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Abstract

In the present work possibilities of utilizing porous silicon (PS) to enhance
absorption in silicon solar cells are investigated. Silicon solar cells produce
energy by converting the incoming solar radiation to electricity and the effi-
ciency of this technology will naturally depend on the amount of light that
can be absorbed by the solar cell. Antireflection coatings are used on the
surface of solar cells to increase the fraction of light that enters the cell. In
addition texture and rear side reflectors can be used to ‘trap’ the light within
the cell.

PS is a versatile, nanostructured material commonly made by electro-
chemical etching of silicon. The porosity of PS can be controlled by the etch-
ing parameters applied during formation, and because the porosity is closely
related to the refractive index, PS is a highly interesting material for optical
applications. In this work we show that thin, complex multilayer PS struc-
tures can be tailored to give very low reflectances over a broad wavelength
range. The versatile optical properties of PS are also utilized to fabricate a
variety of colored coatings that retain very low reflectance. Therefore, PS
could be an exiting material for use in efficient designer cells, desirable for
applications where the visual impression is important. PS can also be used
to make highly reflective structures simply by altering the electrochemical
etching parameters. Such structures can be used as rear side reflectors in
solar cells.

This work also presents detailed investigations of the fabrication process,
structure, optical properties, and oxidation of the multilayered PS struc-
tures. In particular, spectroscopic ellipsometry is extensively utilized in the
characterization of these multilayers, providing accurate in-depth modeling
of optical and structural properties. In addition, reflectometry, scanning and
transmission electron microscopy, and x-ray photoelectron spectroscopy is
utilized in order to unveil the secrets of this complex material.
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Chapter 1

Introduction

Solar cells exploit a virtually infinite source of energy and generate elec-
trical current directly from sunlight in a one-step conversion process. The
solar energy that hits the earth’s surface in one hour is comparable to the
amount consumed by all human activities in a year. No other renewable
energy source comes close to such a potential [1]. The need for clean, re-
newable energy technologies in order to reduce the environmental impact of
our increasing energy consumption is by now well documented [2, 3]. The
pollution-free operation is the main incentive to promote the use of solar cells
over conventional fossil fuels.

Another attractive aspect of solar energy is the global distribution of
the resource. Solar energy has an important potential in providing modern
energy access to millions of people in developing countries that currently
depend on more traditional sources of energy [4]. Already an estimated three
million households get power from small solar photovoltaic (PV) systems [4].

One of the main drawbacks of energy conversion by solar cells has been,
and still is, high cost.

Cost of Solar Electricity

Grid parity, a long held holy grail in PV, refers to the average cost of energy
in a given market. It is therefore an important yardstick for the competi-
tiveness of solar electricity compared to conventional electricity. Significant
technological progress with respect to the cost and efficiency of solar cells has
been made over the last decade, and only in 2009 the module cost was re-
duced by almost 40%. As a result, solar electricity has reached grid parity in
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Figure 1.1: Yearly growth of installed PV. Historical data in grey, EPIA
forecasts for 2010-2013. Moderate (yellow) and aggressive (orange) estimates
are shown. Adapted from [5].

some propitious energy markets, and the use of solar cells is rapidly growing.
As of early 2010 almost 23 GW are installed globally, which produce about
25 TWh of electricity on a yearly basis [5]. Figure 1.1 shows historical growth
data and the European Photovoltaic Industry Association’s (EPIA) forecast
for 2010-2013. The historical numbers are remarkable: grid-connected PV
has seen an average growth of 60% every year for the past decade, increas-
ing 100-fold since 2000 [4]. This makes PV one of the fastest growing power
technologies, and as seen from EPIAs forecast, continued growth is expected.
Another interesting marker of the competitiveness of solar cells for energy
production is the energy payback time; i.e. the operation time needed to
harvest the amount of energy that was used during the fabrication of the
cells. The payback time is not only important for cost reasons; if we want
solar cells to create net, zero carbon emission energy, a short energy payback
time is clearly extremely important. In 2000 the payback time for a c-Si solar
cell module was about five years; today it is approaching one year [6].
Despite module price and payback time reductions and exceptional growth,
the total installed PV capacity represents only ~ 0.1% of the world’s energy
consumption [7]. The production price of PV is currently around $0.15—0.30
per kilowatt hour; still higher than fossil fuels ($0.01 — 0.05/kWh) and the



most widespread renewable energy sources, hydro ($0.03 — 0.05/kWh) and
wind ($0.10 — 0.14/kWh) [4]. Hence, solar energy must, in most markets,
still be subsidised in order to compete with conventional energy sources.

Policy and Framework

Therefore, in addition to continued technological progress, policy incentives
are important to secure further utilization of solar energy. By early 2010,
more than 100 countries had some type of policy target and/or promotion
policy related to renewable energy [4]. The most important solar incentive
to date is the feed-in tariff, which offers the producers of renewable energy
long-term guaranteed purchase at rates which are generally higher than the
production cost [8].

Although not the sunniest country on earth, Germany has by far the
greatest installed PV capacity: almost 10 GW, including around 3.8 GW
installed in 2009 [5]. This amounts to almost half of the world’s total in-
stalled PV capacity and is made possible largely due to efficient government
incentives. Other major markets are Japan and Spain, but after Spain had
a record-breaking year in 2008, installations in 2009 were dramatically re-
duced due to a cap on subsidies after the national solar target was reached
[4]. USA, Italy, Canada, and Australia are other important, emerging mar-
kets. While China now manufactures more than a third of the world’s PV
cells, most Chinese consumers cannot yet afford the technology, and 95%
of China’s production is exported [8]. However, China and India have huge
market potentials and large installations are planned within the next five
years [5].

Estimates on when grid parity can be reached in the various markets vary
greatly. Some recent reports suggest that solar grid parity in sunnier areas
will be reached as early as 2012 [9], while others advocate time horizons of
5 — 10 years [10] or even more [11]. Whether grid parity will be achieved in
the near or the somewhat more distant future, there is no lack of optimistic
predictions about the effects on the expansion of PV [12]. However, Yang [11]
points out that even when/if grid parity is reached, this does not guarantee
market penetration of PV because of unfamiliarity with the technology and
high upfront costs. Although these barriers are not equally important for PV
power plants, Yang [11] argues that dropping costs in solar technology will
not automatically resolve our energy problems. Therefore, if policy-makers
wish to help distributed solar technologies into commercialization, political
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mandates to further encourage their adoption would be necessary [11].
Another question is whether grid parity energy costs truly reflect the
cost of fossil fuels. While the need of subsidies for PV is often focused upon,
the indirect subsidies of fossil fuels are rarely discussed. To what extent
are indirect costs of fossil fuels, such as environmental cleanup, health care
costs, and the current and future expenses of adapting to a warmer world,
included in the electrical bill? A handful of countries, including Norway,
introduced carbon taxes early in the 1990s. Over the next two decades a
number of countries followed, but China and the US, who are each responsible
for approximately 20% of the world’s total energy consumption, have not yet
passed any carbon tax laws. Such laws are no guarantee for reduced carbon
emissions; Norway’s per capita emissions rose by 28% between 1990 and 2009
[13]. However, enforcement of such legislation in China and USA would likely
contribute to a levelling of the ground between solar energy and fossil fuels.

Solar Cells in Norway

Although being a global resource, the incoming solar energy is far from evenly
distributed and Norway is not likely to reach the most-installed-PV lists.
Norway is however a considerable producer of solar cells. The environment
in Norway was well adapted to start production of solar cells, due to a long
history of silicon production and favourable energy prices. Elkem has for a
long time been one of the world’s greatest producers of silicon and as technol-
ogy director in Elkem in the early 1990s, Alf Bjgrseth saw the potential for
refining the silicon into silicon wafers for the solar cell industry. He founded
Scanwafer 1994, and later three other companies related to solar cell and
module production. In 2000 these companies were merged into the company
Renewable Energy Corporation (REC), which has become one of the world
leaders in the manufacturing of wafers for solar cells. In 2006 Elkem started
production of feedstock silicon for the solar industry through a low cost met-
allurgical route [14]. Recently, REC has opened a large factory in Singapore,
following the same trend as several other manufacturers. For the costs of PV
to continue to decline, PV analysts anticipate that solar cell manufacturing
increasingly will shift to Asia, a track familiar also from other high-volume
electronics markets [15].



1.1. Motivation for This Work

The Road Ahead

In the International Energy Agency’s solar PV roadmap vision, PV is pro-
jected to provide 5% of global electricity consumption in 2030, rising to 11%
in 2050, avoiding 2.3 gigatonnes of COy emissions per year [7]. Currently,
85 — 90% of solar cells are made of silicon as the active semiconductor ma-
terial [7, 16] and the cost of the PV module accounts for roughly half of the
PV system cost [11]. Acknowledging that grid parity likely is a necessity to
secure widespread use of PV, cost reductions of silicon solar cells are of high
importance in order to ensure a sustainable expansion of solar, low carbon
emission energy in the future. Most solar cell research is therefore aimed
towards bringing the cost down and increasing the efficiency of the cells.

1.1 Motivation for This Work

One way to boost efficiency is to increase the fraction of light that is absorbed
by the solar cell, a strategy now commonly known as light trapping. Here we
will use the term light trapping as referring to path length enhancements for
the light within the solar cell, hence, enhancement of the absorption prob-
ability for a photon inside the solar cell. Typical elements used to achieve
path length enhancements include textures and backside reflectors. In the
wider term light management, we also include strategies used to decrease
the amount of light reflected from the cell surface using textures and antire-
flective coatings (ARCs). Since silicon is a relatively weak absorber, light
management becomes increasingly important as the thickness of the silicon
wafers and solar cells decreases.

The benefit of reduced thickness is of course reduced material expenses.
Due to its low absorption, crystalline silicon has traditionally held a much
weaker position within thin film solar cells than within the conventional wafer
technology. The thin film cells with the highest market share today is Cad-
mium Telluride (CdTe) cells. Other alternatives are Cadmium Indium Gal-
lium Selenium (CIGS) and amprophous silicon cells. All of the above ma-
terials have far higher absorption than crystalline silicon, but all of them
also have severe problems of their own. Therefore, within both the aims
of improving efficiencies and reducing material cost, the potential benefits
of applying efficient light trapping to crystalline silicon cells are significant.
Several new technologies are emerging that allow for making crystalline sili-
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con wafers with thicknesses well below 50pm, making this a highly relevant
topic. This thesis focuses on light management in crystalline silicon solar
cells.

Porous silicon (PS) holds great potential to solve several of the light
management challenges, offering simplified and affordable processing schemes
including PS ARCs, textures and backside reflectors. PS is well known to be
a versatile, nanostructured material, which can be made by various etching
processes on different crystalline silicon substrates. The porosity is closely
related to the refractive index, which again is the key property to control
reflection from a surface. Using anodic etching, the porosity can be tuned
simply by varying the current density during formation. Consequently, a
fast and simple formation process with excellent control of the reflection
properties of the resulting PS layer can be obtained.

Anodic etching of PS is performed in hydrofluoric acid which is already
present in the standard solar cell process. This means that no new health,
safety or environmental issues are expected through its incorporation into an
industrial setting. However, use of PS could replace other processes and ma-
terials requiring additional concerns, in particular silane. Silane is currently
used in the enhanced chemical vapour deposition (PECVD) of silicon nitride
ARCs and found in nearly all solar cell factories. Eliminating silane and the
required safety precautions from a factory setting could have a large impact
both on required capital investments and running costs of process lines.

With all the promising properties described above, it is no surprise that
the use of PS in Si solar cells is not a new idea. It has been extensively
studied, by competent and experienced scientist from a range of different
research groups. According to Levy-Clement, one of the scientists that was
actively involved in the development of PS ARCs in the late 1990’s, they were
a hairsbreadth away from commercial implementation [17]. The PS ARC was
however beaten on the target string by the new SiN, ARC, which not only
had decent antireflective properties, but also provided excellent passivation.

So, why are we still spending time on investigating implementation of
PS for light management in Si solar cells? As discussed in the previous
section, the solar cell industry has seen an extraordinary expansion over the
last ten to fifteen years, followed by a drastic decrease in cost per watt peak
and payback time. Upscaling of the production is of course an important
reason for these reductions, but not the only one. The efficiency of both
lab scale and commercial large area cells have increased and a range of new
cell concepts and manufacturers have emerged. As the market grows, new
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unforeseen and foreseen problems, such as securing enough feedstock material
have been encountered. Cell thickness is now less than half of what it was
10 years ago [18] and cost has gotten so low that every penny saved in the
production process counts.

The point I try to make, is that the solar cell industry is a field of con-
tinuous development. Very good solar cells can be made using PS ARCs and
although this technique did not win the previous run, demands set for the
next run could suit the candidate better. The margins that separate success
from failure are not only small, but also intimately intertwined with current
status in cell design, production lines and cost. It is always difficult to pre-
dict which path takes you all the way and therefore, PS is one out of many
paths that should be followed in order to make sure that we don’t miss out
on any opportunity to reduce the cost of solar cell energy. Renewable energy
is one field where we cannot afford to miss out on any viable technology.

Therefore, although the road to commercial implementation may be long
and winding, I believe that it is worth continuing research on PS for light
management in Si solar cells. The simplicity of the process, without intro-
ducing any chemicals or materials that are not already used in the Si solar
cell production, in combination with the versatility of PS material is difficult
to ignore.

1.2 Thesis Outline

The primary goal of the work carried out towards the completion of this
thesis, is to use porous silicon for efficient light management in silicon solar
cells. Particularly the use of porous silicon for antireflection coatings is ex-
tensively studied. The work is comprised of two intimately intertwined parts;
processing of porous silicon and use of these structures in solar cells.
Chapter 2 and 3 take the reader through the theoretical basis which con-
stitutes the framework of this thesis. The theory presented should set out the
premises of this thesis and hopefully provide sufficient background informa-
tion to enable the reader to follow subsequent discussions. An introduction
to PS; its properties and the etching process, is given in Chapter 2. Chapter
3 gives some insight into the wily optical finesse needed to obtain sufficient
absorption in thin silicon solar cell. Starting with the material and source at
our disposal, namely crystalline silicon and the solar spectrum, we look at
the challenges and possibilities to maximize the efficiency. This includes a
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look at various light trapping schemes and the possibilities of realizing these
schemes in a solar cell. Finally, a review of the basic optics is given, provid-
ing the framework for subsequent design of optical filters with the desired
properties.

Throughout the thesis, much effort has been put down in characteriza-
tion of PS. For the final antireflection coatings, it is of course the optical
properties which are cardinal, and reflectivity is the primary evaluation key.
However, in order to control the optical properties, accurate and in depth
information about structure is essential, requiring more demanding character-
ization techniques such as scanning/transmission electron microscopy, x-ray
photon spectrometry and spectroscopic ellipsometry. Particularly, structural
characterization of complex multilayered PS structures is a demanding task,
where spectroscopic ellipsometry has been an indispensible tool and exten-
sively utilized throughout the thesis. Chapter 4 is devoted to describing these
characterization techniques and the fabrication setup for the PS structures.

Chapter 5 takes a closer look the process issues which must be considered
and, if possible, accounted for in order to achieve accurate control of the
etching process during fabrication of PS. Such process issues include elec-
trolyte evaporation, chemical etching, pore seeding, film homogeneity, and
repeatability. The main focus of this chapter is to deepen and elaborate on
the material, discussions and assumptions made in the published papers. In
particular Section 5.1, 5.2, and parts of Section 5.5 present material that is
not covered in the articles. Summaries of the published results are included
for context and completeness.

With these various process considerations established, Chapter 6 moves
on to the design and fabrication of multilayer PS and the integration of these
structures into solar cells. The antireflective layers on solar cells are located
on top of the emitter and therefore highly doped Si substrates are a reason-
able etching substrate. As a starting point, the use of in depth homogeneous
substrates, instead of emitters with a certain doping profile, reduces the com-
plexity of the etching process. In reality, the work in Chapter 5 and Chapter
6 is carried out in parallel in a continuous feedback process, increasing the
insight in, and control over, the porosification process little by little. Some
assumptions and approximations that are made in the multilayer design in
Paper V and VI are discussed and refined in Section 6.4. After proving the
concept of efficient PS multilayer antireflection coatings and studying the
achievable efficiencies, more process realistic etching in emitter structures
was attempted. Preliminary results from this work is presented in Section
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6.3. Etching of the optimized PS ARC structure on multicrystalline material
has been performed and is presented in Section 6.5. Hitherto unpublished
results on application of PS structures as backside reflectors are presented in
Section 6.6. The software used for ellipsometric modelling also constitutes
the platform for modeling and optimization of the PS multilayers.

1.3 List and Summary of Papers
Papers included in this thesis are:

Paper I: J. H. Selj, E. S. Marstein, A. Thggersen, S. E. Foss. Porous silicon
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Accepted for publication in Physica Status Solidi (c).!

Paper II: J. H. Selj, S. E. Foss, E. S. Marstein Ellipsometric study of the
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try and XPS comparative studies of ozridation effects on graded Porous
Silicon antireflective coatings Accepted for publication in The Electro-
chemical Society Transactions.

Paper V: J. H. Selj, S. E. Foss, A. Thegersen and E. S. Marstein. Opti-
mization of multilayer PS antireflection coatings for silicon solar cells
Journal of Applied Physics 107 (2010).

Paper VI: J. H. Selj, R. Sgndena, T. T. Mongstad and E. S Marstein.
Reduction of optical losses in colored solar cells with multilayer antire-
flection coatings Accepted for publication in Solar Energy Materials
and Solar Cells.

1PSST 2010 proceedings issue
2ICSE-V proceedings issue
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Paper I deals with the repeatability and homogeneity of the porous silicon
etching process. Selective electrolyte evaporation is found to cause relatively
large variations in etch rate and porosity over time. Sample homogeneity
and process repeatability is studied and the effects on graded antireflection
coatings for solar cells are assessed.

Paper II presents a study of the effect of chemical etching on the processing
of graded ARCs. As the etching time necessary to fabricate these multilayers
is so short, no adjustments of the current density needs to be adopted to
correct for this chemical etching.

Paper I1II discusses the porosity profile of single layer PS films as determined
by spectroscopic ellipsometry. Specifically, a dip in porosity close to the
surface of the layers is discussed in detail.

Paper IV considers possible effects on the reflection properties of the an-
tireflection coatings due to oxidation of PS. Results obtained by ellipsometry
is compared to chemical analysis performed by XPS.

Paper V presents the modelling and fabrication of a porous silicon ARC
structure optimized for use in solar cells. Weighting of the reflection spec-
trum is performed with respect to angle of incidence and the solar spec-
trum. Scenarios with and without module glass is explored. An integrated
reflectance of ~ 3% is achieved.

Paper VI presents a comparative study of colored antireflection coatings
made by SiN, and PS. It is shown that a range of different colors can be ob-
tained, while retaining excellent antireflection properties. This is interesting
to increase the use of building integrated photovoltaic systems.



Chapter 2

Porous Silicon Fundamentals

This chapter gives a short review of the fundamental concepts behind the
formation and resulting structure of porous silicon (PS). The center of at-
tention will be the aspects of PS which are directly relevant for the solar
cell applications explored in this thesis. The chapter facilitates the basis
for discussions around the presented results. We also seek to highlight both
fundamental and practical, application specific limitations which define the
accessible PS structures.

As a proper commencement, Section 2.1 places PS in a historical setting.
This is followed by an introduction to the most traditional means of studying
PS formation, namely the I-V curves. From here we sketch a framework
consisting of the basic electrochemical reactions and the morphology of the
resulting structures. Weight is put on how the anodization conditions and
substrate properties affect the PS structure. We touch upon some of the
numerous, and so far incomplete, formation models developed to describe
the physical and chemical mechanisms that link the etching parameters to
the resulting morphology. In Section 2.6 the optical properties of PS relevant
for this work are briefly reviewed. Finally, in Section 2.7 the effect of ageing
on PS is discussed.

2.1 History

As so many discoveries before, that of PS was an accidental one. In 1955
Arthur Uhlir Jr. and Ingeborg Uhlir worked at the Bell laboratories in the
US developing a technique for polishing and shaping the surfaces of silicon

11
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and germanium. Under certain conditions a thick colored film was formed
on the silicon surface [19]. As this did not provide the smooth polish desired,
the results were reported in the Bell labs technical note, but otherwise pretty
much ignored [20]. Some early important papers did appear in the 1960s to
1980s [21-25] and one of the first reports on PS for solar cell applications
was published as early as 1982 [26].

However, it was the discovery of PS luminescence [27, 28] which really
spurred PS research in the late 1980s. In the mid nineties the material’s
low luminosity and stability problems led to a waning interest for its use
in optoelectronic applications. In the same time period, the large surface
area and controllable pore sizes of PS began to inspire research on other
applications. The earliest application of PS in solar cells was as antireflection
coating on a p* emitter [26], an application that is still actively researched
today. The application of PS as an antireflective coating in silicon solar
cells will be the main focus of this thesis, but a few other applications will
also be touched upon. Several other potential advantages of using PS in
solar cells were also discussed early on [29, 30]. Since then some of the old
application ideas have been rejected and many new ideas have emerged. In
particular, several concepts have arisen from the need to cut down on silicon
consumption; PS as surface conditioning for layer transfer [31] and PS for
epitaxial free layer transfer [32]. PS used as rear side reflector is not a new
idea, but has received renewed attention due to the evolution towards thinner
cells [33-35]. Before we pursue the applications any further, a closer look at
the formation and properties of PS is in order.

2.2 Anodic Etching of Porous Silicon

There are two well known techniques commonly used to fabricate PS; stain-
etching [36] and anodization [19]. In the stain-etching method, hydrofluoric
(HF) acid is mixed with a strong oxidizing agent such as nitric acid, and
no external bias is needed. This is a simple method which can give very
thin layers, but it has poor control over reaction parameters compared to
the anodization technique. Anodization under galvanostatic conditions is
generally the preferred approach for reproducibility, attaining wide ranges of
porosity and thickness.

For electrochemical etching of PS, the Si wafer is placed in an externally
biased etching cell with platina electrodes and an electrolyte consisting of
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HF, water and/or ethanol plus possible additives. A platinum electrode con-
stitutes the cathode, while the Si wafer constitutes the anode. Alternatively,
both cathode and anode are platina electrodes and the wafer forms a seal
separating the front and rear half cells. When a potential is applied, a mea-
surable external current is induced to flow through the system. Holes from
the sample move towards the electrolyte-substrate interface where they react
with F~ ions from the electrolyte. Under appropriate potentials, this reac-
tion results in PS formation on the side of the wafer which faces the cathode
electrode. The anodization technique has been used for fabrication of all PS
layers in this thesis and we shall therefore elaborate on this technique in the
following sections.

2.2.1 I-V Characteristics

The traditional way of studying PS formation has been by characterization
of the evolution of the I-V curve during electrochemical etching [37]. Figure
2.1 shows a typical plot of an I-V curve of p-type Si in an electrolyte con-
taining HF. Two characteristic current peaks, J; and Jy are displayed in the
figure. At small anodic overpotentials, the current increases exponentially
with the electrode potential, this is where PS is formed. After the exponen-
tial increase, the current reaches a peak, J;. For potentials, V', higher than
V(J1), formation and dissolution of a surface oxide film result in a smooth
surface. This is the electropolishing regime. At potentials higher than the
second peak, V' (J2), current oscillation may occur. The values of these char-
acteristic currents are a function of electrolyte composition, but are largely
independent of doping [38].

Figure 2.1 also shows that illumination of the sample during etching has
very little effect for p-type Si under anodic overpotential. As holes are already
the majority carrier, the relative contribution of the photo-induced holes is
very small. For n-type Si, illumination is known to have a large effect. For p-
type Si and a cathodic overpotential, there is no dissolution of Si, but a high
hydrogen overpotential and Hy gas evolution. Illumination in this regime will
result in a photogenerated current proportional to the light intensity. The
I-V curve of n-type Si will be somewhat different, but as etching in p-type
Si is the focus of this thesis, we concentrate on the I-V curve for p-type Si.

The I-V curve resembles that of a Schottky diode, with a few important
differences. Most notably the two peaks, J; and Jy seen in the I-V curve
under forward bias are not found for a normal Schottky diode. The reason
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Figure 2.1: I-V curve for electrochemical etching of p-type Si under cathodic
and anodic potential. Adapted from Smith and Collins [37].

for the similarities lies in the resemblance of the Si/electrolyte barrier system
to that of the metal/semiconductor barrier system of a Schottky junction
[37, 39]. The energy levels of electrons in the electrolyte are characterized
by the redox potential, F,.q4.,. This potential describes the tendency of the
species to give up or accept electrons and can be considered the effective
Fermi level of the solution. Equilibrium between the semiconductor and the
electrolyte is attained when the Fermi levels in the two phases become equal,
resembling a Schottky contact. A Schottky diode models the Si electrolyte
interface accurately only as long as the charge transfer is limited by the
electrode [39, Chap. 3].

The resulting excess charge in the solid semiconductor is distributed in
a region near the surface called the space charge region or depletion region
because it is devoid of carriers. On the electrolyte side, there exists an ionic
layer which can be further subdivided into a Helmholtz layer and a Gouy-
Chapman layer [40-43]. The actual thickness of these three depends on
doping level, electrolyte concentration and bias [44]. Lehmann [39, Chap. 3]
and Zhang [38, Chap. 2] provide extensive descriptions of the Si/electrolyte
interface.

2.2.2 Electrochemistry

Although there is still controversy regarding the exact nature of the reac-
tion kinetics of PS formation, many aspects of the process are known. Any
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complete and successful model must account for all these findings.

For any current to pass the Si/electrolyte interface it must first change
from electronic to ionic charge carriers. This conversion is always accom-
plished by means of a specific chemical redox reaction at the Si interface.
The surface of Si in a HF solution will be hydrogen terminated. This was
discovered in the late 1980s/early 1990s [38, Chap. 5] and led to modifica-
tions of the early models. For a hydrogen terminated Si surface, the first step
in the dissolution of Si involves a replacement of a surface hydrogen atom
with a negatively charged fluorine ion, F~. The released hydrogen gives
the characteristic Hy bubbles, observed already by Memming and Schwandt
[21] in 1966. The absorption of fluorine also polarizes the Si-Si back bonds,
making them an easy target for chemical attack by HF and HyO molecules
[45].

In the so called direct dissolution path, leading to a porous structure, the
Si-SiF bond is broken by reacting with HF. The Si surface is again hydrogen
terminated while the fluorine terminated Si atoms are dissolved into the
solution where the Si complex is further hydrolyzed. In the process, one
electron from the broken Si-Si bond is transferred to the hydrogen of the
new Si-H bond, i.e. a hydrogen ion is reduced by an electron from the Si-Si
bond [46].

For higher potentials, the fluorine terminated Si atoms react with HoO
(instead of HF) to form Si-O-Si bonds which are not stable in HF. This is
the onset of indirect dissolution of Si through formation and dissolution of
oxide and corresponds to electropolishing [46].

Regardless of whether pore formation or electropolishing occurs, the final,
stable end product for Si in HF is HySiFg [37]. An illustration of the reactions
is given in Fig. 2.2.

In the pore formation regime, it is found that 2 — 2.8 electrons are dis-
solved per Si atom [47, 48]. As seen from Fig. 2.2, the valence resulting
from the suggested pore formation model is exactly two. This reflects the
shortcomings of the model used and the complexity of the reaction. During
electropolishing, four electrons are dissolved per Si atom removed, as seen
from the lower path in Fig. 2.2.

It is clear that the choice of reaction path depends on the potential [39,
Chap. 4]. The coverage of the surface Si-O-Si bonds increases with increasing
potential (increasing hole density) and the surface becomes increasingly less
active until it is passivated when the bonds completely covers the surface [46].
However, the interplay between oxide formation and removal rates also makes
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Figure 2.2: The two possible reaction paths during anodic etching of Si. The
upper path shows direct dissolution leading to porousification. The lower
path shows indirect dissolution via an oxide, leading to electropolishing.

the processing of PS sensitive to the HF concentration in the electrolyte. Low
HF concentrations give low oxide removal rates favoring electropolishing [44].
Note that the reaction process is determined by the chemical nature of Si and
the electrolyte, but is independent of the electronic nature of Si [38].

The reaction path described above explains the removal of Si, but it
does not explain the selectivity which leads to pore formation. Therefore,
additional models are used to explain pore formation and the final geometry
of PS. All of these models start with a Si surface where small pits or pores
are already formed. In Section 2.5, a few of the most influential formation
models are presented. However, let us first take a look at the shapes and
structures that, together with the electrochemical reactions, have been the
starting point for constructing theories regarding the underlying formation
mechanisms.

2.3 Morphology

Morphology is the study of shape, size, texture, and phase distribution of
physical objects. The morphology of PS is therefore a broad term, em-
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bracing all physical features which describe the dimensions of the material.
Properties such as pore size, porosity and structure are often used to attempt
to quantify the morphology. One can further look at the orientation of the
pores, the sort of branching they reveal, their shape and how they vary with
depth. In PS all these properties show great variation depending on the etch-
ing conditions. A schematic summary and a thorough description of different
pore structures found in literature are given by Zhang [38].

Following the definitions set by the International Union of Pure and Ap-
plied Chemistry (IUPAC), three pore size regimes exists. Pore sizes less
than 2 nm are denoted nanoporous, between 2 and 50 nm are mesoporous
and above 50 nm are macroporous. The pore size is defined as the distance
between two opposite walls of the pore and covers four orders of magnitude
in the case of PS. Although it is the different pore formation mechanisms
and pore morphologies that are fundamental, pore size is a classical way of
classifying PS.

PS porosity is simply a measure of the amount of Si etched away during
the formation. The porosity range available to different pore regimes does
vary, but porosity is principally dependent on the current density passed and
the HF concentration in the electrolyte during etching.

2.4 Influence of Formation Parameters

A wide parameter space is available for variations under anodic formation of
PS. Table 2.1 provides a simplified summary of the influence of various pa-
rameters. We will take a more nuanced look at each of the listed parameters
in the following section.

Table 2.1: Parameter influence on PS etching

Parameter (increasing) Porosity Etch rate Electropolish Pore diameter

HF concentration decrease  increase increase decrease
Current density increase  increase - increase
Time increase - - -
Temperature - - increase -
Resistivity (p-type) increase  decrease decrease decrease
Resistivity (n-type) decrease  decrease - increase
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2.4.1 Wafer Doping

We have seen that the doping concentration does not affect the nature of the
electrochemical reactions. However, it is a principal factor in determining
the morphology of PS. Therefore, one way of grouping the PS morphol-
ogy is by type and concentration of substrate doping: i) lowly doped p-Si,
ii) moderately doped p-Si, iii) lowly/moderately doped n-Si, and iv) highly
doped n- and p-Si. As a general rule, the size of the pores typically increases
with increasing doping concentrations for p-Si, while it decreases with dop-
ing concentration for n-Si [46]. In lowly doped p-Si, two distinctive pore
diameter distributions can result: large pores in the order of micrometers
and small pores in the order of nanometers. In moderately doped p-Si the
pores are rather small, typically ranging from 1—10 nm and generally highly
interconnected. Low/moderately doped n-type Si results in a very complex
morphology, showing a wide range of pore diameters, from 10 nm - 10um.
Clearly separated, smooth pores with large aspect ratios have been obtained
for these doping levels [49]. High doping densities typically produce meso-
pores and little morphological differences are expected between n-type and
p-type material. Adding large formation current densities on these substrates
results in pore dimensions approaching the macroporous regime with typical
pore size ranging from 10 — 100 nm. The pores show clear orientation and
less interconnection than those formed on moderately doped p-Si.

The etch rate of nano and macro PS shows little dependence on doping
concentration, while that of mesoporous PS shows a strong dependence. The
dependence of pore size on doping is summarized in Table 2.2 [46]. The

Table 2.2: Influence of doping and resistivity on pore diameter.

Substrate type Doping (cm™®) Res (Qcm) Resulting pore size

< 10% <135 1—10 nm and > lpym
p-type 10% — 1018 13.5—-0.04 1—10 nm

> 10% 0.009 10 — 100 nm

< 10' 0.02 10 nm - 10pm
n-type > 10" 0.005 10 — 100 nm

illumination e 1 —10nm and 50nm - 10pum

dopant distribution in Si wafers is usually slightly inhomogeneous. This can
result in corresponding local inhomogeneities in etch rate and porosity. These
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Figure 2.3: Striations are clearly visible in this PS layer. The wafer has a
diameter of 4 inches.

inhomogeneities are visible on the surface of some of the porous structures
fabricated for this thesis, as small deviations in color. They can best be
described as concentric circles with origin roughly in the center of the wafer.

This type of doping inhomogeneity is recognized as striations, a well
known issue in Si-technology [50]. Figure 2.3 shows visible striations on
a thin sample etched at constant current density.

2.4.2 Current Density

The current density affects the porosity, etch rate and pore diameter. In
general, increased current density leads to an increase in all of these param-
eters. When other parameters are held constant, the current density governs
whether the Si wafer will be etched or electropolished, high current densities
giving electropolishing, lower current densities leading to PS formation.

2.4.3 Electrolyte Properties

The basic constituents of the electrolyte used for PS etching is HF and sol-
vent. The nature of this solvent determines whether the electrolyte is termed
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Figure 2.4: The small dots seen in the middle of the sample are likely in-
homogeneities produced by Hs bubbles during formation of the layer. The
visible color difference springs from larger scale thickness inhomogeneities.
The wafer diameter is 4 inches.

aqueous electrolyte, for solvents comprised mainly of water, or organic elec-
trolyte. For all samples etched in this thesis, electrolytes consisting of water
and ethanol are used. The term aqueous electrolyte is used also when ethanol
is added [49]. The ethanol serve to reduce surface tension, and thereby im-
prove the removal of hydrogen bubbles formed during etching. Reduced
surface tension will also improve the infiltration of the electrolyte in the
nanometer sized pores. Concentration of HF in the electrolyte has a large
impact on the resulting porous structure. If other parameters are fixed, in-
creased concentration of HF results in decreased porosity and increased etch
rate. HF concentration is also important for determining the onset of elec-
tropolishing. Local variation in HF concentration can cause roughness on the
millimeter scale and may be caused by inhomogeneous electrolyte convection
at the electrolyte-electrode interface or by bubbles that stick to the electrode
surface. Marks on the PS layer likely resulting from Hy bubbles are clearly
displayed in Fig. 2.4.
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2.4.4 TIllumination

Illumination is essential for supplying the required holes for electrochemical
etching of n-type Si. It also plays a major role in determining the resulting
morphology. The I-V curve of p-type Si (Fig. 2.1) does not show any depen-
dence on illumination in the anodic regime. However, illumination may be
used to produce smaller structures in p-type material. For p-type samples a
depletion of holes in the porous layer passivates the PS from further dissolu-
tion. Light-assisted generation of holes allows a further attack of the porous
structure and results in a reduction of the size of nanocrystals according to
the quantum model [51].

2.4.5 Drying

When air drying PS, a meniscus will form in the pores, giving rise to capillary
stress on the pore walls. The mechanical stability of highly porous films may
not be sufficient to withstand this stress [52], resulting in cracking, peeling
and shrinkage of the film. Visible inhomogeneities, like small speckles, were
indeed observed on the surface of high porosity PS layer after cleaning in
water (with a surface tension of 72 mJ/m?). The stress on the pore walls
can be reduced by choosing a liquid with low surface tension for cleaning
the layers prior to drying. We therefore exchanged the cleaning substance to
ethanol because of its lower surface tension (22 mJ/m?). Cleaning substances
with even lower surface tension and other drying techniques do exist [52], but
cleaning in ethanol seems satisfactory for the samples fabricated for this work.

2.5 Formation Models

Different concepts are invoked when explaining the formation of different
pore types. To a certain extent this is a natural development because of
the wide range of pore dimensions. Quantum confinement for instance, is
important for the small scale displayed in nanoporous material, while it is
not relevant for macropores. Many aspects of the formation process are
known, but a single theory which can provide a globally coherent description
of the nature of the reactions and the resulting PS morphology is still sought
for. However, several models are suggested and we will take a look at a few
of them. Although a few pages will be spent on the formation theories of PS,
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this is far from a comprehensive review and the reader is referred to Smith
and Collins [37], Zhang [38, 46], and Foll et al. [49] for further reading.

