we find that

vs =
k(φ)

μ

(
η
∂2vs
∂z2

+ (1− φ)Δρg

)
. (3.24)

3.3 Dimensional analysis

In summary, the mass and momentum balance combined with a pressure
solution creep law leads to the following set of coupled equations in (φ, vs)
variables,

∂φ

∂t
=

∂

∂z
[(1− φ)vs] (3.25)

vs =
k(φ)

μ

(
η
∂2vs
∂z2

+ (1− φ)Δρg

)
(3.26)

Equations are often studied in a dimensionless world by properly rescaling all
the dimensional coordinates and variables. To arrive at the non-dimensional
form of the original equations, we therefore employ the following scaling laws

φ = φ0φ̂, vs = v0v̂ (3.27)

z = lc · ẑ, t = t0t̂, (3.28)
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and a permeability on the form k =
(

φ
φ0

)n

k0. The dimensionless variables

are denoted by the hat upper symbol. φ0 is a background constant poros-
ity chosen to be equal to the porosity at the top surface, k0 is a uniform
permeability constant, lc =

√
k0η/μ is the typical compaction lengthscale,

v0 = (1− φ0)Δρgk0/μ is the typical velocity, t0 = φ0lc/v0 is the typical com-
paction timescale. By inserting these rescalings into the main equations and
dropping the hat symbol, we obtain the dimensionless forms given by

∂φ

∂t
=

∂

∂z
[(1− φ0φ)v] (3.29)

v = φn

(
∂2v

∂z2
+

1− φ0φ

1− φ0

)
. (3.30)

3.4 Linear stability analysis

The steady state solution of Eqs. (3.29) and (3.30) satisfies

v =
1− φ0

1− φ0φ
, (3.31)

which is obtained using the boundary condition at z = 0 that v = 1 and
φ = 1. Inserting the steady state velocity into Eq. (3.30), we obtain an
equation for the steady state porosity given by

(1− φ0φ)
2

φ0φn
= 2φ0

(
∂φ

∂z

)2

+ (1− φ0φ)
∂2φ

∂z2
+

(1− φ0φ)
4

φ0(1− φ0)2
. (3.32)

A solution to this equation is φ = 1, which implies that v = 1. This corre-
sponds to a steady state where the top surface boundary conditions apply
everywhere, namely the system has a uniform porosity φ0 and velocity v0,
which is due to a uniform Darcy’s flux. Hereby we study the stability of this
fixed point by analyzing the behavior of infinitesimal perturbations superim-
posed on it, namely

φ = 1 + εφ1, v = 1 + εv1, (3.33)

with ε � 1. The perturbation scheme compatible with the boundary con-
ditions at the surface z = 0 requires that φ1(0) = v1(0) = 0. Inserting the
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perturbations into Eqs. (3.29)-(3.30) and retaining only the first order terms
in ε, we obtain

∂φ1

∂t
= (1− φ0)

∂v1
∂z

− φ0
∂φ1

∂z
(3.34)

v1 =
∂2v1
∂z2

+ nφ1 − φ0φ1

1− φ0

. (3.35)

The velocity perturbation v1 can be eliminated by inserting the second equa-
tion into the first one to obtain

∂φ1

∂t
+ φ0

∂φ1

∂z
=

∂2

∂z2

[
∂φ1

∂t
+ φ0

∂φ1

∂z

]
+ (n− nφ0 − φ0)

∂φ1

∂z
. (3.36)

In the regime where the perturbation amplitude is infinitely smaller than the
system size, i.e. ε� 1, we may take the system as being infinite. When the
perturbation decays smoothly to zero at the infinitely stretched boundaries,
we can decompose it into a superposition of Fourier modes and study them
individually in the regime where the coupling across modes is negligible.
Thus, in the linear regime, we consider an arbitrary Fourier mode with the
wavenumber k namely φ1 ∼ eikz+ωt and insert it into the above equation.
The corresponding dispersion relation is given by

ω = ik
n− 2φ0 − nφ0 − φ0k

2

1 + k2
(3.37)

The fact that the growth rates are imaginary at all lengthscales implies that
the perturbations are linearly neutral, in other words they neither growth or
decay, but oscillate. The dependence of the wave velocity on the k-number
shows that the waves are dispersive, i.e. the group velocity is different from
the individual wave velocity.

Figure 3.2 illustrates the dependence of the wave velocity on the wave-
length for different porosity backgrounds φ0 and shows that the maximum
wave velocity is attained at φ0 = 0, while it tends to decrease with increasing
reference porosity state.

In the next section, we investigate the persistence of wave-like behaviour
at finite amplitudes and in the nonlinear regime. We show that the waves are
solitary in the steady state and dispersive in the time dependent evolution.
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3.5 Stationary traveling waves

The solitary wave solution at a finite amplitude can be studied in the tran-
sitory regime of Eqs. (3.29) and (3.30) by a change of coordinates into the
moving frame, namely

τ = z − V t, (3.38)

where V is the constant speed of the traveling wave. In the moving frame, we
have that φ(z, t) = f(τ), v(z, t) = g(τ) and their original equations become

−V df
dτ

=
d

dτ
[(1− φ0f)g] (3.39)

gf−n =
d2g

dτ 2
+

1− φ0f

1− φ0

. (3.40)

We can integrate the first equation with the condition at t = 0 and z = 0
that f(0) = 1 and g(0) = 1 and arrive at a relation between f and g given
by

g =
1− φ0 − V (f − 1)

1− φ0f
. (3.41)

Inserting it into the second equation and taking the limit φ0 → 0, we obtain
a nonlinear oscillator equation for the porosity on the form

V f̈ − fn − 1 + V (f − 1)

fn
= 0, (3.42)

where ḟ = df
dτ
.

The traveling-waves are in general of two kinds [4]. The first kind, such as
the shock waves in Burgers equation, have a unique wave speed determined
from the conservation laws alone. Namely, the front velocity is independent
on the dissipative processes which determine the front internal structure and
thickness. In contrast, fronts of the second type, i.e. flames, combustion
waves or solutions to the KdV equation [27], propagate at a speed which can
not be determined from the conservation laws. Therefore, in practice it is
more difficult to calculate the velocity because it involves a refined analysis of
the dissipative processes in the transition region. Often, the velocity is found
from the spectrum of eigenvalues obtained in the processes of determining
the internal structure of the front. The uniqueness of the wave velocity is
more case dependent for waves of the second kind.
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In our case, the porosity traveling wave is of the second kind and its
velocity can be determined from the shape of it as demonstrated in [3] and
shown below. By multiplying Eq. (3.42) with ḟ and integrating it with the
boundary conditions that ḟ(0) = 0 and f(0) = 1, we obtain that

V

2
(ḟ)2 = [V −W (f)]

∫ f

1

q−n(q − 1)dq, (3.43)

where

W (f) =

∫ f

1
(q−n − 1)dq∫ f

1
q−n(q − 1)dq

. (3.44)

A possible solitary wave has therefore the speed V = W (A), where A is
the amplitude the solitary wave. In particular, for n = 3, the wave velocity
is linearly proportional to its amplitude, W (f) = −(2f + 1) and therefore
V = −(2A + 1). The negative sign in front implies that the wave is moving
towards the top surface at z = 0. The fact that V is proportional with the
amplitude means that the bigger waves move faster than the smaller waves.

The phase portrait of the flow is obtained by reducing Eq. (3.42) to a
pair of coupled first order equations, namely

ḟ = p (3.45)

ṗ =
fn − 1 + V (f − 1)

V fn
. (3.46)

For V = −(2A+ 1), the vector field in the phase space of (f, p) is plotted in
Fig. 3.5. The solitary waves correspond to the homoclinic trajectory which
passes the saddle point (1, 0) in a loop that intersects the f axis at the
maximal amplitude A.

Inserting the wave speed V into Eq. (3.43), we arrive at

p2 =
2(A− f)

2A+ 1

(f − 1)2

f 2
, (3.47)

which, upon integration, gives an implicit solution for the shape of the soli-
tary wave given by

τ = ±
∫ A

f

q

q − 1

√
2A+ 1

2(A− q)
dq. (3.48)
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Notice that the integral diverges as f approaches A. Thus, in order to prop-
erly resolve the singular the limit, we integrate up to A−ε, expand the result
around ε = 0 and then take the limit of ε → 0. The integral then becomes
equal to,

τ =
√
2(2A+ 1)

(
√
A− 1 +

1√
A− 1

arctan

√
A− f

A− 1

)
, (3.49)

and represents an implicit expression for the shape of the solitary wave. The
formula is evaluated numerically and plotted in Fig. 3.2.

3.6 Non-stationary porosity evolution

In the previous section, we found that the governing equations admit station-
ary solitary wave solutions, which propagate at a constant speed depending
on wave amplitude. We now investigate their stability by starting from a
certain porosity distribution and then asking if the solution evolves towards
a configuration with separated traveling waves.

In the time dependent formulation, the implicit coupling between solid
velocity and porosity in Eqs. (3.29) and (3.30) is much more difficult to deal
with analytically. We therefore rely on numerical stability analysis. The evo-
lution of porosity away from a uniform distribution in space can be followed
by numerical integrations of Eqs. (3.29) and (3.30). This is done using a finite
difference discretization combined with an operator splitting method. The
advection part is resolved using a conservative first order Godunov scheme.
The numerical result is shown in Figs. 3.4 and 3.5. We start initially either
with a localized single Gaussian bell or a discrete set of Gaussian bells su-
perimposed to the uniform background porosity. The initial pulse has not
the solitary shape and we found that it disperses into a train of waves that
propagate towards the top surface at z = 0. The dispersive propagation is
expected from the linear stability analysis, where we have seen that the wave
velocity is a nonlinear function of the wavenumber. However, the waves do
not seem to converge to the stationary shape given by the solitary wave solu-
tion. This made us conclude that the solitary wave may actually be unstable.
With time, the traveling pulses may overlap due to the interaction between
the waves in the wake of one pulse and the head of the next pulse and this
leads to a more complex pattern in the porosity evolution as seen in Fig. 3.5.
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When solitary waves are colliding their shape does not remain unchanged
after the collision and it shows that the waves are not solitons. This has also
been emphasized in [3] from the existence of a finite number of conservation
laws.

We conclude that the porosity evolution admits solitary traveling waves
which can be studied by employing techniques used for other equations with
soliton-like solutions, for example the Korteweg De-Vries (KdV) equation.
For KdV equation, the soliton solutions are asymptotically stable and an ini-
tial condition disperses into a finite number of traveling solitons [27]. Unlike
in KdV, we found that the porosity waves are unstable and numerically an
initially localized condition tends to evolve towards a train of overlapping
waves.
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Figure 3.1: (Left) Sketch of the intergranular pressure solution. For spherical
grains the contact surface is a disc with the diameter 2d. Hereby the analysis
is done for a 2d transversal cut across the contact area. Therefore, we have
that the contact is a straight line stretching from −a to a. Inside the contact
there is a thin fluid film with a thickness d much smaller than the grain
diameter. At the edges of the contact, the fluid film is connected to the pore
fluid. (Right) An illustration of the RVE in a porous solid. The RVE contains
a large collection of grains surrounded by a fluid, which at a macroscopic
continuum scale is represented by a material point.
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Figure 3.2: (left) Wave speed as a function of wavenumber k for infinitesimal
amplitude perturbation in porosity. The maximal wave speed is lowered with
increasing the background porosity. (right) The shape of the porosity solitary
wave in the comoving frame, τ = x+ (2A+ 1)t.
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Figure 3.3: The vector field in phase space of (f, p), where p = ḟ . The red
curve represent the separatrix which connects the point (1, 0) with the point
A, 0.
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Figure 3.4: Numerical simulation of the porosity evolution. The starting
condition is given by a single Gaussian bell superimposed to the constant
background porosity. The pulse will propagate upwards leaving behind a
train of secondary waves.
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Figure 3.5: Numerical simulation of the porosity evolution. The starting
condition is given by few localized pulses in porosity which at later times
propagate upwards leaving behind a train of secondary waves.
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The application of stress to multiphase solid-liquid systems often results in morphological instabilities.
Here we propose a solid-solid phase transformation model for roughening instability in the interface
between two porous materials with different porosities under normal compression stresses. This instability
is triggered by a finite jump in the free energy density across the interface, and it leads to the formation of
fingerlike structures aligned with the principal direction of compaction. The model is proposed as an
explanation for the roughening of stylolites—irregular interfaces associated with the compaction of
sedimentary rocks that fluctuate about a plane perpendicular to the principal direction of compaction.
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Morphological instabilities in systems out of equilib-
rium are central to most research on pattern formation. A
host of processes give rise to such instabilities, and among
the most intensively studied are the surface diffusion me-
diated Asaro-Tiller-Grinfeld instability [1–3] in the sur-
faces of stressed solids in contact with their melts, surface
diffusion mediated thermal grooving, and solidification
controlled by thermal diffusion in the bulk melt [4]. In
sedimentary rocks and other porous materials local stress
variations typically promote morphological changes via
dissolution in regions of high stress, transport through the
fluid saturated pore space, and precipitation in regions of
low stress. This phenomenon is known as pressure solution
or chemical compaction. Such processes are often accom-
panied by the nucleation and growth of thin irregular
sheets, interfaces, or seams called stylolites [5]. Stylolites
form under a wide range of geological conditions as rough
interfaces that fluctuate about a plane perpendicular to the
axis of compression. They are common in a variety of rock
types, including limestones, dolomites, sandstones, and
marbles, and they appear on scales ranging from the min-
eral grain scale to meters or greater. A common feature of
stylolitic surfaces is small scale roughness combined with
large vertical steps in the direction of the compression.
Residual unsoluble minerals (i.e., clays and oxides) often
accumulate at the interface as stylolites evolve. Despite the
considerable attention given to the rich morphology of
stylolites there is still no consensus on the mechanism(s)
controlling their formation [6–9]. Here we demonstrate
that even if the stylolite is a consequence of pressure
solution alone, porosity or other material property gra-
dients may drive the roughening process. In particular,
we demonstrate that a compressional load normal to a
no-slip solid-solid phase boundary gives rise to a morpho-
logical instability. Our setup differs from the commonly
studied solid-melt systems, where stresses are applied in
the lateral direction and the melt is in a hydrostatic state
(see, e.g., [10]).

Generally, rocks are heterogeneous bodies with spatially
variable porosities. The strain energy densities may be
larger in regions of high porosity (i.e., low modulus) than
in regions of low porosity. Thermodynamically, the total
free energy of the system can be reduced by decreasing the
porosity variations. In this Letter, a simple model for
stylolite formation, in which high porosity rock is trans-
formed into low porosity rock at the interface between the
low porosity and high porosity materials, is investigated.
This solid-solid ‘‘phase transformation’’ is driven by gra-
dients in the free energy per unit volume of mineral, which
can be substantial in regions with large porosity variations.
The general approach used in this work could be applied to
other solid-solid interface roughening phenomena.

We consider a two-dimensional system divided into
elastic regions with different but homogeneous porosities
(Fig. 1). Without lack of generality, we limit our consid-
eration to two dissimilar materials separated by a single
interface. The stress boundary condition is a uniform com-
pression in the vertical direction applied at the top and
bottom boundaries. The two phases are separated by a
sharp and coherent boundary; i.e., no defects or voids
can form along the interface. This translates into continuity
of the displacement vector u�r; t� across the interface,
�u� � 0. Here and in other equations the brackets denote
the jump in the quantity inside the brackets when the
interface is approached from above and below. Under given
load conditions the displacement field induced by the
compression gives rise, in the linear regime, to a strain
tensor of the form

 �ij � 1

2

�@uj
@xi

� @ui
@xj

�
: (1)

The two solid phases are characterized by their Young’s
moduli, E1;2, and Poisson’s ratios, �1;2. When E1 <E2, the
upper region will be compressed the most and therefore the
elastic energy density will be higher in this region. The first
step toward a model for the roughening of a solid-solid
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interface is based on this simple observation. First the
elastic parameters of the materials are related to their
porosities. Luo and Weng [11] proposed a homogenization
method relating the effective bulk and shear moduli to the
porosity of the solid. Using this approach, the effective
Young’s modulus decreases monotonically with the poros-
ity. Consequently, a finite jump in porosity across the
interface induces a jump in the elastic energy density,
which drives the motion of the interface. Thermo-
dynamically, the evolution of the interface corresponds to
a phase transformation from a high to a low energy state.

It is assumed that the phase transformation occurs on a
time scale that is much longer than the time required for
elastic waves to propagate across the system, and the
system is therefore always in elastostatic equilibrium. For
an isotropic and homogeneous elastic body the elastic
equilibrium condition is given by

 

@�ij

@xj
� 0; (2)

together with the uniform uniaxial compression stress
boundary condition, �ij�x; y � 1� � �0�i;y�j;y < 0, and
the stress jump across the curved interface due to the
effective surface tension is given by

 ��ijnj� � ���ni at the interface �t; (3)

where � is the curvature and � is the local surface tension.

In the limit of negligible surface tension, the stress vector is
continuous across the interface (��ijnj� � 0).

For completeness, the basic principles used to derive an
equation of motion are presented. When the system ap-
proaches an equilibrium configuration, the free energy will
be a nonincreasing function of time:

 

d
dt

�Z
V
Fdv�

Z
�t

~Fds
�
	 0; (4)

where F is the free energy per unit volume and ~F is the
interfacial free energy per unit area. Here, the subscript V
indicates a volume integration and �t indicates integration
over the interface. The interfacial energy dissipation is
obtained by confining the domain of integration to a narrow
zone along the interface and taking the zero thickness limit
[12]. This gives

 �
Z
�t

�F �Vnds�
Z
�t

�
d ~F
dt

� � ~FVn

�
ds 	 0; (5)

where Vn is the normal velocity and � is the local curvature
of the interface. This implies the differential form given by

 

d ~F
dt

� �� ~F � �F ��Vn 	 0; (6)

where the first term is the total time derivative of the local
interfacial energy density. The local free energy is a func-
tion of the surface tension only (like fluid-solid interfaces)
and thus, it is independent of time. Therefore, the time
derivative can be neglected leading to the inequality

 � �� ~F � �F ��Vn 	 0: (7)

In the linear response regime, this inequality is satisfied
when the velocity (the thermodynamic flux) is a linear
function of the driving force, �� ~F � �F ��, namely,

 Vn 
 c�� ~F � �F ��; (8)

with c � 0. In the absence of surface tension, the normal
velocity is simply proportional to the jump in the strain
energy, i.e., Vn 
 �F �. While the dynamical law for the
interface Eq. (8) is very simple, the implementation in a
numerical model is more challenging.

The model (Fig. 1) of the moving solid-solid interface
was numerically implemented using the local force bal-
ance and energy dissipation equations [Eqs. (3) and (8)].
The stress field is obtained using the Galerkin finite ele-
ment discretization of the elastostatic equations and the
phase boundary is captured using the level set method. The
level set method [13] is a powerful and reliable technique
for tracking surfaces in any number of dimensions. At any
time t, the d-dimensional interface �t may be defined as the
zero level cut through a scalar field ’ (d� 1-dimensional
surface), namely, ’�x; t� � 0, where x 2 �t. A change in
the zero-level cut in response to a change in the scalar field
may then be interpreted as a motion of the interface.

FIG. 1 (color online). Basic setup of the model for a moving
interface between two elastic solid phases, characterized by
different Young’s moduli (E2 > E1) and Poisson’s ratios �1,
�2. The interface boundary propagates with a normal velocity
Vn, when the solids are subjected to uniform far-field compres-
sional stresses �0 in the vertical direction.
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Therefore the change in the scalar field must correspond to
motion of the zero-level cut with a given normal velocity
V; this is done by updating the scalar field using a simple
advectionlike equation

 

@’
@t

� Vnjr’j � 0: (9)

The advection of the level set function is solved on a
separate lattice using an upwind scheme. The full dynami-
cal model of the solid-solid phase transformation front is
then given by this equation together with Eq. (8).

In the numerical simulations, we have used periodic
boundary conditions in the lateral direction to reduce pos-
sible finite size effects. The initial interface was generated
by a directed random walk (Fig. 2, lower panel). The
temporal evolution of the interface (Fig. 2, upper panel)
was then recorded for different external stresses, �0, and
elastic constants (E, �). The elastic constants were com-
puted from homogenization relations between elasticity
and porosity [11]. As the interface advances increasing
lateral stresses may appear behind the tips of the fingerlike
structures. While such lateral stress may cause interface
instability, it will have only a secondary effect on the
overall transversal evolution.

Initially, the roughness of the interface grows exponen-
tially

 

��������������������������������������������Z
�t

�h�s; t� � �h�t��2ds
s


 exp�t=t��; (10)

with a characteristic roughening time t� that depends on the

external stress and the jump in the elastic properties. To
estimate the functional dependence of t�, a set of numerical
simulations was performed. First, the external stress �0

was systematically varied between 0.005 and 500 MPa for
fixed values of the elastic constants (E1 � 40 GPa, E2 �
60 GPa, �1 � �2 � 0:3).