Three important formation models for PS are the Beale model, the diffusion-
limited model and the quantum confinement model, each explaining certain
aspects of PS formation. The Beale model [25] was one of the first models
to arise and many of the concepts proposed in this model have been adopted
and further developed in later models. The diffusion-limited model [53] ex-
plains pore structure in terms of diffusion instead of electric fields, but is
really equivalent to the Beale model [37]. The quantum model [28] explains
pore formation in terms of increasing band gaps due to quantum charge
confinement within the small dimensions of the Si wires formed in PS.

It is experimentally observed that the resistivity of p-type PS is similar
to that of undoped Si, indicating that the pore walls are depleted of free
carriers [25]. In all three models, this lack of carriers leads to preferential
etching at the pore tips. It is the reason for the carrier depletion which is
different, the Beale model explaining it by overlapping depletion regions, the
diffusion-limited model describing it by random walk, and the quantum con-
finement model accounting for it by, exactly, quantum confinement. Different
depletion mechanisms are typically invoked to describe different pore sizes,
and this led Lehmann et al. [54] to an attempt to unify the theories on the
formation mechanism of all types of PS. Figure 2.5 shows the organization
chart put forward by Lehmann et al. [54]. We see that the depletion mecha-
nism for nanopores is quantum confinement, while for larger pores the space
charge layer formation is responsible. This depletion by the space charge
layer is further divided into groups. Although this organization of the mod-
els seems to cover the whole range of pore formation mechanisms, it does
not constitute a coherent theory [38]. The final model discussed, the current
burst model, may have potential to constitute a more general model. The
model is still qualitative in nature, but already it supplies explanations of
observed phenomena not obtainable in other models [49].
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Figure 2.5: Top row - effects proposed to be responsible for pore wall pas-
sivation. Middle row - effects responsible for passivation breakdown at the
pore tip. Bottom row - resulting kind of PS structure. Note that the term
microporous is equivalent to nanoporous. Adapted from Lehmann et al. [54].

2.5.1 The Beale Model

Beale et al. [25] suggested that the high resistivity of PS was due to overlap-
ping depletion regions in the pore walls. As a result of this lack of mobile
carriers in the inter-pore regions, current is selectively directed to the pore
tips. The model rests on the premise that the large surface state density of
the Si surface in the PS film results in pinning of the Fermi level [25]. The
pinning of the Fermi level is necessary to obtain sufficient carrier depletion
under anodization potentials.

Let us now take a look at how doping affects the system. With increasing
doping density the electric field strength increases and the width of the de-
pletion region decreases. A narrow depletion region enables charge carriers
to pass through the depletion region by tunneling. The width is at a mini-
mum at the pore tips because of the electric field distribution, so maximum
current flow will occur here [25]. For planar Si, tunneling will dominate the
charge transfer for doping densities in excess of 2 - 10 em™=2 [25]. For lower
doping densities, we see a difference between p-type and n-type Si. P-type Si
will be under forward bias, while n-type Si will be under reverse bias under
the anodization potential. For lightly doped p-type Si, a forward bias will
reduce the majority carrier barrier and thermionic emission will dominate
the charge transfer. In this case the barrier height, rather than its width,
determines the current flow. For n-type doping, the reverse bias permits
avalanche breakdown at sufficiently high potentials. Theunissen [23] first
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proposed that PS formation in n-type Si results from reverse bias breakdown
because of high fields concentrated at the pore tips.

We have now seen how the doping affects the charge transfer process
responsible for the pore growth. Doping also affects the morphology. The
depletion of the pore wall is assumed to be the reason for preferential etch at
the pore tips. If the distance between the pores then becomes significantly
larger than twice the depletion width, the pore walls are no longer depleted.
Branching of the pores is then possible and these branches would penetrate
this region until depletion is again established. As a consequence, pores tend
to space themselves at distances below two times the width of the depletion
region. We then see that the spacing of the pores is related to the depletion
width and thereby the doping. The pore diameter is also related to the
depletion width, W. For highly doped p-type or n-type Si, the pore diameter
is comparable to W. For low doped n-type Si the pore diameter is much
smaller than W.

The Beale model explains pore formation using well known solid-state
terminology. It is however somewhat questionable whether the classic Schot-
tky junction analogy actually applies to the Si/HF system and whether the
Fermi level is actually pinned [37].

2.5.2 Diffusive Transport

The diffusion limited model describes the formation of PS in terms of a
stochastic random walk. The basis of the model is diffusion limited annihila-
tion proposed by Meakin and Deutch [55]. The diffusion limited annihilation
model is based on the older diffusion limited aggregation model [56]; parti-
cles undergoing a random walk, due to Brownian motion, cluster together
and form aggregates. When applying the diffusion model to PS, diffusion
limited annihilation is used to acknowledge that PS is a dissolution process
and not a growth phenomenon [57]. For PS it is the diffusion limited rate of
hole transfer from the bulk of the Si to the pore surface that is the primary
factor responsible for the formation [53]. The preferential etch of the pore
tips is explained by the shorter diffusion distance for the holes coming from
the other side of the wafer. It is then simply the nature of the random walk
which explains why the pore generation preferably happens at the pore tips.
The different pore morphologies are controlled by a characteristic diffusion
length which again depends on experimental parameters such as dopant con-
centration and voltage [37, 53]. Figure 2.6 shows the two formation regimes,
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Figure 2.6: Two formation regimes. Electropolishing results for high current
densities where the mobility of the flour ions in the electrolyte are limiting.
PS films results for low current densities where the hole concentration at the
surface is limiting.

porosification and electropolishing, illustrated within the frame of the diffu-
sion model. For high hole densities, when the mobility of the fluorine ions
is the limiting factor, random walk leads to a selective etching of peaks on
the Si sample, giving a polished result. When the hole concentration is the
limiting factor, selective etching at the pore tips results. As discussed by
Smith and Collins [37], the main advantage of the diffusion limited model is
that it can be generally applied to all systems, because of its construction in
terms of standard diffusional physics. Therefore the diffusion model avoids
some of the debated issues related to the Beale-model; neither Fermi level
pinning nor Schottky barrier needs to be assumed. The Beale model and the
diffusion limited model are in fact two sides of the same story. According
to Smith and Collins [37] a fundamental equivalence between the two mod-
els arise from a mathematical equivalence between the spatial electric and
diffusional field distributions.
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2.5.3 Quantum Confinement

The quantum confinement theory was first proposed by Lehmann and Gosele
[28] to explain the low absorption of visible light in PS etched on moderately
doped p-type Si. A lowered absorption in the visible is equivalent to an
increased band gap compared to bulk Si. This is reasonable as moderately
doped p-type Si typically produces nanoporous material, consisting of in-
terconnected crystallites of a few hundred Si atoms. In structures of such
small dimensions the motion of the particle is restricted and this quantum
confinement gives an increased band gap. For PS formation, this is inter-
esting because an increased band gap would also lead to fewer carriers in
the pore walls. The increased energy in the pore-walls produces an energy
barrier, making it energetically more favorable for the holes to travel directly
via the pore tip than through the porous, quantum confined structure. If
a higher current density is applied, the holes cross the barrier more easily.
The porous skeleton will then be etched thinner and thinner until the now
stronger quantum confinement again dominates. The same is true for il-
lumination; the photogenerated holes initiate dissolution of the pore walls,
this reduces their size and thereby increases their bandgap energy until it is
higher than the photon energy, which establishes passivation again [39].

Quantum confinement was put forward as a formation mechanism for PS
etched on moderately p-type Si. It is unlikely that quantum effects regulate
pore formation in p* Si, or especially in n-Si where the inter-pore dimensions
can be as large as several micrometers [37]. It might however seem like the
lower limit for the pore dimensions is governed by the quantum aspects of
charge confinement. The quantum confinement model has been extended
to include tunneling probabilities between the walls and the bulk. It is,
however, still qualitative in character, and a quantitative correlation between
the anodization parameters and the morphology and properties of the porous
structure is not determined [39].

2.5.4 The Current Burst Model

A complete model of the electrochemistry of Si should explain the wide range
of pores, the [-V characteristics and also accommodate results which have
been used to validate the models described above [49]. The current burst
model assumes that current flow is spatially and temporally inhomogeneous
[58]. This starting point is a key concept in the model and separates the
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model from other electrochemical considerations of Si where the current flow
generally (and incorrectly according to Foll et al. [49]) is assumed homoge-
neous. An electrochemical process that dissolves Si involves four different
net chemical reactions; direct dissolution, oxidation, oxide dissolution, and
hydrogen coverage. The current burst model postulates that there are defi-
nite correlations between the four basic processes. The event sequence starts
with direct dissolution, followed by oxidation, oxide dissolution and finally
hydrogen passivation if there is no immediate new current bursts [49]. This
is a potentially promising model, but there is still a long way to a global and
quantitative description of PS formation.

2.6 Optical Properties

As mentioned introductorily, the PS research really gathered headway when
its luminescent properties were discovered. However, due to low and unstable
luminosity, in time focus shifted to other qualities of PS. Although lumines-
cence is an important and thoroughly studied aspect of PS; this section will
leave it be, as it is not utilized in the applications addressed in this work.
Instead attention is drawn to optical aspects of PS which are more relevant
for the setting of this thesis, such as optical anisotropy and absorption. The
possibilities of light management in solar cells that arise due to the control-
lable refractive index of PS will be thoroughly explored in Chapter 3 and
6.

2.6.1 Anisotropy

Optical anisotropy, or birefringence, is experienced in media where the speed
of light is different in different directions. This means that the optical con-
stants are directionally dependent. If all three directions are different, the
material is biaxially anisotropic. If only one axis is different, the material is
uniaxially anisotropic.

It is well known that PS may exhibit significant optical anisotropy [52, 59—
64]. This is not introduced by Si itself, as the diamond lattice structure
of ¢-Si is highly symmetric and exhibits very little birefringence [65]. It
is also known that formation of pores does not seem to destroy the short-
range order in the Si crystal and the material between the voids retains its
crystalline structure [61]. Two reasons have therefore been invoked to explain

27



Chapter 2. Porous Silicon Fundamentals

28

this dielectric anisotropy in PS: (i) The stress present in the PS films, (ii) an
anisotropic morphology of the PS skeleton. Given that the PS nanostructure
retains the diamond structure, the estimation performed by Mihalcescu et al.
[62] showed that the birefringence caused by lattice distortion is much too
small to be responsible for the anisotropy of the porous layers. Therefore,
the observed birefringence is due to shape anisotropy in the porous structure
which induces distinct boundary conditions to the electrical and magnetic
fields in the material.

As the optical anisotropy is induced by the shape of the pores, it is not sur-
prising that the amount of birefringence in PS is closely related to the etching
conditions, doping level, and crystallographic direction of the substrate. For
highly doped (> 10'® ecm™3), (100) oriented, p- and n-type substrates, inter-
connected, elongated pores are expected, leading to pronounced anisotropy.
For PS layers grown on lightly doped (< 106 ¢cm™2) p-type substrates the
anisotropy is less severe [66].

A dependence on porosity is also found; PS layers etched on heavily
doped Si experience an increase in the birefringence with porosity, while
layers grown on moderately doped substrates will experience a decrease in
birefringence with porosity [66]. This is probably due to the less ordered
position of pores in the PS layer formed on moderately doped Si [61].

One way of assessing the degree of anisotropy is by the optical anisotropy
parameter, (. It is defined by

B = 100%(n. — no)/Ne, (2.1)

where n, is the extraordinary refractive index, while ng is the ordinary re-
fractive index. m. > mg corresponds to positive birefringence, while n, < ng
corresponds to negative birefringence. In Section 4.3.5 an alternative termi-
nology for optical anisotropy, which is more conveniently used during ellip-
sometric modeling, is introduced.

2.6.2 Absorption

Optical transmission measurements of PS have traditionally been a way to
disclose information about the mechanisms behind PS luminescence and a
number of papers have been published on the subject.

Absorption in PS is really the sum of absorption from a high number of
individual nanocrystals of different band gaps. The absorption therefore, is
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an average characteristic of the sample [67]. The deviation of this integral
absorption of PS from that of crystalline Si has two sources. First, during
anodization a significant amount of Si material is removed. The remaining
material consists of Si nanocrystals and pores of air. When the wavelength of
the absorbing light is much larger than the typical dimension of the nanocrys-
tals, an effective medium approximation can be used to solve the problem
of a local field inside a nanocrystal. This is further discussed in Section 4.3.
Second, the effect of reduced density of states must be accounted for [28]. At
small scales, the energy spectrum becomes discrete, the number of electronic
states is reduced and the bandgap therefore is size dependent. If quantum
confinement effects are present, this leads to a significantly increased optical
transmission below the direct gap (~ 3 eV) [67]. This is commonly referred
to as a blueshift.

For large crystallites (tens of nm), the traditional understanding has been
that the bandgap remains at its original energy due to continuous energy
states. The change in absorption should then be purely due to depolarization
field effects and be well approximated by effective medium approximations
[67-69]. However, several more recent papers seems to complicate this picture
somewhat. Lerondel et al. [70], and Diesinger et al. [71] both report that their
observed absorption spectra cannot be explained by a shift of the absorption
simply due to an increase of the Si gap, as would be expected in quantum
confined structures. Instead, the effect of the large distribution of crystallite
sizes and large scale disorder is suggested as possible reasons for the irregular
deviation from the Si absorption spectrum.

2.7 Ageing of PS

PS films are significantly more chemically reactive than bulk Si. This is
largely due to their very high internal surface area, varying from 200 — 600
m?/cm?, depending on formation conditions [72]. Freshly etched PS films
react slowly with ambient air and consequently both the structural and opto-
electronic properties can continuously evolve with storage time from minutes
to months.

Fresh, as-prepared PS is initially covered by hydride species (SiH, SiHs,
SiHg) [73]. After only hours in air ambient, a rapid, but partial, oxidation
takes place through oxidation of Si (Si-O bonds). The compounds SiO,
SiO, SisO3, and SiOy are commonly found in oxidized Si samples and are
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also expected in PS [74, 75]. A further, somewhat slower, oxidation contin-
ues through the formation of Si-O-Si groups, but also formation of O-Si-H
and O3-Si-H groups that do not modify the hydrogen passivation [76]. In
addition, amorphous Si (Si:-H) [75] and various forms of fluorine [77] and
carbon impurities [76] have been repeatedly detected.

For practical application of PS structures, the ageing effects of the ma-
terial must be known and preferably be possible to control. A number of
options exists, such as oxidizing the material in a controlled manner, im-
pregnate the pores or cap the surface. Alternatively, the storage time and
conditions can be optimized for the given application requirements [52].

It is important to emphasize that the oxidation effects vary greatly with
respect to the porosity, morphology and thickness of the PS structures. Even
for nominally very similar samples, the differences are surprisingly large [78].
What is clear is that after weeks of ambient air exposure, oxygen and carbon
levels of several tens of percent are commonly observed [78].

Experiments to study the effect of oxidation on the optical properties of
PS, and on the multilayer PS antireflection coatings specifically, is carried
out. Procedures and results are described in Paper IV and also discussed in
Chapter 5 of this thesis.



Chapter 3

Light Management in Silicon
Solar Cells

A solar cell, or more generally a photovoltaic device, employs the photo-
voltaic effect to generate electric current directly from sunlight. The princi-
ple was observed by Edmund Bequerel already in 1839 and Charles Fritts is
credited for preparing the first solar cell in 1894. A major contribution to
understanding the photovoltaic effect was Einstein’s explanation of the pho-
toelectric effect in 1905. However, it took almost a century before research
on using photovoltaic devices for power production were initiated. The first
Si solar cell was reported by Chapin, Fuller and Pearson in 1954 [79] and
converted sunlight with an efficiency of 6%. The efficiency rose significantly
over the following years, but with estimated production costs of $200 per
Watt, power production by solar cells seemed highly improbable. The 1970’s
oil crisis led to an increased interest in alternative sources of energy, and a
range of different photovoltaic devices were explored. Still, little commer-
cial development resulted. During the 1990’s an awareness of the need to
secure alternative, and preferably ‘green’, sources of electricity grew, and the
interest in photovoltaics expanded. Since then, large cost reductions and
significant efficiency increases have made photovoltaic energy a tangible sup-
plement to conventional energy sources. For this trend to continue, further
advances in the cost-efficiency is essential.

The three primary factors that determine the generated current in the
solar cell is the incident light, the cells ability to absorb the light, and the
cells ability to separate and transport the charge carriers. This chapter deals
primarily with the interplay between the two first factors. Although the
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effect of the alternative processing steps on electrical properties of the cell is
very important, the separation and transportation of the charge carriers are
not the focus of this work.

The first two sections (3.1 and 3.2.1) in this chapter presents the starting
points; the incident solar spectrum and the properties of silicon as a solar
cell material. Although, solar cells today are made from a range of different
materials, silicon retains a market share of almost 90% [16]. The typical
processing steps in the fabrication of a silicon solar cell are briefly addressed
in Section 3.2.2. A comparison of the incident solar spectrum and the opti-
cal response of silicon clearly illustrates both some of the fundamental - and
some of the more practical - difficulties of exploiting all incident radiation.
The scope of this thesis is restricted to the ‘practical’ challenges; trapping
the energy that is within the inherent absorption range of silicon. Section
3.3 provides a theoretical description of the optical concepts relevant for ma-
nipulation of light into and within the cell. Section 3.4 elaborates on the
more concrete paths to improve light collection and how they can be imple-
mented in a silicon solar cell. Both conventional light trapping structures
and possible PS structures are discussed. Section 3.2.2, where the processing
steps were described, now facilitates a basis for assessing the feasibility of
implementing various optical structures in practice. The structures must not
only be cost effective, but also be compatible with preceding and subsequent
processing steps.

3.1 The Unalterable Source

The fundamental starting point which cannot be circumvented for any earth
based solar cells is the spectrum of photons received on earth. Sure, you can
up convert, down convert, and concentrate, and indeed, there are large varia-
tions with regard to latitude, longitude, altitude, and local topography. But
the available incident energy will, inevitably, be distributed more or less like
that of a ~ 5800 K blackbody, notably with some distinct atmospheric ab-
sorption bands. The atmosphere not only attenuates the incoming radiation,
it also scatters. The fraction of diffuse light will vary according to weather
and latitude. Due to these varying atmospheric and geographical conditions
a standardized terrestrial solar spectrum is defined, with a global air mass of
AM1.5 and a spectrally integrated energy flux of 1000 W m~2. The air mass
quantifies the amount of atmospheric attenuation experienced by the radia-
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Figure 3.1: The spectral irradiance of the terrestrial solar spectrum and for
a blackbody at a temperature of 5780 K and a diameter the size of the sun
seen from earth. The part of the solar spectrum that can be exploited by a
Si solar cell is shaded. Data for the standardized AM1.5 terrestrial spectrum
adopted from Gueymard et al. [80].

tion. An air mass of 1.5 corresponds to the sun being at an altitude of 42°.
The numbers are chosen because they are close to an average of the actual
values and because they are easy to work with. A standardized spectrum is
important also to provide an absolute reference for cell efficiencies. Figure
3.1 shows the resemblance of the solar spectrum to that of a black body with
a temperature of 5780 K. The deviations are mainly due to absorption in the
earths atmosphere at certain wavelengths. The terrestrial spectrum shown
is the standardized AM1.5 spectrum adopted by the American Society for
Testing and Materials (ASTM) [80]. Figure 3.2 shows the terrestrial spectral
photon flux derived from the standardized AM1.5 spectrum. This spectrum
is generally used for all weighting performed on transmission, reflection and
absorption spectra with respect to the number of incoming photons at each
wavelength.

3.2 The Silicon Solar Cell

Si solar cells have a theoretical upper efficiency limit of ~ 29% which is
largely due Si’s inability to fully exploit the energy in the terrestrial solar
spectrum [81]. Long wavelength photons pass through Si unabsorbed, while
only a fraction of the energy is exploited for the short wavelength photons.
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Figure 3.2: The spectral photon flux of the terrestrial solar spectrum. The
part of the solar spectrum that can be exploited by a Si solar cell is shaded.
Data for the standardized AM1.5 terrestrial spectrum adopted from Guey-
mard et al. [80].

Large efforts are laid down to improve these fundamental incompatibilities,
for instance by up- and down conversion of photons or by combining Si with
materials of different band gaps in multi-junction cells. In the following, we
will focus on efforts made to improve the plain, single Si cell.

The world record efficiency for a full scale Si solar cell is currently 24.2%
and held by Sun Power [82]. On lab scale, the PERL cell, made at the
University of New South Wales (UNSW), holds the record at 25.0 £ 0.5%
[83]. However, the PERL cell uses floatzone Si and complex processes, such
as lithography and double layer antireflection coatings, that make it pro-
hibitively expensive to manufacture in volume. The PERL cell is also a thick
cell, ~ 400pm, and internal light trapping will only have a very small impact
on the current density. For multicrystalline Si cells, the lab scale record is
significantly less; 20.4 £ 0.5% [84].

Continuous cost reductions have driven Si cells to reduced thicknesses. Al-
though 28% of the earths crust is Si, the recovery and purification processes
are expensive [85]. As a result, the material cost makes up a significant part
of the total production expenses and a reduction in Si consumption will con-
tribute to lower cost. High efficient thin film Si cells have been made; Sanyo’s
HIT cell has delivered high efficiencies at thicknesses well below 100um [86]
and a 47pm thick monocrystalline Si PERL cell [87] has achieved 21.5%.
This cell is ten times thinner than the conventional PERL cell, but still gen-
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erates ~ 90% of the current density of the thicker device. The light trapping
employed is ‘inverted pyramids’ at the front and a planar rear reflector. Al-
though this is an excellent example for demonstrating efficient light trapping,
it is made by thinning a thick float-zone Si substrate and does not represent
a cost reduction compared to conventional cells. In addition, the processing
steps are, as for the thick PERL cell, too complex and expensive for commer-
cial use. The official thin film cell record efficiency is currently 16.7 4 0.4%
[88, 89] and applies to cells made by thin film transfer, where, assumably,
material costs really are reduced. However, the thin film transfer process in
itself introduces new challenges for instance with respect to material quality,
in addition to the light trapping challenges.

3.2.1 Optical Response of Silicon

The efficiency of a solar cell is, naturally, very closely linked to the absorption
of incoming light. The efficiency can be expressed as
o Pout _ Jch:)cFF

Pi PSUTL
where, P, and P;, are the out and incoming power densities, J,. is the
short circuit current density and V. is the open circuit voltage. FF is the
fill factor which is defined as the ratio of the current (.J,,,) and voltage (V,,)
at the operating point of the cell to that of open circuit voltage and short
circuit current density, F'/F' = J,,V;,,/JscVoe. Let us then see how the optical
response of Si affects the short circuit current density and the open circuit
voltage.

If we disregard recombination losses, i.e. the collection efficiency is set
to unity, the short circuit current density is given by the absorption and
incident spectrum:

(3.1)

Jo = % Aa(Wasr, M1 — ROV Tarts 5 (). (3.2)
Iamis is the standardized incident spectrum and a(Weg, A) is the probability
of absorption as a function of wavelength and effective thickness. From this
equation it is evident that an increased absorption leads to increased current
density. As seen from Fig. 3.1, the incident radiation has a broad spectrum
with significant irradiance also at long wavelengths, Si, however, is an indi-
rect semiconductor with a band gap of E, = 1.12 eV, corresponding to a
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wavelength of A = he/E,; = 1108 nm. Due to Urbach absorption below the
band gap, the onset of absorption at the gap energy is not completely abrupt,
but from 1100 — 1200 nm the absorption is reduced by more than two orders
of magnitude. The Si solar cell, therefore, is in practice not able to absorb
the light with wavelengths longer than ~ 1100 nm. Clearly, the number of
absorbed photons would increase if the band gap was lowered. A band gap
of B, = 0.5 eV would correspond to absorption of wavelengths shorter than
~ 2600 nm, and give a significantly larger short circuit current density.

Eq. 3.1 shows that the efficiency also depends on the open circuit volt-
age. For homojunction photovoltaic systems, the open circuit voltage, V.,
can never exceed the band gap of the solar cell material, V,. < E,;/q. Pho-
tons with £/ > E, are absorbed, but can only deliver an electric energy less
than ¢V,.. A large fraction of the energy of the short wavelength photons
is therefore not utilized for energy production. The smaller the band gap,
the larger this ‘wasted’ energy fraction becomes. Consequently, there is a
trade-off between short circuit current density and open circuit voltage. For
a given spectrum, there is an optimal band gap where the efficiency is max-
imized. For the standardized AM1.5 solar spectrum this is about 33% at a
band gap of approximately 1.4 eV, i.e. somewhat higher than the band gap
of Si [90].

To achieve the ‘available’ 29% efficiency for a Si solar cell, all incident
photons with A < 1108 nm should be absorbed and collected. Si, as an in-
direct semiconductor, is a rather poor absorber. The irradiance of a wave
is reduced by 1/e after travelling a distance A\/(47k), called the optical ab-
sorption length. The inverse of this is defined as the absorption coefficient,
@

_ Ak

o = TO.,

where £ is the imaginary part of the refractive index and )¢ is the wave-

length in free space. Transmittance through a medium can then be expressed
by Beer-Lambert’s law as

(3.3)
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Figure 3.3: Photon absorption in Si. Long wavlengths require a long optical
path to be absorbed. Source: courtesy of Sean Erik Foss.

At the median wavelength of the solar spectrum, around 1000 nm corre-
sponding to a photon energy of 1.24 eV, Si has an optical absorption length of
156 pum. Figure 3.3 illustrates the absorption lengths of Si for three different
wavelengths. With a thick Si substrate (i.e. 400—500 pum), the great majority
of light is absorbed during its first pass and only a good antireflection coating
is required for light management. The continuous cost reductions drive Si
cells toward reduced thicknesses and today the standard wafer thickness is
already down to ~ 250 pym. Further reductions down to at least ~ 150 pm
are expected. At these thicknesses a significant amount of the light in the
long wavelength end is lost. For thin film Si solar cells, defined as thinner
than 50 pm, the losses are severe. Light trapping is applied to reduce the
absorption losses by imposing a path length for the light that is longer than
the thickness of the substrate.

3.2.2 The Silicon Solar Cell Process in a Very Small
Nutshell

The process steps necessary to produce a finished Si solar cell are not unique;
each producer have their own secret - or patented - ingredients. With the
large range of cell concepts that have emerged, including epitaxial cells, back-
side contacted cells, and emitter wrap through cells, just to name a few, the
processing steps may not even resemble the ‘standard’ process line anymore.
Still, the ‘standard line’ is used as a reference here, to remind the reader of
the most basic steps necessary to produce a wafer based Si solar cell. The
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section is largely based on textbooks by Markvart and Castaner [91] and
Luque and Hegedus [92]. How the Si is refined and becomes the familiar thin
multi or mono crystalline ‘starting blocks’ of solar cell production is another
story that will not be retold here.

Damage Etch and Texturing

The first treatment of the wafers is usually an etch to remove damage from
the sawing process. Typically, heated, aqueous KOH is used for this purpose.
The damage etch is followed by an etch used to texture the surface of the
wafers. Etching in a mix of weak alkaline solution and an organic solvent
results in a preferential etch since the etch rate for the (111) crystal planes
of the Si crystal is smaller by one to two orders of magnitude than the etch
rate of any other crystal plane [93]. The resulting structure is a surface of
random pyramid structures defined by (111) planes. The preferential etching
is very effective on monocrystalline wafers, but on multicrystalline wafers
the varying crystal orientation degrades the resulting structure. A range
of alternative etching methods has been suggested, such as isotropic etches,
inverted pyramids, mechanical grooving, and PS texture [94-96].

Diffusion

The key element of a standard Si solar cell, the charge separator, is the p-n
junction. It is made by in-diffusion of phosphorous in the case of a p-type
wafer or in-diffusion of boron in the case of a n-type wafer. There are several
ways of performing in-diffusion, but the one most commonly used in industry
is in-diffusion from a POCI3 source. The wafers are loaded into a quartz
tube which is pumped to vacuum and heated to around 900°. The wafers are
then exposed to a flow of POCl3 and phosphorous atoms diffuse into the Si.
Depending on diffusion time and temperature the doping typically diffuses
0.1—1 pm into the wafer. This layer, called the emitter, has a relatively high
doping compared to the substrate. It is usually considered a ‘dead’ layer, i.e.
the photons absorbed here do not lead to collected charge carriers. Therefore,
a thin emitter is beneficial. On the other hand, industrial techniques used
for front contacting require a deep junction to obtain acceptable contact
resistance.

Simultaneous with the in-diffusion of the dopant, mobile impurities are
trapped, or gettered, at cites that are less critical in the operation of the cell.
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During the diffusion process a layer of insulating P-silicate glass is formed,
which must be removed in HF. The in-diffusion occurs also at the back and
at the edges of the wafer. Therefore, edge isolation is required to prevent
short circuiting the cell. This can for example be done by laser grooving.

Antireflection Coating and Surface Passivation

An antireflection coating (ARC) is deposited to reduce the large reflec-
tion from a bare silicon wafer surface. Often a single layer of silicon ni-
tride (SiN,:H), deposited by plasma enhanced chemical vapor deposition
(PECVD), is used for this purpose. The reflectance is routinely reduced to
below 10% with this treatment. Alternatives to silicon nitride coatings exists,
double and triple layer ARCs such as MgF/ZnS, SiO2/TiO2, MgF/CeOq,
and MgF, /Al,O3/7ZnS may be used to reduce the reflectance further. How-
ever a corresponding number of processing steps are required. In addition,
silicon nitride provides very good surface passivation without additional pro-
cessing steps. Therefore, double and triple layer ARCs are used in systems
where higher cost of the cell can be justified.

Contact Formation

Finally, metal contacts are required to extract the current generated in the
solar cell. Contacts are most commonly formed by screen printing. The solar
cell is placed under a mask that defines the pattern of the contacts and metal
paste is applied through the mask. The aluminium contacts fully cover the
backside of the cell, only broken by silver bus bars. The front side contacts
consist of a fine silver metal grid. The process requires separate deposition
through three masks, each deposition followed by a drying step. The coverage
of the front silver grid is a compromise between increased series resistance
due to large distances between the metal fingers and light-shadowing effects.
The light hitting the metal grid is reflected from the cell. As a result of this
difficult trade-off, cells contacted solely on the backside are becoming more
common. Front shadowing from the contacts is avoided and more photons
can be collected. However, backside contacted cells have severe challenges of
their own, such as throughput and complex formation processes [97].

The last step in the contact formation is a quick anneal to allow the
paste on the front to etch through the insulating antireflection layer and into
the emitter while the paste at the rear similarly etch into the Si to form
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near ohmic contacts. The anneal must be long enough to allow the paste
to etch through the ARC at the front side and into the Si at the backside
in order to make good contacts. However, the anneal must also be swift
enough to prevent the front paste to etch through the ARC and emitter
and thereby short circuit the cell. This requires a relatively deep emitter.
A thick emitter is also necessary in order to prevent metallic impurities to
penetrate to the junction region. To achieve a low contact resistance a high
surface concentration of carriers is needed. The sum of these requirements;
a deep and highly doped emitter, will generally result in a decrease of the
short circuit current and the fill factor. One solution is to form emitters with
two distinct regions: a highly doped and deep region under the fingers and
a lowly doped and thin one under between the fingers. Such structures are
called selective emitters.

3.3 Theoretical Basis for Light Management

The history of optical coatings is a long one, with important contributions
from among others Newton, Fraunhofer, Fresnel, and Lord Rayleigh. In
1936 John Strong were able to produce an antireflection coating reducing
the reflectance of glass to visible light by 89% [98]. However, the subject did
not catch much industrial attention until it was triggered by World War II.
By the end of the war, optical coatings were an established part of optical
components. Today the areas of application of thin films are countless and
great progress is still being made within the field [99].

In this work, calculations of the optical properties of thin films are uti-
lized to relate reflectance, absorption, and transmittance to the presumably
known, optical constants of the material. Perhaps to an even greater ex-
tent, the reverse problem is posed; relation of the desired reflection to the
corresponding optical constants (and thickness). The following section sum-
marizes the theory and equations most relevant for these applications.

Basic Theory

When a beam is reflected from the upper and the lower surfaces of a thin
film, interference will occur - destructively if the phase shift is a multiplum of
180° and constructively when there is no phase shift (or a multiple of 360°).
When reflectance takes place in a medium of lower refractive index than the
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adjoining medium, a phase shift of 180° will occur, while if the refractive
index is higher than the adjoining the phase shift of the reflected light is
Zero.

A film is said to be thin when interference effects can be detected in the
reflected or transmitted light, that is, when the path difference between the
beams is less than the coherence length of the light. A film can appear thin
or thick depending on the illumination conditions.

Single Boundary

Let us start with a definition of transmittance and reflectance that is rather
intuitive. The reflectance, R, is defined as the ratio of the reflected irradiance,
I, to the incident irradiance, I;:

R="". (3.6)

The transmittance, T, is the ratio of the transmitted irradiance, I; to the
incident irradiance, I;:
I
T=—. 3.7
. (37
Note that these relations can also be formally derived, see MacLeod [100].
Recall that the irradiance is usually defined as the (scalar) time averaged
value of an electromagnetic wave’s energy flux or Poynting vector, S = ExH.
The irradiance therefore is related to the electric and magnetic field of an
harmonic wave by

I= %Re(EH*), (3.8)

where E and H are scalar magnitudes and * denotes the complex conjugate.
For a homogeneous, plane, plane-polarized, harmonic wave, the electric field
E and magnetic field, H, are given by

E = Eexp (i[wt — 27 N/N)z + ¢]), (3.9)

H = Hexp (ilwt — 27N/ Nz + '), (3.10)

where z is the distance along the direction of propagation, (2rN/X) is the
wavenumber, £ is the electric amplitude, H is the magnetic amplitude, and v
and 1)’ are arbitrary phases. The ratio of the electric and magnetic fields gives
the complex optical admittance, y, of the material; y = H/E. In free space,
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y is denoted by V) and has a value, ) = 2.65 x 1072 S. At optical frequencies
the optical admittance is connected to the refractive index by y = N)Y. We
see that through these equations we have a means of relating the refractive
index to the definitions of reflection and transmittance in Eq. 3.6 and 3.7. To
actually calculate the reflectance and transmittance, boundary conditions for
the electric and magnetic vector and Snell’s law must be applied. For non-
absorbing incident material, i.e. incident material with real refractive index
(No) and real optical admittance (yg) it can be shown that:

R— (yO*yl) <Z/0*y1> (3.11)
Yo + U1 Yo+ U1

7 - o Relyy) (3.12)

(Yo + 1) (Yo + 1)
For an absorbing incident medium, fundamental difficulties arise which are
not addressed here. Generally, air can be approximated as a non-absorbing
incident medium. For derivation of these equations, see MacLeod [99)].
The expressions above hold for absorption free emergent media as well,
but can then be simplified to

2 2
R— <Z/0*yl> _ <”0*n1) (3.13)
Yo+ U1 no +ny

4 4
T— YoY1 = oM . (3.14)
(Yo + 1) (no +mn1)
To generalize this result to be valid also for oblique incidence, the wave
is split into p and s polarization (parallel and perpendicular to plane of

incidence, respectively). Tilted optical admittances 7,,

and

and

NY
= — 1
b cos g’ (3.15)
and 7,
ns = NY cos ¢, (3.16)

are introduced and replace the optical admittance, y, in the equations above.
Since sunlight is unpolarized, the total reflectance will be half from R, and
half from R;.
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Successive Interfaces

When the structure consists of several planar interfaces, a number of beams
will be produced by successive reflections and the optical properties of the
film will be determined by the summation of these beams. We concentrate on
thin films, meaning that interference effects can be detected in the reflected
or transmitted light. The tangential components of E and H are continuous
across a boundary, and at the last interface, the waves in the film can be
summed into one resultant positive-going (transmitted) and one resultant
negative-going (reflected) wave. The tangential components of the E and
H field at one interface are connected to the previous interface by a simple
alteration of the phase factors, allowing for a shift in the z coordinate from
0 to —d, where d is the distance between the interfaces. The phase factor of
the positive-going wave will be multiplied by exp (id), where 0 is given by

0 = 2w Nidcos by /. (3.17)

A negative-going wave will be multiplied with exp (—¢d). In this way, the field
at the first interface can be expressed as a function of the field at the second
interface. For the simplest case of successive interfaces, a single thin film,
the relation between the tangential components of the electric and magnetic
field at the two interfaces can be expressed in matrix notation by

E, | | cosé (isind)/m E,
{ H, ] B {im sind  cosd H, |’ (3.18)

where subscript a denotes the first boarder (between the incident medium
and the thin film) and subscript b denotes the second boarder (between the
thin film and the substrate). The reader is referred to MacLeod [100] for a
derivation of this expression. We now have a connection between the tangen-
tial components of E and H at the incident interface with those transmitted
through the final interface. The input optical admittance of the assembly is
defined by Y = H,/E,. Normalizing Eq. 3.18 by dividing through by Ej
gives

[rm ][ 8] [y Cmim ][] e

We can then find the optical admittance of the assembly from
H, CC 7)o cOS & + i1y sin §

Y = === 2
E, B cosd+i(ne/m)sind (3.20)
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The optical admittance of the thin film replaces the optical admittance of
the exit medium for a single boundary in the equations of transmittance and
reflectance. The result can easily be generalized to apply for any number of
interfaces (g):

2] =T, a2 L] e

=1

The multiplication must be done in the right order, starting with the
layer closest to the incident medium. Inserting the optical admittance of
the assembly in the equations for reflectance, transmittance, and absorption
yields for a non-absorbing incident medium

nB—CY\ (nB—-C\" n—YY\ (n—-Y\"
= (UOB+C> (WOB+C> a (770+Y> <770+Y> 7 (3.22)
4770 Re (ﬁm) _ 4770 Re (nm) (3 23)
(B +C)(mB+C) (o +Y) (o +Y)" '
4no Re (BC* — n)

A= B+ O B+ (324

T =

3.4 Implementing Light Management

The previous sections of this chapter have presented a dilemma; a solar cell
should be thin to save Si material costs, but it must be thick enough to
absorb the photons from the solar spectrum. So, how can we decrease the
thickness of the Si substrate without reducing the photon absorption? An
oblique path through the substrate would increase the thickness of the Si
substrate as seen by the photon. If the photon also was reflected from the
rear side of the substrate, this would effectively double the thickness. The
term commonly used to describe the measures taken to elongate the light
path through the media is light trapping. Textures and backside reflectors
are the most commonly used means. Although not strictly included by this
definition of light trapping, antireflection coatings are another aspect of the
same story. Antireflection coatings are essential to couple the light into the
cell and thereby ensure that there actually is a substantial amount of light
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to trap. Light management is important for all solar cells, but become indis-
pensable for thin Si solar cells. Antireflection coatings are equally important
for all solar cells.

3.4.1 Texture

This section takes a closer look at the absorption enhancement which may
be obtained by texturing the cell surface. Texture has two functions. One is
to reduce reflection by giving the cell surface steep angles of incidence with
respect to the incoming light to allow the light at least a double bounce at the
surface. The other is to increase the path length once the photon is inside the
cell. The path length is increased due to the photon’s oblique angle through
the substrate, but also because the probability of total internal reflection
is increased. Total internal reflection is particularly important at the front
surface, where mirrors cannot be used. From Snell’s law it can be seen that
a light ray going from media ngy towards the interface to media with a lower
refractive index, ny, will be internally reflected if the angle of incidence is
greater than a critical angle 6, = sin~1(n;/ng). For a transition from Si to
air the critical angle is 0.g; = 17°. An added benefit of the oblique path is
that photogeneration takes place closer to the junction and thereby enhance
the collection efficiency for medium- to long wavelengths. A drawback is that
textured surfaces present higher surface recombination velocities.

A good standard to measure a texture by is the Lambertian surface. A
Lambertian surface is defined as a surface which fully randomizes the re-
flected and transmitted light for all wavelengths. The degree of intensity
enhancement to be expected from such perfect randomization was first de-
rived by Yablonovitch and Cody [101]. Unity backside reflection is assumed
here, but the result can be generalized to non-unity backside reflection. The
path length resulting from a Lambertian surface was found to be

| = 4n*Weg, (3.25)

where Weg is the effective thickness of the cell. Weg is used instead of just
W to include wafers which are not planar. The origin of this path length
enhancement is threefold. A factor of two comes from the unity backside
reflection, another factor of two comes from oblique transmission angles. For
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fully randomized light the average path length for one traversal is

/2 Wff /2
27T/ = cos@sind df / 277/ cosOsinf df = 2Weg. (3.26)
o cosd 0

Finally, only rays with 0, < 6. can escape and so only 1/n? of the rays
striking the front surface will leave the cell.

Under normal incidence it has been demonstrated that certain geomet-
rical surface textures can outperform Lambertian surfaces [102], but normal
incidence is not very representative for non-tracking solar module systems.
Under isotropic illumination it is shown that the average path length of
Lambertian light trapping schemes equals the theoretical maximum of the
average path length for any geometrical light trapping scheme. However,
the theoretical optimum absorption is reached for a texture with all of the
isotropically incident rays having a path length, [, equal to the theoretical
maximum. This is called optimum geometrical light trapping. Whether there
exists a structure which can provide optimum geometrical light trapping is
not known [31].

Porous Silicon Texture

Light scattering from PS is repeatedly observed in a range of different struc-
tures [e.g. 103, 104]. In principle, there are three possible origins of this
scattering: the air/PS interface, the volume or inner surface of PS, and the
PS/Si interface.

For efficient light diffusion, the size of the texture should be on the same
scale as the wavelength. Macroporous Si can be made on a scale suitable for
light diffusion and is therefore considered the most interesting pore regime
for texture applications. Because of these diffusing properties and the sim-
plicity of fabrication, it has been suggested that macroporous Si can replace
conventional texturing in Si solar cells. The etching should ideally combine
both saw damage removal and texturing. These processing steps are per-
formed in the beginning of the cell process and therefore it is the substrate,
not the emitter that is etched. Macropores of the right dimensions are most
easily obtained in n-type Si material, which would lead to a n/p* solar cell
structure. Several papers have reported that PS structures with the right
dimensions can be made and that improved light trapping results [94-96].
Macroporous Si withstands heat treatment fairly well, but removal of the
P-silicate glass that forms during diffusion may pose a problem. The glass
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is typically removed in HF and it has been reported that the PS texture is
also partly removed in this process [95].

For nano/meso PS, studies on thick PS layers show that there is no scat-
tering from the volume and the first interface [105]. This means that for
nano/meso PS the scattering originates from the second interface. Internal
light trapping provided by scattering from nano/meso PS is an additional
benefit from implementation of PS ARCs. This structure is typically made
after emitter diffusion. We will look at the PS ARC more closely in Section
3.4.3, but let us here take a look at the nature of the scattering from the
PS/Si interface.

The roughness of the PS/Si interface increases linearly with increasing
film thickness before saturating [103]. Therefore, the light diffusing property
of nano/meso PS layers has been found to depend on the PS layer thickness.
For the thin PS layers optimal for solar cell ARCs the light diffusion is less
pronounced than for thicker films. However, even for relatively thin films,
significant scattering has been observed. Bilyalov et al. [104] finds an effective
entrance angle of 60° for light entering a cell structure after passing through
a PS layer thickness of 160 nm. According to Bilyalov et al. [104] this means
that the light is fully randomized due to the scattering behavior of the random
PS medium. Figure 3.4 shows a TEM image of a 300 nm thick PS film etched
in a p* Si substrate. Since n = v/c¢, a medium with higher refractive index
than air (or vacuum to be precise) results in a reduced phase speed v. The
frequency remains unchanged while the wavelength is reduced. Therefore,
the roughness scale that will produce scattering is also smaller than in air.

A model for light propagation in PS, based on the random-medium the-
ory, enables the specular and the diffuse part of the light to be determined
and treated separately [106]. This analysis indicates a scattering behavior
which is stronger in the forward direction (transmission) than in the reverse
way (reflection). This model is therefore consistent with the experimental
observation of a rather specular reflectance behavior in combination with
diffused transmitted light [104].

3.4.2 Backside Reflector

An ideal back surface reflector would of course reflect all photons that reached
it. In many conventional, ‘thick’ (200 — 300um) silicon solar cells, the back-
side contact, typically Al, also serve as optical reflector. A metal surface is
however not totally reflective. Typical reflectance from an air/Al interface
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Figure 3.4: TEM image of the PS/Si interface of a 300 nm thick, meso PS
film. The roughness is of a scale 30 — 40 nm.

may be ~ 90% , but the reflectance from a Si/Al interface will be lower [107].
For conventional ‘thick’ cells, the short wavelengths are absorbed during the
first pass and only photons with wavelengths longer than ~ 900 — 1000 nm
reaches the backside. When the thickness of the cell decreases, photons of
shorter wavelengths will also reach the backside reflector and the long wave-
length photons may experience repeated reflections. For thin cells the photon
loss due to insufficient backside reflection therefore becomes a severe problem
[107]. Figure 3.5 shows how the transmittance through a slab of Si varies
with thickness and wavelength.

Wire cut Si wafers are now approaching thicknesses where improved back-
side reflection becomes important [35]. Dielectric layers are often, and fairly
successfully, used in conjunction with metal backside reflectors to improve
the reflectivity and reduce contact recombination [108]. By using double-
sided texture, silicon oxide passivation and Ag as metal, a nearly perfect
rear mirror can be realized, although the electrical performance of such a
rear side is not optimum.

Many of the thin film cell structures differ from a conventional cell and
the reflector will typically be situated between the active solar cell and the
substrate. Alternative reflectors are therefore sought after.
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Figure 3.5: Transmission of light through Si as a function of wavelength and
thickness of the Si slab. Source: courtesy of Jo Gjessing.

Dielectric Multilayer Reflectors

A classical high-efficiency reflector is a dielectric multi-layer stack which ex-
hibit a maximum reflectance at its design wavelength. A distributed Bragg
reflector (DBR) is a structure which consists of alternating high and low
refractive index layers. The most frequently used design is that of a quarter-
wave mirror, where each layer has an optical thickness corresponding to one
quarter of the wavelength for which the mirror is designed. When light prop-
agates in a medium with refractive index n; and reaches an interface to a
medium with refractive index no, there is a 180° phase shift if n; < no. If
ny1 > ng, there is no phase shift. The quarter wave layer DBR design therefore
results in constructive interference of the reflected waves from all interfaces
and a correspondingly high reflectivity. Implementation of such reflectors in
silicon solar cells have been shown [109]. The main drawback of a DBR is
that the high reflectance is obtained over a limited range of wavelengths.
The admittance of a stack of quarter wave layers with alternating high
index (ny) and low index (nz) and where the high index layer is outermost
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on both sides, is given by
ng\ N n2
Y = <i> -, (3.27)
nr Nom

(2N + 1) is the number of layers in the stack and n,, is the refractive index
of the substrate. The reflectance in a non-absorbing incident medium with
refractive index ng is then

(o — (ng/np)*™ (nF /nm) 2
= <no+ (na/np)?N (n% /nm)) : (3.28)

The bandwidth of the photonic stop band, W, can be calculated by

W, = Lt (u) (3.29)

i ng +ng

We see that the width of the reflection band only depends on the indices of
the two materials in the stack. The greater the difference in refractive indices,
the greater the width of the reflection zone. A more complete derivation of
this result can be found in MacLeod [99].

Porous Silicon Reflectors

The simplest PS back reflector would be a single layer of PS with very high
porosity and an optical thickness of 1/2 of the design wavelength Ag. Such
a layer would enhance the reflectance significantly, although only one maxi-
mum would be obtained. The larger the porosity of the PS layer, the larger
the refractive index difference between PS and bulk, and the higher the re-
flectance. However, the range of accessible porosity values has an upper
bound, because highly porous layers are mechanically unstable.

A DBR consisting of PS with alternating high and low porosity would
not require as high porosities as the single layer, but could still be fabricated
in a single process step [108]. Further benefits of using PS reflectors are the
compatibility with the existing silicon solar cell technology and low fabrica-
tion costs. Implementation of such layers in lab scale solar cells have been
performed [33, 34, 110, 111]. The structures are particularly interesting for
thin film epitaxial cells, where the mirror must be situated between the active
Si region, making conventional mirrors unsuitable. Kuzma-Filipek et al. [33]
estimates that the fabrication costs of such PS reflectors can be as low as
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0.07 — 0.04 Euro/Wpeai, assuming a high throughput porousification system
of 1200 wafers/h.

For target wavelengths in the infrared, parasitic absorption in the PS
multilayered reflector structures is relatively low.

3.4.3 Antireflection Coatings

Even if a great internal light trapping scheme is accomplished, it will be in
vain if the light never enters the cell. Antireflection coatings supplement the
internal light trapping schemes, but in contrast to the other light trapping
features, ARCs are equally important for all cells, thick or thin.

Silicon is a typical high index substrate, meaning that it has a refractive
index sufficiently higher than the available thin-film material to enable the
design of antireflection coatings consisting entirely of layers with indices lower
than that of the substrate.

The ARC depends on the more or less complete cancellation of the light
reflected from the air/ARC interface and the ARC/Si interface. For com-
plete cancellation of the reflected light, the reflected amplitudes from the
two interfaces must be equal. This implies that

Yo—Y% Y1~ Ym
Yo+ Vit Ym

(3.30)

where yo, y1, and y,, is the optical admittances of air, the film (ARC) and
the emergent medium, respectively. This infers that the ratio of refractive
indices at each boundary should be equal,

Yo/Y1 = Y1/Ym (3.31)

y1 = (Yoym)'"*. (3.32)

We see that the optical admittance (and refractive index) of the thin film
should be intermediate between the indices of air and that of the substrate.
To ensure a relative phase shift of 180° for complete destructive interference,
the thickness of the film should be one quarter wavelength. The reflectance

is given by
v 2 .2 o 2
Yo +Y Yo + Yi/Ym

Clearly, if y; is given by Eq. 3.32 the reflectance is zero.
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At oblique incidences, the tilted values of the optical admittance, from
Eq. 3.15 and 3.16 must be used. This angular dependence is then also
introduced in Eq. 3.30. The disadvantage with a single layer ARC is that
reflection only can be optimized at one wavelength. Better ARCs can be
constructed from two or more layers, often being a quarter wavelength each.

It is seldom possible to find material of exactly the refractive index which
is required. If there is a small error, ¢, in y; such that

y1 = (1 +2)(Yoym)"” (3.34)

then the minimum reflectance for this coating is given by

e .
R=\5iai2) (3.35)

for small €.

Porous Silicon Antireflection Coatings

The first attempts of PS ARCs for solar cells were made in the early eighties
[26]. Since then extensive work has been performed. There is little contro-
versy in claiming that formation of a PS layer decreases the reflectance from
a Si wafer; all results point to an improvement of the optical characteristics
due to the reduced reflectance losses of a PS surface [104, 112-115]. All
possible refractive indices of PS are intermediate between that of air and Si,
thereby reducing the reflection from the interface. In addition, the rough
surface provides a certain amount of texture, further reducing reflection.

However, low reflection is not reason enough to integrate a new ARC ma-
terial in the solar cell process. Antireflection coatings with excellent broad-
band properties are known, the most efficient system is the ZnS/MgF, dou-
ble layer, with an integrated reflectance of ~ 3.3%. However, these materials
are typically deposited by high vacuum evaporation techniques and sepa-
rate processing steps are necessary for each layer. Such ARCs will therefore
contribute to raise expenses in the production of solar cells. It is the combi-
nation of excellent antireflective properties and inexpensive production that
make PS relevant as solar cell ARC material. Additional requirements that
should be met is that the PS fabrication must integrate well into the solar
cell process, the PS layer must be able to withstand subsequent processing
steps, and it must not degrade the electrical properties of the cell.
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Reducing the number of steps in the solar cell process gives cost savings.
Therefore, simplified processing schemes are always sought for. The PS ARC
has been suggested to fulfill a number of functions. One of the most common
combinations is a simplified process where PS replaces the texture, surface
passivation and ARC [104]. Solar cells with this simplified processing scheme
have indeed been fabricated with a resulting efficiency of 14.1% for a 5 x 5
cm? me-Si cell [116]. The PS ARC formation is typically performed at the
end of the process because PS reorganizes and oxidizes if exposed to high
temperatures. A selective emitter is then formed without any alignment,
as the area below the contacts are protected from etching. The two main
challenges in this processing scheme is the inadequate surface passivation
provided by PS and a potential degradation of the Ag contacts during etching
in HF.

Table 3.1 shows an extensive, but not exhaustive, overview of what has
been done in the history of PS ARCs for solar cells. Many groups have con-
tributed to the development and solar cell efficiencies of 12 — 14% have been
obtained by several groups. Mostly this is through a simplified processing
scheme where a single PS layer is etched in the n™ emitter after metallization.
Generally, screen printed contacts are used and no texture, surface passiva-
tion or additional ARC applied. Both stain etched and electrochemically
etched PS layers are utilized with similar efficiencies. The highest reported
conversion efficiency is 16.8%, obtained by Yuan et al. [131]. This is obtained
using Au nanoparticles as catalysers for the etching process and is, judging
from the results, clearly an interesting approach. The highest efficiency ob-
tained with pure anodic etching is 14.1%, obtained by Bilyalov et al. [116],
using evaporated contacts instead of screen printed ones. The best efficiency
of cells with screen printed contacts from the same author was 13.2%.

It is difficult to directly compare the reported results as a range of pa-
rameters, which cannot easily fit into a table, will greatly affect the obtained
results. Some of the ARCs are too thick for implementation in a conven-
tional silicon solar cell [112, 117], some use non-standard contacting to avoid
contact degradation during etching.

The best, in terms of low reflection, reported PS ARC has a reflection of
2.7% over the wavelength range 400 — 1000 nm [126]. The ARC was formed
in an n* emitter structure. The etching time was however > 100 s, which
would very likely lead to a significant degradation of the contacts.

In the great majority of the PS ARC studies, homogeneous single or,
in a few cases, double layer ARCs are fabricated. Uehara et al. [112] first
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Table 3.1: Reflectance and cell efficiencies obtained with PS ARCs

Reference Layer type Refl.T  Xrange (nm) 7(%)?2
Tsuo et al. [117] SL, pc-p ~ 10% 350 — 850 -
Menna et al. [29] SL, pc-p 4.7% 350 — 1120 -
Vazsonyi et al. [118] SL, mc, n*/p - - 11.5%
Coles et al. [119] SL, mono-p 12.0% 400 — 1100

Strehlke et al. [120] SL, mc, nt/p - - 13.2%
Schirone et al. [121] SL, mc, n™/p 3% 400 — 800 12%
Stalmans et al. [122] SL, mc, n* /p - - 12.7%
Bilyalov et al. [116] SL, mc, nt/p 5—6%  300—1000 14.1%
Strehlke et al. [123] SL, ¢, n"/p 7.3% 400 — 1150 -
Panek et al. [124] SL, ¢, n™/p - - 9.5%
Panek et al. [124] SL, mc, n*/p - - 9.5%
Lipinski et al. [125] SL, ¢, nt/p 9.7% 400 — 1000 12%
Uehara et al. [112] Grad., p sub. <2% 400 — 1000

Strehlke et al. [126] DL, ¢, n*/p 2.7% 400 — 1000 -
Yerokhov et al. [127] SL, ¢, n*/p 7.6% 400 — 1000 13.5%
Martin-Palma et al. [128] SL, mc, n* /p - - 9.6%
Lipinski et al. [113] SL, mc, nt*/p 13% 400 — 1100 13.3%
Lipinski et al. [114] DL3, me, nt/p 5.8% 400 — 1100 -
Striemer and Fauchet [129]  Grad.,sr? 3.7% 350 — 1000 -
Striemer and Fauchet [129]  Grad.,p+ sub 8.1% 350 — 1000 -
Kwon et al. [115] SL, mc, nt/p 4.7% 400 — 1000  13.2%
Chaoui and Messaoud [130] SL, ¢, nt/p 9.5% 400 — 1100  12.5%
Yuan et al. [131] Grad.’, nt/p < 3% 350 — 1000  16.8%
Remache et al. [132] SL, ¢, n*/p+Si0,  3.8% 400 — 1100 -

!The reflectance is the effective reflectance over the wavelength range given in column
four. 27 is the cell efficiency. macroPS + nanoPS$ in nt. “*Fabricated on string ribbon
solar cells. °Nanocatalyzed formation method. Abbriviations used in the Table: SL -
single layer, DL - double layer, Grad. - graded layer, ¢ refers to monocrystalline silicon.
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reported a graded index PS ARC formed by a gradual change in the porosity.
Excellent broad band reflectivity of less than 3% in the visible spectrum was
achieved, but the thickness of these stacks (> 1um) are not suitable for solar
cell ARCs. In addition to a degradation of the electrical characteristics,
parasitic absorption in the ARC would be rather high. Striemer and Fauchet
[129] fabricated thin (~ 100 nm) gradient index PS layers with a reflectance
of 8.1% on a polished 0.01 ©Q cm p-type Si wafer over the spectral range
350 — 1000 nm. The etching process took only 5 seconds.

The gold-catalyzed PS emitter fabricated by Yuan et al. [131] requires
an etching time of 3 minutes and is 500 nm thick. However, the broadband
reflectance is low (< 3%) and the excellent cell efficiency are obtained, despite
the relatively thick dead PS layer.

A few reports exists where PS ARCs are used in different cell concepts.
One example is a thin film polycrystalline cell where separate PS layers are
used as ARC and buffer layer between the substrate and the active cell [133].
Another concept that is included in Table 3.1 is a double layer structure
where macropores are etched in the substrate before diffusion to provide
texture and a nanoporous layer is etched in the emitter after diffusion to
provide an ARC [114].
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Fabrication and
Characterization of PS

In this chapter, the methods used to fabricate and characterize the PS sam-
ples in this work are presented. Firstly, the fabrication setup we have for
electrochemical etching of PS at IFE is described. The setup is used for
all PS samples presented in this work. To obtain all desired information
about the structures, several characterization techniques have been used. In
particular spectroscopic ellipsometry (SE) has been extensively utilized for
characterization and is described in some detail, both practically and the-
oretically. Complementary characterization techniques used to probe the
optical, structural, and chemical properties include spectroscopic reflectom-
etry, gravimetry, scanning electron microscopy (SEM), transmission electron
microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Each of
these characterization techniques are briefly review towards the end of this
chapter.

4.1 Fabrication

In this section we will describe the constituent parts of the etching setup. The
electrochemical cell and the current source are both bought from Advanced
Micromachining Tools (AMMT) and are designed especially for the purpose
of making PS.
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Figure 4.1: The etching cell. Left: the wafer is in place, dividing the two
chambers so that the current has to pass through the wafer. Right: Etching
cell with the lids on.

4.1.1 Etching Setup

The electrochemical etching cell is a double cell, meaning that the Si substrate
is vertically placed between two separate reservoirs. Each reservoir contains
the same electrolyte and one Pt-electrode, working as anode in one reservoir
and as cathode in the other. Figure 4.1 shows the inside and outside of
the cell. The system has sapphire windows to allow for the possibility of
illumination during etching. Window covers are supplied to enable etching
in complete darkness. The cell requires 3.4 1 electrolyte per filling.

An advantage of the electrochemical double cell is that the frequently
used metal contacts can be replaced by an electrolytic contact. This will
avoid a potential source of contamination and establish a transparent contact.
However, the potential of the wafer will not be known [39]. The fixation
arrangement for the sample allows easy access and fast removal of the sample
after etching.

The PS2 current source from AMMT has two operation modes; constant
voltage (potentiostatic) and constant current (galvanostatic). The current
range is 0 — 12 A, while the voltage range is 0 — 36 V. The PS layers in this
work are generally processed in the constant current operation mode. This
means that the current source is controlled to adjust for possible changes
in resistivity during etching (by adjusting the voltage). In the galvanostatic
operation mode, current is generally kept constant to within +2 mA. For
the 4 cm? sample holder this corresponds to a variation in current density
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of 0.5 mA. The resolution of the output data is quite low and given with
irregular time intervals. The potentiostat allows programming of current
density profiles with a time resolution down to 50 ms, but in this so called
fast mode, current and voltage data are not available for readout.

The electrolytes used consist of different ratios of 49% wt. HF and
ethanol. In the mixing of these two constituents, volume ratios are used.
When we state that the electrolyte has an HF concentration of 10%, this
corresponds to a ratio of 1 : 4 and the % wt. consentration of HF will there-
fore be somewhat higher (about 12% wt.) since the density of HF is 1.15
g/mL and the density of ethanol is 0.79 g/mL.

4.1.2 Substrates

For most of the work in this thesis, monocrystalline, (100)-oriented, p-type
Si wafers from Siltronix are used as substrates. The wafers have a doping
of ~ 0.01 Qcm and are single or double side polished; the side used for PS
formation is polished in all experiments. Considerations leading to the choice
of this etching substrate are discussed in Section 5.1.

Also p-type multicrystalline wafers, ¢-Si n-type wafers with p-type emit-
ters (p*/n structures), c¢-Si p-type wafers with n-type emitters (n*/p struc-
tures), and p/p™ structures are used for some experiments. Different emitter
profiles are made by in-diffusion in a horizontal tube furnace from Tempress.
These emitter profiles, and the electrochemical etching of such substrates,
will be discussed in Section 6.3.1.

4.2 Porosity and Etch Rate Calculations

To achieve an effective graded PS ARC, access to a wide range of porosi-
ties, by variation of the current density only, is highly desirable. It is well
known that increased HF concentration leads to decreased porosity. With
a wish to keep HF concentrations as low as possible for safety reasons, a
starting concentration of 10% was adopted. We early established that this
gave access only to the high porosity range. The HF concentrations were
therefore increased to 15% and eventually 20%, where we found the available
porosity range satisfactory. Table 4.1 [Paper V] summarizes the accessible
porosity range for the different HF concentrations for a moderately doped
p-type substrate, etched in dark and in an electrolyte containing solely HF,
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Table 4.1: Porosity limits
Current density J 10% HF 15% HF 20%HF

1 mA/cm? 38 26
5 mA /cm? 76 49 40
max mA /cm? 90 80 76

ethanol and water in our setup.

In order to accurately control the fabrication of complex samples the
relation between current density and porosity and between current density
and etch rate must be known with some accuracy. SE has been the primary
characterization tool used to obtain porosity and thickness in this work.
However, to confirm the validity of the ellipsometric results, gravimetry and
SEM were also used in the initial characterization phase.

The gravimetric procedure is described in Section 4.4.1. The gravimetric
results are shown in Table 4.2, where mg and m; are the masses of the wafer
before and after PS formation, respectively and my is the mass of the wafer
after removal of the PS layer. d; = (mo—my) is then the mass change due to
anodic etching and d; = (m; — my) is the mass change due to KOH etching.
The accuracy of the weight used is 0.0001 g and from Table 4.2 it is evident
that the relative uncertainty in some of these measurements is very large. In
addition to the large measurement uncertainty, there are also other sources
of uncertainty, such as the size of the area on which PS is formed, possible
removal of small amounts of Si during the KOH etch, and changes in weight
of the PS sample due to oxidation. A clear ring is visible around the sample
and this ring likely has a different thickness and porosity than the rest of the
sample.

Most of these uncertainties will be reduced by increasing the thickness
and area of the PS layer, and only the layers where both §; and d, have
a mass much larger than the accuracy limit of the weight are expected to
provide reasonably accurate results. Unfortunately, the thickest samples,
which gives the most accurate gravimetry results, are the most difficult to
characterize by ellipsometry. Therefore, the number of layers that can be
accurately characterized by both ellipsometry and gravimetry is rather few.
A comparison of the results obtained by ellipsometry, gravimetry and SEM
are shown in Table 4.3. The correspondence between porosity values obtained
by gravimetry and SE is fairly good, while the deviations in thickness is
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Figure 4.2: Porosity and etch rate versus applied current density. The trend
line added for the porosity curve is a power curve, the trend line added for
the etch rate is a second order polynomial. The lines are primarily a guide
to the eye [Paper V.

somewhat larger. We were unable to fit satisfactory ellipsometry models
to Sample 33, 43, and 44, but the etch rate and porosity determined from
gravimetry is in correspondence with values found by ellipsometry for thinner
layers etched at the same current density.

The most valuable outcome of the gravimetric results is an independent
assessment of the approximate thickness and porosity of the PS structures.
Although deviations exist, we regard the gravimetry results as a general sup-
port to the sense and validity of the ellipsometric model used. Thicknesses
measured by SEM is generally in good accordance with ellipsometry results.
In the few cases where TEM investigations are also performed, thicknesses
obtained by this method is also in agreement with that obtained from el-
lipsometry. In conclusion we regard SE as a reliable technique for accurate
determination of the PS structure parameters, dependable enough to be used
as sole characterization technique in further work.

Figure 4.2 shows the experimentally determined dependence of porosity
and etch rate on current density for a p* substrate in an electrolyte consist-
ing of 20% HF. The relation between current density and porosity appears
nonlinear, with the steepest gradient occurring at low current densities. For
further discussion on this, see Paper V where the data was originally pre-
sented.



4.2. Porosity and Etch Rate Calculations

Table 4.2: Gravimetry results
Sample _mo (g) mi (g) 61 (g) ma(g) d(g) t(um) P (%)
13c 2.7629 2.7467 0.0162 2.7445 0.0022 1579 88
14b 1.6531 1.6367 0.0164 1.6350 0.0017 1553 91
18f 1.4699 1.4673 0.0026 1.4669 0.0004 2861 87
25 9.3990 9.3941 0.0049 9.3880 0.0061 833 45
33 9.4003 9.3995 0.0008 9.3977 0.0018 189 32
34 9.3599 9.3443 0.0156 9.3391 0.0052 1574 75
42 5.0244 5.0200 0.0044 5.0155 0.0045 674 49
43 4.9307 4.9044 0.0263 4.8966 0.0078 2580 7
44 48796 4.8494 0.0302 4.8420 0.0073 2850 80

Table 4.3: Results obtained by different characterization techniques

Thickness (nm) Porosity (%)
Sample Ellipsometry Gravimetry SEM Ellipsometry Gravimetry
15a 262 . 258 — 268 79
15b 321 . 320 — 339 81
15¢ 426 . 370 — 424 83
15d 486 . 464 — 475 87 e
25 860 833 e 44 45
33 243 189 e 34 32
42 630 674 . 52 49
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Figure 4.3: Schematic sketch of a typical ellipsometry setup. Adapted from
the VASE Manual, Woollam Co. [136].

4.3 Ellipsometry

SE measurements and modeling have been central for much of the work pre-
sented in this thesis. In the following pages, we will therefore look at this
technique in some detail. A brief introduction to ellipsometry is followed
by a review of the most important underlying physical concepts. The ellip-
sometry equipment, hardware and software, used in this thesis is described.
A discussion of the models applied in analysis of thin PS layers rounds off
the section. Readers requiring a more in-depth description of ellipsometric
modeling are suggested to read Tompkins and McGahan [134] and Fujiwara
[135].

4.3.1 A Brief Introduction

Ellipsometry is the study of changes in the polarization states of light after
reflection (or transmission) from a surface. A polarized light probe interacts
with the sample and this interaction changes the state of polarization of the
wave. By controlling the initial polarization state and measuring the final
state, optical and compositional properties of the sample can be deduced,
including the optical constants, thickness, composition, and anisotropy. The
technique has been used in scientific laboratories for over a century and for
about 50 years in the industry [134]. Ellipsometry is a well known technique,
supported by a complete theoretical description.

The components typically found in an ellipsometer are depicted in Fig.
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4.3. They include a light source, a polarizer, a compensator, an analyzer,
and a detector.

The two most common light sources for ellipsometers are lasers and arc
lamps. Lasers have high output intensity and well collimated, Gaussian
beams. This is an advantage when the beam is focused and for angle mea-
surements close to the Brewster angle where the intensity of the p-polarized
reflectance is very small [134]. However, a laser typically only has one wave-
length, hence arc lamps are generally used for spectroscopic measurements.
Such sources have a significant output over a very broad wavelength range,
but they are more difficult to focus and less intense.

The polarizer (or a combination of a polarizer and a compensator) is used
to set the state of polarization of the incident beam. It does this by converting
a light beam of any polarization state (unpolarized, partially polarized or
elliptically polarized) into a known polarization state - in most cases a linearly
polarized state. A linear polarizer works by letting through light with E-
field directed along the optical axis, while extinguishing light with E-field
perpendicular to the optical axis.

The analyzer is nothing but a polarizer set to do a different task, namely
to resolve the polarization state of the light beam after it is reflected from
the sample.

The compensator of the system is optional. Whether it is necessary or
not depends on the desired measurement. Compensators are also referred
to as retarders, phase retarders or quarter-wave plates. Their function is to
alter the phase of one polarization component with respect to the other. If
information about the depolarization of the sample is desired, a compensator
will be needed.

Semiconductor photodiodes are often used as detectors in the ellipsome-
ter. They are inexpensive, very linear over a broad range of intensity levels
and reasonably sensitive over a broad spectral range.

4.3.2 Physical Principles

The theory in the following section is largely based on textbooks by Fujiwara
[135] and Tompkins and McGahan [134].
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Polarization

An electromagnetic wave requires four basic field vectors for a complete de-
scription: the electric field strength E, the electric displacement density D,
the magnetic field strength H and the magnetic flux density B. The state
of polarization is defined by the electric field strength. This choice springs
from the nature of the interaction between electromagnetic waves and mat-
ter. The force exerted on an electron by the electric field is much stronger
that the force exerted by the magnetic field.

In general photons are emitted with electric fields in all different direc-
tions, resulting in unpolarized light. If the photons instead have E fields
oriented in a given direction, the light is referred to as polarized. A linearly
polarized wave is confined to a given plane along the direction of propagation,
in other words, the tip of a linearly polarized wave will trace out a line in
the plane. This happens when adding two waves that are in phase and have
the same frequency. The direction of the line depends on the amplitudes of
the two components. If the two waves are exactly out of phase and have the
same amplitude, a circular polarization results. The most general form of
polarization is elliptical, which results for random phases and amplitudes.

When looking at light incident on a surface, it is convenient to specify
two orthogonal polarization directions termed p and s. P is by definition
parallel to the plane of incidence while s by definition is perpendicular to the
plane of incidence. The directions are illustrated in Fig. 4.4.

Jones-matrix Formalism

A concise and convenient notation is needed to make polarization calculations
as simple as possible. One such representation is the Jones formalism, which
will be introduced in this section.

Assume that the incoming wave is time harmonic, monochromatic, uni-
form transverse-electric (TE) and plane.! Recall that the state of polarization
of a wave can be generalized from linear to elliptic by superposition of two
linearly polarized waves. The electromagnetic field vector was given in Eq.
3.9. We have a xyz orthogonal, right-handed, Cartesian coordinate system

LA time harmonic wave is periodic, repeating itself in time and space. Monochromatic
refers to the single frequency of the wave. Uniform transverse electric means that the fields
have no dependence on the transverse coordinates x, y and are functions only of z, t. A
plane wave has wavefronts that are infinite parallel planes of constant amplitude normal
to the direction of propagation.
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Plane of
incidence

Figure 4.4: Ilustration of the p and s directions relative to the plane of
incidence. Adapted from the VASE Manual, Woollam Co. [136].

with unit vectors parallel to the positive directions of the x and y axis. If the
wave is propagating along the positive z direction, the electromagnetic field
vector for an elliptically polarized wave is given by

E = &, exp (ijwt — 27N/ N)z + ¥,])X + &y exp (i[wt — (20 N/N)z + 1,])¥.
(4.1)
Because the electric field is transverse-electric there is no field-component in
the direction of propagation, z. To construct a convenient notation for use in
ellipsometry, we want to remove all unnecessary information. By writing the
expression using matrix formalism we can dispose of the fixed unit vectors

_ [ Eeexp (ilwt — (2mN/N)z + ¢4])
E= ( Eyexp (tlwt — (2 N/X)z + ,]) ) : (4.2)

The spatial information about the wave can be dropped by considering the
field over one fixed transverse plane, substituting z = 0. The temporal
information can be suppressed because it is known that the wave oscillates
sinusoidally with time at the same frequency. We are then left with the
expression below

B(0) = ‘ Exexp (11y) _ (4.3)

&, exp (1)
The last equality is simply a short notation, Fy, is by definition equal to
E.exp (it),). This vector is the desired concise representation of a single

_ E 0z
Ey,
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plane wave which is known to be monochromatic, uniform and transverse-
electric. It is called the Jones vector and provides full information about
the amplitudes and phases of the field components, and hence about the
polarization of the wave.