The results shown in Fig. 3 suggest that the character-
istic time scales as t� 
 ��2

0 , and the prefactor depends on
the elastic properties. In order to investigate this type of
relation, the elastic constants across the interface were
varied (E2 � 50 GPa, E1 in the range 5–16 GPa, �1 �
�2 � 0:3). The data for the interface roughening collapse
onto a curve which is exponential at small time scales with
a crossover to a quadratic form at larger times (Fig. 4).
Extracting the characteristic time in the exponential growth
regime and rescaling it with �2

0, the functional dependence
with respect to the jump in the elastic constants across the
interface was determined (see Fig. 4 inset). The crossover
from exponential to algebraic roughening depends on the
value of the jump. For large jumps in the elastic energy or
porosity, the roughening quickly undergoes a transition
from exponential to quadratic growth in time. This cross-
over time is related to the formation and growth of the
fingerlike structures shown in Fig. 2. By a simple dimen-

FIG. 2 (color online). Map of the logarithm of the elastic
energy in the solids during the roughening process, with E1 �
10 GPa, E2 � 60 GPa, �1 � �2 � 0:3, and �0 � 0:05 MPa.
Lower panel: initial h�x� at t � 0. Upper panel: interface at a
later stage of roughening.
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FIG. 3 (color online). Roughness as a function of time for six
different external compression stresses �0 (in units of 105 Pa;
see the legend) for a fixed jump in the Young’s modulus and zero
surface tension. The root means square height is plotted as a
function of time, rescaled with the characteristic roughening
time t�, on a semilogarithmic scale. The data collapse shows
the exponential roughening of the interface exp�t=t�� with a
stress independent preexponential factor. Inset: the characteristic
time as a function of �0 is given by t� 
 ��2

0 (shown by the
dashed line).
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sional argument, we also determined that the generic de-
pendence of t� on the external stress and elastic constants
has the form

 t� 
 L
Vn


 L
c�F � 


L
c

1

��1� �2�=E�
1

�2
0

; (11)

where �F � � F 1 �F 2 is the jump in the free energy
density across the interface. The scaling relation is con-
sistent with the numerical simulation results. The stress
field may be calculated analytically with the same bound-
ary and interface conditions for a straight interface per-
turbed by a sine function with small amplitude A. In linear
perturbative analysis (A  1) without surface tension, the
solution is obtained using the method of Airy’s potentials
for 2D elastostatics [14]. The energy jump [E] is propor-
tional to kA2, where k � 2�=	 is the wave number. In
other words, all the modes are unstable and those with the
smaller wavelengths grow faster in the linear regime. The
surface tension adds an ultraviolet cutoff resulting in small
scale smoothening of the interface. The system was tested
with and without surface tension, and in both cases the
qualitative behavior was the same—an initial exponential
roughening with a crossover to a finger-formation regime.
Eventually, these fingers may stabilize due to transport of

dissolved minerals and precipitation leading to pore clog-
ging. Stress concentration at the tips is an important char-
acteristic of the system, and the pronounced contrast in the
energy density between the two phases leads to an en-
hanced chemical activity. In stylolites the roughening is
often accompanied by small fractures aligned with the
direction of compression, and this may be explained by
the model if the stress concentration at the fingers exceeds
the yield strength of the material.

To summarize, a simple solid-solid phase transformation
model that predicts a morphological instability of the inter-
face under uniform compressional stress has been devel-
oped and investigated. The instability is triggered by a
finite jump in the elastic properties across the interface
and a concomitant jump in the free energy density. We also
showed that the characteristic time of roughening depends
on the external applied stress and the elastic parameters
jump, in such a way that a higher external compression
load or a larger difference between the elastic properties of
the phases shortens the time required to roughen the inter-
face. This result allows the roughening time and formation
rate of stylolites to be estimated as a function of burial
depth in sedimentary basins.

This project was funded by Physics of Geological
Processes, a Center of Excellence at the University of
Oslo. The authors are grateful to Paul Meakin for fruitful
discussions and comments.
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The dynamics of sharp interfaces separating two nonhydrostatically stressed solids is analyzed using the idea
that the rate of mass transport across the interface is proportional to the thermodynamic potential difference
across the interface. The solids are allowed to exchange mass by transforming one solid into the other,
thermodynamic relations for the transformation of a mass element are derived and a linear stability analysis of
the interface is carried out. The stability is shown to depend on the order of the phase transition occurring at
the interface. Numerical simulations are performed in the nonlinear regime to investigate the evolution and
roughening of the interface. It is shown that even small contrasts in the referential densities of the solids may
lead to the formation of fingerlike structures aligned with the principal direction of the far field stress.
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I. INTRODUCTION

The formation of complex patterns in stressed multiphase
systems is a well-known phenomenon. The important studies
of Asaro and Tiller �1� and Grinfeld �2� brought attention to
the morphological instability of stressed surfaces in contact
with their melts or solutions. In the absence of surface ten-
sion, small perturbations of the surface increase in amplitude
due to material diffusing along the surface from surface val-
leys, where the stress and chemical potential is high, to sur-
rounding peaks where the stress and chemical potential is
low. Important examples of instabilities at fluid-solid inter-
faces include defect nucleation and island growth in thin
films �3,4�, solidification �5�, and the formation of dendrites
and growth of fractal clusters by aggregation �6�. The surface
energy increases the chemical potential at regions of high
curvature �convex with respect to the solution or melt, at the
peaks� and reduces the chemical potential at region of low
curvature �at the valleys� and this introduces a characteristic
scale below which the interface is stabilized.

In systems where the fluid phase is replaced by another
solid phase, i.e., solid-solid systems, the interface constraints
alter the local equilibrium conditions. Here we study a gen-
eral model for a propagating interface between nonhydro-
statically stressed solids. The interface propagates by mass
transformation from one phase into the other. The phase
transformation is assumed to be local, i.e., the distance over
which the solid is transported via surface diffusion or solvent
mediated diffusion is negligible compared to other relevant
scales of the system. Although the derivations apply to a
diffuse interface, we shall here treat only coherent interfaces,
where there is no nucleation of new phases or formation of
gaps between the two solids �7,8�, in the sharp interface
limit. For example, in rocks such processes appear at the
grain scale in “dry recrystallization” �9,10�. Common ex-
amples of coherent interfaces that migrate under the influ-
ence of stress include the surfaces of coherent precipitates
�stressed inclusion embedded in a crystal matrix� �7� and
interfaces associated with isochemical transformations. Most
studies of solid-solid phase transformations have been lim-
ited to the calculation of chemical potentials in equilibrium
and have provided little insight into the kinetics. Here we

investigate the out of equilibrium dynamics of mass ex-
change between two distinct solid phases separated by a
sharp interface. We expand on the recent work presented in
Ref. �11� where we studied the phase transformation kinetics
controlled by the Helmholtz free energy. It was shown that a
morphological instability is triggered by a finite jump in the
free energy density across the interface, and in the nonlinear
regime this leads to the formation of fingerlike structures
aligned with the principal direction of the applied stress.

In the majority of solid-solid phase transformation pro-
cesses, the propagation of the interface is accompanied by a
change in density. For this reason the density is an important
order parameter that quantitatively characterizes the differ-
ence between the two phases. We consider two types of
phase transitions underlying the kinetics, first order and sec-
ond order, which result in fundamentally different behaviors
at the phase boundary. A first-order phase transition occurs
when the two phases have different referential densities and
it typically results in morphological instability along the
boundary whereas a second-order phase transition may either
stabilize or destabilize the interface depending on Poisson’s
ratios of the two phases. A simple sketch of the stability
diagram is outlined in Fig. 1 for relative values of density
and shear modulus of the two phases.

The article consists of five sections. In Sec. II we derive a
general equation for the kinetics for mass exchange at a
solid-solid phase boundary separating two linear elastic sol-
ids. We utilize the derived equations on a simple one dimen-
sional example and offer a short discussion of the order of
the phase transition underlying the kinetics. We proceed in

μ

ρ

Stable Unstable

StableUnstable

FIG. 1. Sketch of a stability diagram for the growth rate of a
sharp interface separating two solid materials. The axes show rela-
tive values of the shear modulus and density of the phases. As will
be shown in Sec. III, the symmetry of the diagram is broken by the
values of Poisson’s ratios.
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Sec. III with a linear stability analysis of the full two-
dimensional problem. In two dimensions, the phase transfor-
mation kinetics gives rise to the development of complex
patterns along the phase boundary. While we solve the prob-
lem analytically for small perturbations of a flat interface,
things become more complicated in the non-linear regime,
and we resort to numerical simulations based on the combi-
nation of a Galerkin finite element discretization with a
level-set method for tracking the phase boundary. In Sec. IV,
numerical results are presented together with discussions. Fi-
nally in Sec. V we offer concluding remarks.

II. GENERAL PHASE TRANSFORMATION KINETICS

Although the equations that we derive for the exchange of
a mass element between two solid phases in a nonhydrostati-
cally stressed system apply to more general settings, we limit
ourselves to the study of two solids separated by a single
sharp interface. The solids are stressed by an external
uniaxial load as illustrated in Fig. 2. In the referential con-
figuration, a solid phase is assumed to have a homogenous
mass density, �0, defined per unit undeformed volume occu-
pied by that phase. After the deformation, the densities are
functions of space x and time t, i.e., �1�x , t� and �2�x , t�. The
average density of the two-phase system is denoted by
��x , t�. Finally, the mass fraction for phase 1 is denoted by c.
In this notation, the mass fraction of phase 2 becomes 1−c.

For nonvanishing densities, the mass-averaged velocity is
defined as

v̄ = cv1 + �1 − c�v2. �1�

Throughout the text, the mass average of any quantity is
indicated by a bar. Similarly, the average specific free energy
density is given by

f̄ = cf1 + �1 − c�f2. �2�

The total specific volume is related to the real densities in the
deformed state �1�x , t� and �2�x , t� by

�−1 = c�1
−1 + �1 − c��2

−1. �3�

The interface separating the two phases is tracked by the
zero level of a scalar field ��x , t� passively advected accord-
ing to the equation

��

�t
+ W���� = 0, �4�

where W is the normal velocity of the surface. It follows that
the interface is given by the zero level set

� = �x���x,t� = 0,for all t� . �5�

The scalar field is constructed such that phase 1 occupies the
domain in which ��x , t��0 and phase 2 occupies the domain
in which ��x , t��0, see Fig. 2. In this notation, the mass
fraction may be expressed as the characteristic function of
the scalar field

c�x,t� = H���x,t�� = 	
1, if ��x,t�� 0,

1

2
, if ��x,t� = 0,

0, otherwise.