Next step is to extend this notation to include the influence of a sample
upon the light. When a light wave is reflected at an interface between two
optically dissimilar media, the state of polarization is changed. In the Jones
formalism this can be expressed as

(4.4)

E, ox
E,,

Ty The
Ty Ty

E;
E;

The 2 x 2 transformation matrix, T, is called the Jones matrix of the optical
system and its elements are in general complex. Taking a closer look at the
elements of the matrix reveals that the diagonal elements map the input-to-
output of the same linear polarizations (E-field along the same axis), while
the off-diagonal elements map the polarization that switches between p and
s. The Jones matrix therefore relates the p and s modes of the incident and
reflected waves, and in the case of reflection ellipsometry it is defined as

Tpp Tsp

J = (4.5)

Tps Tss

A diagonal Jones matrix results when light is reflected at the interface
between two isotropic and non-optically active media. The linear polariza-
tions are then reflected with no change in polarization. These two diagonal
elements, which are simply the amplitude ratio of the electric field before
and after interaction, r,, = E;,/E,, and rys = E;s/E,,, are refereed to as
Fresnel coefficients. To avoid any confusion with the reflection coefficient, R,
calculated in Section 3.3, which is the ration of the irradiances, lower case
letters are used. It is the ratio of the Fresnel coefficients which leads us to
the common ellipsometric variables ¥ and A through the relation

T tan W exp iA. (4.6)
Tss
The form of this equation immediately reveals that ¥ is related to the am-
plitude ratio while A is related to the phase shift. The Fresnel coefficients
are directly related to the optical constants of the material. This can be seen
by considering the boundary conditions for electric and magnetic fields.
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The boundary conditions require that the E component parallel to an
interface is continuous at the interface. The E-field component tangential to
the plane of incidence, E| , is therefore continuous over the boundary (as it is
parallel to the interface), while the E-field component perpendicular to the
plane of incidence, Ej| is discontinuous. For the B field, it is the component
normal to the interface that is continuous. However, B = yH and the H
field is similar as the E field in that the component parallel to the interface
is continuous. Therefore, we use the ratio B/u, which has a continuous
component tangential to the plane of incidence, in the equations below. The
boundary conditions can be derived from Maxwell’s equations.

When deriving the Fresnel equations it is convenient to look at the p
and s polarizations separately. Let us look first at s-polarized light at a
boundary. The E-field is then by definition parallel to the boundary and
therefore continuous

E;,+FE.=E,, (4.7)

where F;, E,., and E; are the electric field of the incoming, reflected, and
transmitted waves, respectively. The tangential part of the product B/pu is
also continuous and given by

B; B, B
— =L cosl; + —~ cosf, = ——L cos 6. (4.8)
127 Hor 1243

Recall that the B-field changes direction from incoming to reflected. We
now assume that g = po and use B = nE/c and Snell’s law, 6; = 6, to
rearrange the equations. Only the amplitude of the waves at the boundary
is considered. We find that

ni(E(),- — E(),) COS 91 = 7nt(EOT + EOz) COS 91,. (49)
The reflectance can be given by the ratio Fy,/Ep;. Rearranging gives

_ Ey <nz cosb; —n; cosﬁt)

E()i T; COS Ql —+ ny cos gt

(4.10)

TSS

The same procedure is used for p-polarized light. The B-field is then com-
pletely parallel to the surface. Thus the continuous tangential E-field and
B-field are given by

E;cosb; + E, cosb, = F;cosb, (4.11)
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—B;+ B, = —B,. (4.12)

Rearranging using the same conditions as for s-polarization we get
Tlt(E()T + E()Z) COS 91 = ni(E()T + E()Z) COSs Qt (413)

_ Ey (ntCOS(gi —n; cos@t)

"o = Ey; ng cos 8; + n; cos B, (4.14)
For a critical angle, 7,, will become 0. This is called the Brewster angle
and as ellipsometry measures the ratio of 74/, the measurement will be
very sensitive around this angle. Note that we here used the real refractive
index, i.e. we assume non-absorbing media. The Fresnel equations still
hold for complex refractive indices. In this case we get complex amplitude
coefficients.

We see that the equations derived here (Eq. 4.10 and 4.14) bear resem-
blance to the equations derived for the reflectance in Section 3.3, Eq. 3.6. For
isotropic media and absorption free incident medium the Fresnel coefficients
and the reflection has the simple relation:

R, = 11y, (4.15)
Ry = 1ppT s (4.16)

where * denotes the complex conjugate.

If the sample is anisotropic, the off-diagonal elements in the Jones matrix
may become nonzero. This regime is called generalized ellipsometry and in
this case we get two additional ratios to deal with. However, if the material
is uniaxial anisotropic (anisotropy in only one direction) and the axis of
anisotropy is aligned either perpendicular to or parallel with the incident
light, the off-diagonal elements in the Jones matrix will remain zero and
generalized ellipsometry is not needed.

Stokes Vectors and Mueller-matrix Formalism

The Jones formalism introduced is convenient for a wide range of ellipsomet-
ric studies. However, the Jones-matrix formalism cannot handle depolariza-
tion, i.e. that a sample decreases the degree of polarization of the transmitted
light. In such cases we have to resort to the more powerful Mueller matrix
formalism. This formalism is based upon the representation of the state of
polarization of the electromagnetic wave by a so called Stokes vector and
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a representation of the optical system by a Mueller matrix. The different
possible polarization states of transverse-electric (TE) plane waves can be
represented by the four Stokes parameters. The Stokes parameters are de-
fined by

So = | Ex(t)* + | B, (1)
S1 =Bt ~ |B,(t)]°
Sy = 2Re(E, E7)
Sy = 2Im(E, EY).

The Stokes parameters of a wave can be grouped into a 4 x 1 column
vector
So
Sy
Sy |’
S3
called the Stokes vector. For unpolarized light the Stokes vector assumes the
simple form S = Sy, 0,0,0. An important feature of the Stokes vector is that
it easily quantifies the degree of polarization as the ratio of the intensity of
the totally polarized component to the total intensity of the wave

S = (4.21)

P = (S?+ 52+ 52)12/8,. (4.22)

Although the Mueller-matrix formalism also is valid in the cases when
the optical system is non-depolarizing and the incident light is totally polar-
ized, it cannot give information about the absolute phase of the wave. This
absolute-phase information is suppressed in the definitions of the Stokes vec-
tor and therefore the Jones matrix formulation should be used in this case.

4.3.3 The VASE Ellipsometer

All ellipsometric characterizations performed in this work have been carried
out employing a J. A. Woollam Variable Angle Spectroscopic Ellipsometer
(VASE).

The incident light is provided by an arc lamp, glowing from xenon dis-
charges, mounted within the monochromator lamp housing. The monochro-
mator sort out the unwanted wavelengths. For the VASE systems a Czerny-
Turner Scanning Monochromator is used.
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The ellipsometer is equipped with a rotating analyzer (RAE) which gen-
erally produces very accurate data when detecting circularly polarized light.
It is however less accurate when the detected light is linearly polarized. In ad-
dition it cannot determine the handedness of the reflected beam polarization
ellipse [136, pp 2-17]. Adding a compensator, in this case Woollams AutoRe-
tarder, alleviates these drawbacks and enables generalized ellipsometry and
depolarization data to be collected. Depolarization of the light beam can be
caused by a non-uniform or patterned film, backside reflections from a trans-
parent substrate, or from the spectral resolution [137]. For the majority of
samples depolarization data is acquired, while generalized ellipsometry is not
needed as the samples are satisfactorily modeled with off-diagonal elements
being zero. This will be discussed in more detail in Section 4.3.5.

Incident angles have been varied from 55° to 80°. Inserting the refractive
index of Si into Eq. 4.14, the Brewster angle for Si can be calculated to be
approximately 75° (but wavelength dependent). This is where the measure-
ments are most sensitive.

The wavelength range of the ellipsometer extends from 300 — 2500 nm,
but with focus probes mounted the range is restricted to 400 — 1000 nm. The
resolution used has been either 50 A or 100 A, depending on the expected
thickness - and therefore complexity - of the given sample. Several of the
data sets are taken with focus probes present. This reduces the spot size
from 4 mm to 0.2 mm and leaves the data less prone to errors due to inho-
mogeneities on the sample. With the focus probes installed the maximum
angle of incidence is 75°.

4.3.4 The WVASE32 Software

For modeling the ellipsometric data, the special purpose WVASE32 software
from Woollam is used. The software provides a wide variety of modeling
options and an extensive database of optical constants. In the program,
you build an initial model, based on your best guesses. The program can
then generate ellipsometric data from this guessed model and an algorithm
is used to reduce the deviation between experimental data and model data.
For modeling of PS in this thesis, tabulated constants of Si [138] and p-doped
poly Si [139] are extensively used. Other optical constants from the database,
including a-Si [140] and SiO, [141], are also made use of on occasion.
Numerical algorithms are used to vary the unknown parameters and mini-
mize the difference between simulated and experimental data. In WVASE32,
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the Levenberg-Marquardt minimization routine is used to measures the qual-
ity of the fit by a mean square error (MSE):

N 2 2
1 Ymod _ peep Amed — AP
MSE = g ‘ ’ —— . (423
2N - M < o5 > * ( oy ) (4.23)

im1 i A

N is the number of measured sets, M is the number of variable parame-
ters in the model, U¢ and A™ are the modeled ellipsometric values, WP
and AP are the experimentally determined ellipsometric values, and o de-
notes the standard deviations of the measurement at each data point. For
measurements with larger fluctuations in measurement values, the standard
deviations will be larger causing such measurements to be less weighted in
the fit [59, 142, 143].

The WVASE32 software provides a range of statistics regarding the fit
quality; the MSE value, the 90% confidence intervals in the model param-
eters, and a parameter correlation table. These features serve as the basis
for estimating the quality of the match between the data calculated from the
model and the experimental data as well as for judging the validity of the
model employed.

4.3.5 Ellipsometric Modeling of PS

All information about physical parameters extracted from ellipsometry de-
pends critically on the modeling of the measured data. The cornerstone
in the modeling of the PS samples in this thesis is the use of the Brugge-
man effective medium approximation (BEMA) [144]. Some special attention
will therefore be directed to the nature of effective medium approximations
(EMA), including how to implement grading and optical anisotropy in these

models. Finally, we look at the construction of the model step by step.

Effective Medium Models

The essence of the EMA is that the macroscopic properties of a medium is
described based on the properties and the relative fractions of its compo-
nents. The property under consideration is usually the dielectric constant
of the medium, and so an ensemble of nanoclusters is considered as some
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new medium with an effective permittivity or refractive index [61]. An im-
mense advantage of the EMA is that within this approximation the analysis
of light propagation in nanostructured material does not require solving the
Maxwell equations at each point in space [61]. The EMA relies on the size
of the nanoparticles and the distance between them to be very small com-
pared with the optical wavelength of light in the medium. The structural
dimensions in meso and nano PS are of a scale that allows us to treat them
in the framework of the effective medium concept. In literature the EMA is
commonly utilized for PS and the optical properties are typically modeled
as a mix of crystalline Si and air (“void”) [145-147].

EMAs available in the WVASE32 software are Maxwell Garnett [148],
Bruggeman [144], and linear. All the EMAs uses the same equation but with
different “host” material. For a two component system, the approximation
is given by

N2 +2N? A\ N2 4 aN? PANZ+2N2) '

where f4 and fp are the volume fractions of the two components and
therefore f4 + fg = 1. N4 and Np are the already known refractive indices
of the two components and N}, is the refractive index of the host. In the
BEMA the host is the effective medium, in Maxwell-Garnett the host is air.
For the BEMA it can easily be seen that the left hand side of the above
equation reduces to zero as Neg = Ny,.

It is, in principle, possible to extend the analysis to three constituents
and thereby include SiOy in the EMA layers. However, with a few notable
exceptions [149, 150], it is rather common to neglect oxidation when perform-
ing ellipsometric characterization of PS [151, 152]. This is likely because SE
appears to be rather insensitive to moderate oxidation in the PS structures.
Partly, the inclusion of oxide is complicated by the number of different oxi-
dation states; from XPS measurements it is clear that Si;O, SiO, Si;O3, and
SiOy all can be present [Paper IV]. But, regardless of this, the difference in ¥
and A is marginal, and consequently it is a challenge to determine oxidation
of PS with SE. Whether neglecting SiO, is a viable approach or not de-
pends, of course on the amount of oxide, but also on the information sought.
Clearly, information about the chemical composition of the material is lost,
while changes in the effective refractive index of the material are marginal.
This is further discussed in Paper IV.
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Grading of the Effective Medium

The PS layer is not necessarily homogeneous. For instance, the interfaces
between PS/Si and PS/air are not expected to be abrupt, but rather display
a certain roughness. The existence of such roughness layers has previously
been reported in several papers [59, 153, 154]. The main section of the
PS layer may not be homogeneous either. Even if etching is performed at
constant current density, small porosity gradings can occur, either due to
chemical etching or changes in HF concentration with depth [155]. There
are different ways of accommodating these layer inhomogeneities into an
ellipsometric model. The transition between the Si substrate and PS is often
modeled by adding a separate intermix layer consisting of the substrate and
the PS film mixed together. Similarly the transition between PS and air
is commonly modeled by adding a BEMA layer with 50% void and 50%
PS at the surface of the PS layer. The main section may be approximated
as homogeneous, it can be divided into separate EMA layers or it can be
modeled by the addition of a porosity gradient.

In the models used in this work, all the interface layers and possible
inhomogeneities in the main layer are incorporated into a grading of the PS
layer. In the graded model, independent porosities are fitted at three to
six positions in the layer (depending on the exact model). Between these
positions the porosity varies linearly with a chosen number of steps. Two of
the positions are fixed, one at the surface and one at the PS/Si interface.

Figure 4.5 shows the modeled porosity profile for three samples etched at
three different current densities. Some grading is seen within the main layers.
A steep increase in porosity close to the Si interface (0% depth) and close to
the surface (100% depth) is also clearly displayed. The small dip in porosity
seen in Fig. 4.5 is a feature visible in the majority of the modeled porosity
profiles. It has a relatively large impact on the fit, and is particularly evident
in the models of lower porosity samples. The dip has a physical origin and
the feature is thoroughly discussed in Paper III.

Anisotropy

A short introduction to the concept of optical anisotropy was given in Section
2.6.1. Ellipsometry allows characterization of both uniaxially and biaxially
anisotropic materials. Anisotropy induces cross-polarization and character-
ization of birefringent materials requires generalized ellipsometry. However,
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Figure 4.5: Porosity with depth in the PS layer.

in the special case of uniaxially anisotropic material with axis normal to or
parallel with the plane of incidence (sample surface), standard ellipsometry
is sufficient.

As ellipsometric measurements are extensively utilized for characteriza-
tion of the fabricated PS films, it is convenient to adopt an terminology
which is in accordance with that used during modeling. In addition, this
anisotropy terminology relates directly to the shape of the inclusions causing
the anisotropy. This is convenient as it eases the visualization of the effect
of the different pore morphologies.

The shape anisotropy of the pores introduces distinct boundary conditions
for the electric and magnetic fields in the medium. This can be described by
a charge screening parameter, k, or equivalently, the depolarization factors
0z, ¢y and ¢, related to & by

l—q
k=—".

qi
The depolarization factor is again directly related to the geometry of the
medium or, more specifically, the eccentricity of the inclusions, (. For a
prolate spheroid, the depolarization component along its major axis is given

by ,
1= 1 14¢
v e () 1) 420

The sum of the depolarization factors is always 1, so for an isotropic material,
Gz = @y = ¢- = 0.33. ¢. = 0 corresponds to a completely columnar structure,
while ¢, = 1 corresponds to a horizontally layered structure.

(4.25)
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Although the pores of the PS samples investigated here grow predomi-
nantly in the (100) direction, substantial branching could introduce anisotropy
that is not normal to the surface. Generalized ellipsometry was therefore per-
formed on a representative sample. As the generalized ellipsometry did not
show any sign of in-plane anisotropy, in all further work (on the same sub-
strate) we assume uniaxial anisotropy with axis normal to the sample surface
and that standard ellipsometry therefore is sufficient. It is also previously
reported that PS has a uniaxial anisotropic nature [59, 60].

In the BEMA, anisotropy can be modeled by introducing one depolar-
ization parameter in each direction (g, ¢y, and ¢.). In the most general
model, the three depolarization factors are allowed to vary in three arbitrary
directions. However, for the samples presented here, we now know that the
anisotropy is uniaxial and perpendicular to the sample surface. The x and y
directions can then be set equal, while the value of the depolarization factor
in the z-direction is allowed to vary.

For all the ellipsometric models of PS layers employed in the work of this
thesis, the anisotropy is modeled by an ungraded depolarization factor. The
depolarization factor has been reported to depend on porosity [66] and could
therefore exhibit a grading corresponding to that of the porosity. However,
experimentally we find that the depolarization factor varies relatively little
between samples of different porosity. Only minor improvements in MSE
(5 — 8%) is found when graded depolarization is introduced and it leads to
significantly increased parameter correlation. As a consequence, an ungraded
depolarization factor is used.

The Model - Step by Step

We will now take a closer look at some of the features invoked in the models.
In Fig. 4.7, 4.8, 4.9, 4.10, and 4.11 the evolution of an ellipsometry fit, from
the simplest model (a) to the more complex model (e) is shown. All samples
are modeled on an isotropic Si substrate, and ¥ and A values for three angles
are shown in each plot. The parameters resulting from each model are shown
in Table 4.4.

Model a) is the very simplest model consisting of a BEMA layer with
two components; crystalline Si and void (air). The thickness of the layer
is also fitted. The fit is very poor and it is evident that the model does
not represent the ellipsometric data very well. By adding a porosity grading
in the BEMA a large improvement in MSE is achieved (model b). This is
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Figure 4.6: An illustration

PS/air interface layer (surface roughness)
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of the general ellipsometric model required to

describe the obtained data. The illustration is not to scale.

Y in degrees

300

——Model Fit
-----70° E

N
Q
o

Ain degrees
5
o
T

o
T

1200

I |
660 840 1020

Wavelength (nm)

1200

-100
30

. . R . I .
0 1020
Wavelength (nm)

Figure 4.7: Experimental and fitted ellipsometric variables ¢y and A for a
model of a PS layer etched at constant current density. Model a) consists of
BEMA with Si and void.
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Figure 4.9: Model ¢) consists of a uniaxially anisotropic BEMA with Si and
a graded void fraction.
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Figure 4.10: Model d) consists of a uniaxially anisotropic BEMA with Si and
a graded void fraction, depolarization and non-uniform sample thickness
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Figure 4.11: Model e) consists of uniaxially anisotropic BEMA with Si, p-
doped poly-Si and a graded void fraction, depolarization and non-uniform
thickness.

probably due to a better accommodation of the interface regions between
Si/PS and PS/air. The next step is to add anisotropy in the model (model
¢). This is done by introducing a depolarization parameter, ¢,. This model
provides a relatively good fit to the data, and for some datasets, this is the
best model. For other datasets, further improvements can be made. In model
d) the possibility of non-uniform thickness of the sample is added. This is
not necessary for all samples and the parameter is only added if it results
in significant improvement of the MSE. The last model introduces a third
constituent in the effective medium. In addition to ¢-Si and void, a fraction
of p-doped poly-Si is fitted. Although the crystallinity is retained, the small
dimensions of the PS pore walls may result in modified refractive indices
compared to bulk Si. The poly-Si component is used to model the enhanced
absorption at the boundaries of the nanocrystals. The poly-Si constituent is
not used in all models. In general models d) and e) are used, but variations
between the samples do exist.

4.4 Complementary Characterization

4.4.1 Gravimetry

Gravimetry provides an independent measure of the porosity and thickness of
the PS samples. The weight used to measure samples is a Sartorius balance
(CP 224s) with a readability of 0.0001 g. The wafer is weighted before and
after the PS layer is formed. The PS layer is then etched away and the wafer



4.4. Complementary Characterization

Table 4.4: Ellipsometry models

Model T (nm) P (%) q. NUT! pe-Si (%) MSE MC?
a) 601 55.4 0.333 0 0 84.2  0.916
b) 664  graded (~59) 0.333 0 0 313 0.906
c) 648 graded (~ 57) 0.274 0 0 14.0 0.916
d) 648 graded (~57) 0273 3.5 0 11.8 0.919
e) 604 graded (~57) 0.267 34 12.7 9.2 0.918

INon Uniform Thickness, 2Maximum parameter Correlation. The stated porosities are
the average porosities for each PS layer.

is weighted again. For the samples presented here, a few minutes in 2% KOH,
the time depending somewhat on the thickness of the PS layer, is used to
etch the PS layer.

The mass of the bare wafer is given by:

my = Aw “tw - Psiy (427)

where A, is the area of the wafer, ty is the wafer thickness, and pg; is the
density of Si, known to be 2.33 g/cm®. The mass of the wafer after PS
formation, m, is given by:

mip = Moy — (APS . tps -P- pSi)7 (428)

where P is porosity in percentage, Apg is the area of the PS layer and tpg
is the thickness of the PS layer. The mass of the wafer after preferential PS
etch, mo, is given by

my =mgy — (Aps - tps - pps)- (4.29)
Apg is known from the area of the sample holder in the PS etching system

and mg, m1, and my are all measured. Therefore the last two equations for
my and my gives us the porosity, Pps and the thickness, tpg of the PS layer.

4.4.2 Reflectance Measurements

While many of the previous characterization techniques have primarily been
used to determine the structure and physical properties of the PS films, it
is the optical properties, and in particular reflectance measurements, that is
the final yardstick. Low reflectance is a relatively important property for an
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antireflection coating. Three different setups have been used for reflectance
measurements, two located at IFE and one at REC in Sandvika. The rea-
son for using three different setups is split. Firstly, the availability of the
setups has varied. Secondly, the setups are complementary to each other
with respect to wavelength and spot size. Thirdly, we desire quite accurate
absolute measurements and it is advantageous to have checks on calibration
and equipment.

The setup that was in place at IFE from the start is a Stanford Research
System setup, consisting of a CVI AS220 light source, a lock-in amplifier
from Stanford Research Systems and a preamplifier from EG&G. The inci-
dent light is focused on the sample using two successive lenses and a mirror.
The spot size is adjustable in width (0 — 1.5 cm) but not in height (1.5 cm).
The operational wavelength range of the Stanford system is 400 — 1200 nm.
The incident angle is adjustable, but 11° (which is the lowest possible) was
used for all reflectance measurements unless otherwise stated. A new setup
from Ocean Optics was installed at IFE in 2010. It consists of two separate
spectrometers, in principle allowing for a broader wavelength range. How-
ever, problems with the near IR spectrometer reduced the use of this setup.
The incident angle of the Ocean Optics setup is 8°. The setup at REC in
Sandvika is a Varian Cary 5000 Spectrophotometer set to an incident angle of
8°. All three setups are equipped with an integrating sphere and it is the to-
tal reflectance that is measured. A weighted average with respect to the solar
spectrum is then calculated from the measured spectral reflectance. The an-
gle of incident is very similar between the setups and should not significantly
affect the resulting reflectances. The reason for not using 0° incident angle
is that specularly reflected light would escape through the same opening in
the integrated sphere as it entered.

4.4.3 Scanning Electron Microscopy

A scanning electron microscope (SEM) uses electrons instead of light to image
the sample surface. A high energy electron beam is scanned over the sample
surface. The electrons interact with the sample and produce information
about the samples surface topography and composition. Several types of
signals result from the deceleration of the electrons in the sample. The two
signals most commonly used to produce SEM images are secondary electrons
and backscattered electrons [156].

SEM has a large depth of field, allowing portions of the sample with
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Figure 4.12: Cross sectional SEM image of a homogeneous PS layer.

significant height differences to be simultaneously in focus. This results in
a characteristic three dimensional appearance useful for understanding the
surface structure of a sample. The resolution is set by the diameter of the
incident beam and the operation mode, and can be as high as ~ 1 nm.

The SEM utilized for the characterization presented in this work is a
Hitachi 54800 localized at IFE. The resolution is specified down to 1 nm for
an accelerating voltage of 15 kV.

Sample preparation is usually relatively straight forward, as SEM only
requires the sample to be conductive. We eventually adopted a procedure of
simply fracturing the samples (to display the cross section) and place a piece
directly into the SEM. This worked quite well, and is the only preparation
done for the SEM sample images presented in this thesis.

For macro PS, SEM can be used to determine size and shape of the pores.
Due to the small scale of nanopores determination of pore structure grows
harder for such layers. A cross sectional SEM image of a homogeneous PS
layer is shown in Fig. 4.12. Here, the pores and pore walls are discernible
and some impression of the pore structure can be obtained. However, the
primary goal when using SEM for the PS samples is to find an independent
measure of their thickness.

4.4.4 Transmission Electron Microscopy

TEM is a collection of microscopy based techniques, widely used to obtain
detailed structure information of various materials. For PS, TEM provides
detailed structural information and valuable visual impressions of the pore
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morphology. Not only are these images much more expressive than verbal
descriptions, they are also the basis of the schematic layouts we use to (at-
tempt) to classify PS structures.

The microscope used to study the PS layers was a 200 keV JEOL 2010F
microscope equipped with a Gatan imaging filter and detector, located at the
University of Oslo. The energy resolution at 200 keV can be about 0.8 eV.
The majority of the PS TEM images included in this work have been taken
by Dr. Annett Thggersen, a few have been taken by Foerste Amenuensis
Anette Gunnaes.

The instrument works by firing a high energy beam of electrons in vacuum
through a thin, electron-transparent region of the sample. The electron beam
is produced by accelerating the electrons through a potential drop, before
focusing the beam onto the sample by electromagnetic lenses. The resolution
of any imaging microscope is ultimately limited by the wavelength of the
image-forming wave. For a 300 keV electron, the De Broglie wavelength,
A = h/p, is almost a hundred thousand times smaller than the wavelength of
light. A higher accelerating voltage means a larger momentum and a smaller
electron wavelength. Although today’s TEMs are far from approaching this
wavelength limit of resolution (due to imperfect electron lenses [157]) the
resolution limit of conventional electron microscopes is about a thousand
times smaller than that of the best light microscope [158]. Therefore TEM
provides some of the most detailed information on the internal structure of
materials.

Electrons interact strongly with the sample, producing diffracted electron
beams, energy loss electrons, back-scattered electrons, secondary electrons,
and X-rays. Different TEM techniques exploit the different reaction prod-
ucts. According to the techniques used TEM can give images related to the
local thickness of the material, the phase-contrast (reveal the atomic lattice)
and diffraction-contrast (reveal crystallographic defects). I will briefly touch
upon the techniques used on the PS images in this work.

The directly transmitted electrons are focused by electromagnetic lenses
and imaged onto a fluorescent screen. A “shadow image” of the sample, with
the structure showing up as variations of darkness according to the sample
density variations, results. An example is showed in Fig. 4.13. The structure
is very similar to that shown in the cross sectional SEM image in Fig. 4.12.
Electrolyte, substrate and etching time is identical, the current density is
increased from 5 mA/cm? (SEM sample) to 7 mA/cm? (TEM sample).

High resolution transmission electron microscopy (HRTEM) is a phase-
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Figure 4.13: Cross sectional TEM image of a homogeneous PS layer.

contrast imaging mode of the TEM that allows imaging of crystal structure.
HRTEM produces an image based on several electron beams, while con-
ventional TEM uses only one beam. It is dubbed phase contrast imaging
because the contrast arises from the interference of the direct beam with the
diffracted electron wave instead of arising from absorption by the sample.
Different materials give rise to small phase changes in the diffracted wave
function and this is how the contrast between different areas of the image is
produced. Figure 4.14 shows a HRTEM image of the interface between pores
and Si at the bottom of the porous layer. The pores are filled with epoxy
from the sample preparation.

Selected area diffraction (SAD) is a diffraction-contrast imaging mode.
Here the atoms act as a diffraction grating to the electrons and the scattering
angles are determined by the crystal structure of the sample. The resulting
image on the TEM screen will be a series of spots in the case of a single
crystal, while polycrystalline or amorphous material will give series of rings.
This method is used on a selection of the PS samples to determine whether
they have retained their crystallinity. Figure 4.15 shows that the Si walls of
the PS structure retains their crystalline structure.

Figure 4.16 shows some examples of energy filtered TEM (EFTEM) im-
ages. In B), electron energy corresponding to Si is imaged, while in C) the
filter is switched to an electron energy corresponding to SiO,.

The way in which the preparation of thin specimens is carried out for
TEM often controls the quality of the final data obtained. Ion milling is
used in the TEM specimen preparation process to obtain a centre region
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Figure 4.14: HRTEM image of pore bottoms in a PS layer.
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Figure 4.15: SAD patterns from the Si substrate and from the central area
of the porous layer showing that the crystalline walls in the porous region
remain as a single crystal. Only a slight variation in orientation is seen inside
the porous region. The diffuse rings in the pattern from the porous region are
identical to the rings observed for the epoxy used in the sample preparation.
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SR,

Figure 4.16: TEM images of a PS layer etched at a constant current density
of 50 mA /cm? for 15 s. A) Non filtered, B) EFTEM image, filtered at 16.8
eV (Si) and C) EFTEM image, filtered at 23 eV (SiOs).

that is electron transparent (usually 250 — 500 nanometers, depending on
material) It accomplishes this by firing a beam of argon ions at the specimen,
sputtering away material until the desired thickness is achieved [157]. For Si it
is vital that the specimen preparation technique does not introduce significant
atomic-scale damage such as amorphization. Such damage is avoided by
using low energy ions or using the natural tendency of the material to split
in certain direction (cleavage).

4.4.5 X-ray Photoelectron Spectroscopy

X-ray Photoelectron Spectroscopy (XPS) is a surface analysis technique to
characterize chemical states in a material. The sample is irradiated by X-
rays, causing electrons to be ejected from their atomic shells. These electrons
are called photoelectrons and their kinetic energy depends on their original
binding energy. The number of electrons that escape and their kinetic energy
is detected by a spectrometer and plotted. Each binding energy corresponds
to a specific state (or chemical shift) of a specific element, and by peak fitting
the spectra the atomic percentage of each state can be extracted. However,
peaks can lie so close that they are superimposed and detailed and careful
analysis must be performed in order to separate them.

The XPS characterizations presented in this thesis was performed using
a KRATOS AXIS ULTRAPEP with monochromated Al Ka radiation and
zero angle of emission. For the escaped electrons to actually reach the detec-
tor without being absorbed, or loose kinetic energy on the way, XPS must
be performed under ultra-high vacuum conditions. The XPS measurements
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performed on PS samples for this thesis have been carried out by Martin
Sunding. The peak fitting of the spectra has been performed by Annett
Thogersen using the software Casa XPS [159]. A Shirley type background
was subtracted before peak fitting.

Only those electrons that have actually escaped into the vacuum of the
instrument are detected, and therefore only shallow depths of the material
are probed. The mean free path of Si-2p electrons in Si, d, is 3.18 nm.
Commonly, the sampling depth is taken to be 3d (corresponding to 95%
detection) [160]. This means that the photoelectron escape depth in Si is
3costp = 9.65 nm, as the emission angle (1) is zero. The escape depth must
be adjusted according to the porosity of the PS sample under investigation.

If it is desired to probe deeper parts of the material, ion beam etching can
be used prior to XPS. This is done in Paper IV where the oxidation on the
surface of the PS films is expected to vary from the oxidation at some depth.
In this work, XPS was used to study ageing of the PS structures. A change in
the chemical environment of an atom leads to shifts in the electronic binding
energy, called chemical shifts. Oxidation of the Si structure can therefore be
detected by studying shifts in the Si-2p peak position. In a high resolution
spectrum, all oxidation states of Si, from pure Si (Si%) to Si;O (Sit!), SiO
(Si%T), Si,03 (Si**), and SiO, (Si*t) can be resolved. Chemical shifts due to
Si in other compounds can also be detected.



Chapter 5

Single layer PS and Process
Considerations

To manage controlled production of complex PS structures, accurate under-
standing of and control over the etching process is essential. As discussed
in Chapter 2, electrochemical etching of PS is a many-faceted process, with
a very large number of factors affecting the result. A range of etching-cell-
specific factors have influence; the size of the etching chamber, positioning of
the electrodes, whether the setup is a double cell or single cell with horizontal
or vertical configuration. In addition, electrolyte evaporation, chemical etch-
ing, electrolyte stirring, temperature fluctuations, and pore seeding effects
should ideally be controlled or accounted for in order to optimally tailor the
resulting PS structures. Little literature is found on many of these issues and
some are quite system-specific. In addition to all the above factors influenc-
ing the PS structure during etching, drying and storage conditions will also
affect the structures. Oxidation of PS structures is extensively discussed in
literature, but there are large variations in reported results.

Homogeneity, electrolyte evaporation, chemical etching, pore seeding, and
oxidation of PS are studied and discussed in Paper I - IV. The main focus
of this chapter is on material that is supplementary to the published pa-
pers. However, summaries of the published results are included for the sake
of completeness and to put the supplementary material in context. When
a summary of a published paper is presented, this is clearly marked by a
subheading. Work and discussions which are not included in the paper, but
deals with the same subject are presented under a subheading labeled ‘Fur-
ther Work and Discussions’.
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5.1 Substrate

To achieve results easily applicable to solar cells, the etching substrates
should preferably have doping densities relevant for the solar cell process,
i.e. corresponding to that of the bulk or the emitter doping. A bulk doping
of ~ 10% cm~3, corresponding to base resistivities of 1 — 3 € cm, is used for
the majority of commercial cells produced, although recent reports suggest
that the optimal resistivity is lower than this [161]. The optimal emitter
doping density has repeatedly been subject for discussions [162, 163], but
a doping between 10'® — 10 ¢cm™ is frequently used. The optimal bulk
and emitter doping in solar cells will depend on the cell design, metallization
process, impurity level in the substrate, and cell thickness.

Initially, p-type substrates were chosen as a starting point to avoid addi-
tional complications and equipment demands due to illumination, as would
generally be required for n-type substrates. With the double cell electro-
chemical setup, etching of samples with bulk-like doping densities requires
additional doping on the cathodic side of the substrate (the ‘backside’ where
PS is not formed) in order to achieve sufficiently good contact between the
electrolyte and the wafer. Experiments were performed on p-type substrates
with resistivities of 1 —3 Q c¢m and in-diffused p* backside doping. This pro-
vided a clear illustration of the inhomogeneity of the boron doping process
available to us at the time and resulted in inhomogeneous current density
distribution during etching and hence inhomogeneous PS layers.

Etching in emitter structures, i.e. after diffusion, is the most utilized pro-
cedure in the literature for integration of PS ARCs in the solar cell process.
This is partly due to rearrangements taking place in the PS structure dur-
ing high temperature processing steps, but also because moderately/highly
doped substrates are suitable to produce nano- or meso PS. As previously
discussed, in this size regime the light sees an effective refractive index, in-
termediate of that of Si and air, and reflection is reduced. A highly to
moderately doped substrate would remove the need for additional backside
doping and also provide a fair approximation to the emitter doping density.

The most common solar cell processing uses p-type substrate with n*
emitter (currently about 85% of commercial Si cells [164]), but there is a ris-
ing interest in n-type Si for solar cell applications [163, 165-167]. A structure
with n-type substrate benefits from a higher tolerance to common impurities
such as Fe or O due to the lower capture cross section of holes by these impu-
rities [161, 168]. On the industry side Sanyo [169] and SunPower [170] have
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demonstrated cells with efficiencies well above 20% produced on large-area
n-type Czochralski and solar-grade float-zone wafers. It seems that n-type
Si wafers have potential for larger commercial utilization.

The largest challenges connected with using n-type Si substrates are found
in the metallization and diffusion process [165]. Boron diffusion is more
difficult than phosphorous diffusion, in addition SiN, does not give adequate
passivation for p™ emitters [167]. For p-type Si cells, it is the combination
of antireflective and passivating properties offered by SiN, that makes it
difficult to outdo. The use of PS ARCs on the p-type emitters in n-type Si
solar cells is therefore particularly interesting.

Due to these considerations and the initial problems with the homogeneity
of the in-house boron doping, the substrate chosen for the following experi-
ments was homogeneous, moderately p-doped (~ 5-10'® cm™?) Si.

5.2 Voltage Transients from Anodic Etching

The etching is generally performed in the galvanostatic mode, so any resis-
tivity variations during etching will result in changes in the applied voltage.
The voltage transient therefore can be a valuable source of information about
possible changes in the etching conditions. A selection of voltage transients,
representative for the etching of homogeneous PS layers etched in p* sub-
strates, are shown in Fig. 5.1. The initially very low voltages seen in a few of
the voltage transients in Fig. 5.1 can be attributed to that these transients
have their first read out data point closer to zero than the other voltage
transients. By close inspection this can also be seen from the figure.
Detailed analysis of PS voltage transients with very high time resolution
has been performed by Ronkel and Schultze [171]. According to these authors
the voltage transients show formation of the double layer at a time ¢t < 1 —30
us, followed by silicon surface passivation for ¢+ < 1072 s. After that a small
decrease in voltage appears in the time period t ~ 1 — 10 s, corresponding
to pore nucleation. These times correspond to experiments performed in an
aqueous electrolyte and in the current density region 5 — 30 mA /cm?.
Unfortunately, the time resolution of our output data is too low to ob-
serve the shortest of these voltage variations. The slight reduction in voltage
around 1 — 10 s, interpreted as due to pore nucleation, is seen in many, but
not all, of the voltage transients from our PS etching experiments. As the
time periods of the different stages in the voltage transients are closely con-
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nected to current density [172], it is not surprising that the voltage transients
obtained from etching at low current densities generally are better resolved
i.e. show more features. Figure 5.1c shows some early voltage variation dur-
ing PS etching at 15 mA/cm?. The shape does resemble that observed by
Ronkel and Schultze [171] for their highly resolved voltage transients; first a
steep initial increased, and after about a second a region of slightly decreased
potential possibly associated with pore nucleation follows.

After the early variations, a slow voltage increase with increasing etching
time can be seen for the majority of the voltage transients, see Fig. 5.1.
For low current densities, the increase is small. For the sample etched at
10 mA/cm? for 30 s in Fig. 5.1a the voltage increase is 0.05 V, for the
50 mA /cm? sample the voltage increase is 0.27 V after 15 s, and for the
125 mA /em? sample the increase is 0.66 V after 15 s. According to Ronkel
and Schultze [171] the voltage increases because the pores are sufficiently
deep that the complete surface is no longer used for silicon oxidation. The
absolute spread in voltage between samples etched under nominally identical
conditions, exampled in Fig. 5.1b, increase with increasing current density.
However, the percentual voltage spread is approximately 20%, independent
of current density.

However, even for PS samples etched on the same substrate under nom-
inally identical conditions, the shape and features in the voltage transients
vary significantly between the different etches. Combined with the low time
resolution, this makes it difficult to draw conclusions from this data.

5.3 Inhomogeneity and Repeatability

Studies on the homogeneity and repeatability of the PS etching process are
presented in Paper I and II. Here we provide some more detailed information
about how these uncertainty assessments were performed.

5.3.1 Sample inhomogeneities
Summary from Paper I

In Paper I, a study of the lateral homogeneity of 4 cm? PS samples were
undertaken. The porosity and thickness at 32 different spots over the sam-
ple were assessed by spectroscopic ellipsometry (SE). The measurement was
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Figure 5.1: Changes in voltage over time during etching in galvanostatic
mode.
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Figure 5.2: PS sample etched at constant current density [Paper I, Fig. 3a
and b).

performed on one single PS layer etched at 50 mA /cm? and on a multi-layer
sample optimized as solar cell ARC.

A correlation between variations in thickness and porosity over the sam-
ples is found, indicating that local differences in current density are respon-
sible for the inhomogeneities. In the single layer, the relative porosity and
thickness variations are 5.4% and 10.2%, respectively. For the graded layer,
the average porosity of each layer is used, and we find a variation of 2.2%
absolute for the porosity and 7.1% for the thickness. Note that these values
are the largest difference between the measured values, it is not the standard
deviation. The thickness and porosity map of the single PS layer is shown
in Fig. 5.2 [Paper I, Fig. 3a and b]. A corresponding map for the multilayer
PS sample (PS ARC) is shown in Paper I.

Further Discussions

From the thickness and porosity map, a trend of higher values toward the
lower end of the sample can be discerned. This may be due to the design of
the etching set up. The electrode mesh is approximately 10 cm in diameter,
designed to cover the full wafer when a large sample holder is used. Most
of the samples etched in this work are etched with the small sample holder,
approximately 2.5 cm in diameter. In the small sample holder, the sample
opening is situated in line with the upper part of the electrode mesh. The
current flow towards the bottom of the small sample may therefore be en-
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larged compared to the flow towards the upper part of the wafer. Similarly,
the ‘edge-effect’ with higher porosities and thicknesses along the edges may
be due to crowding of the current at the edges, since the electrode mesh is
much larger than the sample.

Why we find a greater variation in the parameters of the single layers
than the graded layers is not clear. We have observed that samples etched
at low current densities are more homogeneous than samples etched at high
current densities. The multi-layer have a lower time averaged current density
than the single layer studied here. This may therefore contribute to the
observed difference between the single and the multi-layers. In addition the
ellipsometry model of the multi-layer samples is significantly more complex
than that of the single layers. The model might therefore be less sensitive to
small changes in the multi-layers than in the single layers.

Assessment of parameter variations over the samples is important in order
to evaluate whether the PS etching technique can provide sufficient homo-
geneity over large area. The homogeneity is also important in order to know
the uncertainty related to where on the sample the measurements are made.
If we make one measurement on each of two samples etched under nominally
identical conditions and get deviating results; how much of this deviation can
be due to sample inhomogeneity? We consider that a full measurement of the
whole wafer is not necessary in order to obtain and estimate of this. Since
we can say that we will always measure relatively close to the center of the
sample, four measurements, made at a radial distance of 2 mm from the cen-
ter of the sample at angles 0°, 90°, 180°, and 270°, should provide sufficient
information. An average of these values can then be used to minimize the
effect of a randomly picked measurement spot (which differes from another
spot due to sample inhomogeneities) on the results obtained by ellipsometry.

A standard deviation in porosity and thickness for each sample is calcu-
lated based on data from the four measured points. The calculated stan-
dard deviation depends on the current density during etching of the sample.
Looking at samples in the porosity range 40-60% and thicknesses around
400 — 700 nm, the standard deviation is typically less than 1% (relative)
for both porosity and thickness. In a 90% confidence interval, this corre-
sponds to inhomogeneity uncertainty of less than 2% (relative) in porosity
and thickness.
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5.3.2 Repeatability
Summary from Paper 1

In Paper I, the process uncertainty or repeatability uncertainty, ng is stud-
ied by looking at differences between eight samples etched under nominally
identical etching condition, i.e. the same electrolyte, the same day, the same
wafer batch and equal, constant, current density and etching time. The etch-
ing parameters used were a current density of 50 mA/cm? and an etching
time of 15 s. The thickness and porosity of the samples are modeled using
ellipsometry.

To try to separate the effects related to the repeatability of the etching
process from the inhomogeneity uncertainty, we make four measurements
close to the center of the sample. We estimate the sample center by eye and
perform the measurements at a radial distance of 2 mm from the center of the
sample, at angles 0°, 90°, 180°, and 270°. The average porosity and thickness
of each sample are used to calculate the standard deviation between the eight
samples. For these samples, the uncertainty, with a 90% confidence interval,
becomes:

P =58.44+0.9% (5.1)
T =619.3 = 9.5 nm

The relative values are for porosity 0.9/58.4 ~ 0.015 and for thickness
9.5/619.3 =~ 0.015.

The differences between these 8 nominally identical samples are inter-
preted as the uncertainty related to the etching process itself and give an es-
timate of how large variations that can be expected between samples etched
under nominally identical conditions. The relative uncertainty values cal-
culated above are therefore used as a measure of repeatability-, or process
uncertainty in all further uncertainty assessments.

The repeatability experiment is only performed at one single porosity and
thickness. It may be discussed whether the resulting uncertainty, acquired
at a specific current density and etching time, is representable for the PS
layers in general. The parameters used are, however, rather typical for many
of the layers made in this thesis. Separate repeatability experiments for each
parameter set would be too time consuming in the context of this work.
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5.3.3 Uncertainty Assessment

A reasonable assessment of the total uncertainty in thickness and porosity of
the PS layers can be made by combining the inhomogeneity uncertainty with
the process uncertainty determined in Paper I, and the modeling uncertainty
given by WVASE32. The total uncertainty, na, is then given by:

Ntotal = 7]12'-[ + 77?% + 7712L[ (53)

Here ny is the uncertainty resulting from sample inhomogeneity /arbitrary
measurement-point (Section 5.3.1), ng is the process uncertainty or repeata-
bility uncertainty (Section 5.3.2), and 7y, is the uncertainty assessment ob-
tained from the WVASE32 modeling software.

Typically, 90 % confidence limits (cl.) for porosity gives values around
2% relative, and the porosity is generally stated to the first decimal place.
For thickness, the uncertainty is typically between 2 — 3% (90 % cl.), and
the thickness is stated without decimals. We regard the uncertainties as
sufficiently small to allow reasonable control over the etched PS structures.

5.4 Electrolyte Aging

Throughout the work with this thesis, the electrolyte in the etching cell
has been changed more or less regularly, every third or fourth week. This
rather infrequent change is done due to practical, economical and safety
considerations. After experiencing a noticeable decay in the electrolyte level
in the cell, we performed a study of how electrolyte ageing affects the resulting
PS structure. The results are presented in Paper I. Here a short summary
and a few additional remarks are included.

Summary from Paper 1

Twelve PS samples taken from three nominally identical wafers were etched
at a current density of 50 mA /cm? for 15 s over a time span of six weeks,
without changing the electrolyte. Changes in PS porosity, thickness and
PS/Si interface width of the single layers over time were assessed by SE.
Electrolyte ageing clearly displays itself in a decreasing porosity and in-
creasing etch rate of the PS samples, as shown in Fig. 5.3. These are the
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Figure 5.3: Evolution of a) porosity and b) thickness with ageing of the
electrolyte [Paper I, Fig. 5a and b).

same changes in PS properties as are expected for an increased HF concen-
tration in the electrolyte. The differences in PS properties with ageing of
the electrolyte are therefore attributed to an increasing HF concentration
due to differences of the evaporation rate of the electrolyte constituents (wa-
ter, ethanol and, HF) as they have different vapor pressures. The effect is
demonstrated to be significant, even over the duration of a few days.

Further work and Discussions

Master student Solveig Rgrkjeer carried out similar ageing experiments on
our PS distributed Bragg Reflectors. Figure 5.4 shows how the reflectance
from a PS DBR reflector changes depending on the ‘age’ of the electrolyte
in which it is etched. A significant wavelength shift of the reflectance peak
is evident. The difference is larger between the two structures etched in 3
and 15 days old electrolytes than between the structures etched in 15 and
29 days old electrolytes. This is in accordance with the results in Fig. 5.3
where the largest changes occur during the first two weeks.

To verify that the HF concentration is indeed responsible for the observed
variations in PS properties, direct measurements of the HF concentration
are necessary. This would also give additional information about possible
changes in the rate of evaporation. Is the variation in HF with ageing linear or
does it resemble the curves for porosity and thickness? If the variation in HF
is “only” linear, the logarithmic shape of variation in porosity and thickness
would need alternative or supplementary explanation. Experimental results
from Penczek and Smith [174] imply that porosity is more sensitive to changes
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Figure 5.4: Evolution of the reflectance from a PS distributed Bragg reflector
with ageing of the electrolyte. Printed with permission from Rerkjeer [173,
Rorkjeer’s master thesis].

in HF concentration if the HF concentration is low. Hence, as the relative
HF concentration increases with ageing, larger effects on PS properties could
be expected in the start of the experiment. Whether this could account
for the observed non-linearity remains uncertain. For the time being, we
unfortunately do not have at our disposal any equipment to accurately and
quantitatively measure HF concentration.

5.5 Chemical Etching

The main results from the experiments related to chemical etching of PS are
presented in Paper II. However, some elaborate discussions and figures that
were rationalized away from the final paper due to length restrictions are

presented here.

Summary of Paper 11

Si is relatively resistant to etching in HF but, due to its large surface area
(200 —600 m?/cm?® [72]), PS can be attacked more rapidly than bulk Si. This
type of etching of the PS structure is independent of the applied current den-
sity during PS formation and is called chemical etching [175]. Such etching
can result in challenges for accurate control of electrochemically etched PS
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structures, since the obtained porosity profiles after chemical etching can
differ from the desired and designed current-controlled profiles. The exper-
iments performed to study chemical etching are presented in Paper II and
consisted of three sample series. The first set was etched at a current density
of 10 mA /em? for 30 s, the second set etched at 50 mA /cm? for 15 s and the
third set etched at 125 mA/cm? for 15 s. After the current was switched off,
the samples were left in the electrolyte and subjected to chemical etching for
~0s,10s,30s, 60 s, 180 s, 600 s, 1200 s, and 3600 s (4 the anodic etching
time), before the samples were rinsed and air dried.

SE was carried out on all wafers according to the model presented in
Section 4.3. The main effects of chemical etching on porosity, thickness and
PS/Si interface thickness are presented in Fig. 5.5 [Paper II, Fig. 4]. See
Paper II for further discussions of the displayed trends.

Further Work and Discussions

Figure 5.6 shows the ellipsometric data and corresponding fits, represented
by W, for all three series. The model shows an excellent fit to the ellipsometric
data when applied to the low porosity samples. For the highest porosities,
somewhat larger MSE values result.

The evolution of the depolarization factor with chemical etching time
is shown in Fig. 5.7. The samples here are etched at 50 mA/cm? and
125 mA /em? for 15 seconds. Note first that the depolarization parameters
obtained for the highest porosity samples (etched at 125 mA /cm?) are slightly
higher than for the lower porosity samples (etched at 50 mA /em?). According
to Kiinzner et al. [66] such a trend can be expected since increased porosity
tends to lead to more anisotropy for highly doped substrates. The substrates
used here are however in the limit between moderately and highly doped.
Since the depolarization factor for the series etched at 10 mA /cm? is fixed (in
order to avoid parameter correlation), and the difference between the series
etched at 50 and 125 mA /cm? is small, it is not completely clear whether the
trend observed by Kiinzner et al. [66] really applies to the samples presented
here.

We now look at the evolution of the depolarization parameter in time.
Although the spread is quite large, there seems to be a trend of increasing
depolarization factors, i.e. the depolarization factor is getting closer to 0.33
with increasing chemical etching. This corresponds to a reduced anisotropy
with increasing porosity (since increased chemical etching results in increased
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porosity). This might reflect the different nature of the chemical and elec-
trochemical etch. The chemical etch is isotropic, and could work to smooth
out the anisotropic structures resulting from the preferential etching of pore
tips during electrochemical etching.

Figure 5.8 shows a comparison of the porosity profiles of the samples
etched at 10 mA/cm? after chemical etching. Py is the difference in poros-
ity before chemical etching and after 3600 s of chemical etching. Closest to
the surface, the porosity has increased by 8.4 % absolute after 3600 s, at the
deepest part of the PS layer, the porosity increase is only 5.8% absolute. The
trend is similar for the series etched at 50 mA/cm? and 125 mA/cm?. This
means that the increase in porosity due to chemical etching is not isotropic
through the layer. The upper part of the layer has a higher increase in abso-
lute porosity than the deeper part. We have seen that the chemical etching
does not attack the PS structure significantly the first few minutes. There-
fore the initial gradients in porosity are due to pure electrochemical etching.
Since the chemical etching will depend on the exposed surface area, it is not
surprising that the porosity gradients existing after the electrochemical etch
are amplified by the chemical etch, as indicated in Fig. 5.8. The net effect is
a larger grading and likely wider interface layers. This is in accordance with
Fig. 5.5¢, which shows an increase in the width of the PS/Si interface with
increased chemical etching time.

5.6 Pore Nucleation

Relatively little literature exists on the field of pore nucleation and early PS
growth. We will briefly mention a few notable contributions to the field that
is relevant for the work presented in Paper III.

Without proposing a complete formation model, Brumhead et al. [176]
made an effort to relate the preparation parameters to some intrinsic charac-
teristics of the pore growth kinetics. They reported a non-linear growth of PS
at short anodisation times, before a linear, stable pore growth was reached
after about 1 minute. This general growth development is now relatively
well established [172, 177, 178]. According to Brumhead, if the valence of a
reaction remains the same, the total mass loss rate will, according to Fara-
days law, be constant. Consequently, at low porosity, initial pore growth is
fast before a balanced, slower growth with larger porosities, take over. Three
possible explanations for this initial faster pore growth were proposed by
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Figure 5.6: Changes in the ellipsometric variable ¥ due to chemical etching.
Three series of PS samples are exposed to chemical etching in HF for 0 s -
3600 s. Fits to the ellipsometric data are shown for all samples. The best

fits are obtained for the low porosity samples.
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Brumbhead et al. [176]; (i) each individual pore could be initiated at ¢ = 0
with a small cross section, and expand as it grows into the substrate, (ii)
the number of pores initiated at ¢ = 0 could be small but multiply quickly
by branching, (iii) at ¢ = 0 a few pores are generated, and their number
increase steadily by further continuous generation at the surface until they
are close enough together for carrier depletion to prevent any more pores
being formed. By this argumentation, in model (iii) the porosity of the pore
initiation region would in time be the same as for the bulk PS layer. Model
(i) and (ii) are believed by Brumhead et al. to inhibit flow of chemicals into
the pores, thereby preventing continued growth, and model (iii) was there-
fore proposed as the most likely mechanism. The formation time necessary
to complete the PS nucleation process is proposed to last from a few seconds
[171] to 2.5 — 3 minutes [172, 176]. The proposal of a pore nucleation pe-
riod of only a few seconds is based on features in the current and potential
transients which are interpreted as due to pore nucleation [171].

Summary of Paper II1

In Paper III, we showed the existence of a near-surface PS region with lower
porosity then the bulk PS and discuss possible origins of this dip in porosity
(dense PS region). The indications of this porosity dip first appeared in
the best fit ellipsometry models of the PS samples etched in p* substrates
where a significant lowering of the porosity in a thin region just below the
surface was displayed. The feature improved the quality of the fit for all
measured samples of low and intermediate porosity. In TEM images of the
same samples a thin, slightly darker region of the PS layer can be seen towards
the PS/air interface. The darker areas corresponds to more Si, hence the
darker line is a region of lowered porosity. In Fig. 5.9 [Paper I1I, Fig. 2] it
can be seen that the depth of these denser regions roughly corresponds with
the depth of the lower porosity region detected in the ellipsometry porosity
profiles.

The dense PS region does not seem to be affected by etching time. Figure
5.10 [Paper 11, Fig. 4] shows the first 80 nm of the porosity profile for four
samples etched under nominally identical conditions, but for different etching
times. No significant changes can be seen between the profiles, except a slight
increase in average porosity of the full profiles, which is likely due to chemical
etching. As there is no evolution of the porosity dip in time, it is natural to
assume that the region is related to the initial stages of PS growth. Since the
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Figure 5.9: Ellipsometry porosity profile overlaid TEM image of the same
sample. a) points towards the surface oxide, b) points towards the dense
PS region. A rough correspondance exists between the densee PS region in
the TEM image and the dip in porosity in the ellipsometry porosity profile
[Paper 111, Fig. 2].

initial pore nucleation in PS has been suggested to take from a few seconds
to 2—3 minutes, the pore growth and propagation cannot likely be explained
by continuous nucleation (model (iii) as suggested by Brumhead et al. [176]).
Instead, pore widening and/or porosity increase by branching may be the
responsible mechanisms.

Experiments have been performed in different HF concentrations, for dif-
ferent current densities and etching times. The existence of the dense PS
region is sensitive both to HF concentration and current density, and the
common denominator appears to be variation in porosity. Both reduced HF
concentration and increased current density leads to high porosity and a PS
structure without a densified region close to the surface.

Further Work and Discussions

To further study the origin of the dense PS region, etch stop - etch start
experiments were performed. In samples where the etch was aborted after 2
s and then restarted, the best fitted ellipsometry model displays an increased
thickness of the densified region. In the porosity profile determined by ellip-
sometry the constant porosity layer starts at a depth of 60 — 70 nm, while
in the TEM images the dense PS regions seems to end at a depth of around
50 nm. The experiments performed so far are therefore not conclusive with
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Figure 5.10: Evolution of the porosity dip in time. Porosity profiles from

best fit ellipsometry model on samples etched at 15 mA/em? in 20% HF for
different times; a) 30 s, b) 90 s, ¢) 180 s, and d) 300 s [Paper III, Fig. 4].

105



Chapter 5. Single layer PS and Process Considerations

106

respect to the effect of an etch restart on the dense PS region.

5.7 Porous Silicon Oxidation

In Paper IV, the effect of ageing of PS layers stored in ambient air and room
temperature, studied by use of XPS, SE, and spectroscopic reflectometry, is
presented. Here the complete fitted XPS spectra are presented, in addition
to a summary of Paper IV.

Summary

Due to the small binding energy shifts in the Si 2p core level (covering a range
of only 4 eV), and large number of observed compounds, resolving distinct
features by curve-fitting the Si 2p core level can be difficult [179]. The high
resolution in our spectra enables a quite detailed fitting of the spectra, and
the evolution of pure Si (Si®) and the intermediate oxide states Si;O (Sit1),
SiO (Sit?), Si,03 (Si™?), and SiO, (Si™) can be followed over time. The
complete fitted XPS spectra for the Si-2p peaks from the PS surface and PS
bulk is shown in Fig. 5.12.

We observe that a relatively rapid but partial oxidation, covering a few
percent of the inner surface of the PS by oxide, takes place in the early
stages of ageing. A gradual increase in oxidation, through the intermediate
oxidation states, is observed. Detection of Sit (Si,0), is followed by detection
of Si2* (SiO) and Si*+ (SizOy), before SiOy is formed after about one week.
This evolution is plotted in Paper IV, Fig. 4.

Comparing the XPS results with SE, it is clear that SE is rather insen-
sitive to oxidation in the PS structures. Partly, the inclusion of oxide is
complicated by the number of different oxidation states; for most of the sam-
ples only a small fraction of the oxidized species is SiO,. It is also possible
that an alternative model could give larger deflections with respect to oxy-
gen content. However, when this is said, the marginal difference in ¥ and
A, and consequently in refractive index between day 1 and day 42 indicates
that it is a challenge to determine oxidation of PS with SE. It is also rather
common to neglect oxidation when performing ellipsometric characterization
of PS [151, 152]. Since the difference in ¥ and A and also in effective re-
fractive index is so small, the effect of the oxidation on the reflectance of the
PS ARCs is very small. Measurements performed over a time period of 11
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Figure 5.11: Evolution of the reflectance from a PS ARC in time [Paper IV,
Fig. 5].

weeks is shown in Fig. 5.11 [Paper IV, Fig. 5].

5.8 Summary

The studies performed and described in this chapter show that the PS etching
process, carried out on pt-type substrates in our double PS etching cell,
gives relatively good control over the etching parameters. It is clear that
for short etches, chemical etching does not alter the original PS structure.
However, inevitable interface regions and pore seeding effects can be possible
challenges. Still, in conclusion, tailoring of multilayer PS structures seems
feasible. The evolution of the PS structures with storage time does not
appear to be a hindrance for the optical performance of the PS structures.
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Chapter 6

Design and Fabrication of
Porous Silicon Multilayers for
Solar Cell Applications

There are many reasons why multilayered PS is an attractive alternative for
use in Si solar cells. Obviously, the Si is already there. The fabrication
expenses are moderate, and with electrochemical etching, multilayers are
barely more demanding to make than single layers. From an optical point
of view, this creates a well of opportunities to tailor the optical properties
exactly as you wish. However, major challenges remain before these benefits
can be exploited in commercial Si solar cell. As in Chapter 5, the focus
here is on the material that is complementary to the published articles. A
brief summary and some additional considerations to the work published in
Paper V and VI constitutes Section 6.1 and 6.2. Section 6.3 is devoted to
initial experiments and considerations with respect to implementing the PS
ARC in an emitter structure. In Section 6.4, we take a closer look at the
optimal thickness of the PS ARCs from an optical point of view. Section
6.5 shows the results of forming the graded PS ARCs on multicrystalline
substrates. Finally, in Section 6.6, the work on PS rear reflectors, performed
in collaboration with master student Solveig Rgrkjeer, is presented.
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6.1 Graded Porous Silicon Antireflection Coat-
ings

Most of the work performed in order to model and fabricate minimum re-
flectance PS ARCs is presented in Paper V and only a short summary is
given here.

Summary Paper V

In this work, multilayered refractive index stacks optimized for antireflection,
in bare air and within modules, were modeled and fabricated. Simulations
of PS antireflective layers were performed in the WVASE32 software. “Ideal
structures” without imposed limitations on thickness and available porosity
range were modeled to show the potential of these structures. Confinements
with respect to efficient implementation in Si solar cells, i.e. limited porosity
range and thickness, were then examined and applied. An angular distribu-
tion of the incoming light (as the sun moves over the sky) was also accounted
for. Optimizations were conducted for cell operation both in air and under
module glass.

An experimentally determined relationship between porosity and current
density and etch rate and current density was established using SE, gravime-
try, and SEM. The porosity profile of the optimized models were then trans-
lated into current density profiles using these experimentally determined re-
lations. The resulting multilayers were characterized with SE, SEM, XPS,
reflectometry and TEM.

Figure 6.1 [Paper V, Fig. 10] shows how the porosity profiles obtained
by ellipsometric modeling of the sample compare to the designed porosity
profiles. For the profile optimized for operation under module glass (a),
the design and model porosity profiles have the same shape, but deviates
from each other towards the interfaces. For the profile optimized for air
ambient (b), the fabricated PS ARC structure follows the general trend of
the designed porosity profile, but cannot follow the fine structures. Figure 6.2
[Paper V, Fig. 11] shows the reflectance of the design and modeled porosity
profiles, in addition to the measured reflectance for both ARC structures.
Wavelength shifts between the reflectance generated by the designed and
modeled porosity profiles are evident for both ARCs, but the shapes of the
modeled reflectance profiles match the designed profils quite well. Fig. 6.2
also shows that there is a very good correspondence between the modeled
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Figure 6.1: The designed porosity profiles plotted together with the poros-
ity profile which best fit the ellipsometric data [Paper V, Fig. 10]. Interface
between PS and air/glass at 0%, interface between PS and Si at 100%. a) Op-
timized for operation with module glass. b) Optimized for operation without
module glass.

and the measured reflectances. The measured integrated reflectances (at
an incidence angle of ~ 10°) of the structures were ~ 3% in air and 1.4%
under glass (not including reflection from the glass) in the wavelength range
400-1100 nm.

6.2 Clear Color Porous Silicon Antireflection
Coatings

Summary Paper VI

So far, the installation of solar modules has typically been performed without
aesthetic concerns as common locations have been rooftops or solar power
plants. However, exciting new products that incorporate PV modules into
actual building materials such as curtain walls, windows, and roofing shin-
gles are now available, increasing the focus on the visual impression of solar
modules. Building integrated photovoltaic (BIPV) systems represent an in-
teresting, alternative approach for increasing the available area for electricity
production and potentially for further reducing the cost of solar electricity.
The color of a solar module is primarily determined by the color of the cells
in the module, which is given by the antireflection coating (ARC). The most
commonly used ARC for Si solar cells today is SiN,,, which gives the modules
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Figure 6.2: The designed, fabricated and modeled (by ellipsometry after
fabrication) reflectance spectrum of the PS ARCs [Paper V, Fig. 11]. a)
Optimized for operation with use of module glass, reflectance data taken
without module glass. b) Optimized for operation without use of module
glass.

a dark blue appearance. The color of the ARC is of course very intimately
connected to its antireflective properties, and changes in the appearance will
therefore easily be made at the expense of the cell’s efficiency. Although more
than 85% of architects in one survey stated that aesthetic concerns would
allow for the installation of solar energy systems with reduced efficiency [180],
the optimal scenario is freedom in design and competitive efficiency.

In Paper VI the impact of varying the color of SiN,- and PS ARCs upon
the optical characteristics and efficiency of a solar cell was investigated. The
overall transmission and reflection of a set of differently colored single layer
SiN, ARCs is compared with triple layer dielectric stack ARCs, all made
using PECVD. These are again compared with PS ARCs. Although the
reflection from single layer SiN, ARCs is generally low, the colors available
by simple thickness variations are limited. Using triple layer dielectric ARCs,
a broader range of colors can be achieved, at the expense of a modest increase
in reflection. For the PS ARCs, control over both thickness and refractive
index results in a large freedom of tailoring the reflection spectra of the
films. The layers can then be optimized for low reflection in addition to
specific color. Solar cells able to absorb in excess of 90% of the incoming
light is shown to be accessible with PS ARCs, demonstrated by green, red,
purple and orange structures.
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Table 6.1: Simulated parameters for ‘standard’ solar cell with different ARCs.

Sample Efficiency Js. Voo Jso/Jse(black)
“Black”? 19.8 38.5 620.1 100.0%
Single layer SiN - green 16.6 32.5 615.8 84.4%
Single layer SiN - red 17.6 34.5 6174 89.6%
Single layer SiN - blue 17.5 34.1 617.1 88.6%
Dielectric stack - green 15.2 29.8 613.5 77.4%
Dielectric stack - red 13.0 25.7 609.7 66.8%
Dielectric stack - blue 16.6 32.5 615.7 84.4%
PS multilayer - green 16.9 33.0 616.2 85.7%
PS multilayer - red 17.5 34.3 617.2 89.0%
PS multilayer - purple 17.8 34.8 617.7 90.4%

PS multilayer - orange 18.1 354 618.0 91.9%
L«Black” refers to perfect transmission through the ARC; no reflection, no absorption.
Simulated values for efficiencies, short circuit current density (Js.), and open circuit
voltage (Vo) obtained when each fabricated ARC is used on a standardized solar cell.

In addition to a comparison of the optical characteristics of such solar
cells, the effect of using colored ARCs on solar cell efficiency is quantified
using the solar cell modeling tool PC1D. A solar cell model producing fairly
representative solar cell characteristics is used as basis for the modeling. The
experimentally determined transmission spectra of the various ARC struc-
tures were used as input to the modeling. The results are shown in Table 6.1
[Paper VI, Table 2].

Further Work

Figure 6.3, 6.4, 6.5, and 6.6 show (from the top) i) the current density recipe
used for etching the respective structures, ii) the designed and model porosity
profiles, iii) the design, model and measured reflectance of the ARCs, and
iv) an image of each ARC. From the current density recipes, we see that
all etches are very swift, the recipe of the green ARC is the longest at 9 s.
Comparing the designed porosity profile with the porosity profile obtained
from ellipsometry measurements, a rough correspondence is found for all
samples. The porosity profiles of the purple and red ARCs are closer to their
design than the green and orange. The largest deviations between the design
and model are found at the interfaces between Si/PS and PS/air.
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Figure 6.3: From the top: Current
density recipe, porosity profile, re-
flectance, and image of the purple PS

ARC.

Figure 6.4: From the top: Current
density recipe, porosity profile, re-
flectance, and image of the red PS

ARC.
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The same appearance of a rough correspondence is seen between the de-
signed and modeled reflectance. The shapes of the reflectance curves are
similar, although a perfect match is not obtained. The purple ARC has
a clear wavelength shift in the reflectance spectrum, the other ARCs have
the reflectance peak at the same wavelength as the design and show mainly
amplitude differences. An excellent correspondence is found between the
measured and model reflectances for all the ARCs, although there are some
deviations in the short wavelength end. This is possibly because these wave-
lengths are approaching the nanostructure size (Ay; = 300 nm — Si ~ 70
nm) and hence also the end of the applicability range of the static effective
medium theory [61]. The model reflectance is generated from the best fit
ellipsometry profile for each ARC and the good fit to the measured data is
therefore remarkable.

The image and the modeled and measured reflectance of each ARC were
also shown in Paper VI, while the design reflectance, the current density
recipe and the porosity profiles are only presented here.

6.3 Integration of Porous Silicon Antireflec-
tion Coatings in Si Solar Cell Processing

In Chapter 2 we discussed the impact of substrate doping on the resulting
PS structure. In the previous work presented in this thesis, a highly doped
p-type substrate is used. The high doping is convenient to achieve good
contact with the electrolyte in addition to imitate the high doping of the
emitter. However, so far we have not etched in actual emitter structures.
A diffused emitter will have a doping density profile in depth. In addition,
it is to be expected that electrochemical etching of PS in a pn junction
will complicate the formation. In this section we look at the possibilities
of integrating the PS ARCs described in Section 6.1 and 6.2 into a realistic
solar cell structure. The PS etching may be performed before or after emitter
diffusion, each process presenting different opportunities and challenges.

6.3.1 Porous Silicon Etching in Emitter Structure

There are a few important differences between etching in a homogeneous p*
substrate and an n/p* structure; (i) the emitter is not homogeneously doped
and (ii) a junction is introduced. In fact two junctions are introduced in
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Figure 6.7: The doping profile obtained with SIMS showing the standard
boron emitter used in the cell process at IFE. The bottom figure is simply a
section of the upper to display the topmost 200 ym in some detail. Source:
courtesy of Krister Mangersnes [181].

the study performed here, as the wafer is doped on both sides. Two sided
doping is standard in IFE’s solar cell process and, as discussed in Section
5.1, backside doping also provides good contact between the electrolyte and
the wafer during electrochemical etching.

The preliminary results from PS etching in an n-type substrate with a
p* emitter is presented in the following section (really a p*/n/p™ structure).
For comparison, experiments with etching in p™/p/p™ structures are also
performed. Two different boron doping profiles have been used, one ‘stan-
dard’ profile used in solar cell processes at IFE and one where in-diffusion is
performed under the same temperature and deposition time as the ‘standard’
profile, but with a longer drive in (i.e. deeper). The doping profile of the
standard emitter is studied by SIMS and is plotted in Fig. 6.7. From a depth
of approximately 20 nm and down to 200 nm, the doping profile is relatively
flat, varying from ~ 9- 10 to ~ 3- 101,

Other possible effects of the backside doping are resistivity variations
if the doping is inhomogeneous. Such resistivity variations could easily be
reflected in the homogeneity of the PS layer on the opposite side of the wafer.
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Figure 6.8: Sheet resistance maps of wafers with the standard IFE boron
emitter profile. Only relative values can be seen from this sheet resistance
map, due to inadequate calibration of the equipment. Corresponding values
for the marked spots are shown in Table 6.2. The marking of where the
measurement is made is only indicative.

A sheet resistance map showing the lateral doping homogeneity is displayed
in Fig. 6.8. Both sides of the wafer are shown. Only relative values can
be seen from this sheet resistance map, due to inadequate calibration of the
equipment. The sheet resistance has therefore also been measured by four
point probe as shown in Table 6.2. As the four point probe is unfit to measure
at the sample edges a quantitative measure of the sheet resistance outer rim
of the wafer is not obtained.