 �6�

In the subsequent analysis, we make use of the following
relations �see, e.g., Ref. �12��

�ic = ni��, �tc = − W��, �7�

where ni=�i� / ���� is the normal unit vector of the inter-
face, W=−�t� / ���� is the normal velocity, and ��
= �������� is the surface delta function. Taking the gradient
of the averaged velocity from Eq. �1� and using the above
identities, the following relation is obtained

�iv̄ j =
�v̄ j

�c
�ic + c�iv1,j + �1 − c��iv2,j ,

=
�v̄ j

�c
ni�� + �iv j . �8�

:

A. Kinetics of the phase transformation

The system must satisfy fundamental conservation prin-
ciples for the mass, momentum, energy and entropy. Let us
denote the material time derivative with respect to the mass-

averaged velocity by an over dot, i.e., 	̇=�t	+ v̄i�i	. Then,
the local mass conservation can be written in the form

�̇ = − ��iv̄i �9�

and the local momentum balance can be written in the form

�v̇̄i = � j
ij , �10�

where 
ij is the stress tensor.

FIG. 2. �Color online� Two solids separated by a sharp interface.
A compressional force is applied at the margins in the vertical
direction
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The mass fraction of phase 1 satisfies the advection-
reaction equation given by

�ċ = Q��, �11�

where the mass exchange rate Q is confined to the interface
by the delta function �in the sharp interface limit�. Mass
transport by diffusion is negligible in the reaction dominated
regime. This is a valid approximation when the characteristic
length l=D /W, where D is the diffusion coefficient and W is
the velocity of the interface, is small compared with other
relevant microscopic length scales. That is material diffusion
occurs on a time scale much longer than any other relevant
time scale in the system or equivalently the characteristic
length scale formed from the diffusion constant and solidifi-
cation or precipitation rate is small compared to other rel-
evant microscopic scales.

In the linear kinetics, the mass exchange rate is now de-
rived from the requirement that the entropy production has a
positive quadratic form. We start by expressing the conser-
vation of specific energy density e in the form

�ė̄ = 
ij�iv̄ j , �12�

where v̄2=cv1
2+ �1−c�v2

2 since the cross term vanishes in the
limit of a sharp interface.

At equilibrium

ē = f̄ + Ts̄ , �13�

where the free energy is assumed to be a function of the local

strain and the composition, i.e., f̄ = f̄��̄ij ,c�. By inserting the
energy conservation equation �12� into the time derivative of
this equation, under constant temperature conditions, the ex-
pression

�Tṡ̄ = 
ij�iv̄ j − �
� f̄

��̄ij

�ij
˙ − �

� f̄

�c
ċ �14�

is obtained. The phase transformation is assumed to be slow
and isothermal. From Eqs. �2� and �8� it follows that

�Tṡ̄ = 
nj
�v̄ j

�c
�� + 
ij�iv j − �

� f̄

��̄ij

�ij
˙ −

�f

�c
�ċ . �15�

Given that the strain rate is �̇ij =1 /2��iv j +� jvi� and using
the symmetry of the stress tensor, we arrive at the expression

�Tṡ̄ = 
nj
�v̄ j

�c
�� + �
ij − �

� f̄

��̄ij

��ij
˙ −

�f

�c
Q��, �16�

where 
nj =
ijni is the stress vector at the interface. From
Eqs. �8� and �9� and using an equation of state of the form
���̄ij ,c�=�0�c��1− �̄ii� it follows that

��

�c
ċ +

��

��̄ij

�ij
˙ = −

�vn

�c
��� − ��ivi

⇒
1

�

��

�c
Q�� − �0�ii

˙

= −
�vn

�c
��� − ��ivi

⇒
�

�c
�1

�
�Q =

�vn

�c
, �0�ii

˙  ��ivi.

Using Eq. �3� for the density, the jump in the material veloc-
ity is related to the reaction rate by

�vn

�c
= Q

�

�c
�1

�
� . �17�

The direction of the kinetics is constrained by the second law
of thermodynamics which can be expressed in the continuum
form as

�ṡ + �iJi
s =�s, �18�

where Ji
s is the entropy flux density and �s0 is the entropy

production rate. We consider the case where the entropy flux
is negligible �in the absence of mass and heat fluxes� and
therefore set Js=0. Combining Eqs. �16� and �18�, it can be
seen that the positive entropy production rate leads to the
condition

�
nn
�

�c
�1

�
� −

� f̄

�c
�Q�� + �
ij − �

� f̄

��̄ij

��ij
˙ = T�s 0

�19�

on the reaction rate. We now define a constitutive relation
that couples the stress to the strain via the Helmholtz free
energy


ij = �
� f̄

��̄ij

. �20�

From Eq. �19� we observe that the entropy is produced only
at the interface, and in the linear kinetics regime the reaction
rate is proportional to �see, e.g., Ref. �13��,

Q  K�
nn
�

�c
�1

�
� −

� f̄

�c
� , �21�

where K�0 is a system specific constant.
The normal velocity of a sharp interface is obtained by

integrating Eq. �11� across the interface and taking the sin-
gular part of it

W  v̄n −
K

�
�
nn

1

�
− f� . �22�

Here we introduce the jump in the quantity a from one phase
to another �a�ªa1−a2, where ai is the value of ai in phase i
outside the interface zone as the interface is approached. The
additional interfacial jump conditions of the total mass and
force balance from Eqs. �9� and �10� are given by
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���W − vn�� = 0, �23�

�
ijnj� = 0. �24�

In general, surface energy � and surface stresses may
have an important effect on the kinetics at the phase bound-
ary with high curvature K, therefore the expressions given
above are modified to take this into account. For this purpose
we utilize the Cahn-Hilliard formalism �14� of a diffuse in-
terface. The surface energy is obtained by allowing the
Helmholtz free energy density to be a function of the mass
fraction gradients, i.e.,

� f̄��̄ij,c,�c� = � f̄0��̄,c� +
�1

2
��c�2, �25�

where �1 is a small parameter related to the infinitesimal

thickness of the interface and f̄0 is the homogenous free en-
ergy density introduced above. Because the composition gra-
dient is small everywhere except for a thin zone at the inter-
face, the free energy can be separated into bulk and surface
contributions. If we now take the limit of vanishing surface
thickness and follow the derivations in the appendixes we
obtain the general jump condition for the normal force vector

�
nn� = − 2K� . �26�

In the aforementioned expression of the interfacial velocity
Eq. �22� the normal stress vector was continuous across the
interface. In the presence of surface tension, the normal ve-
locity is altered by an additional contribution from the sur-
face energy

W  v1,n +
K

�1
��f� − �
nn���−1� + 2K���−1�� , �27�

where we have used the interface average defined as �a�
=1 /2�a1+a2�.

B. Example: Phase transformation kinetics in a one-
dimensional system

We start out considering the phase transformation kinetics
of a one-dimensional system composed of two linear elastic
solids separated by a single interface. A force 
 is applied at
the boundary of the system �see Fig. 3� and each solid phase
is represented by its Young’s modulus Ei �i=1,2�, unde-
formed density �i

0, and length Li
0. In the deformed state when

the external force is applied the length becomes Li=Li
0�1

+
 /Ei� and the density �i=�i
0Li

0 /Li. The specific free energy
is given by

f =

2

2
� c

�1�E1 + 
�
+

1 − c

�2�E2 + 
�� . �28�

In the following, we do not allow new phases to nucleate
within the solids and limit our considerations to the propa-
gation of a single interface separating the solids. The system
is assumed to be isothermal and no diffusion of mass takes
place. The interface moves as one phase, slowly transforms
into the other and an amount �1dL1, of solid 1 is replaced by
an amount �2dL2 of solid 2, with conservation of the total
mass. The phase transformation is assumed to be irreversible
and to occur on time scales that are much larger than the time
it takes for the system to relax mechanically under the defor-
mational stresses.

In the one-dimensional setting the local mass exchange
rate is given by a linear kinetic equation �21� of the form

ṁ1 = − K� 
2

2�0E
−



�
� = K� 
2

2�0E
+



�0� , �29�

with K�0. In most cases, the contribution from the jump in
the elastic energy density will be small compared to the con-
tribution from the work term �because 
 /E�1, within the
linear elasticity regime�. The change in the total length will
in general follow the sign of the stress

L̇ = L̇1�1 −
�1

�2
� = ṁ1�1

�
� = K� 
2

2E�0 +



�0�� 1

�0 +



E�0� .

If the densities in the undeformed states are identical, �1
0

=�2
0, the change in the total length is given by

L̇ = K

3

2�0� 1

E
�2

, �30�

whereas a jump in the referential densities ��1
0��2

0� will re-
sult in a work term given by

L̇  K
� 1

�0�2

. �31�

Under a compressional load, the dense phase grows at the
expense of the less dense phase �if the two phases have the
same Young’s modulus� and the soft phase grows at the ex-
pense of the hard phase �if the two phases have the same
density�, such that overall the system responds to the exter-
nal force by shrinking. The one-dimensional model cannot
predict the morphological stability of the propagating phase
boundary in two dimensions. It turns out that the work term
destabilizes the propagating boundary under a compressional
load.

C. First- and second-order phase transitions: Equilibrium
phase diagrams

In the above derivations, the reaction rate is determined
by the jump in the Gibbs potential across the phase bound-
ary. Whenever the system is stressed, only one of the two
phases will be stable, i.e., the general two phase system will
always evolve to an equilibrium state consisting of a single
phase. In the absence of an external stress, it is possible for
two phases to coexist without any phase transformation tak-

FIG. 3. One-dimensional system undergoing phase
transformation.
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ing place. In the one-dimensional example, the relevant field
variable is the stress 
 applied to the system and the Gibbs
potential is given by �follows from Eq. �29��

g�
� =

2

2�0E
−



�
. �32�

In Fig. 4 we show an equilibrium phase diagram in the con-
jugate pair of variables 
 and 1 /�. If the derivative of the
Gibbs potential with respect to the external field 
 is evalu-
ated at the critical point 
=0, it can be seen that there are
two possible scenarios. The first scenario is a first order
phase transition, which occurs whenever there is a jump in
the referential densities, i.e., the derivative of the Gibbs po-
tential is discontinuous and the second derivative diverges at
the critical point. The other scenario is a second-order phase
transition, which occurs when the referential densities of the
two phases are identical. We then have a jump in the second-
order derivative whenever Young’s modules of the two
phases are dissimilar.