A schematic of the band structure in the substrate, in equilibrium and
under applied bias, is shown in Fig. 6.9. The front side (PS etching side)
junction does not present a barrier to the holes. The backside n/p* structure,
however, will present a barrier towards holes before they reach the formation
site. During PS formation, this n/p™ junction will be forward biased, hence
increasing the voltage drives the current through. In addition to the junctions
within the substrate, one anodic and one cathodic Si-electrolyte junction
exists.

Figure 6.10 shows the voltage versus etching time for layers etched at
a constant current density of 40 mA/cm?. The etch rate at this current
density has been measured to be approximately 9 nm/s. During the first 10
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Figure 6.9: Schematic overview of the band bending at the junctions within
the etching substrate in equilibrium and under applied bias. The drawing is
not to scale.

Table 6.2: Sheet Resistance
Spot 1 Spot 2 Spot 3 Spot 4 Spot 5
Side 1 11.70Q/sq 12.00Q/sq 12.3082/sq 11.70Q/sq 11.69€2/sq
Side 2 11.90Q/sq 11.80Q/sq 12.19Q/sq 11.79Q/sq 11.44Q/sq
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Figure 6.10: Voltage data from PS layers etched in p*/n/p™ structures at a
constant current density of 40 mA/ecm?. The voltage data from a PS layer
etched at the same current density in a p™/p/p™ structure is also included.

seconds, the increase in voltage is moderate, but still significant compared
to the p™/p/p™ structures (as shown in Fig. 6.10). As the change in the
doping profile at this depth is marginal (except for possibly the first 20 nm),
the increase in voltage should not be due doping variations at the etch sites.

After ten seconds, we expect the pore tips to have reached a depth of
approximately 90 nm. From Fig. 6.7 it is clear that the doping profile
around this depth shows a gentle decline in doping density, with no specific
features. Still, the voltage for all etches performed in p*™/n/p*t structures
increase strongly between approximately 10 — 20 seconds. The following
10 — 15 seconds the voltage increases less rapidly, before it starts to decrease
and finally is reduced to approximately the starting voltage. The voltage
decrease seems to occur at a deeper depth for the sample with a deep boron
diffusion profile.

Experiments with illumination were also performed. Figure 6.11 shows
the voltage data for three identical samples etched at the same, constant cur-
rent density of 50 mA/em?. The PS layer etched with backside illumination
displays a significant increase in etch rate (14.3%) and a small increase in
porosity (4.2% relative) compared to the sample etched without illumination.
Both increased etch rate and porosity would be expected from a higher cur-
rent density. The illumination will ease the current flow through the barrier
at the backside junction and this could explain the observed results. For
the etching performed without illumination or with front side illumination,
the voltage limit of the potentiostat is reached (36 V), and the set constant
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Figure 6.11: Transient voltage during etching of PS in three emitters under
identical constant current density, with varying illumination conditions. All

the samples are ~ 4 cm?.

Table 6.3: Changes in PS structure due to Illumination

Sample Thickness Ave. porosity
Dark 137 nm 67 %
Backside illumination 160 nm 70 %
Frontside illumination 140 nm 67 %

current density is not supplied for the complete duration of the etch.

The results presented in this section are preliminary and sufficient control
over porosity and etch rate during etching in p™/n/p™ emitter structures have
not yet been demonstrated. The subject will receive continued attention in
upcoming projects. Specifically, alternatives to the p™ backside doping to
achieve good contact between the electrolyte and wafer will be tested in
order to avoid the hole barrier formed by the rear side n/p™ junction.

6.3.2 Porous Silicon Etching Before Emitter Doping

Etching the PS ARC directly into the Si substrate before emitter doping
would avoid the problems associated with doping variations in depth and
etching in junction structures. However, it would introduce quite a few
problems of its own. Emitter diffusion necessitates very high temperatures
for extensive periods of time. This would likely lead to a significant reorga-
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nization of the porous structure. In addition solar cell substrates are usually
doped to a resistivity of 1 — 3 £ cm. This is not sufficient to achieve a good
contact with the electrolyte and an additional backside doping would have
to precede the PS etching. Indeed, a back surface field is often introduced
in the solar cell process to reduce the surface recombination velocity, since a
p/pT junction presents a potential barrier for the minority electrons. A back
surface field therefore reflects electrons and reduces the effective rear surface
recombination velocity [90].

Another issue is that the obtainable porosity span of a 1—3 €2 cm substrate
would also be different from the one assumed in all optimizations in this
thesis, so the designed structures might not be obtainable.

6.4 Transmission Optimizations

An ARC with practically zero reflection could easily be made from thick
PS layers with a continuously graded refractive index, see Paper V for an
extensive discussion on this. Uehara et al. [112] have made very low reflec-
tion (2%) PS stacks with a thickness of 1 —5 pum. Such stacks are however
much too thick for solar cell applications, both because of interference with
the solar cell junction and absorption in the PS layer. Even for much thin-
ner PS layers, relevant for solar cell ARC applications, absorption is an issue
which must be addressed. While the reflection improves with thickness this is
counterbalanced by increased absorption. The highest transmission is there-
fore subject to an optimization between these two. In Paper V an optimal
thickness of ~ 150 nm was assumed. Here, we aim to refine this assumption.

6.4.1 Modeling and Ellipsometry

We use the same basic ARC structure as that used in Paper V and IV;
porosities are set to 25 — 75% and a maximum of 36 steps in each ARC.
However, instead of using only one thickness, the reflectance is minimized
for a range of thicknesses. The optical constants of each BEMA model are
used to calculate the absorption through the structure as a fraction of the
incoming light

I=1Iy-exp(—t-a), (6.1)

where I is the initial intensity minus reflected light, I is the intensity
after one EMA sublayer, ¢ is the thickness of the sublayer and « is the
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absorption coefficient of this layer. This calculation is performed for each
wavelength and each subsequent layer. The total intensity loss is the differ-
ence between incoming and transmitted intensity for each wavelength and
finally this intensity loss for each wavelength is weighted by the solar flux at
this wavelength and an average absorption calculated.

In Paper V, the PS structure was assumed to consist of ¢-Si and void. In
later ellipsometric studies of PS, an improvement in the models was found by
adding a small amount of poly-Si. In the thickness optimizations performed
here, both models with pure c¢-Si walls and models with a mix of ¢-Si and
poly-Si (5% absolute) are used.

Figure 6.12 shows the transmission (a), absorption (b) and reflectance (c)
of the PS ARCs for increasing thicknesses. We see that for an ARC optimized
for use without module glass the optimal thickness in the range 160 — 180
nm. If the PS structure is solely monocrystalline, the highest achievable
transmission is approximately 93 %. If 5 % (abs.) polycrystalline Si is added,
the absorption increases somewhat, while the reflection remains the same.
The best achievable transmission therefore decreases by almost 1% when
poly-Si is included in the model. For an ARC optimized for performance in
a module glass environment, the maximal transmission is higher, ~ 93.5%,
and peaks at an ARC thickness of approximately 110 nm. The shift towards
lower transmission when including poly-Si is seen here as well. Compared to
the ARCs optimized for air ambient, the ARCs optimized for module glass
have a larger average apsorption coefficient due to a lower average porosity.
Hence, the ARCs optimized for module glass have a thinner optimal thick-
ness. In addition the reflectance of the ARCs optimized for module glass
does not increase as rapidly as the reflectance of the ARCs optimized for air
when the ARC thickness decreases. This optimization is only valid to the ex-
tent that the ellipsometric model built in WVASE32 actually is representable
for the given structure. We have previously shown good correspondence be-
tween macroscopic properties, such as thickness and porosity, obtained from
ellipsometry and other techniques (SEM, TEM, and gravimetry). However,
for the absorption to be correct, the model must also give accurate optical
constants. Although we know that the material is predominantly crystalline
Si and air, changes in the extinction coefficient of Si may occur due to size
effects. To assess the accuracy of the optical constants given by the ellipsom-
etry model, it would be beneficial to compare absorption calculated with the
BEMA with measured absorption.
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10.678um

Figure 6.13: SEM image of a freestanding PS film.

6.4.2 Direct Optical Measurement

To study the accordance between absorption in the BEMA model and in an
actual structure, freestanding PS films are produced. A freestanding film
is etched at 50 mA /em? for 8 minutes, followed by and electropolishing at
a current density of 250 mA/cm? for 1 minute. The film is attached to a
carbon tape which works as conducting substrate in the SEM. From SEM
images the thickness can then be determined to be approximately 10.7 pm,
see Fig. 6.13.

Reflection, R, and transmittance, T', are measured on a freestanding film
etched under identical conditions to the one above. The PS film is attached
to a glass substrate with a hole in the middel to allow direct transmission
measurements of the PS film. Absorption is then given by A=1-T—R, or
to exclude reflection, A,, = A/(1 — R). In previous experiments performed
in this thesis, it is found that a current density of 50 mA/cm? in 20% HF
corresponds a film porosity of approximately 55%. We did not manage to
perform ellipsometry measurements on the thick freestanding film.

Results from the comparisons between the measured absorption and the
absorption generated from a PS layer of 10.7 um thickness and 55 % porosity
can be seen in Fig. 6.14. To illustrate the effect of changes in the model,
with respect to crystallinity, porosity and thickness, four slightly different
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Figure 6.14: Absorption obtained from reflectance and transmission measure-
ments compared with absorption generated from a model of the structure.

WVASE32 models are shown. An initial model consists of solely c¢-Si and
void, the thickness-value obtained from SEM, and a porosity based on the
previously obtained value of 55% ("VASE 55%, 10.7 um, no poly’). We
see that this model underestimates the absorption somewhat. In the second
model ("VASE 55 %, 10.7 pm, poly’), 10% poly crystalline Si is included.
This shows a reasonable fit to the measured data. In the third model ("VASE
50 %, 10.7 pm, no poly’) we reduce the porosity instead of including poly-Si.
We see that a model without poly Si underestimates the absorption even
after this porosity reduction. The last model ("VASE 50 %, 12 pm, poly’)
we increase the thickness, use the reduced porosity and 10 % poly Si. Not
surprisingly these factors add up to overestimate the absorption compared
to the measured.

6.4.3 Summary

The model based on the thickness measured by SEM, the porosity determined
from measurements on a sample etched under the same current density as the
freestanding film, and an addition of 10 % poly Si give an absorption relatively
close to the measured absorption. However, there are four relatively large
uncertainty factors; i) the porosity estimation, ii) the amount of poly-Si, iii)
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possible thickness inhomogeneities over the sample, and iv) the measurement
accuracy.

Therefore, the performed freestanding PS layer experiment provides only
an estimate of the correspondence between actual optical constants and mod-
eled optical constants, and we can only conclude that the measured absorp-
tion is in rough correspondence with the values obtained from the utilized
WVASE32 models. The thickness optimizations performed earlier in this
section should therefore be a good pointer to the optimal ARC thickness
from an optical point of view. For optimal ARC thicknesses, the loss due to
absorption in the PS structure is greater than the reflection loss. It should
be stressed that the electrical properties of the PS ARC as a solar cell com-
ponent is not taken into account in the thickness optimizations performed
here.

6.5 Etching of Multicrystalline Wafers

For multicrystalline wafers the etch rate dependence upon grain orientation
results in non-optimal surface textures when etching in KOH. PS can provide
an alternative to the alkaline texturing. The electrochemical etching also
depends on crystallinity but to a much smaller extent than alkaline etches.
Therefore PS is particularly interesting for multicrystalline wafers. For the
optimized PS ARC structures, we have seen that no pretexturing is necessary.

Homogeneously doped multicrystalline wafers with a resistivity of ~0.02
Q cm were etched in an electrolyte containing 20 % HF. Multicrystalline
samples with both homogeneous PS layers and PS multilayers optimized for
antireflection were fabricated.

Figure 6.15 shows a comparison of the reflectance spectrum obtained us-
ing identical current density profiles during etching of a monocrystalline and
a multicrystalline substrate. The substrates have similar (but not identical)
resistivities. The spot used for measuring reflectance was rather large (~ 1
cm?) compared to the grain size of the multiwafer. Therefore, the obtained
reflection is an effective reflection from a group of randomly selected grains.
The differences in the reflectance spectra between the mono and multiwafers
are significant, but the multicrystalline Si wafer also displays very low reflec-
tivity and and has fairly homogeneous appearance. The increase in reflection
above ~ 1000 nm is due to reflection from the backside of the wafer, i.e. light
that escapes after a double pass through the substrate.
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Figure 6.15: Comparison of the reflectance spectra of the PS ARC optimized
for air ambient etched on one monocrystalline and one multicrystalline sub-
strate.

The only highly doped, multicrystalline wafers we had access to were
unpolished. This makes characterization by ellipsometry very difficult and
does not provide an optimal comparison with the polished monolayers. Initial
attempts to polish the multicrystalline wafers were unsuccessful. Therefore
only spectroscopic reflectometry is used to characterize the samples. More
information would be gained by coupling the variations in reflectance with
grain orientation.

6.6 Porous Silicon Backside Reflector

The objective of the work presented in this section was to produce a PS
rear side reflector for thin Si solar cells. The structure of the reflector was a
multilayer stack of quarter wave layers of alternating high and low porosity
layers, i.e. a PS distributed Bragg reflector (DBR). The work performed
was conducted in collaboration with master student Solveig Rgrkjeer, whom
the author - together with Dr. FErik Stensrud Marstein - was supervising
during spring 2010. Much of the work is presented in Rgrkjser’s master thesis
“Porous Silicon as Rear Side Reflectors for Very Thin Silicon Solar Cells”
[173]. The fabrication and the majority of characterization were conducted by
Rarkjeer. The model on which simulations of the optimal PS reflector profiles
prior to fabrication was based was made by the author. Also, modeling of the
ellipsometric data after processing was done by the author. The results to be



6.6. Porous Silicon Backside Reflector

presented here again illustrate the capabilities of ellipsometry to characterize
multilayer structures well. Analysis and discussions of results was performed
by collaboration between Rgrkjeer, the author and Erik Stensrud Marstein.
A relatively short summary of the work performed will be presented in the
following.

6.6.1 Designing the reflector structure

As discussed in Section 3.4.2, the refractive index of the high and low poros-
ity layers is decisive for the performance of the reflector. For optimal per-
formance the refractive index difference should be as large as possible. For a
given refractive index span, higher porosities may be a benefit as this gives
less parasitic absorption and higher internal reflection.

For the chosen set of parameters, the highest available porosity is 76% and
is limited by the onset of electropolishing at higher current densities. Higher
porosities are achievable with a reduced HF concentration in the electrolyte,
but mechanical stability may become a problem for very high porosities.
More importantly, the highest achievable refractive index is decreased if lower
HF concentrations are utilized, and the net refractive index span is reduced.
Therefore no improvement of the reflectance is expected from lowering the
HF concentration. The lowest available porosity at the time this work was
performed was 40%. Porosities as low as 25% has previously been achieved
using the same setup, substrate and electrolyte composition as what was
used for the PS reflector experiments. However, a fault on the potentiostat
(it fails to reach the lowest current densities) prevented us from reaching this
low porosities for the samples prepared as rear side reflectors. Initially a
design wavelength of 950 nm was chosen, based on reported literature values
[34]. At this wavelength, the utilized porosities of 40% and 76% correspond
to refractive indices of 2.5 and 1.4 respectively.

As the sun is not stationary, it is desirable with a reflector that is efficient
for a broader range of incident angles. As light with incident angles larger
than a critical angle will be reflected due to total internal reflection, the
PS DBR should take care of the light with incident angles smaller than the
critical angle. The critical angle depends on the porosity used, but will
typically be around 20°.

For normal incidence, the construction of the stack follows very simple
rules and hardly needs simulation (only calculation). However, a simulation
tool is beneficial when the angular dependence of incoming light is included.
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Simulation also enables us to assess the effect of increasing the number of
layers in the DBR.

The ellipsometric software WVASE32 was used for modeling and opti-
mizing the reflector prior to fabrication. In the simulations, the low porosity
layers were fixed to have the same porosity, and similarly, the high poros-
ity layers were fixed. Also the ratio of the thickness of the high and low
porosity layers were fixed to 1.76 (the ratio of their refractive indices) to en-
sure that both type of layers fulfill the quarter wavelength rule for the same
wavelength.

Using an odd number of layers, starting and ending with the low refractive
index (high porosity) layer, improves the reflectance. The critical angle for
total internal reflection between Si and a layer with refractive index of 1.4
is ~ 23°. If the front texture effectively randomizes the light entering the
cell, the majority of photons reaching the back reflector will in fact be totally
internally reflected rather than reflected by the DBR structure as such.

For angles of incidence approaching 20°, the simulations showed that the
reflector no longer produced a well defined region/plateau of high reflectance.
As a compromise, the optimization was therefore performed for angles of
incidence from 0 — 15°.

6.6.2 Results

SEM images of the fabricated PS DBR structures with five and fifteen layers
are shown in Fig. 6.16 and 6.17 respectively. The layer structure is clearly
displayed in both images. Superimposed on the SEM image in Fig. 6.16 is the
ellipsometric model of this layer. Very good correspondence between the SEM
image and the rather complex ellipsometric model is found. The thickness
obtained from ellipsometry is in excellent accordance with the thickness seen
in the SEM image, and the layer structure with graded interface regions
between the alternating layers match the visual impression quite well. This
is regarded as a strong confirmation of the accuracy and physical validity of
the ellipsometric model employed.

The ellipsometric model for this structure is composed of five anisotropic
BEMA layers. Each layer has four nodes (point where the porosity gradient
changes), where the first node in each layer is set equal to the ending node
of the previous layer, as seen by counting the nodes in Fig. 6.16. The model
structure is illustrated in Fig. 6.18a and the corresponding refractive index
profile in Fig. 6.18b. As the PS layers are uniaxially anisotropic, the optical



6.6. Porous Silicon Backside Reflector

P orosity [%]

(00 L P8 T & L Gy " At b

500nm
-850 100 250 400 850 700 85D
Distance from Si-PS interfase [nm]

Figure 6.16: A superposition of the porosity profile determined from ellip-
sometry and a SEM image of a five layer PS DBR structure. SEM image
taken by Rerkjeer, superimposed ellipsometric profile modeled by the author.
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Figure 6.17: SEM image of a 15 layer PS DBR structure [173, Rorkjeer’s
master thesis].
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Figure 6.18: Ellipsometry model structure and best fit refractive index profile
of the five layer PS DBR structure.

constants in x and z directions are different. The goodness of the model,
measured by the mean square error (MSE) is 27.5. This is relatively high,
but acceptable for such a complex structure.

Note that when the reflectance is measured experimentally, we are un-
able to measure the reflectance at the PS/Si surface directly. Instead, the
reflectance is measured on the PS/air interface. To study whether the fab-
ricated structures are in conformity with the design, the experimental re-
flectance measurements are compared with the designed structures response
in air ambient (instead of Si ambient). Figure 6.19 shows the modeled re-
flectance of the 5 layer PS DBR with air and Si as ambient. A clear plateau
is visible in the reflectance from both interfaces. A study of the evolution of
the reflectance with increasing number of layers in the DBR was also per-
formed. For a 15 layer PS DBR, the reflectance of the plateau was about
98%. Further increase therefore was found to give little gain in reflectance.
The high reflection plateau covered the wavelength region ~ 700 — 950 nm.

6.6.3 Considerations on implementation of PS back-
side reflectors

As we have shown in the previous section, from an optical point of view
the PS DBR is a promising and very flexible technology which can easily
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Figure 6.19: A comparison of the reflectance of a 5 layer PS DBR in air and
Si ambient.

be optimized for different cell designs. In our work we did not get as far as
implementing the PS DBR in an actual solar cell structure since work to find
a suitable cell structure and surface passivation is not (yet) carried out.

Some reported efficiencies of solar cells with PS rear side reflectors can
be found in literature. In the most common implementation, PS is used
as combined backside reflector and seeding layer for epitaxial Si growth
[33, 34, 108, 111]. There are several potential challenges associated with
this cell structure: i) during growth of the Si epitaxial cell the PS structure
is expected to reorganize, potentially changing the fabricated reflector struc-
ture, ii) the roughness of the PS surface will be important for the quality of
the epitaxial Si layer, iii) for thick PS DBR situated between the cell and
the backside contact, PS must provide sufficient conductance, and iv) recom-
bination losses due to insufficient surface passivation of PS could result in
reduced cell efficiency. In the following, each of these issues will be given
some consideration.

Duerinckx et al. [34] report that although a reorganization of the PS
layers take place, the original distribution of alternating layers is preserved.
However, the voids in the original high porosity PS layer are reported to grow
to a diameter of ~ 150 nm [34]. For these dimensions, one is approaching
the validity limit of the effective medium approximation. The structure is
designed mainly for infrared wavelengths, but the wavelength in these PS
layers is more than halved compared to the corresponding air wavelength
(reported refractive index of 2.3 [34]). Zettner et al. [108] report a rather
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poor agreement between simulation and measurements of the PS reflector
structure after epitaxial Si growth. Abouelsaood et al. [106] report that high
porosity layers (60%) experience a drastic reduction in porosity (to 20—30%)
under normal CVD growth. Clearly, reorganization of the PS layers is an
issue that should be considered and addressed when implementing PS rear
side reflectors within this cell design.

A method to close the top surface and reduce the surface roughness in
order to improve epitaxial Si quality of the PS layers has been presented by
Kuzma-Filipek et al. [33]. They use a 30 min heat treatment in hydrogen
before epitaxial Si growth. A cell efficiency of 15.2% is achieved for an
epitaxial Si cell with this method.

Kuzma-Filipek et al. [111] have investigated the specific resistivity of the
PS layers to determine the conductivity of the PS reflector. They conclude
that there is no significant increase in resistance with increasing number of
PS layers.

It is known that adequate surface passivation of PS can be a challenge.
For these PS backside structures, the importance of surface passivation is
greater than for front side PS ARC structures fabricated in the dead emitter
layer. Little is written that specifically address the surface passivation of the
PS rear side reflector structures, but an improved surface passivation of PS
would likely give an enhanced efficiency for this type of cells.

We see that the challenges with respect to surface roughness and conduc-
tivity can be overcome, while better solutions are still sought to prevent or
account, for pore reorganization and improve surface passivation. Even so,
the obtained efficiencies are promising, and a PS rear side structure could
benefit from many of the same advantages as the front side PS structure; low
cost, no new materials introduced and great optical flexibility.

Alternative implementation regimes may of course be possible. Dedi-
cated rear side reflectors have traditionally not been necessary in thick Si
wafer based solar cells. As the thickness of the wafer based cells are now
continuously decreasing the need for efficient rear side reflectors will become
evident. The rear side reflector could be etched in the substrate before diffu-
sion, but will then suffer from reorganization during emitter diffusion, or the
PS etch may be performed in the back surface field after diffusion. Diffusion
on both sides is commonly performed as it simplifies the processing and can
have a positive effect on the gettering. A challenge with this scenario is the
depth of the PS rear side reflector structure, typically significantly thicker
than a standard emitter profile. Another challenge is again PS etching in a
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Figure 6.20: Schematic design of n-type Si solar cell with PS rear reflector
and PS ARC.

p™/n/pT junction structure. Figure 6.20 shows a schematic drawing of an
n-type Si solar cell with PS rear reflector and PS ARC.
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Chapter 7

Conclusions and Future Work

Through the work with this thesis, it has been demonstrated that the PS
formation process can be controlled with sufficienct accuracy to allow precise
tailoring of very thin multilayer PS structures. As the porosity of PS is
tightly and relatively predictivly tied to the optical properties of the material,
a great diversity of optical coatings can be produced. In this work, the focus
has been on fabrication of efficient PS antireflection coatings (ARCs) for
implementation in silicon solar cells. The reflection from such thin PS ARCs
can be made very low without any additional texture. Integrated reflectances
of less than 3% have been obtained for PS films thinner than 200 nm, using
rapid and inexpensive electrochemical fabrication.

The PS ARCs are also interesting for building integrated photovoltaic
(BIPV) applications as they can be fabricated in a range of colors with mini-
mal increase in reflectance. In my opinion, BIPV is a very exiting application
that has only begun to gain momentum. Although some products already
are available, hopefully a great variety of designs and innovative solutions
will emerge and make BIPV an economically viable techonology.

In addition to excellent antireflective films, very good reflectors can also
be fabricated from PS. We have fabricated PS distributed Bragg reflectors
(DBR) with plateau reflectance of ~ 98%), suitable for use as rear side reflec-
tors in thin silicon solar cells.

Increased knowledge about the properties of PS is valuable in order to
implement PS in solar cells, but also as general puzzle pieces to contribute to
a more complete understanding of this complex material. Through the work
with PS multilayers we have observed a dense PS surface layer which likely
originates in the pore nucleation process. We have also measured a gradual
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oxidation of the PS structures with aging in room temperature and air am-
bient; from pure Si via intermediate oxidation states, and finally SiO5. The
oxidation of the PS ARC structures does not seem to degrade their antire-
flective qualities. Thorough investigations have been performed with respect
to the processing and control of the PS layers, assessing the homogeneity of
the produced structures, effects of chemical etching and electrolyte evapo-
ration. Hopefully, these studies have made a small contribution towards an
improved understanding of and control over this extraordinary material.

Future Work

Considering the promising optical properties of PS, I believe it would be
worthwhile to make a serious effort to implement our multilayer PS ARC
structures in a finished solar cell. The first important milestone toward effi-
cient implementation would be to achieve sufficient control over the etching
process in an emitter structure. Efforts to fabricate the optimized PS ARCs
in the p™ emitter of our n-type solar cells will be continued and work on etch-
ing PS ARCs in n* emitters has also recently been initiated. If satisfactory
reflectance from PS ARCs etched in emitter structures is obtained, the next
step is naturally to optimize the remaining cell structure, including work on
the surface passivation and metallization, to the new ARC.

While continuing the investigations of the well known possibilities for PS
application in solar cells, one should also keep watch for new and inventive
ways of implementing PS to improve the cost efficiency of silicon solar cells.

With respect to the more fundamental studies of the PS structure, the
dense PS surface layer calls for further investigations and exploration of the
parameter space resulting in such structures. Follow-up studies of this dense
region could provide further information about the initial growth phase of
PS, which is not fully understood today.
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Thin porous silicon films displaying a near-surface dip in porosity
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Studies of the depth profile of Porous Silicon (PS) structures
etched under a wide span of different formation parameters have
been performed using Spectroscopic Ellipsometry (SE) and
Transmission Electron Microscopy (TEM). Incorporation of a
sharp dip in the porosity profiles close to the sample surface was
required for several types of PS films in order to successfully fit
ellipsometric data to a Bruggeman Effective Medium Model
(BEMA). TEM studies show a corresponding lower porosity
region near the sample surface. Investigations have been
performed in order to understand the origin of this dip and to
explore the parameter space where it is detected. The detected low
porosity region is discussed in the context of current knowledge on
pore nucleation and growth mechanisms of PS.

Introduction

The simplicity of processing porous silicon (PS) layers is in stark contrast to the
complexity of the fundamental questions regarding its formation mechanisms. Although a
vast amount of literature is published on the subject, a number of challenging questions
still remains, such as the exact dissolution chemistries of silicon and the origin of pore
initiation (1, 2).

Ellipsometry is a versatile tool, well suited for detailed characterization of complex
structures such as PS. It is well known that the optical properties of mesoporous silicon
can be modelled as a mix of Si and air in an effective medium approximation (EMA) (3).
From such modelling, a porosity depth profile can be obtained. During the development
of multilayer PS antireflection coatings (ARC) for solar cell applications (4),
incorporation of a sharp dip in the porosity profile close to the sample surface was
required for several types of PS films in order to successfully fit ellipsometric data to a
Bruggeman EMA model (5). As the dense PS region is located near the surface, it is
natural to investigate whether its origin is in the pore initiation process.

Relatively little literature exists on the field of pore nucleation and early PS growth,
but a few models have been proposed. Only early theory assumed pore nucleation to be
caused by etching defects at the Si surface. This is now regarded as unlikely due to the
difference in scale between etching defect densities and pore density (6). Pore formation
due to instability of the semiconductor-electrolyte interface was suggested by Valence (7,
8). However, this theory does not provide a satisfactory explanation of the chemical
etching mechanisms of PS (6). Goryachev, et al. (6) presented a model where the H-



terminated Si*? ions at the surface react with each other to produce secondary neutral Si
and Si™ ions. The secondary neutral Si atoms will then be adsorbed at the Si surface and
form aggregates with resistivities that exceed that of the initial Si.

Without proposing a complete formation model, Brumhead, et al. (9) made an effort
to relate the preparation parameters to the pore growth kinetics. They reported a non-
linear growth of PS at short anodisation times, before a linear, stable pore growth was
reached after about 1 minute. This general growth development is now relatively well
established (10-13). According to Brumhead, et al. (9), if the valence of a reaction
remains the same, the total mass loss rate will, according to Faraday’s law, be constant.
Consequently, at low porosity, initial pore growth is fast before a balanced, slower
growth with larger porosities take over. Brumhead, et al. (9) proposed three possible
explanations for the fast initial pore growth mechanism: (i) each individual pore could be
initiated at t = 0 with a small cross section, and expand as it grows into the substrate; (ii)
the number of pores initiated at t = 0 could be small but multiply quickly by branching;
and (iii) at t = 0 a few pores are generated, and their number increase steadily by further
continuous generation at the surface until they are close enough together for carrier
depletion to prevent any more pores being formed. By this argumentation, in model (iii)
the porosity of the pore initiation region would in time be the same as for the bulk PS
layer. Model (i) and (ii) are believed by Brumhead, et al. (9) to inhibit flow of chemicals
into the pores, thereby preventing continued growth, and model (iii) was therefore
proposed as the most likely mechanism. The formation time necessary to complete the PS
nucleation process is proposed to last from a few seconds (14) to 2.5-3 minutes (9,10).

Ronkel and Schultze (14) used highly time resolved voltage transients to study the
pore initiation of PS. They performed a detailed analysis of electrochemical conditions
and response times related to pore nucleation on substrates and electrochemistries similar
to those studied in this work. Their analysis of the initial response during galvanostatic
conditions show characteristic regions in the electrochemical dynamics related to double-
layer formation in the first 30 us, space charge region formation in the following 100 ms,
pore nucleation in the following 3-10 s, depending on current density and HF
concentration, and pore etching following that period. Pascual, et al. (15) argue that
nucleation of pores takes place during the first minutes of the anodization, but is less
detectable after the first seconds because after that time pore propagation has also started.
Pascual, et al. (15) further describe PS growth kinetics with equations similar to those
used to describe nucleation and growth of new phases in condensed matter.

The picture of pore nucleation in PS emerging from these theories is incomplete and
somewhat contradictory and demonstrates that further work is needed to resolve this
complex issue. In the work presented here, we have performed studies of the depth
profile of PS structures etched under a wide span of different formation parameters.
Structural information has been obtained by spectroscopic ellipsometry and TEM studies.
Investigations were performed in order to understand the origin of the observed dense PS
region, and place it in the context of the current understanding of pore nucleation.



Experimental

The samples are fabricated using a double cell anodic etching system PSB Plus 4
from Advanced Micromachining Tools (AMMT). The electrolyte consisted of 49 wt.—%
HF and ethanol (C,HsOH), mixed in volume ratios of 1:4, 3:7, and 2:3. The resulting HF
concentrations are stated as 10%, 15%, and 20%, respectively. The wt.—% HF
concentrations will be slightly higher than this since the density of HF is larger than that
of ethanol. The substrates used were boron doped, 300-350 pm thick, single side
polished, monocrystalline silicon with (100) orientation. PS is formed on the polished
side of the wafer. The resistivity was determined by four point probe to be 0.012—-0.018
Q-cm. Immediately prior to etching, the wafers were dipped in 5% HF to remove native
oxide.

Samples were etched at several different current densities, etching times, and HF
concentrations. Ellipsometry measurements were carried out using a Woollam variable
angle spectroscopic ellipsometer (VASE) in the wavelength range 300—1100 nm for four
different angles of incidence. Depolarization data was also obtained in the measurements.
The ellipsometric software WVASE32 from Woollam is used for modelling. Cross-
sectional Transmission Electron Microscopy (TEM) samples were prepared by ion-
milling using a Gatan precision ion polishing system with 5 kV gun voltage. TEM and
Energy Filtered TEM (EFTEM) images were acquired using a 200 keV JEOL 2010F
microscope with a Gatan imaging filter and detector. EFTEM images were acquired by
placing a 2 eV slit around the plasmon energy of Si (16.8 eV).

Characterization

Ellipsometry

The BEMA gives a good approximation for mesoporous silicon and was used for all
ellipsometric modelling in this work (16, 17). TEM images of the PS layer surface show
that the PS layers fabricated in this work are indeed mesoporous. The expected porosity
profile of a PS film etched on a homogeneous substrate at constant current density would
typically be relatively flat, except for a region of gradually decreasing porosity towards
the Si interface and a transition region between PS, oxide, and air, towards the surface.
We would expect this surface structure to give a lower refractive index than the bulk PS
layer.

Instead of adding separate interface layers to model these transition regions, a grading
is introduced in the BEMA (17). The best fit models in this work show the anticipated
porosity decrease at the PS/Si interface and the porosity increase at the surface.
Surprisingly, the best fit models also display a significant lowering of the porosity in a
thin region just below the surface. The feature improves the quality of the fit for all
measured samples of low and intermediate porosity.

Figure 1.1a, 1.2a, and 1.3a show the porosity profiles obtained from the best fit
ellipsometry models for three samples of different porosity. Sample 1.1 is etched at 20
mA/cm®, corresponding to an average porosity of 45%. Figure 1.2 is etched at 50



mA/cm?, corresponding to an average porosity of 59%. The sample in Fig. 1.3 is etched
at 50 mA/cm’ at a slightly higher HF concentration than the previous, resulting in a
porosity of 53%. The denser PS region appears as a dip in the displayed porosity profiles.
The fit of the ellipsometry models is very sensitive to the existence of this porosity dip.
However, with respect to the exact shape and position of the porosity dip it should be
considered that the porosity is a modelled profile with limited resolution and a fixed
number of nodes (points where the porosity is allowed to change). As the total number of

nodes and steps are kept constant, models of very thick PS layers will expectedly be less
accurate due to poorer resolution.
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Figure 1. Porosity profile determined from ellipsometry (a) with a corresponding TEM image (b) in an
electrolyte containing 20 % HF. The samples are etched at 1.1) 20 mA/cm’ giving a porosity of 45%,1.2)

50 mA/cm’ giving a porosity of 59%, and 1.3) 50 mA/cm” at a slightly higher HF concentration, resulting
in a porosity of 53 %.

TEM investigations

Figure 1.1b, 1.2b, and 1.3b show the TEM images corresponding to the porosity
profiles in Fig. 1.1a, 1.2a, and 1.3.a, respectively. In the TEM images a thin, slightly
darker region of the PS layer can be seen towards the PS/air interface. The darker areas
correspond to a higher density of Si and hence lowered porosities. It can be seen that the
depth of the dense regions roughly corresponds with the depth of the lower porosity
regions visible in the ellipsometry porosity profiles. In Fig. 2, the ellipsometry porosity
profile is overlaid a TEM image of the same sample. The correlation between the dense
region in the TEM and in the ellipsometry profile is fairly good. Small shifts in position
can be due to sample inhomogeneities, since TEM and ellipsometry are not performed on
the same spot on the sample, or inaccuracies in the ellipsometry model. The dense PS
layer is seen to be located at a depth of 20 - 40 nm from the sample surface.



Figure 3 shows a structure where the dense PS region is difficult to see in the regular
TEM image, but in the bright field image (b) and EFTEM image filtered at the plasmon
energy of Si (16.8 eV) (c), it is clearly visible. The transition between the densified
region and the deeper PS layer of constant porosity appears gradual.