The order of the phase transition has a fundamental im-
pact on the dynamics. In two dimensions a first-order phase
transition kinetics will generally lead to morphological insta-
bilities of the propagating phase boundary while a second
order phase transition will either flatten or roughen the
boundary depending on Poisson’s ratios of the two materials.
In the next section we analyze the different phase transitions
by performing a linear stability analysis.

III. LINEAR PERTURBATION ANALYSIS

We now solve the elastostatic Eqs. �10� and �26� together
with the kinetics Eqs. �22� and �27� in two dimensions for an
arbitrary perturbation to an initially flat interface using the
quasistatic version of momentum balance in Eq. �10�. In ad-
dition to the translational dynamics observed in the one-
dimensional system presented above, it turns out, that in two
dimensions the interface dynamics is nontrivial and may lead
to the formation of fingerlike structures. The general setup is
shown in Fig. 2, where phase i, i=1,2, has material param-

eters �i, �i, and �i, with �i being the shear modulus and �i
being the Poisson’s ratio. In general, the interface velocity
depends on its morphology, the 6 material parameters and the
external loading 
�. One degree of freedom is removed by
rescaling the shear modulus of one phase with the external
load.

A. Stress field around a perturbed flat interface

In order to evaluate the jump in Gibbs energy density, i.e.,
�F /�0+W�, we need to determine the stress field around the
interface by solving the elastostatic equations. We have that
under plane stress conditions, the local strain energy density
can be written in the form

F =
1

4�
�
xx

2 + 
yy
2 −

�

1 + �
�
xx + 
yy�2 + 2
xy

2 � �33�

and the work term is defined as

W = − 
nn�i
−1 = − 
nn�i,0

−1�1 + Tr���� . �34�

The trace of strain is given in terms of stress by

Tr��� =
1 − 2�

2��1 + ��
�
xx + 
yy� . �35�

Note that we could as well have formulated the problem
under plane strain conditions; however, the generic behavior
in both plane stress and strain is the same although the de-
tailed dependence on the material parameters is altered.

We solve the mechanical problem by finding the Airy
stress function U�x ,y� �15� which satisfies the biharmonic
equation �2U=0. Once the stress function has been found,
the stress tensor components readily follow from the rela-
tions


xx =
�2U

�y2 , 
yy =
�2U

�x2 , 
xy = −
�U

�x�y
. �36�

The biharmonic equation is solved under the boundary con-
ditions of a normal load applied in the y direction at infinity,
i.e., 
yy→−�
���0 and 
xy =0 for y→��. The continuity
of the stress vector across the interface follows from force
balance. In addition we require that ux��� ,y�=0.

For a flat interface, the stress field is homogenous in
space. This implies that the Airy stress function is quadratic
in x and y, with coefficients determined by the boundary
conditions. With the boundary conditions specified above,
the stress function for the ith phase can be written in the
form

Ui�x,y� =
�
��

2
�x2 + �iy

2� . �37�

From this stress function we can calculate the Gibbs po-
tential which in the case of dissimilar phases is discontinuous
across the interface. The velocity of the phase transformation
readily follows from the potential

0 σ

ρ
stable

(a)

ρ
2

ρ
1

Q

unstable

0 σ

ρ

unstable

ρ
2

Q

ρ
1

(b)

stable

FIG. 4. �Color online� Part �a� illustrates the phase diagram for
a second-order phase transition in the �-
 plane. The solid-solid
kinetics will always be directed from the unstable phase �dashed
line� to the stable phase as illustrated by reaction path Q marked by
the dashed arrow. The slopes of the densities with respect to stress
are Young’s modules of the materials. Part �b� illustrates the equi-
librium curves of the first order phase transition. For the first order
phase transition one would in general expect to see hysteresis ef-
fects extending the continuous lines �stable regions� beyond the
point 
=0. Here we have shown an idealized case where such
effects are disregarded.
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W0 � �F0/�0 + W0�

= �
��� 1

�1
0 −

1

�2
0� −

�
��2

4
�1 − 3�1

�1
0�1

−
1 − 3�2

�2
0�2

� . �38�

The subscript of the free energy density and the work term
refers to an unperturbed interface. From the above equation,
we see that when the lower phase is much denser than the
upper phase, i.e., �1

0��2
0, the interface propagates uniformly

into the upper phase with a velocity W�
���1 /���0, i.e.,
the denser phase grows into the softer. When the densities
are identical or almost identical, �2 /�11 and the shear
modules significantly different, i.e., �1��2. When the two
solids phases have identical Poisson’s ratios �, we see that
the softer phase can only grow into the harder one when �
�1 /3.

In the case of an arbitrarily shaped interface separating
the two phases, the analytical solution to the stress field is in
general far from trivial. In-plane problems can in some cases
be solves using conformal mappings or perturbation schemes
�15–17�. Here, we solve the stress field around a small un-
dulation of flat interface employing a linear perturbation
scheme �17�. In the linear stability analysis we now study the
growth of an arbitrary harmonic perturbation with wave-
length k, i.e., h�x , t�=Ae�t cos�kx� with A�1. In Appendix
B, we derive expressions for a general perturbation. The Airy
stress function can be written as a superposition of the solu-
tion to the flat interface and a small correction due to undu-
lation U�x ,y�=U0�x ,y�+	�x ,y�, where 	�x ,y� is deter-
mined from the interfacial constraints of continuous stress
vector and displacement field. When the wave number k is
much smaller than the cutoff introduced by the surface ten-
sion, we obtain the following expressions for the Airy stress
functions:

	1�x,y� =
− �
��h�x�exp�− ky���1y + ��

k��2�1 + �1���1�2 + �2�
,

	2�x,y� =
�
��h�x�exp�ky���2y − ��
k��2�1 + �1���1�2 + �2�

, �39�

where �i=
3−�i

1+�i
and we have introduced the material specific

constants

�1 = k�1 − �1���2 − �1���1�2 + �2� ,

�2 = k�1 − �2���1 − �2���2�1 + �1� ,

and

� = 2�1
21 − �2

1 + �2
− 2�2

21 − �1

1 + �1
+ 4�1�2

�1 − �2

�1 + �2��1 + �1�
.

From the Airy stress functions, we then calculate the
stress components using Eq. �36� and find the jumps in the
Gibbs energy density from Eqs. �33� and �34�. The evolution
of the shape perturbation relative to a uniform translation of
the flat interface is described by Eq. �27�, namely,

�h�x,t�
�t

� �F + W� − W0, �40�

which in the linear regime corresponds to a dispersion rela-
tion given in the general form as

� �
�F + W� − W0

h
. �41�

Below follows an evaluation of the growth rate for a small
harmonic perturbation to a flat interface. For this perturba-
tion, the general expression for the growth rate follows di-
rectly upon insertion of the Airy functions in Eq. �39� and
then in Eq. �36�, however, the growth rate is not easily ex-
pressed in a short and readable form and we have therefore
limited our presentation to a few special cases. The growth
rate is a function of the six material parameters ��i ,�i ,�i�
and the external stress. Naturally, the stability of the growing
interface is invariant under the interchange of the solid
phases and correspondingly the region of the stability dia-
gram that we have to study is reduced.

B. First- and second-order phase transition: Stability
diagrams

In the second-order phase transition when both solids
have the same referential densities �1

0=�2
0=�0 and when the

Poisson’s ratios �1=�2=� are identical the dispersion rela-
tion assumes a simple form

�

k
=

�3� − 1��1 − ����1 + �2���2 − �1�2

�0�1�2��1 + �2����2 + �1���1 + ��
, �42�

where � is the fraction introduced above and k the wave
number of the perturbation. The expression reveals an inter-
esting behavior where the interface is stable for Poisson’s
ratio less than 1 /3 and is unstable for Poisson’s ratio larger
than 1 /3. Figure 5 shows stability diagrams for the specific
case where �1=1 and �1

0=1 �in arbitrary units�. In panel �A�
the diagram is calculated for two solids that have the same
Poisson’s ratio and with a value �=1 /4. The second-order
phase transition occurs along the horizontal cut �2

0=1 and is
marked by a dashed grey line. We observe that � /k is nega-
tive along this line and the interface is therefore stable. For �
larger than 1 /3 �not shown in the figure� the horizontal zero
level curve will flip around and the grey dashed line will then
be covered with unstable regions. In order to see this flip, we
expand Eq. �41� around the point �1,1�, i.e., in terms of �2

0

−1 and �2−1, and achieve the following expression for the
zero curve:

�2
0  1 +

�1 − 2� − 3�2���2 − 1�
��7 + ��

. �43�

Note that the right-hand side is in units of �1. We directly
observe that the horizontal zero curve flips around at the
critical point �=1 /3. In the case when the two solids are
identical, i.e., at the point �1,1� in the stability diagram, all
modes will as expected remain unchanged and the interface
therefore remain unaltered. The other parts of the zero levels
lead to marginal stability but will in general induce a growth
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of the interface due to the unperturbed Gibbs potential �38�.
We now consider a cut in the stability diagram where the two
solids have the same shear modules, �1=�2=�, but different
densities and Poisson’s ratios. For different Poisson’s ratios
the dispersion relation �41� becomes

�

k
=

��2 − �1���1�2
0 − �2�1

0 + 2��2
0 − �1

0���
4�1

0�2
0�

. �44�

From this expression we see that the vertical zero line ob-
served in Eq. �42� and in Fig. 5 panel �A� only exists for
identical Poisson’s ratios. When the solids have different
Poisson’s ratios, the separatrix or intersection of the two zero
curves located at �1,1� in panel �A� will split into two non-
intersecting zero curves. In panel �B� we show a stability
diagram for solids with Poisson’s ratios �1=0.45 and �2
=0.40.

In general the stability diagram is characterized by four
quadrants, two stable and two unstable, delimited by neutral
zero curves. The physical regions would typically correspond
to the quadrants I and II under the assumption that higher
density implies higher shear modulus. In these quadrants the
growth rate is typically positive �i.e., the interface is un-
stable� except for a thin region at the borderline between a
first- and second-order phase transition, i.e., when �2��1.

IV. NUMERICAL RESULTS AND DISCUSSIONS

The linear stability analysis revealed an intricate change
in stability depending on the material properties and densi-
ties of the two solids. We explore this stability beyond the
linear regime using numerical methods. The bulk elastostatic
equation �10� is solved numerically on an unstructured trian-
gular grid using the Galerkin finite element method and the
surface tension force is converted to a body force in a narrow
band surrounding the interface. The discontinuous jumps ap-
pearing in the dynamical Eq. �27� are computed at the outer
border of the band. Periodic boundary conditions are used to
minimize the possible influence of the finite system size in

the x direction �parallel to the interface�. The interface is
tracked using a level set method �e.g., Ref. �18�� and propa-
gated with the normal velocity calculated in Sec. II using Eq.
�27�. Several level set functions ��x , t� can be used, how-
ever, most level set methods use the signed distance function
����x , t�� is the shortest distance between x and the interface
and the sign of ��x , t� identifies the phase at position x�.
Good numerical accuracy can be obtained by keeping ��x , t�
a signed distance function at all times, and this is achieved
by frequent reinitialization of ��x , t� according to the itera-
tive scheme

��

�t�
+ S��0������ − 1� = 0, �45�

where �0 is the level set function before the reinitialization,
t� is a fictitious time, and S��0�=�0 /��0

2+ ��x�2, where �x
is the grid size. Generally only a couple of iterations are
needed at each time step, to obtain a good approximation to
a signed distance function, and it is only necessary to update
the level set function in a narrow band around the interface.

In Figs. 6 and 7 we present numerical simulations of the
phase transformation kinetics using parameter regions where
the interface is either stable or unstable. The simulations pre-
sented in Fig. 6 �panels �A� and �B�� represent interface snap
shots of a first-order phase transition dynamics and panels
�C� and �D� simulations of a second order, respectively. In
panel �A�, the values of the parameters were chosen in a
region of the stability diagram where the interface is pre-
dicted to roughen and in panel �B� we have used parameters
corresponding to a stable evolution of the interface. Note that
the interface in both cases is moving from the dense phase
into the soft phase independent of its stability. This is in
agreement with the one dimensional calculation performed in
Sec. II. Panel �C� shows a case of a second-order phase tran-
sition where the interface is unstable, while panel �D� shows
a stable case. We notice that, for second order phase transi-
tions, the overall translation of the interface is changed in
unison with its stability. In Eq. �43� we saw that the stability
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FIG. 5. �Color online� Panel �A�, stability diagram for two solids materials with identical Poisson’s ratio of �=0.25. Panel �B�, diagram
for solids with Poisson’s ratios of �1=0.45 and �2=0.40.
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of the second-order phase transition is dictated by the values
of Poisson’s ratios. For Poisson’s ratio smaller than 1 /3, the
kinetics is stable and the phase of small shear modulus grows
into the phase of higher shear modulus while for higher val-
ues of Poisson’s ratio the behavior is reversed and the inter-
face roughens with time. This also follows from Eq. �38�. In
Fig. 7, we have plotted the mean velocity as a function of
time for the simulations presented in Fig. 6.

V. CONCLUDING REMARKS

In conclusion, it has been shown that the phase transfor-
mation of one solid into the another across a thin interface

may lead to a morphological instability, as well as the devel-
opment of fingers along the propagating interface. We have
presented a stability analysis based on the Gibbs potential for
nonhydrostatically stressed solids and have established a lin-
ear relationship between the rate of entropy production at the
interface and the rate of mass exchange between the solid
phases. The solids are compressed transverse to the interface
and corresponding stability diagrams reveal an intricate de-
pendence of the stability on the material density, Poisson’s
ratio and Young’s modulus. With the density as order param-
eter, two types of phase transitions were considered, a first
and a second order, respectively.
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FIG. 6. �Color online� Simulations of the temporal evolution of solid-solid interfaces for first-order �panels �A� and �B�� and second-order
�panels �C� and �D�� phase transitions. Panel �A� shows a simulation using �1=1.0, �1=1.0 and �2=1.05, �2=2.0. Both phases have identical
Poisson’s ratio �1=�2=0.45. Panel �B� is a simulation run with densities and shear modules similar to panel �A� but with a different Poisson’s
ratios �1=�2=0.25. Panel �C� is a simulation run with �1=1.0, �1=1.0 and �2=1.0, �2=2.0. Both phases have identical Poisson’s ratios
�1=�2=0.45. Panel �D� shows a simulation run with densities and shear modules similar to panel �C� but with different Poisson’s ratios
�1=�2=0.25. The color code represents a time arrow pointing from the darker regions �early stage� to the lighter regions �final stage�.
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For both types of transitions we find expressions for the
curves separating the stable and unstable regions in the sta-
bility diagram. For most material parameters the first-order
phase transition, i.e., when the two solids have different ref-
erential densities, destabilizes the interface by allowing fin-
gers to grow from the denser phase into the other. When the
solids have identical or almost identical densities, i.e., a
second-order phase transition, we find that the stability de-
pends on Poisson’s ratios of the two solids. If the two solids
have Poisson’s ratios less than 1 /3, the phase transition dy-
namics of the two solids will lead to a flattening of the in-
terface, i.e., any perturbation of a flat interface will decay
and ultimately the interface will propagate uniformly from
the soft phase �low Young’s modulus� into the hard phase
�high Young’s modulus�. We believe that our classification of
the phase transition order together with the stability analysis
may find application in many natural systems, since the mor-
phological stability directly provide information about the
order of the underlying phase transformation process and the
material parameters.
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APPENDIX A: SURFACE TENSION

In this appendix we present additional details on the deri-
vation of the reaction rate �27� including the interfacial free
energy. Let us consider a diffuse interface characterized by a
small thickness over which the concentration field varies
smoothly between the constant values in the bulk of the two
phases. In the Cahn-Hilliard formalism, the free energy is
introduced as a function of both the concentration and con-
centration gradients, and has the form

� f̄��̄ij,c,�c� = � f̄0��̄ij,c� +
�1

2
��c�2, �A1�

where the first term is the free energy in the bulk and the
second term is associated with the interfacial free energy.
Here �1 is a small parameter related to the thickness of the
interface.

In this case, the calculation of the reaction rate Q pro-
ceeds as in Sec. II. We apply the total time derivative of the
local equilibrium equation �13�, where the free energy is
given by Eq. �A1� and then obtain the following expression:

ė̄ =
� f̄

��̄ij

�ij
˙ +

� f̄

�c
ċ +

� f̄

��ic
��iċ − � jc�iv̄ j� + Tṡ̄ , �A2�

where the commutation relation d
dt�ic=�iċ−�iv j� jc has

been used �12�. Combining the above equation with the con-
servation of energy from Eq. �12� and the entropy balance
from Eq. �18� an expression for the entropy production rate
is obtained:

T�s = �
ij + �� jc
� f̄

��ic
��iv̄ j − �� � f̄

�c
− �i

� f̄

��ic
�ċ − �

� f̄

��̄ij

�ij
˙

= ni�
ij + ��ic
� f̄

�� jc
�njQ��

�

�c
�1

�̃
�

− � � f̄

�c
− �i

� f̄

��ic
�Q�� + �
ij + ��ic

� f̄

�� jc
− �

� f̄

��̄ij

��ij
˙ .

We observe that �s satisfies the second law of thermodynam-
ics provided that the last term vanishes and the rest of the
terms are brought into a quadratic form. This implies a con-
stitutive equation for the stress given by


ij = �
� f̄

��̄ij

− ��ic
� f̄

�� jc
, �A3�

and a linear kinetics law with the reaction rate being propor-
tional to

Q  K�� � f̄0

��̄ij

ninj
�

�c
�1

�
� −

� f̄

�c
+ �i

� f̄

��ic
� , �A4�

where K is a positive local constant of proportionality and 
ij
0

is the elastic stress in the absence of surface tension.
Using Eq. �A1�, the two constitutive laws may be ex-

pressed as


ij = 
ij
0 − �1�ic � � jc , �A5�

Q = K�
nn
0 �

�c
�1

�
� −

� f̄0

�c
+ �1�

−1�2c� , �A6�

where 
ij
0 is the elastic stress obtained in Sec. II without the

surface stress.
In the sharp interface limit, i.e., the thickness goes to zero,

the surface free energy becomes

�fsurf = �1��c�2 → ���, �A7�

and surface stress is related to the surface energy by


ij
surf = �1��c�2�1 −

�i�

����
�

� j�

����� → ��1 − ni � nj���.

�A8�

The divergence of the surface stress is then calculated as

�i
ij
surf = 2K�nj��, �A9�

where K is the local curvature.

APPENDIX B: GOURSAT FUNCTIONS AROUND A
PERTURBED FLAT INTERFACE

In this appendix, we explain in details how to calculate
the Airy stress functions around the perturbed flat interface
introduced in Sec. III. All the detailed calculations were car-
ried out in MAPLE in order to handle the lengthy algebraic
expressions.

THERMODYNAMICS AND ROUGHENING OF SOLID-SOLID… PHYSICAL REVIEW E 79, 031601 �2009�

031601-9



The Airy stress function satisfies the biharmonic equation
�z

2�z̄
2U=0. This equation has a general solution which can be

written in the Goursat form U�z , z̄�=Re�z̄��z�+��z��, where
��z� and ��z� are complex functions determined by the
boundary conditions. Combining Eq. �36� with the Goursat
solution, stress components are related to these functions by
the following expressions:


�z� = 
xx�x,y� + 
yy�x,y� = 2����z� + ���z�� , �B1�

��z� = 
yy�x,y� − 
xx�x,y� + 2i
xy�x,y� = 2�z̄���z� + ��z�� ,

�B2�

where ��z�=���z�. The solution to the biharmonic equation
is determined up to a linear gauge transformation

��z� � ��z� + Ciz + p , �B3�

��z� � ��z� + q , �B4�

where C is a real number and p, q are arbitrary complex
numbers.