TEM images filtered at an energy of 16.8 eV, corresponding to the plasmon peak of
Si, show that the topmost region of the PS layer (light grey in the TEM images) is
predominantly composed of SiO,. This layer, typically 20 - 30 nm thick, is likely too
thick and uniform in profile to represent ambient oxidation of the surface Si
nanocrystallites, leaving the anodic electrochemical oxidation kinetics during the initial
pore formation the dominant mechanism for the formation of this layer (14, 18, 19). In
the ellipsometric depth porosity profile, the oxide is modelled by the sharp decrease in
refractive index near the sample surface. A separate SiO, layer may be added, but does
not result in a significant improvement in the model.
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Figure 2. Ellipsometry porosity profile overlaid TEM image of the same sample. A correspondence
between the dense PS region in the TEM image and the porosity dip in the ellipsometry porosity profile
is seen. The region marked as a) is the oxide, and b) is the dense PS layer.

Figure 3. a) TEM image, b) bright field image, c) energy filtered image (16.8 eV).

Dependence of the Porosity Dip on the Parameter Space

Time Dependence

Figure 4 shows the topmost 80 nm of the best fit porosity profiles of four layers
etched under nominally identical conditions except for variations in the etching time. The



sample in Fig. 4a is etched for 30 s, 4b is etched for 90 s, 4c is etched for 180 s, and 4d
for 300 s. There are small variations between the PS layers but no significant changes in
the profile of the porosity dip occur with increasing etching time. A slight increase of a
few percent in average porosity of the bulk PS layer can be seen from a) to d). This is
likely due to the purely chemical etching of the PS layer. This weak etching takes place
simultaneously with the electrochemical etching, but is independent of applied bias.

Since no time dependence of the porosity profiles is found, we regard it as unlikely
that pores continue to nucleate at the surface until the surface layer would reach the same
porosity as the rest of the layer, at least for p* substrates. A possible explanation of the
initial fast pore growth could instead be pore widening and/or porosity increase by
branching. These models would be compatible with the observed dense PS region which
remains even after long etching times. A TEM image of an 18 pm thick PS layer
presented by Solanki, et al. (11) displays a clear porosity dip, supporting the view that the
dense PS layer does not disappear with increasing etching time.
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Figure 4. Evolution of the porosity dip in time. Porosity profiles from best fit ellipsometry model
on samples etched at 15 mA/cm’ in 20 wt% HF for different times; a) 30 s, b) 90 s, ¢) 180 s, and
d) 300 s. Note that the full width of the PS layers is not shown. The thickness of the layers is
approximately a) 530 nm, b) 1730 nm, ¢) 3550 nm, and d) 5710 nm.



HF Concentration and Current Density Dependence

Electrolyte with 20% HF. For samples etched in 20% HF at current densities higher
than ~100 mA/cm’, no dip is seen in the ellipsometry models. For lower current densities,
a dip is seen both in TEM images and in the ellipsometric profiles. Figure 5 shows how
the porosity dip is reduced with increased current density. Three porosity profiles are
shown, from samples etched at 10 mA/cm?, 50 mA/cm?* and 100 mA/cm? corresponding
to average porosities of 38%, 55%, and 64% respectively. All samples in Fig. 5 are
etched in an electrolyte containing 20% HF.

Electrolyte with 15 wt% HF. At HF concentrations of 15% only ellipsometry
measurements have been conducted. A dip is clearly evident in the porosity profile of two
samples etched at constant current densities of 1 and 5 mA/cm?, corresponding to average
porosities of 38% and 52 % respectively.
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Figure 5. Porosity profile determined from ellipsometry of samples etched at three different current
densities for 20 wt.—% HF. Note that the depth is percentual and that these three layers are not of
equal thickness; the sample etched at 10 mA/cm’ is 414 nm thick, the sample etched at 50 mA/cm? is
658 nm thick and the sample etched at 100 mA/cm” is 977 nm thick.

Electrolyte with 10% HF. For samples etched in an electrolyte containing 10% HF,
both TEM studies and ellipsometry have been performed. Fig. 6a shows a TEM image of
a sample etched at 7.5 mA/cm?® (~73% porosity) and a PS thickness of approximately 300
nm. A TEM image of the sample etched at 20 mA/ecm’ (~77% porosity), with a PS
thickness of approximately 580 nm, is shown in Fig. 6b. Neither the TEM images nor the
ellipsometric characterization show any signs of a dense PS region for these samples.

Porosity. In contrast to the 20% HF electrolyte, all p* substrates etched in 10% HF
electrolytes have very high porosity (>70%). Since the existence of the dense PS region is
sensitive both to HF concentration and current density, the common denominator appears
to be variation in porosity. Both reduced HF concentration and increased current density
lead to high porosity and a PS structure without a densified region close to the surface.
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Figure 6. TEM images of PS samples etched at a) 7.5 mA/cm’ and b) 20 mA/cm? in an electrolyte
containing 10% HF.

Formation Kinetics

The concentration and current density dependence in the formation of the dense
surface PS region and surface oxide likely relate to the electrochemical reaction kinetics
during pore growth, as earlier noted. The period of pore nucleation proposed by Ronkel
and Schultze (14), 3-10 s, represents an approximate timeframe to produce the 20-30 nm
thick dense PS layer found in this work.

Analysis by van den Meerakker and Mellier (18) explored the kinetic and
diffusional aspects in silicon etching in HF containing solutions utilizing rotating disk
electrodes, and found a mix of kinetic and diffusional control of the dissolution of silicon,
as Carstensen, et al. (19) and others have proposed in modelling PS formation
mechanisms. We propose that the pore nucleation period described by Ronkel and
Schultze (14) may represent a transitional electrochemical condition from a kinetic
dominated surface reaction dissolution to a mixed kinetic/diffusional electrochemical
dissolution as the concentration of reactive species adjusts to the diffusion limitations
imposed by the nanoscaled pore confinement. Both the current density and electrolyte
concentration dependence on the formation of the dense PS region demonstrated in this
work are reflected in this analysis, since higher current densities and lower electrolyte
concentrations will each shift the dynamics of the reaction by modifying the space charge
layer formation and thickness and the kinetic/diffusion rate balance.

Conclusions

We have shown that for p* type Si wafer etched with a relatively low current
density, there exists a surface PS layer of lower porosity than the remaining PS structure.
The dense PS region remains present after etching at a current density of 15 mA/cm?® for
5 minutes. Therefore, the initial pore nucleation in PS either takes longer time than what
has been suggested in current formation theories (a few seconds — 2.5-3 minutes) or
formation of new pores stops before bulk PS porosity is reached. The pore growth and
propagation can therefore not likely be explained by the fast growing model (iii) as
suggested by Brumhead, et al. (9). Pore widening and/or porosity increase by branching
may instead be the responsible mechanisms. The observed structure of a dense PS layer
(and thick SiO,) layer might be due to a change in formation mechanism, from a kinetic
dominated surface reaction dissolution to a mixed kinetic/diffusional electrochemical
dissolution.
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Efficient antireflection coatings (ARC) improve the light collection
and thereby increase the current output of solar cells. By simple
electrochemical etching of the Si wafer, porous silicon (PS) layers
with excellent broadband antireflective properties can be fabricated.
The close relation between porosity and refractive index, modeled
using the Bruggeman effective medium approximation, allows PS
multilayers to be tailored to fabricate ARCs optimized for use in
solar cells. In this work, the effect of ageing on the reflectance
properties of multilayered PS ARCs is studied. The reflectance is
correlated to the oxidation of the structures through the use of x-
ray photoelectron spectroscopy (XPS) and spectroscopic
ellipsometry (SE). It is found that even after extensive oxidation,
very small changes in reflectance are measured.

Introduction

It is well known that PS surface layers can drastically reduce the reflectance from Si
wafers, by acting as an antireflection coating (ARC). Reduction of optical losses is of
principal importance in Si solar cells and cost-efficient processes are particularly sought
after. PS can offer both. It is commonly formed by electrochemical etching of Si in an
electrolyte containing hydrofluoric acid (HF). The structure is very sensitive to etching
parameters such as current density, electrolyte composition, temperature and substrate
doping. Variation of current density during etching results in controllable variations in
porosity, which again can be related to the refractive index of PS by effective medium
approximations (EMA) (1). This gives us a unique opportunity to tailor refractive index
profiles and create broadband ARCs applicable to solar cells. We have previously shown
that graded PS ARCs with an effective reflection of ~3 % over the solar spectrum can be
produced (2).

For PS to become an attractive alternative to today’s ARCs, the excellent optical
properties must not degrade with ageing of the structures. Due to the very high internal
surface area, 200-600 m*cm’ (3), PS is significantly more reactive than bulk Si.
Extensive oxidation occurs even in air ambient at room temperature, but very large
variations with respect to the porosity, morphology, thickness, and storage of the PS
structures are observed (4). During this natural oxidation process, some of the passivating
Si-H surface bonds of freshly etched PS are replaced by Si-O bonds. Oxidation also takes
place by formation of Si-OH groups which do not affect the original hydrogen
passivation (5).



The ageing process changes not only the electrical, but also the optical properties
of PS. Reflectance from PS multilayers will be modulated due to changes in the dielectric
function caused by oxidation. When the effect of ageing on optical properties of PS has
been described, focus has generally been on changes in the photoluminescent properties
(6-8). A few notable exceptions are Frotscher et al. (9) and Fried et al. (10), where SE
and reflection measurements are used to study refractive index and reflectance. Fried et al.
investigated thin, homogeneous PS layers etched in n* emitters. Frotscher et al. studied
both single PS layers and thick Bragg type multilayers consisting of alternating layers of
two different porosities.

Our aim is to study the effect of ageing on reflectance from multilayered PS
ARC:s applicable to solar cells. The multilayered structures are etched in highly p-doped
Si, which is suitable for production of solar cell ARCs in a p'/n structure. The refractive
index of the film varies in a graded manner, but with some sharp features appearing in the
optimized coating due to the restrictions placed on porosity range (25 - 75 %) and
thickness (~160 nm) (2, 11). Cost efficiency is of great importance in the solar cell
industry. Therefore, we use the simplest, most easily implemented form of drying and
storage; air at room temperature.

Attention is also given to how ageing of PS is perceived in spectroscopic
ellipsometry (SE) measurements. SE is extensively used to characterize PS structures,
and oxidation of the inner surface is routinely neglected in the majority of cases found in
literature (12-13).

Experimental

The samples are fabricated using a double cell anodic etching system PSB Plus 4
from advanced micromachining tools (AMMT). A special purpose potentiostat, PS2 from
AMMT, allowed programming of current density profiles with a time resolution of 50
ms. The electrolyte consisted of 49 wt % HF and ethanol (C,HsOH) in a volume ratio 2:3,
giving a HF concentration of 20%. The wafers used were boron doped, 300-350 pm
thick, one side polished, monocrystalline Si with a (100) orientation. PS is formed on the
polished side of the wafer without any additional texturing. The resistivity of the wafers
was determined by four point probe to be 0.012-0.018 Qcm. Prior to etching, the wafers
were dipped in 5% HF to remove native oxide.

In order to simplify the identification and quantification of oxidation effects from
the SE measurements, homogeneous PS layers were used. Five homogeneous PS samples
were etched under galvanostatic conditions, at a current density of 50 mA/cm® for 15 s.
The etching of the graded PS ARC structure is also performed in galvanostatic mode, by
stepwise variation of the current density. Details of the procedure, such as the duration
and current density of each step are described elsewhere (2). Only the current density
during etching is different for the homogeneous and multilayered samples and the
average porosities of the two are similar (in excess of 50%).

The first homogeneous sample (‘Day 0’) was rinsed in water, dried in N, and
stored in aluminium foil during transportation to the XPS. This was done in order to
achieve a minimally oxidized starting sample. All remaining samples were rinsed in



ethanol, air dried and stored in room temperature and air ambient. Ethanol has a reduced
surface tension compared to water and therefore reduces the risk of surface cracking and
flaking of the PS films.

Due to destructive sample preparation and ion beam etching for the XPS measurements,
one single sample could not be used for all measurements. Five nominally identical PS
samples were therefore used for SE and XPS. We have previously shown that the PS
layers are reproducible to within an uncertainty of 1.5 % (90 % confidence limit) in
thickness and porosity (14).

The ageing of the structures are studied by XPS, SE and spectroscopic reflectometry.
Ellipsometry measurements were carried out using a Woollam variable angle
spectroscopic ellipsometer (WVASE) in the wavelength range 300—1200 nm and at the
angles of incidence 60°, 65°, 70°, 75°, and 80°. Depolarization data is also collected for
all samples. XPS was performed in a KRATOS AXIS ULTRA”*»using monochromated
Al Ka radiation (hv =1486.6 eV) on plane-view samples at zero angle of emission
(vertical emission). The x-ray source was operated at 1 mA and 15 kV. The XPS spectra
of bulk PS have been obtained after sputtering down to a depth of about 100 nm.
Sputtering was performed using a 4 kV ion gun, with a current of 100 pA and a 500s
cycle time. The mean free path (A) of Si-2p electrons in Si is 3.18 nm. This means that
the photoelectron escape depth in Si is 3Acos(0) = 9.65 nm. However, with a porosity of
~50%, the photoelectron escape depth is calibrated to be ~19 nm. The spectra were peak
fitted using Casa XPS (15) after subtraction of a Shirley type background. Finally,
reflectance was measured using a Standford Research System setup in the wavelength
range 400—-1100 nm.

Results and Discussion

Characterization by Spectroscopic Ellipsometric

It is well known that PS can be modelled as a mix of Si and voids in an effective
medium approximation (EMA) (1, 16). SE is capable of in depth resolution and accurate
determination of the optical constants. In this work, a uniaxially anisotropic, graded
Bruggeman effective medium model (BEMA) (17) consisting of crystalline Si (18),
polycrystalline Si (19) and air (n=1) is used to fit data obtained from ellipsometric
measurements of the homogeneous layers. It has previously been shown that the use of
polycrystalline silicon as an EMA component significantly improves the fit quality (12,
20). The component is used to model the enhanced absorption at the boundaries of the
nanocrystals.

The grading in the BEMA is introduced to account for roughness in the transitions
between air/PS and PS/Si. This allows a higher resolution in depth and possible grading
in the main layer can also be accommodated.

Figure 1 shows ellipsometric measurements and corresponding fits for one of the
homogeneous layer PS samples. Ellipsometric measurements of all the samples are
carried out within 1 day after the etching and then repeated after the samples have aged
for 7, 21, and 42 days, respectively. The model fits are very good for all samples.



Psi

An initial rapid oxidation is reported to occur already after some tens of minutes (5).
Therefore, even the first SE measurements are not performed on completely non-oxidized
PS. Figure 2 shows the refractive index with depth in the PS layer at day 1 and day 42.
The layers are birefringent, so the refractive indices in both x- and z- (normal to the
sample surface) directions are shown. As there is only one axis of anisotropy, the
refractive index in the y-direction is identical to the x-direction and is not shown. In both
directions, a small reduction in the refractive index is observed from day 1 to day 42.
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Figure 1. The fit of the ellipsometric model for Figure 2. Change in refractive indices from day 1
one of the homogeneous layer PS samples. to day 42.

The average porosity and thickness of the samples determined from ellipsometry are
given in Table I. The average porosity appears to increase slightly with increasing ageing,
about 2 % absolute after 42 days. The apparent increase in porosity is relatively modest
and generates only a small change in the reflectance of these samples. A significant part
of the Si is polycrystalline. The remaining part (not shown) is c-Si. An increase in the
poly-Si amount also results form ageing. The increase is larger than it first appears, since
the total fraction of Si decreases. This might reflect the reduction of the pore wall
thickness due to oxidation. Adding SiO; in the ellipsometric modeling does not improve
the fit of any of the samples.

TABLE I. Values determined from ellipsometry

Sample Porosity, Day 1 Poly-Si, Day 1 Porosity, Aged Poly-Si, Aged
Sample 2, aged 1 day 56,8 % 15,4 % -- --
Sample 3, aged 7 days 56,1 % 13,8 % 56,7 % 142 %
Sample 4, aged 21 days 56,5 % 13,6 % 57,6 % 16.1 %
Sample 5, aged 42 days 56,6 % 16,0 % 58,6 % 19.6 %

X-ray Photoelectron Spectroscopy (XPS)

The composition of aged PS is highly complex. A large number of compounds
have been detected, including the compounds Si,O, SiO, Si,O3, and SiO,, also commonly
found in oxidized Si samples (5, 21, 22). Additional compounds that have been reported
from XPS studies include Si-OH and SiO,-OH (5), SiHx (x = 1, 2, 3) groups (23),
(CH3CH,)3Si0OH (22) and amorphous Si (Si:H) (22). In addition, fluorine (SiF) (24) and
carbon (5) impurities have been repeatedly detected. However, it is important to



emphasize that the oxidation effects vary greatly with respect to the porosity, morphology
and thickness of the PS structures. Even for nominally very similar samples, the
differences can be surprisingly large (4). The large number of possible compounds
together with the small binding energy shifts in the Si 2p core level (covering a range of

only 4 eV), complicates the task of resolving distinct features by curve-fitting of the XPS
spectra (25).

We have performed detailed peak fitting of high resolution XPS Si-2p spectra
from the PS surface and PS bulk. The deviation in binding energy measurement is about
0.02 eV, while for the composition the deviation is 0.4 atomic %, determined
experimentally. Five samples, aged for 0, 1, 7, 21 and 42 days, respectively, are studied.
Figure 3 shows the peak fitted XPS spectrum from the PS bulk of the ‘Day 0’ sample. All
ten spectra are fitted correspondingly and more details of the fitting procedure will be
presented in a separate article. Figure 4 shows the evolution of oxidized Si species as
determined from the peak fitting, in the bulk of the PS (a) sample and at the surface (b).

Bulk PS

0 days
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Figure 3. XPS spectra of bulk PS immediately after formation.
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Figure 4. Atomic percentage of pure Si and oxidized Si states as fitted from the (a) surface and (b) bulk
XPS spectra. Dashed lines are added as a guide to the eye.

Figure 4a shows that at already at ‘Day 0’ (day of etching), the surface of the PS
sample contains Si;O (Si'"), and small amounts of SiO (Si*"), in addition to pure Si (Si’)
and SiSiH. Although the Si,SiH and Si concentrations are resolved in the peak fitting,
Si,SiH is included in the Si° concentration displayed in Fig. 4, as this corresponds to non-
oxidized hydrogen terminated Si. The changes between sample ‘Day 0’ and sample ‘Day
1’ are small. After 7 days, the surface PS also contains elements of Si,O3 (Si*") and SiO,



(Si*") while the pure Si + Si,SiH and Si,O concentration decreases. After 21 days, more
oxidation of pure Si occurs at the surface and the concentrations of SiO, Si,O3 and SiO,
increase further. Between ‘Day 21’ and ‘Day 42°, the SiO, concentration increases
significantly, while the concentrations of pure Si and the intermediate oxidation states
decrease.

Figure 4b shows that the bulk PS has a similar oxidation process. At the day of
etching, bulk PS contains pure Si, Si,SiH, and Si,O. No significant change occurs after 1
day in air. After 7 days, additional concentrations of SiO and Si,O; have appeared,
whereas the Si,SiH compound has vanished. SiO, first occurs in bulk PS after 21 days.
While the Si,O concentration steadily decreases at the surface of PS, an initial increase is
seen in the bulk. Not surprisingly, for all ageing time, the oxidation levels are lower in
the bulk than at the surface.

Summarized, we observe that a relatively rapid but partial oxidation, covering a
few percent of the inner surface of the PS by oxide, takes place in the early stages of
ageing. A gradual increase in oxidation, through the intermediate oxidation states, is
observed. Detection of Si'* (Si,0), is followed by detection of Si** (SiO) and Si** (Si30,),
before SiO; is formed after about one week.

Comparing Results from XPS and SE

For best possible accordance between SE and XPS, each sample is measured by
ellipsometry within day one after etching and then again just before XPS measurements.
Comparing the information obtained about oxidation of the PS structures, it is clear that
SE is rather insensitive to oxidation in the PS structures. Partly, the inclusion of oxide in
the ellipsometry model is complicated by the number of different oxidation states; for
most of the samples only a small fraction of the oxidized species is SiO,. It is also
possible that an alternative model could give larger deflections with respect to oxygen
content. However, when this is said, the marginal difference in ¥ and A, and
consequently in refractive index between day 1 and day 42 (as showed in Fig. 1) indicates
that it is a challenge to determine oxidation of PS with SE. It is also rather common to
neglect oxidation when performing ellipsometric characterization of PS (12,13). Whether
neglecting SiO; is a viable approach or not depends, of course on the amount of oxide,
but also on the information sought. Obviously, information about the chemical
composition of the material is lost, but, on the other hand, changes in the effective
refractive index of the material are small. Considering the densities and molecular
weights of Si (ds;= 2330 kg/m’, Mws; = 28.0855 g/mol) and SiO2 (dsio: = 2200 kg/m”,
Mwsioz = 60.0843 g/mol) it can be seen that for an oxide of thickness 7, the fractional
consumption of the Si wall is

(Mwsi/ds;)/(Mwsio2/dsioz) = 0.44¢,

while the remaining 0.56¢ is expansion into the pores (26). A locally flat surface,
i.e. isotropic expansion through the volume (27), and oxidation by SiO, only is assumed.
The net effect of oxidation can then be thought of as a replacement of a medium
consisting of 44% Si and 56% air with a medium consisting of 100% SiO,. In the BEMA,
44% Si and 56% air have an effective refractive index, N4 given by the equation
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Inserting the refractive indices Ns;(700 nm) = 3.77 and N,4;(700 nm) = 1.00, gives
an effective refractive index Ny (700 nm) = 2.07. The refractive index of SiO; at the
same wavelength is 1.45, hence the change in effective refractive index of the oxidized
area is relatively small. The small reduction in refractive index gives the observed
outcome of increased porosity in the ellipsometric modeling. The apparent increase in

porosity with ageing, seen in Table I, is therefore ascribed to an increase in oxide content
of the structure.

Time Evolution of Reflection from graded PS ARCs

The evolution of the reflectance from a graded PS ARC with ageing is showed in
Fig. 5. The reflectance integrated over the solar spectrum is shown in parenthesis.
Reflectance measurements are performed immediately after fabrication and then with
intervals of approximately two weeks. A small wavelength shift and amplitude lowering
of the reflectance peak is visible. The uncertainty of the measurements is estimated to be
~ 0.15 % absolute, while the measured effective reflectance of the ARC varies by 0.5 %
over time. Therefore, it seems that the ARC experiences small variations in the
reflectance with time, but the performance is more inclined towards an improvement than
a degradation.
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Figure 5. Evolution of the reflection from a PS ARC with time. The integrated reflectance is given in
parenthesis.

Conclusions

The induced changes in the spectral reflection of graded layer ARCs due to
oxidation in air is quantified by reflection measurements and correlated to ageing
(oxidation) by using XPS and SE. PS layers etched at constant current density, with
similar average porosity and otherwise identical formation and storage conditions as the
multilayers, are used for SE and XPS. This is done to reduce the model complexity in SE
so that effects of oxidation can easier be identified. Comparing results from SE and XPS
shows that SE has a low sensitivity for detecting oxidation in the PS structures. For



moderately oxidized samples, no improvement in the ellipsometric fit is obtained by
adding SiO,. Finally, a small reduction in reflectivity of the multilayer PS antireflective
coatings is measured after the first month of storage. Thereafter the change in reflectance
saturates. The reflectance of the multilayer structures is apparently quite robust and not
subject to any degradation. If structure and storage conditions are known, the small
change in reflectance due to oxidation could be accounted for in the design of the
coatings to improve the effective reflectivity further.
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Efficient antireflection coatings (ARC) improve the light collection and thereby increase the current
output of solar cells. In this work, multilayered refractive index stacks optimized for antireflection,
in bare air and within modules, are modeled. The relation between porous silicon (PS) etching
parameters and PS structure is carefully investigated using spectroscopic ellipsometry, gravimetry,
x-ray photoelectron spectroscopy, and scanning electron microscopy. The close relation between
porosity and refractive index, modeled using the Bruggeman effective medium approximation,
allows PS multilayers to be tailored to fabricate the optimized ARCs. Limits imposed by efficient
application in photovoltaics, such as thickness restrictions and the angular distribution of incident
light, are examined and accounted for. Low reflectance multilayer ARCs are fabricated with
integrated reflectances of ~3% in air and 1.4% under glass in the wavelength range 400-1100 nm.
© 2010 American Institute of Physics. [doi:10.1063/1.3353843]

I. INTRODUCTION

One cardinal goal for photovoltaic power production is
to reach grid parity. Two routes exist to reach this goal;
higher efficiency and lower production costs. Porous silicon
(PS) has several possible applications in photovoltaics and
holds potential to contribute to the desired development.l’2
This paper will focus on using PS for antireflection purposes
in solar cells. The most commonly used antireflection coat-
ing (ARC) for silicon solar cells is silicon nitride,>* having a
reported integrated reflection in the order of 10% for monoc-
rystalline wafers over the spectral range of interest.™® The
reflection will, however, be further reduced with standard
texturing. For a single layer ARC, the reflection is minimized
at one single wavelength given by \;,=4nd, where n is the
refractive index and d is the thickness of the layer.

Excellent broadband ARCs with reflectance less than 3%
are obtainable today with a multilayered structure, such as
MgF,/Al,05/ZnS, where each layer is seperately deposited.7
However, multiple depositions increase the cost and in addi-
tion, magnesium fluoride, and zinc sulfide are soft and easily
damaged.8 PS offers a simpler one-step production of multi-
layered stacks. Using electrochemical etching, the refractive
index, which is closely related to the porosity, can be tuned.
This provides fast and inexpensive manufacture of multilay-
ered ARCs. Excellent broadband reflectivity has been dem-
onstrated for PS.’ However, the stacks made in this case are
too thick (1 wm) for efficient photovoltaic application. Such
a large thickness would cause degradation of the electrical
characteristics of the solar cell as the typical commercial
junction depths are on the order of 350 nm. Deeper diffu-
sions are possible but expensive. In addition, PS shows sig-
nificant absorption and, therefore, in an optimal coating, re-
flection must be weighted against absorption. It has been
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demonstrated that good coatings may be achieved also
within these limits but an optimal coating has not been
obtained. '’

This paper presents an optimization of multilayered
ARG :s for photovoltaic application. A systematic study is car-
ried out to achieve an accurate determination of the effect of
etching parameter variations in the PS structure. In particu-
lar, it is important to have a broad porosity span to access the
maximum refractive index range. It has been discussed that
the porosity span accessible by current density variations in
thin films is broader than that of thick films because surface
and interface roughness increase the porosity span in both
directions.'® However, to our knowledge, systematic experi-
mental studies of the obtainable porosity span for thin films
at different concentrations of hydroflouric acid (HF) have not
been reported. This will, therefore, be the first step toward an
optimized PS ARC.

The optimal ARC is then modeled with constrictions
on the available porosity-range and with respect to applica-
tion in photovoltaics. The optimization is carried out both
for operation in air ambient and in encapsulated modules.
After formation of the coating, spectral reflectance is mea-
sured in the wavelength range 400-1100 nm. An integrated
reflection of ~3% is obtained for samples optimized without
glass. Within a module, a reflection of 5.6%, including re-
flections from the air-glass interface, is obtained. This com-
pares favorably with todays commercial single and double
layer coatings [SiN)C,3 MgF,/ ZnS,”  SiO,/TiO,,!"" and
MgF,/Ce0,."

Il. EXPERIMENTAL

A double cell electrochemical etching system, PSB Plus
4 from advanced micromaching tools (AMMT), was used to
produce the PS layers. The wafers used were boron doped,
300-550 wm thick, one side polished, monocrystalline
silicon with a (100) orientation. The nominal resistivities

© 2010 American Institute of Physics
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were 0.01-0.05 € cm. However, four point probe measure-
ments were used to determine the resistivity range to
0.012-0.018 Q cm. The high doping densities are necessary
to ease the current flow by reducing the potential barrier for
holes between electrolyte and wafer. Alternatively, surface
doping of standard solar cell wafers of 1-3 €} cm could be
used for the same purpose. The wafers were dipped in 5%
HF to remove native oxide. A mix of 49 wt % HF and eth-
anol (C,HsOH) constituted the electrolyte. HF concentra-
tions were varied from 10% to 20% (volume ratio) to find the
optimal porosity span. The special purpose potensiostat, PS?
from AMMT, allowed programming of current density pro-
files with a time resolution of 50 ms. After etching, the
samples were rinsed in ethanol to avoid cracking due to cap-
illary forces during drying. For samples optimized for use in
modules, microscope glass of 1 mm thickness was laminated
to the samples, using ethylene vinyl acetate (EVA) as encap-
sulant.

Ellipsometry measurements were carried out using a
Woollam  variable angle spectroscopic ellipsometer
(WVASE) in the wavelength range 300-1100 nm. To de-
crease the impact of sample inhomogeneities and depolariza-
tion on the measured data, focus probes with a spot diameter
of 0.2 mm were applied. On the single layers, variations in
the PS layer are evident by visual inspection. This may be
due to small variations in resistivity or current density over
the sample. For the graded layers no significant inhomoge-
nety can be seen by visual inspection. Gravimetry was used
as a control technique to check a selection of the porosities
obtained from ellipsometric measurements. The porosities
obtained from ellipsometry are, in all cases, confirmed by
gravimetry to within 3% absolute. In gravimetry the wafers
are weighted before (m,) and after (m,) PS formation. The
wafer is then etched in 2% KOH to effectively remove the
PS layer and subsequently weighted again (m,). Porosity, P,
and thickness, t, of the PS layer, is then calculated from

my —ny
- Atp

P

5

and

o — my

t= ap
where p=2.33 g/cm? is the density of silicon and A is
the area where PS is formed. For the samples where scanning
electron microscopy (SEM) and transmission electron mi-
croscopy (TEM) images are taken, the thickness displayed
by these methods are in correspondence with results from
ellipsometry and gravimetry. Thickness and layer structure
were also investigated using SEM and TEM. Cross-sectional
TEM samples were prepared by ion-milling using a Gatan
precision ion polishing system with 5 kV gun voltage. The
samples were analyzed by high resolution TEM in a 200 keV
JEOL 2010F microscope. X-ray photoelectron spectroscopy
(XPS) was used to assess the amount of oxide in the
samples. XPS was performed in a KRATOS AXIS
ULTRAPY? using monochromated Al K, radiation (hv
=1486.6 eV) on plane-view samples at zero angle of emis-
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TABLE 1. Porosity limits.

Current density J

(mA/cm?) 10% HF 15% HF 20% HF
1 38 26
5 76 49 40
Max(18/80/250) 90 80 76

sion (vertical emission). The x-ray source was operated at 10
mA and 15 kV. The spectra were peak fitted using Casa
XPS" after subtraction of a Shirley type background. Fi-
nally, reflectance was measured using a spectral response
unit in the wavelength range 400—1100 nm.

1. FABRICATION AND STRUCTURE
A. PS fabrication

To access a large range of refractive indices in one single
etch, the optimal etching parameters must make a broad span
in porosities available by varying only the current density.
Three different HF concentrations were tested for the pur-
pose of obtaining the widest porosity range, 10%, 15%, and
20%. As expected, in all cases, the porosity increased with
current density up until the limit of electropo]ishing.14 Table
I shows the porosity span available at the various electrolyte
compositions. The lowest available porosity is assessed using
a current density of 1 mA/cm?, the highest porosity is as-
sessed using the highest current density which does not give
electropolishing. An electrolyte consisting of 20% HF gave
the broadest porosity range and was, therefore, used in all
further experiments.

Although much is published on the properties of PS and
how these vary with current density, resistivity, electrolyte
composition, etc,”>"® the PS layer is so sensitive to etching
parameters, wafer-properties, and environment that it is nec-
essary to undertake careful investigations of the relations be-
tween these parameters for our specific setup. Especially the
relation between current density and porosity and between
current density and etch rate must be known in great detail to
enable the production of the best performance modeled layer
at a later stage. Figure 1 shows porosities and etching rate

100 100
90| — — — Porosity 90
80 Etchrate 80
70 -T 7 dna
qQ
< 60 60 %
2 o
% 50 50 %
° 14
b4 40 40 §
30 30 w
20 20
10 10
0 0
0 50 100 150 200

Current Density (mA/cm2)

FIG. 1. (Color online) Current density vs porosity and etch rate in a 20% HF
solution at room temperature, as determined from ellipsometry and
gravimetry.
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FIG. 2. TEM image of a PS sample, etched for 15 s at a current density of
20 mA/cm?, shows columnar pores mainly pointing towards the surface.
Significant branching is also evident.

versus current density during formation, as determined by
ellipsometry, gravimetry, and SEM. The curve suggests a
nonlinear relationship between current density and porosity,
with the steepest gradient at low current densities. Here, the
porosity displays a particularly large increase, from 26% at
1 mA/cm? to 42% at 14 mA/cm?. Although a sharp in-
crease at low current densities is not unexpected based on
results published by Ref. 19 for similar sets of process pa-
rameters, we have increased the sampling frequency and per-
formed ten PS etches within this current density range. All
etched samples comply with the low porosity trend.

In this work, heavily doped silicon wafers with a con-
stant doping density are used. In a typical solar cell emitter,
the doping density has a certain doping gradient normal to
the surface which can affect the porosity profile. Two ap-
proaches can be used to address this issue. In one approach,
varying resistivities can be compensated for in the final cur-
rent density profiles used for etching the ARCs. Alterna-
tively, the doping profile can be tailored to give a relatively
flat gradient in the resistivity.20

TEM images show that the distance between the silicon
walls varies between 7-30 nm, indicating that a mesoporous
material is formed. The interface between the PS layer and
the silicon substrate is rather wavy. This is promising with
respect to the light spreading properties of the film. TEM
images also reveal that the pores are columnar with signifi-
cant branching (Fig. 2). The pores point predominantly to the
surface, while the branches, or secondary pores, are not re-
stricted to the (100) plane. For (100) wafers, a preferential
growth perpendicular to the surface and towards the source
of holes is expected. This is due to differences in the passi-
vation speed of the different crystallographic directions.?!
The passivation process works fastest on the (111) surfaces
and these surfaces, therefore, show a reduced probability of
being etched.?

B. Ellipsometric characterization of PS

It is well known that the optical properties of PS can be
modeled as a mix of Si and voids in an effective medium
approximation (EMA).*?* In this work, the Bruggeman
EMA (BEMA) (Ref. 25) theory is used. It gives a good ap-
proximation for mesoporous silicon, especially when porosi-
ties are not too high.%’28 Amorphous silicon was tested as a
constituent of the EMA but with poorer results than crystal-

FIG. 3. SAD patterns from the Si substrate to the left and the central area of
the porous layer to the right, showing that the crystalline walls in the porous
region remain as a single crystal. Only a slight variation in orientation is
seen inside the porous region. The diffuse rings in the pattern from the
porous region are identical to the rings observed for the epoxy used in the
sample preparation.

line silicon (c-Si). This indicates that the PS layers are crys-
talline, as expected. This was confirmed by selected area
diffraction (SAD) images of the samples, see Fig. 3.
Ellipsometric measurements are used here primarily to
obtain the thickness and porosities of the layers. Knowing
the thickness of the films, etch rates can easily be calculated.
Ellipsometry is based on measuring changes in polarization
due to interaction with the sample surface. This change is
measured as the ratio of the Fresnel coefficients for parallel
(r,) and perpendicularly (r,) polarized light. The ratio is usu-
ally given in terms of the ellipsometric parameters W and A

rplry=tan W exp iA.

Therefore, physical parameters, i.e., optical and microstruc-
tural properties, are not immediately given but must be de-
duced from the measured data by modeling. Analysis of the
optical data is performed using the WVASE software pack-
age, WVASE32, which is designed to fit a generated model to
a given set of observed data. In the modeling we make use of
the tabulated refractive indices of silicon reported by Herz-
inger et al”

For graded layers, the modeling is approached by use of
stratified medium theory; ellipsometric data from arbitrary
graded index ARCs are reproduced by a variation in n(z)
with depth.*® The best fit n(z) profile can be found by divid-
ing the film into a small number of homogeneous sublayers
parametrized by a thickness and complex refractive index.
Alternatively, a model function can be used. In this approach
the film is again divided into homogeneous layers but the
number of layers is so high that the optical properties are
identical to those of a continuous medium.’' In this work, the
former procedure is utilized and should be appropriate, as the
ARCs indeed are made using a quite limited number of step-
wise variations in the current density rather than a continous
variation.