The boundary conditions are given by the far-field
stresses and the constraints at the interface. Here we consider
that the system is loaded by a uniaxial compression in the y
direction, 
yy�x ,��=−�
���0. Whenever the two phases are
different an interface is introduced at which we require force
balance and continuous displacement field. The force balance
is expressed by the following jump condition:

�
xxnx + 
xyny + i�
yxnx + 
yyny�� = − �K�nx + iny� ,

where K is the local curvature and � is the surface tension.
From Eqs. �B1� and �B2� we find that the force balance leads
to the following condition on the Goursat functions:

�� + z�� + �̄� = i�
0

s

�K�nx + iny�ds , �B5�

where s is a point at the interface. The continuity of the
displacement field across the interface introduces an addi-
tional jump condition given by

� 1

�
�− �� + z�� + �̄�� = 0, �B6�

where � is the shear modulus and �= 3−�
1+� is a constant for

in-plane stress-elasticity determined by the Poisson’s ratio.
The two jump conditions �B5� and �B6� combined with

the far-field boundary conditions ���z�=− 1
4 �1+���
��z and

���z�=− 1
2 �1−���
��z are sufficient to determine the fields

�1�z�, �1�z�, �2�z�, and �2�z�. Superimposing an arbitrary
perturbation with amplitude h�x� on the flat interface, the
Goursat functions are slightly altered. They can be expanded
to linear order in h�x� as follows �17�:

��x�  �0�x� + ih�x��0��x� +��x� , �B7�

��x�  �0�x� + ih�x��0��x� +��x� . �B8�

��x� and ��x� are functions of h�x�. Inserting this expansion
into Eqs. �B6� and �B5�, we obtain that the corresponding
jump conditions for the perturbation fields

���x� + x���x� + �̄�x�� = ih�x���0�x�� + f�x� , �B9�

�− ���x� + x���x� + �̄�x�
�

� = ih�x���0�x�
�

� , �B10�

where f�x�= i�0
x�K�nx+ iny�ds. To linear order we find that

f�x�−��0
xh��s�ds. Eqs. �B9� and �B10� can be rewritten

equivalently as

�1�x� − �x�1��x� +�1�x�� − �1 + !��2�x�

= − i h�x��̄01�x� +
1 + !

1 + �
f�x� , �B11�

�2�x� −��x�2��x� +�2�x�� − �1 + ���1�x�

= − i�h�x��̄02�x� −
1 + �

1 + �
f�x� . �B12�

The constants appearing above are expressed in terms of the
elastic moduli. Adopting the notation of Ref. �17�, these are
given by

! = �
1/�2 − 1/�1

1/�2 + �/�1
, � =

1/�2 − 1/�1

�/�2 + 1/�1
, �B13�

� = �
1/�1 − 1/�2

�/�2 + 1/�1
,  =

1/�1 − 1/�2

�/�1 + 1/�2
. �B14�

Equations �B11� and �B12� are solved at an arbitrary point z
in the complex plane by applying the Cauchy integral and
using the analytic continuation of each function �15�. Let us
denote the Cauchy integral over the perturbation amplitude

H1�z� =
1

2"i
� h�x�

x − z
dx, with Im�z�� 0, �B15�

H2�z� =
1

2"i
� h�x�

x − z
dx, with Im�z�� 0. �B16�

Notice that the two functions satisfy the following relations:

H1�z̄� = − H2�z�, H2�z̄� = − H1�z�

Im�H1�x�� = Im�H2�x��, Re�H1�x�� = − Re�H2�x�� ,

where the principal value of the Cauchy integral is consid-
ered when x is a point on the real axis.

Thus, by applying the Cauchy integral with Im�z��0 in
Eq. �B11� and Im�z��0 in Eq. �B12�, �1 and �2 are deter-
mined in the integral form as follows:
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�1�z� = − i �0,1H1�z� +
1 + !

1 + �
F1�z�

�2�z� = i��0,2H2�z� +
1 + �

1 + �
F2�z� ,

where

F��z� =
1

2"i
� f��x�

x − z
dx  − �

d2

dz2H�z� . �B17�

�1�z� is calculated from the complex conjugation of Eq.
�B11� when the Cauchy integral is applied on both sides of
the equation and Im�z��0. In a similar manner, �2�z� is
derived from Eq. �B12�. The final expressions for the two
functions then follow:

�1�z� = − i�0,1H1�z� −
1 + !

1 + �
�− i��0,2H1�z� −

1 + �

1 + �
F1�z��

−
1 + !

 �1 + ��
F1�z� − z�1��z� ,

�2�z� = i�0,2H2�z� −
1 + �

�
�i �0,1H2�z� −

1 + !

1 + �
F2�z��

−
1 + �

��1 + ��
F2�z� − z�2��z� .

For a cosine perturbation of the interface, h�x�=A cos�kx�,
with A�1 the Airy stress function, U�x ,y�=Re�z̄��z�
+��z�� is obtained explicitly.
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X - 2 ANGHELUTA ET AL.: MORPHOLOGICAL STABILITY OF ROCK INTERFACES

Abstract. Interfaces between contacting rocks of the Earth’s crust are

shown to be unstable, corrugating, and develop roughness at various scales

when submitted to non-hydrostatic stress. This instability may occur in var-

ious geological settings as long as a coherent deformation of the interface is

allowed and the bodies that the interface separates have different material

properties (i.e. viscosity, density, or elastic moduli). Relevant examples in-

clude fault planes, dissolution interfaces, or grain boundaries. Performing a

two-dimensional linear stability analysis, we consider two cases: one solid in

contact with a viscous layer and two solids separated by a thin viscous layer.

In both cases either shear and/or normal loads are imposed on the interface

and thermodynamical conditions for the initiation of roughening are estab-

lished. Applied on several geological patterns (grain contacts, stylolites, fault

planes), we propose that our analysis can explain how complex patterns may

emerge at rock-rock interfaces. Finally, we provide an analysis of the evo-

lution of the static friction coefficient along sheared interfaces. The evolu-

tion is shown to depend solely on Poisson’s ratio of the solid and the ratio

of the shear and normal stresses along the interface.
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Abstract – We show that the classical Kolmogorov and Richardson scaling laws in fully developed
turbulence are consistent with a random Gaussian force field. Numerical simulations of a shell
model for turbulence suggest that the fluctuations in the force (acceleration) field are scale
independent throughout the inertial regime. We find that Lagrangian statistics of the relative
velocity in a turbulent flow is determined by the typical force field, whereas the multiscaling is
associated to extreme events in the force field fluctuations.
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In studies of fully developed turbulence, two discoveries
are highly noticeable as fundamental and seminal. One
regards Richardson’s study of the enhanced dispersion
of particles advected by a turbulent flow [1]. The other
result is Kolmogorov’s fundamental derivation, essentially
based on dimensional arguments, of the energy spectrum
in fully developed turbulence [2]. Both theories employ
the energy cascade, from the integral scale down to the
dissipation scale, as the paradigmatic physical picture of
the energy dissipation flow. Indeed, pair-particles passively
advected by turbulence exhibit a superdiffusive behavior
with their relative distance given by Richardson’s scaling
as observed both experimentally [3], analytically [4], and
in direct numerical simulations [5,6]. In the velocity
space no superdiffusive behavior is needed to substantiate
superdiffusion in real space.
In this letter, we show that the velocity increments

generated by a white-noise force field are sufficient to
generate the superdiffusive behavior, as well as the
Kolmogorov energy spectrum. To put it in very simple
terms: integrating “up” from the random acceleration field
to the velocity field and subsequently to the displacement
is enough to reproduce the well-known scaling laws.
To clarify the underlying physical picture, we consider

a simple stochastic model of relative dispersion in a

(a)E-mail: mhjensen@nbi.dk
(b)E-mail: sneppen@nbi.dk
(c)E-mail: luiza.angheluta@fys.uio.no
(d)URL: http://cmol.nbi.dk.

white-noise acceleration field given by

dΔv

dt
=ΔF (t), (1)

〈ΔF (t′)ΔF (t′′)〉= 6ε∗ δ(t′− t′′), (2)

where Δv(t) = v1(t)− v2(t) is the velocity difference
between the two particles moving along the two trajec-
tories r1(t) and r2(t), and ΔF (t) = F1(t)−F2(t) is the
relative force. The prefactor 6 instead of the usual factor
2 appearing in the force correlation is due to the parame-
trization of the relative dispersion in terms of the diffusion
constant ε∗ for a single particle in the velocity space. The
δ-function may have, in principle, a finite width given by
the time correlation of the relative random field along the
two trajectories. This width will be determined both by
the time it takes to pass a correlation length for a given
force realization, and the time it takes to change the force
in a certain point of the system.
In this set up, the relative velocity field, Δv(t) =∫ t
0
ΔF (s)ds, is a Wiener process with a Gaussian distrib-

ution, which leads to

〈Δv(t1)Δv(t2)〉 =
∫ t1
0

∫ t2
0

〈ΔF (t′)ΔF (t′′)〉dt′dt′′

= 6ε∗
∫ t1
0

∫ t2
0

δ(t′− t′′)dt′dt′′

= 6ε∗
∫ min(t1,t2)
0

dt′

= 6ε∗min(t1, t2), (3)
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implying that the mean square velocity difference is

〈Δv2(t)〉= 6ε∗t. (4)

The relative separation is described by a non-Gaussian
distribution with the second moment satisfying Richard-
son’s scaling, that is

〈Δr2(t)〉 =
∫ t
0

∫ t
0

〈Δv(t1)Δv(t2)〉dt1dt2

= 6ε∗
∫ t
0

∫ t
0

min(t1, t2)dt1dt2

= 12ε∗
∫ t
0

∫ t2
0

t1dt1dt2

= 2ε∗t3. (5)

By eliminating the time dependence of the relative velocity
and distance, we obtain the exact Kolmogorov scaling,

〈Δv2(t)〉= 22/33ε∗2/3〈Δr2(t)〉1/3, (6)

in the Lagrangian framework (for the higher moments
see footnote 1). Thus, Kolmogorov scaling is consistent
with the assumption that the dispersion is driven by
sufficiently random and uncorrelated acceleration fields.
In deriving eq. (6) we assumed that the relative velocity

is obtained by following the Lagrangian trajectories, which
in a real turbulent flow may differ from the typical velocity
increments separated by the distance r (Eulerian measure-
ment of the velocity differences) [7]. Many other stochastic
models for relative dispersion have been proposed in the
literature. Several of these models were based on Markov
processes with some functional assumptions of the veloc-
ity profiles [8–12]. Other models were based on Langevin
dynamics to various approximations of the Navier-Stokes
equations [13].
Equation (4) implies that 2ε∗ is the diffusion constant

for the relative velocity. For a Lagrangian stochastic flow
generated by the white-noise acceleration field, ε∗ can be
estimated as

〈Δ�v(t)Δ�F (t)〉 =
〈∫ t
0

dsΔ�F (s) ·Δ�F (t)
〉

=

∫ t
0

ds〈Δ�F (s) ·Δ�F (t)〉

= 6ε∗
∫ t
0

δ(t− s)ds= 6ε∗. (7)

From dimensional considerations, ε∗ has the same units
[length2/time3] as the standard energy dissipation rate ε
characterizing the turbulence cascade.
To examine how the Lagrangian white-noise accelera-

tion relates to the anomalous scaling laws in a more real-
istic turbulent field, we consider the kinematics of pair

1Using Wick’s theorem we obtain the 2n-th moment of the veloc-

ity difference at time t: 〈Δv2n(t)〉= (2n)!
2nn!

(48ε∗2)n/3〈Δr2(t)〉n/3.

particles advected by the homogeneous turbulent flow
obtained by a real-space transformation of the GOY shell
model [14,15]. This model proposed originally by Gledzer,
Yamada and Ohkitani [16,17] provides a description of
the turbulent motion embodied in the Navier-Stokes equa-
tions. The GOY model is formulated on a N -discrete set of
wave numbers, kn = 2

n, with the associated Fourier modes
un evolving according to(

d

dt
+ νk2n

)
un = i kn

(
anu

∗
n+1u

∗
n+2+

bn

2
u∗n−1u

∗
n+1

+
cn

4
u∗n−1u

∗
n−2

)
+ fδn,1, (8)

for n= 1 · · ·N . The coefficients of the non-linear terms
are constrained by two conservation laws, namely
the total energy, E =

∑
n |un|2, and the helicity (for

3-D), H =
∑
n(−1)nkn|un|, or the enstrophy (for 2-D),

Z =
∑
n k
2
n|un|2, in the inviscid limit, i.e. f = ν = 0 [18].

Therefore, they may be expressed in terms of a free para-
meter only δ ∈ [0, 2], an = 1, bn+1 =−δ, cn+2 =−(1− δ).
As observed by Kadanoff [19], one obtains the canonical
value δ= 1/2, when the 3d-helicity is conserved. The
set (8) of N -coupled ordinary differential equations can
be numerically integrated by standard techniques [20].
We have used standard parameters in this paper N = 19,
ν = 10−6, k0 = 2 · 10−4, f = 5 · 10−3.
The GOY model is defined in k-space but we study

particle dispersion in direct space obtained by an inverse
Fourier transform [14] of the form

�v(�r, t) =
N∑
n=1

�cn[un(t)e
i�kn·�r +c.c.]. (9)

Here the wave vectors are �kn = kn�en where �en is a unit
vector in a random direction, for each shell n and �cn are
unit vectors in random directions. We ensure that the
velocity field is incompressible, ∇·�v= 0, by constraining
�cn ·�en = 0,∀n. In our numerical computations we consider
the vectors �cn and �en quenched in time but averaged over
many different realizations of these.
As an example of the motion in this field, fig. 1 shows

the trajectories of two passively advected particles. As
the relative distance diverges in time, the two particles
experience different force fields, which in turn typically
increase the difference in the relative velocities of the two
particles. The figure shows the individual particles as they
are advected, first together and later diverging away from
each other when they are encased in different eddies.
Figure 2 examines the noise in the effective force field

〈ΔFΔF 〉 for the relative motion of the two advected parti-
cles. In fig. 2 we use viscosity ν = 10−6, with a Kolmogorov
scale Δr∼ 1.0 · 10−4. The noise amplitude is plotted vs.
the average square distance between the particles 〈Δr2〉=
〈(r1(t)− r2(t))2〉, with the time as parametrization of the
curves, as in eq. (6). The average is over independent trials
of the two advected particles. One observes that both the
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dt = F(r (t)) − F(r (t))

= v(r (t)) − v(r (t)) =
1 Δv(t)2

1 2

Δ

2
 r (t) − r (t)

1
r(t)=Δ

t=0

Fig. 1: Two particles being advected in a random force field,
generated by the GOY shell model.

Fig. 2: The squared relative acceleration ΔFΔF and its infi-
nite moment versus Δr2. The thin lines are for the Lagrangian
trajectories where distances and accelerations are parameter-
ized by the time of advection. The squares represent the corre-
sponding Eulerian measures of the same quantities.

typical value of the squared noise and its infinite moment
(maxt{ΔFΔF}) at any distance is constant throughout
the inertial range, i.e. above the Kolmogorov scale.
We conclude that the force field is equivalent to

Gaussian white noise, and therefore the structure func-
tion of this turbulent field should be close to the one
predicted by eq. (6). This is confirmed in fig. 3 where
we show the deviations in velocity as a function of
the square distance between the particles, that is the
plot is parametrized through the time t as indicated
in eq. (6). One indeed sees that 〈Δv2(t)〉 vs. 〈Δr2(t)〉
scales with an exponent close to 1/3 in agreement with
our expectations. Concerning the Richardson scaling
law eq. (6), we observe in the GOY simulations a long
Batchelor regime (〈Δv2(t)〉 ∼ t2) before it reaches the
Richardson law in agreement with recent experimental

100

10-2

10-4

10010-310-610-9

<
Δv

 Δ
v 

>

<Δr Δr >

Fig. 3: The squared relative velocity (Δv)2 and its infinite
moment (maxt{Δv2(t)}) vs. (Δr)2 (i.e. a representation of
the structure function). The thin lines are for the Lagrangian
trajectories where distances and velocities are parametrized
by the time of advection. The filled squares represent are the
corresponding Eulerian measures. The straight line represents
standard Kolmogorov scaling 〈Δv2〉 ∝ 〈Δr2〉1/3.

observations [21]. To study pair particle dispersion, we
thus advocate to perform the scaling plot eq. (6) with
time as parameter and believe this is why we observe
similar behavior for both Lagrangian and Eulerian
measurements. For completeness, we in fig. 3 also show
the infinite moment of the velocity, and remark that this
higher moment scales with an exponent close to 0.23.
This signals multidiffusion [22] where extreme velocity
differences sometimes, but rarely, are reached after short
separations. In the current context, we see these extreme
deviations as a measure of very unlikely and intermittent
events which only add little to the typical behavior of
the flow. Indeed also the Eulerian statistics shows clear
multiscaling as expected [14].
While our intuition has been based on the Lagrangian

picture of advected particles, it is interesting that the
corresponding Eulerian quantities behave similarly. This is
demonstrated in simulations where we now fix the distance
between two points, and then calculate, respectively, the
difference in velocity and acceleration. The squares in
figs. 2 and 3 show how 〈ΔF 2(r)〉 and 〈Δv2(r)〉 vary
with the square relative distance between the investigated
points. From fig. 2 we see that the value of the plateau
for the random force field is a direct consequence of its
random expectation at any large distance. Therefore, there
is nothing special about the selection of advected points
in the Lagrangian case. In fact the onset of the plateau is
slightly sharper in the Eulerian case, presumably reflecting
averaging associated to the underlying time parameter in
the Lagrangian advection. Similarly, there is no significant
difference for the structure functions shown in fig. 3. That
the Lagrangian and Eulerian quantities behave similarly
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10-2
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Fig. 4: A measure of an effective diffusion constant in velocity:
〈ΔvΔF 〉 vs. Δr2. As in the previous figures the thin line
describes Lagrangian trajectories parametrized by the time of
advection. The filled squares correspond to the Eulerian case.

for relative velocity differences have also been observed in
previous studies, see for instance [23,24].
Using eq. (7) we estimate 〈ΔvΔF 〉 ∼ 0.1 throughout

the inertial range in the GOY model simulations, see
fig. 4. This value of the effective velocity diffusion
constant is larger than the average energy dissipation at
the Kolmogorov scale, estimated from the energy input
Re〈u∗1 · f〉= 0.001 in the GOY model. This discrepancy
in the effective diffusion terms we attribute to the huge
contributions from the maybe unrealistically huge spikes
in the acceleration of the GOY model. Spikes which of
course are absent in the simple white noise calculation of
eq. (7). These spikes also gives rise to multidiffusion, as
discussed above.
We believe that the acceleration field as shown in fig. 2

should be experimentally accessible either by particle
tracking in a 3-D flow [25,26] or from probe measurements
in channel flows employing the Taylor hypothesis. In
the first case the acceleration is easily estimated from
the temporal variations in the velocity field of the 3-D
advected particles. In fact [25] investigated fluctuations
in single path accelerations, which were found to be
larger than Gaussian expectations. More interestingly, in
relation to our work, [25] also reports accelerations that
are independent of the Reynolds number, resembling our
findings of an acceleration difference that is independent
of scale.
Overall we have seen that the variance of the force

field reaches an average value that is independent of the
distance between the advected points in the turbulent
fluid. Already at distances slightly above the Kolmogorov
scale the two particles often receive random “kicks” which
are as large at small scales as they are at the integral scale.
Thus, huge accelerations are associated to the very small

scales, presumably to the core of eddies at the verge of
their destruction by dissipation. The acceleration between
two particles is primarily dependent on how close each
of them are to the center of an eddy. Since accelerations
are largest at the core of eddies, the relative acceleration
will be dominated by the one particle that circles fastest
around its eddy [27].
When examining the distribution of the accelerations at

a fixed distance, the GOY shell model simulations predict
a broad power law like behavior with a cutoff which is inde-
pendent of the distance (as demonstrated by the constant
max norm). The size of the cutoff is determined by the
size of the forcing and the scale at which this foricing is
acting (in our simulations, the scale is Δr= 1). In experi-
ments the single particle acceleration has broad tails, char-
acterized by a stretched exponential [25]. Thus already
the fat tails are narrower than a power law and thus
also much narrower than the GOY model results. Thus a
Gaussian assumption is fairly reasonable, with limitations
only imposed by time correlations. The extreme events in
the tails of the single particle acceleration are presumably
correlated [25], reflecting fast circulation around the core
of a vortex as seen in DNS simulation [27]. In that case the
repeated circulation of large accelerations contribute less
to the velocity drift than a non-correlated acceleration of
same magnitude would do. Also the effective ε∗ would be
lower than the one deduced directly from the width of the
single-particle acceleration distribution measured in [25].
In real turbulence, the trapping of particles in vortex
cores becomes less important with increasing Reynolds
number [28], in which case ε∗ estimated from eq. (7) would
be close to the effective diffusion constant for the velocity
field.
In conclusion, the motion associated with the relatively

slow turn-over dynamics of the large eddies is not needed
for obtaining Richardson or Kolmogorov statistics. These
two seminal laws can be deduced from the simple assump-
tion of a random force field that fluctuates with an ampli-
tude set by the system size and with a correlation time
set by the Kolmogorov scale. Obviously these assumptions
are not realistic, but to some extent the fat tails and time
correlations are coupled in a way that reduces the effect
of both on the velocity dispersion. However, correlations
can definitely have other effects on the space time struc-
ture of the overall flow as demonstrated by the multifractal
models [29]. Our objectives have been to demonstrate that
the motion of two particles in a turbulent motion can be
captured by simple assumptions of an effectively random
force field.
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