Shape anisotropy introduces optical anisotropy in the
samples, in principle requiring generalized ellipsometry and
a generalized BEMA model. Such a generalized BEMA is
previously shown to be a good approximation of birefringent
PS.?*32 However, standard ellipsometry is sufficient if the
optical axis of a sample with uniaxial anisotropy is lying
perpendicular to, or parallel with, the sample surface. As
previously discussed, TEM images showed substantial
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branching, secondary pores which are not restricted to the
(100) plane. Therefore, both generalized and standard ellip-
sometry were performed. Generalized ellipsometry did not
show any sign of in-plane anisotropy and standard ellipsom-
etry together with a perpendicular uniaxial model was, there-
fore, adopted in the following work. The columnar shape of
the microstructure induces distinct boundary conditions to
the electrical and magnetic field in the medium. In the
uniaxial BEMA, this charge screening is modeled by the
depolarization factor, g.,.

In the single layer models, g, is allowed to vary giving a
best fit between 0.25 and 0.3. Given the columnar shape and
significant branching of the pores (Fig. 2), ellipsoids slightly
elongated along the pores are a plausible form of the depo-
larization. As the best fit g, is relatively consistent in all
single layer samples, in the more complex models it is fixed
to 0.28 to reduce the number of fitting parameters. The ¢,
and g, components are equally split and describe the in-plane
symmetry.33

TEM images reveal that even for PS layers where the
current density during etching has been kept constant, the
pores are not uniform along the vertical direction. The fit of
the ellipsometry models also improves by adding a small
gradient where each sublayer is modeled as a mixture of c-Si
and voids. A porosity grading can account for the interface
roughness between the substrate and the porous layer and
between the porous layer and air.**** In addition, chemical
etching may contribute to a further etching of the uppermost
part of the PS layer. Numerical algorithms are used to vary
the unknown parameters and minimize the difference be-
tween simulated and experimental data.

In WVASE, the Levenberg-Marquardt minimization
routine is used. The goodness of the fit is measured by the
mean squared error (MSE). The models are generally well
fitted with MSEs <15, except some of the thick and highly
depolarizing samples which have somewhat higher MSE.
However, almost all models show some deviations from the
experimental data in the blue region (300-400 nm). This is
likely because the the wavelength approaches the nanostruc-
ture size (A,;;=300 nm=>\g;~70 nm) and therefore ap-
proach the end of the applicability range of the static effec-
tive medium theory.28

Generally, PS has a strong aging process where it oxi-
dizes in air ambient and at room temperature. The presence
of SiO, is neglected in the ellipsometric fitting for two rea-
sons. First, XPS images show that the oxide content of the
PS samples is relatively low, about 9% at a depth of approxi-
mately 20 nm, see Fig. 4. PS made from low resistivity
p-type material (0.01  cm) has also previously been re-
ported to have little oxide content.”

Second, the SiO, has a relatively small optical contrast
to void, and it is therefore difficult to separate the optical
prints of the two. It should be noted, though, that SiO, con-
sumes both pores and Si pore walls. Based on the densities
and molecular weights of Si(dg;=2330 kg/m?, Mwyg;
=28.0855 g/mol) and SiO,(dsip,=2200 kg/m?3, Mwsio,
=60.0843 g/mol) it can be seen that for an oxide of thick-
ness ¢, the fractional consumption of the silicon wall is

J. Appl. Phys. 107, 074904 (2010)

Si-2p

105 103 101 99 97
Binding energy (eV)

FIG. 4. The XPS Si 2p spectrum of the PS sample. The spectrum was peak
fitted with four peaks corresponding to Si**(Si0,), Si>*(Si0), Si*(Si,0), and
Si’ (pure Si).

MWSi/dSi

=0.44¢,
Mwsio /dsio,

while the remaining 0.56¢ is expansion into the pores. For
large oxide contents this could result in an overestimation of
the porosity and a more accurate model might have to take a
shell-like structure into consideration. However, such a pro-
cedure would increase the number of fitting parameters and
could result in parameter correlation problems.36 For the PS
samples presented here, oxide content is low and neglecting
the SiO, does not induce significant error. As a result, the
EMA model including solely c-Si and void is a good ap-
proximation.

IV. MODELING IDEAL ARCS

To determine the optimal structure of the ARC, simula-
tion is performed in the WVASE32 software. In WVASE32, the
best fit structure is constructed within the frame of the gen-
erated model by varying a chosen set of parameters. In this
optimization, the generated model is a uniaxially anisotropic
Bruggeman approximation, i.e., the same type of model that
is used to model the ellipsometric data from the real PS
layers. We constructed a zero reflection data set which was
fed to the program instead of measured data. This zero re-
flection file was then used as the fitting target. The data file
was weighted with respect to the solar spectrum (1.5 AM)
and cut-off at 1100 nm, corresponding approximately to the
bandgap of silicon. At 1200 nm the absorption coefficient of
silicon has decreased by two orders of magnitude. Glass with
refractive index of 1.52 at 500 nm is used as ambient for the
ARC optimized for use in mudules.

Using Snell’s law it can easily be seen that a ray hitting
the glass cover at an angle of 10° to the sample surface, will
be refracted in the glass and hit the ARC at an angle of 49°
to the surface. Therefore, there is no need to accommodate
very small incident angles in the modeling. The zero reflec-
tion data file, therefore, incorporates relevant incident angles
(50°, 60°, 70°, 80°, and 90° to the cell surface). No differen-
tiation has been made between the weighting of the five
angles which are accounted for.

The modeling confirms the excellent antireflection prop-
erties demonstrated by Uehara et al.? The models are ideal in
the sense that they have the total refractive index range avail-
able (n,,—ng;) and no imposed limits on thickness. Both
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FIG. 5. (Color online) Simulation of an ideal ARC with no limits imposed.
The porosity varies smoothly from 0% to 100%. Ambient is set to air, so no
module glass is taken into account. The lowest reflections are obtained with
thicknesses of 0.7 um for the 36-step profile, 3.0 um for the 141-step
profile and 5.5 um for the 351-step profile. (a) Porosity profile. (b) Effect of
number of steps on reflection. The reflection of the 141-step and 351-step
profiles are in the order of 107*=107 and is, therefore, difficult to see on the
same scale as the 36-step profile. (c) Refractive index at 500 nm vs depth for
the porosity profile consisting of 351 steps.

these assumptions are fundamental for the result. The start-
ing parameters are varied in order to find the global minima
of reflection. The results of the modeling are displayed in
Fig. 5.

In principle, films approaching zero reflection (over a
defined broadband wavelength range) can be made by vary-
ing the porosity gradually from 0% at the substrate interface
to 100% at the air interface.”’” In the approximation that the
thickness d is much thicker than the design wavelength, d
>\, the refractive index appears to vary slowly with the
layer thickness and the internal reflections within the coating
can be neglected. This is also known as the WKBJ
approximation.38 In this case, a lower limit on the reflectance
R may be established

R~ [NQmd) .

It is valid when all derivatives up to the mth order are con-
tinuous at the boundaries of the graded layer.sx’39 An illustra-
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tion of a gradually changing refractive index is given in Fig.
5(c). Figure 5(a) shows the corresponding porosity profile of
the layer (351 steps). The depth is given in percents of the
total PS thickness, with the air interface at 0% and the Si
substrate interface at 100%. The only restriction in the model
is that it has only eight nodes available to fit. The nodes can,
however, have any number of steps within. The models giv-
ing the lowest reflection had PS layer thicknesses of
0.7-5.5 um, depending on the number of steps. The dashed
line shows the profile of a model with a total of 36 steps, five
steps in the first seven nodes and the last node constituting
the final step. The black solid line and the dotted line show
porosity profiles of models with a total of 141 (20 steps in
each node) and 351 steps (50 steps in each node), respec-
tively.

Figure 5(b) shows the average reflectance of p-polarized
and s-polarized light resulting from the three porosity pro-
files in Fig. 5(a) at normal incidence. The reflectance is ex-
tremely low for all incident angles and both polarizations.
However, the model with only 36 steps performs signifi-
cantly poorer than the other two models. It has a higher
reflection and different porosity profile. When increasing the
number of steps, the optimal porosity curve is a quintic func-
tion. The 36 step porosity profile resembles the porosity pro-
file, p(x) = (1-x)"°, previously reported as the best perfor-
mance profile for a 120 nm broadband PS ARC with
hypothetical porosities ranging from 20%-90%." In accor-
dance with work by Ref. 40, we find that although these
porosity profiles are effective for thick PS layers, better per-
formance profiles exist for thin ARCs. The influence of film
thickness on the anti-reflection properties will be further dis-
cussed in Sec. VI

V. MODELING REALISTIC ARCS

As previously discussed, an ideal ARC is not a feasible
option for several reasons. In Sec. III the available porosity
span was found to be limited to ~25%—75%. In addition,
there are restrictions on the thickness of a PS layer with
respect to absorption and the junction depth of the cell. Our
estimations show that it is absorption which places the strict-
est limits on thickness. Preliminary results show that an ARC
of thickness 150 nm gives a reasonable balance between ab-
sorption losses and reflection gains. Ongoing work aim to
investigate scattering and absorption in PS films to further
optimize the balance between absorption losses and reflec-
tion gains.

The modeling of realistic ARCs will be restricted to pa-
rameters relevant for fabrication; layers suited for photovol-
taic application and porosities experimentally available. The
ambient of the profiles shown here (Fig. 6) is set to be
EVA+module glass with a refractive index of n=1.52 at 500
nm. Optimizations done without module glass follow the
same procedure. The total thickness is set to a maximum of
150 nm, the lowest available porosity is limited to 25% and
the highest available porosity is limited to 75% (Table I).
These restrictions will clearly influence the performance of
the ARC.
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FIG. 6. (Color online) Simulation of the best performance model using
realistic limits on porosity (25%-75%) and thickness (150 nm). Module
glass is set as ambient in the simulation. (a) The porosity profile. (b) The
effect the number of steps has on reflection. (c) The reflectance at both
polarizations for relevant angles of incidence.

The optical thickness is the dominating factor in deter-
mining the wavelength range of the ARC. It is generally
accepted that a minimum optical thickness is required to
achieve very low reflectivities. To find this limit, let us fol-
low the reasoning by MacLeod.*” For a film consisting of n
layers, the total optical thickness will be given by T=n\y/4,
assuming that each layer has quarter wave optical thickness
at the reference wavelength, \,. There will exist n minima of
reflectance extending from a short wavelength limit

(n+1)Ng 2(n+1)
A= ——2 =
n 2 n

5

to a long wavelength limit

A= (s oo 20D

2 n
If n tends to infinity but 7 remains finite, \g tends to zero,
while \; tends to 27. For all wavelengths between these
limits, the reflectance approaches zero. The optical thickness
generally required for achieving reflectance approaching zero
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FIG. 7. (Color online) (a) Comparison of the optimal porosity profile with
one profile lacking the dip/peak, one lacking the flat part, one quadratic, and
one quintic profile. (b) The reflectance resulting form the porosity profiles
above.

is therefore 7~ \,/2, although the exact value depends on
the refractive index profile. Assuming a linear relation be-
tween refractive index and optical thickness, the long wave-
length limit of a 150 nm ARC can be estimated. \;=2T
=2[d(mop+poyom)/2]=150 nm(1.5+3.4)=735 nm. A film
of thickness 150 nm could, therefore, theoretically give a
perfect reflection for A <735 nm (Ref. 37). The calculation
does not take into account that the optical thickness will vary
with reference wavelength and incident angle. We see that
even if all refractive indices were available, the porosity pro-
file of a realistic ARC is expected to differ from the profile of
the perfect ARC. A more formal derivation in reflectance
from films with continuously varying refractive index can be
found in Ref. 38.

The profile and reflection of the best performance real-
istic ARC is shown in Fig. 6, with the ambient/PS interface
at 0% and PS/substrate interface at 100%. The thickness of
the layer is 150 nm. The profile has a pronounced peak/dip at
the high porosity side and flattens out at the low porosity
side. This is not surprising for films with optical thickness of
one wavelength and less. The index profile of such films
often has more structure and may contain index discontinui-
ties and homogeneous layers.40 To illustrate the effect of
these features on reflectivity, Fig. 7 shows a comparison of
the optimal porosity profile with one porosity profile lacking
the peak/dip and one profile lacking the flat part. Except
from an interpolation at these features, the porosity profile is
identical to the optimal. The resulting reflections are shown
in Fig. 7(b) and a large effect is seen at short and intermedi-
ate wavelengths. A quadratic and a quintic porosity profile
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FIG. 8. (Color online) The current density profiles used to make the opti-
mized graded ARCs.

are shown for comparison. The quintic profile is the only one
which follows the low reflection of the optimal profile at
intermediate wavelengths.

Note from Fig. 6(b) that, in contrast to the perfect ARC
model, there is little difference in reflection of the profiles
even for the ARC consisting of only one step in each node
(eight nodes in total). As the total etching time of a 150 nm
thick PS-layer under the current conditions is less than 10 s,
there are practical limits on the number of steps which can be
implemented in the actual ARC. The smallest time interval
permitted by the potensiostat is 50 ms. Therefore, five steps
in each node are chosen for modeling and subsequent forma-
tion. The simulated reflection of this layer, consisting of a
total of 36 steps, is seen in Fig. 6(c). The reflection is low at
all angles and both polarizations. The model is very robust
and the same optimal profile results independent of the start-
ing point.

The etching parameters used to produce this optimal
ARC were extracted from the relations which were estab-
lished between current density during etching and resulting
porosities. The time necessary at each current density was
deduced from the etching rates. Figure 8 shows the current
densities applied during etching.

VI. RESULTS

We have now established precise relations between PS
properties and etching parameters and modeled the optimal
design of a PS ARC. Based on this information the current
density profiles corresponding to the optimal porosity pro-
files were estimated and etched.

The graded PS films were characterized by spectroscopic
ellipsometry. Gravimetry can be used to find the average
porosity of the films but is of no use to assess the porosity
profile. TEM images of the graded PS layers (Fig. 9) clearly
show a very rough PS/air interface and porosity which de-
creases with depth.

A. Porosity profiles

Figure 10 shows the porosity profiles of two PS layers,
one optimized for use within a module (a) and one optimized
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FIG. 9. TEM image of graded PS stack optimized for use in air.

for use without module glass (b). The depths are given in
percents of the total PS thickness, with the ambient interface
at 0% and silicon substrate interface at 100%. The theoreti-
cally best porosity profile “designed” is compared with the
best fit ellipsometric porosity profile of the corresponding
sample “model.”

The profiles show that the porosity of the samples
roughly follows the original design. However, there are dis-
crepancies in the transition regions between ambient/PS and
PS/silicon, in the thickness of the layers and, for (a), in the
shape of the porosity profile. Each of these will be discussed
in Sec.VI B.

100

Porosity (%)
a1
o

— — — Designed Porosity
Model Porosity

0
0 20 40 60 80 100
Depth (%)
100
80
S
260
‘@
40 7
&
20 — — — Designed Porosity
Model Porosity
0

0 20 40 60 80 100
Depth (%)

FIG. 10. (Color online) Designed and fitted porosity profile of graded PS
ARG :s. Interface between PS and air/glass at 0%, interface between PS and
Si at 100%. (a) Optimized for operation with module glass. (b) Optimized
for operation without module glass.
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The discrepancies in the transition region are quite evi-
dent and similar in both Figs. 10(a) and 10(b). The modeled
porosity profile shows a gradual decrease to almost 0% po-
rosity the last 10 nm before the PS/Si interface rather than a
full stop at the designed 25%. The topmost 30—40 nm has a
significantly higher porosity than designed. Two mechanisms
can be used to explain these deviations. First, characteriza-
tion of the single layers have shown that some roughness
occurs at the two interfaces, this is also reported in previous
papers.]0 This effect is not taken into account in the design
and will tend to increase the porosity at the ambient/PS in-
terface while it decreases the porosity at the PS/Si interface.
This is in accordance with the trends seen in Fig. 10. Second,
when PS is exposed to HF, a chemical, unpreferential etching
will occur. This effect, however, is much less pronounced
than the preferential etch of the pores. The chemical etch
would generally tend to increase the pore size of the upper-
most part of the PS layer, as this is exposed to HF for the
longest period of time. However, as the graded layers are
exposed to HF for less than 10 s, we consider this effect to be
very small.

Apparently, the etched samples have a more gradual
transition between PS and silicon. Intuitively, this would
lower the reflectance. However, simulations show that the
thickness of the film prevents this outcome, as it is too thin to
allow optimized reflectance at all wavelengths. If the low
porosity could be incorporated as a dip close to the interface
instead of at the interface, this would improve reflectance.
However, this does not seem to be the nature of the interface,
and as far as we can judge, it will be very difficult to pro-
duce. In fact, sharp dips and peaks are in general difficult to
manufacture. This is especially noticeable from the profile
optimized for use without module glass; the designed profile
has a complex shape with distinct dips which are clearly not
followed by the ellipsometric model of the actual etched
sample. The etch is done in less than 4 s and each step
corresponds to approximately 4 nm. It is therefore not sur-
prising that a certain inertia in the etching process prevents
an exact match. In addition, pore “seeding” can be a source
of discrepancies between design and experimental result. The
initial experiments used to determine porosity versus current
density and etch rate, are performed in a constant-current
configuration from the planar, polished wafer surface. The
graded etches, on the other hand, have a varying current
density, which leads to constant initiation or seeding of pores
from the layers that have already been etched. The optimal
porosity profile for a PS layer optimized for use with module
glass is smoother with less dips and peaks. The model gives
a porosity profile closer to the designed but with the same
discrepancies at the interfaces.

The modeled profiles are 20-30 nm thicker than the de-
signed profiles. Judging from TEM images and experience
with single layer PS, this is mainly due to the roughness at
the PS/silicon interface. In the ellipsometric fitting, this roug-
ness is modeled as part of the PS layer.34 Time roundings in
the etching recipe and inaccuracies in the etch-time calibra-
ton curve may also influence the thickness.
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FIG. 11. (Color online) Designed, measured, and modeled reflectance vs
wavelength for graded PS ARCs. (a) Optimized for operation without use of
module glass. (b) Optimized for operation with use of module glass, reflec-
tance data taken without module glass. (c) Optimized for operation with use
of module glass, reflectance data taken with module glass.

B. Reflectance

Figure 11 shows the reflectance of the porosity profiles
in Fig. 10. (a) is the PS layer optimized for air, (b) and (c)
shows the PS layer optimized for module glass. The curve
labeled designed is the reflectance generated by the designed
porosity. The curve model is the reflectance generated by the
best fit ellipsometric model, corresponding to the model po-
rosity profile in Fig. 10.

The designed PS ARC optimized for air ambient has an
integrated reflectance of 2.1%, which is the best obtainable
within the given restrictions. Both the model and the actual
measurement of the sample “measured” experience a shift,
both in absolute values and wavelengths, with respect to the
designed values. This is not unexpected, considering that the
shifts seen in porosity profiles necessarily will display them-
selves in the reflectance as well.

In Fig. 11(b) the “designed”, “measured”, and ellipso-
metric “model-generated” curves are shown for a PS layer
optimized for use within a module but measured and mod-
eled in air. This is done to get a better understanding of
where possible discrepancies have their origin. Clearly, a sig-
nificant shift in wavelengths is visible between the designed
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and measured reflectances. The absolute values, however, are
similar. The designed curve actually has a higher reflectance
than the measured. This is possible because the design is
optimized for module operation, while the resulting reflec-
tance is here displayed as it would be in air ambient. Note
the excellent fit between the measured and model-generated
reflectance. Reflectance data are not utilized during the ellip-
sometric fitting procedure but generated from the best fit
model afterwards. The close fit between measured and mod-
eled values is, therefore, a strong support of the accuracy of
the ellipsometric modeling.

In Fig. 11(c), all curves refer to a PS layer optimized for
glass and encapsulated in a module. The measurements show
a total integrated reflection of 5.3%, included reflections
from the glass/air interface but excluded absorption-losses in
the glass and EVA. In the designed model, we are not able to
include reflectance from the front side of the module glass.
Glass may readily be used as ambient, but if used as a sepa-
rate layer, standing wave interferences arise and complicate
the theoretical reflectance spectrum with sharp oscillations.
In actual measurements we do, however, not expect to see
such oscillations since even the smallest thickness inhomo-
geneties are enough to effectively destruct them. Therefore,
the generated design spectrum will in effect have subtracted
the glass reflectance “designed-glass”. For direct comparison
we must do the same for the measured spectrum “measured-
glass”. This subtraction has the added benefit of clearly dis-
playing the reflectance which actually results from the PS/
glass interface. The measured integraded reflectance of the
PS ARC is then 1.1%. Note that the integrating sphere setup
used for reflectance measurements does not take absorption
in the glass and EVA into account. Using transmission data
of glass*' and EVA (Ref. 42) to correct for absorption effects,
the actual reflectance of the PS ARC is ~1.4%.

The encapsulated PS sample is too thick to obtain ellip-
sometric data. Therefore no model-generated curve is shown
in Fig. 11(c). Simply using the ellipsometric model obtained
without glass and adding a glass ambient in the model will
not suffice. The EVA will alter the topmost of the PS layer
and an EMA with void as one constituent will no longer be
accurate. For simplicity this is not taken into account in the
original design.

The refractive indices of the the specific glass used in the
modules are found using ellipsometry and transmission data.
The reflectance is then calculated from the refractive indices
using the WVASE32 software. This is shown in Fig. 11(c) as
reference “glass reflectance”. All reflectances are measured
and modeled at an incident angle of 10° to the surface nor-
mal and integrated reflections are given in the wavelength
range 400-1100 nm. The blue part of the terrestrial solar
spectrum, 300—400 nm, is not included due to limitations of
the spectral response unit used for measurements. However,
very few rays in this wavelength range actually reach Earth.
Therefore, even if the reflectance in the 300-400 nm range is
assumed to be high, it modifies the total reflectance by much
less than the standard deviation (0.3) of the reflectance mea-
surements of the laminated PS layer. The uncertainties de-
scribed by the standard deviation are primarily due to inac-
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curacies in the spectral response setup and inhomogeneties
on the sample surface.

VIl. CONCLUSIONS

By varying current density while all other parameters are
kept constant, a broad porosity span (25%-75%
+roughness) is available for PS. Exploiting the correspond-
ing range of refractive indices, excellent PS ARCs can be
designed and fabricated within restrictions applying for ap-
plication in photovoltaics. Especially when the design incor-
porates module glass, excellent ARCs with a total reflectance
of 5.6%, glass included, can be made inexpensively and in
less than 6 s. Without glass, an integrated reflectance of
~3% is obtained. Important questions such as optimal thick-
ness and passivation are still to be addressed before a graded
PS ARC can be implemented in efficient Si solar cells.
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Abstract

Solar modules are becoming an everyday presence in several countries. So
far, the installation of such modules has been performed without aesthetic
concerns, typical locations being rooftops or solar power plants. Building-
integrated photovoltaic (BIPV) systems represent an interesting, alternative
approach for increasing the available area for electricity production and po-
tentially for further reducing the cost of solar electricity. In BIPV, the visual
impression of a solar module becomes important, including its color. The
color of a solar module is to a large extent determined by the color of the
cells in the module, which is given by the antireflection coating (ARC). The
ARC is a thin film structure that significantly increases the amount of cur-
rent produced by and, hence, the efficiency of a solar cell. The deposition of
silicon nitride single layer ARCs with a dark blue color is the most common
process in the industry today and plasma enhanced chemical vapor deposi-
tion (PECVD) is mostly used for this purpose. However, access to efficient,
but differently colored solar cells are important for the further development
of BIPV. In this paper, the impact of varying the color of an ARC upon
the optical characteristics and efficiency of a solar cell is investigated. The
overall transmission and reflection of a set of differently colored single layer
ARGCs is compared with multilayered silicon nitride ARCs, all made using
PECVD. These are again compared with porous silicon ARCs fabricated us-
ing an electrochemical process allowing for the rapid and simple manufacture
of ARC structures with many tens of layers. In addition to a comparison of
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the optical characteristics of such solar cells, the effect of using colored ARCs
on solar cell efficiency is quantified using the solar cell modeling tool PC1D.
This work shows that the use of multilayer ARC structures can allow solar
cells with a range of different colors throughout the visual spectrum to retain
very high efficiencies.

Keywords: Multilayer antireflection coatings, porous silicon, solar cells,
design, building integrated PV (BIPV)

1. Introduction

The use of solar cells for electricity production has increased rapidly for
more than a full decade. As a result, solar energy systems are becoming
an increasingly visible part of everyday life in several countries. Today, the
majority of solar cells are currently installed with little regard to aesthet-
ics, in locations such as rooftops or solar power plants. Building-integrated
photovoltaic (BIPV) systems represent an interesting, alternative approach
for increasing the available area for electricity production and potentially for
further reducing the cost of solar electricity [1, Ch. 22]. However, BIPV does
not represent a large share of the market today. One factor is that BIPV
elements are in part hampered by a limited choice of aesthetic variation. In
one survey, more than 85% of architects stated that aesthetic concerns would
allow for the installation of solar energy systems with reduced efficiency [2].
One suggested requirement for a ‘well integrated’ solar energy system is that
it results in a good composition of colors and materials [1, Ch. 22]. Clearly,
access to efficient solar modules with a range of colors is desirable.

Deposition of antireflection coatings (ARC) at the front of the solar cell
is a standard procedure in silicon solar cell fabrication. The ARC improves
the photon collection of the cell by reducing the high reflection of a bare Si
wafer (> 30%) to around 10%. The reflection is further reduced with stan-
dard texturing. The most commonly used ARC in industry today is a thin
single layer of amporphous, hydrogenated silicon nitride (a-SiN,:H, hence-
forth shortened to SiN,) deposited by Plasma Enhanced Chemical Vapor
Deposition (PECVD). In addition to improving the efficiency, the ARC also
determines the color of the solar cell.

In principle, there is much room for modifying the appearance of a solar
cell by variation of the ARC. Firstly, by simply varying the thickness of



the silicon nitride ARC covering the solar cell, a range of colors can be
obtained [3]. However, in the case of single layer ARCs of today, this leads
to a significant reduction in the light transmitted into the solar cell [4]. A
second option, therefore, is the use of multilayer ARCs to obtain an increased
selection of colors, a benefit which can be combined with reduced optical
losses. The deposition of stacks with large numbers of layers is a challenge,
at least in a high-throughput, low cost production environment. However,
if the relative efficiency gain of differently colored solar cells is sufficiently
increased through the use of one slightly more complex processing step, this
can potentially justify the use of multilayer coatings in solar cells for BIPV.

In this paper, both single layer SiN, ARCs and and multilayered ARCs
consisting of SiN, and silicon oxide (SiO,:H, henceforth shortened to SiO,)
were produced by plasma enhanced chemical vapor deposition (PECVD).
For simple processing, only three-layer ARCs requiring relatively short pro-
cess times are investigated in this paper. The two deposited materials were
obtained by using standardized deposition parameters. Modifications of the
deposition parameters can give room for further modulations of the optical
response.

A third and very promising approach towards the rapid and simple man-
ufacture of multilayer ARCs with very high numbers of layers is electrochem-
ical etching of nanoporous silicon (PS) [5]. By varying the current density
during etching the compositional fraction of Si and air can be controlled. The
optical properties of PS are closely related to the porosity of the material.
This results in a unique opportunity to tailor refractive index profiles and
create complex broadband antireflection coatings ARC. In this paper, the
obtainable colors and transmission losses resulting from the use of single and
multilayer films deposited by PECVD are compared to those of PS ARCs.
In addition to a comparison of the optical characteristics of such solar cells,
the effect of using colored ARCs on solar cell efficiency is quantified using
the solar cell modeling tool PC1D [6].

2. Material and methods

Dielectric films and nanoporous silicon films optimized for antireflection
were synthesized and characterized in this work. A Plasmalab 133 reac-
tor from Oxford Systems was used to deposit single or three-layer ARC
stacks. The single layer ARCs were made from conventional amorphous, hy-
drogenated silicon nitride (SiN,) with a refractive index (ng;n) of ~ 1.95 and



hydrogenated silicon oxide (SiO,) with a refractive index (ng;o) of ~ 1.45.
The triple-layer ARCs were stacks of SiN, and SiO, in the following order:
SiN,./SiO, /SiN,. SiN, was deposited at 400° using a gas-mix consisting of
No, NH3, and SiHy, while SiO, was deposited at 300° using Na, N,O, and
SiHy.

Another set of samples was made by electrochemical synthesis of PS films.
For these experiments, a double cell electrochemical etching system, PSB
Plus 4, from advanced micromaching tools (AMMT) was used. The sub-
strates used were boron doped monocrystalline silicon wafers, 300 — 350 um
thick, one side polished, with a (100) orientation. A special purpose poten-
siostat, PS2 from AMMT, allowed programming of current density profiles
with a time resolution of 50 ms.

Selection of colors and modeling of the performance of the structures was
performed prior to sample preparation. For the single and triple-layer stacks,
the modeling was performed using the software package MacLeod from Thin
Films Center Inc. [7]. For the PS layers, the ellispometric software WVASE32
from Woollam was used.

Prior to the deposition of the films of SiN, and SiO,, the thickness and
deposition rate of the separate films were assessed by ellipsometry. The
ellipsometer used was a variable angle spectroscopic ellipsometer (VASE)
from Woollam. For PS, careful mapping of the relation between current
density, porosity and etch rate was performed on single layers prior to etching
complex structures.

After the two different ARC structures were fabricated, their optical and
structural properties were characterized using ellipsometry and reflection
measurements. Reflection measurements were carried out using an integrated
sphere spectral response setup.

In addition to optical characterization, the impact of the resulting trans-
mission variations upon solar cell efficiency was determined by device mod-
eling. The resulting modifications to the short circuit current density, (Js.),
and efficiency were obtained by using the software PC1D [6]. The trans-
mission spectra used as input in the PC1D modeling is found by combining
absorption spectra obtained from ellipsometry with measured reflection spec-
tra. The main characteristics of the solar cell model are described in Table
1.

It should be mentioned that the ARCs described herein are optimized for
use in an air ambient. Practical solar cells will be encapsulated in a polymer
(EVA) and protected by glass. However, the methods applied in this work
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can also easily be applied to the design ARCs for use in a conventional,
laminated solar module configuration.

3. Theory/calculation

3.1. Optics

For the single and triple layer structures fabricated with PECVD, MacLeod
was used for determining suitable thicknesses of the layers. For the modeling,
layers with a refractive index of 1.95 (SiN,) and 1.45 (SiO,) were used. For
simplicity, the layers were assumed to be non-absorbing during the model-
ing. In order to obtain clear colors while maintaining low reflection, a target
spectrum with a reflection of 100% for a selected wavelength region and 0%
for the remaining, relevant part of the solar spectrum was defined. The
layer thicknesses best suited to reproduce the target spectrum is the direct
outcome of the fitting procedure.

By using PS, multiple layers with different refractive indices can be etched
in one single process-step. Both the thickness and the refractive index can
then be varied to obtain the desired reflection. Modeling of the optimal PS
structure is complicated by the need of a relation between the porosity and
the refractive index. This challenge is met by using the ellipsometric software
tool WVASE32 for modeling. The software is usually used to model the phys-
ical properties of materials based on information from optical data. Hence,
approximations providing the necessary bridge between refractive index and
compositional fractions are easily accessible. Effective medium models where
the refractive index of the resulting structure is a mix of the refractive in-
dices of air and silicon, are commonly used to model PS [8]. In this work it
is the Bruggeman effective medium approximation [9] that is utilized. The
optical constants of Si is taken from [10]. The flexibility in the modulation
of the reflection spectra generally increase with increasing number of PS lay-
ers, but for such thin structures as those presented here, the improvement
quickly saturates. Since the total etching time of all PS multilayers prepared
in this work is less than 10 s, there are also practical limits on the number
of steps which can be implemented in the actual ARC. The smallest time
interval permitted by the potensiostat is 50 ms. As a result, a compositional
model of PS with 36 layers is chosen to accommodate both practical and op-
timal considerations. The structure consisting of eight nodes, with five steps
in the first seven nodes and the last node constituting the final step. The
Levenberg-Marquet minimization routine is used to find the porosity profile



Table 1: Solar cell parameters used during PC1D simulations.

Parameter Value

Base contact 0.015 Q

Internal conductor 035

Internal optical reflection 80 % (specular)

Thickness 270 pm

Diffusion: Sheet res./peak dop./depth factor 50 Qsq/1.9-10%° cm™3/0.25
Bulk lifetime 50 us

Front surface recombination 50000 cm/s

Rear surface recombination 1000 cm/s

which best corresponds to the predefined reflection. Absorption is not taken
into account in the optimization procedure, but an upper limit on thickness
is set to reduce unwanted absorption in the ARC.

For both types of ARCs, absorption is accounted for in the final evaluation
of their performance calculated in PC1D.

3.2. Solar cell modeling using PC1D

Although a comparison of the overall transmission over the relevant wave-
length region gives a good first impression of the impact of the different ARCs
upon efficiency, the quantum efficiency of a solar cell also depends strongly
on the wavelength. In order to enable a better assessment of the effect of
introducing colored ARCs on solar cells, PC1D was used as a modeling tool.
The basis for the modeling was the solar cell model shown in Table 1. The
resulting spectral internal quantum efficiency, IQE()), of this solar cell model
is shown in Figure 1. The solar cell model results in fairly representative solar
cell characteristics, with well-known reductions of IQE(A) both towards short
and long wavelengths. For all of ARC structures, experimentally determined
transmission spectra were used as input to the modeling. For simplicity and
a more direct comparison with the results from the optical characterization,
the cells were assumed to be without any surface texture. Also, shading
losses were neglected.

4. Results and discussion

An overview over the fabricated ARC structures is given in Figure 2.
The first row shows the thicknesses and colors of the single SiN, layers,
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Figure 1: The internal quantum efficiency of the solar cell model used for PC1D simula-
tions.

the second row illustrates the structure and the thicknesses of the three
layer dielectric stacks, and the third row shows the thicknesses of the four
PS stacks. All thicknesses are determined by spectroscopic ellipsometry.
The effective, weighted reflection, absorption and transmission of each of the
structures, in the wavelength range 300 — 1100 nm, is given in Table 2. The
solar spectrum used for weighting the number of incoming photons of different
wavelengths is the standardized 1.5AM terrestrial reference spectrum [11]
adopted by the American Society for Testing and Materials (ASTM). Pictures
and reflection spectra of each of these ARCs are shown in section 4.1. An
evaluation of the performance of the ARC structures when integrated in a
solar cell is performed in PC1D. The efficiencies resulting from each of the
ARC structures is summarized in Table 3.

4.1. Reflection

The reflection spectra of the fabricated structures are shown in Figures
3, 4 and 6. The measured reflection is labeled ‘measured’ and the reflection
generated from the best fit ellipsometric model is labeled ‘modeled’. Note
that it is the thickness and optical constants of the layers that are directly
modeled by ellipsometry. The reflection is calculated from the best fit model.
The excellent fit between ‘measured’ and ‘modeled’ is therefore a strong
support of the validity and accuracy of the ellipsometric models employed.
The reflection measurements are performed in the wavelength range from
300 — 1000 nm, due to influence from backside reflection in the wafer in the
range 1000 — 1100 nm. In this wavelength range, modeled data is used in
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Figure 2: An overview over the fabricated structures. The thicknesses are determined by
spectroscopic ellipsometry. The ‘red’ single layer ARC is only intended to be red, the

layer in fact appears closer to blue.



Table 2: Reflection, absorption and transmission through the ARCs, weighted by the a
reference solar spectrum [11].

Sample Reflection Absorption Transmission
Single layer SiN - green 0.115 0.035 0.837
Single layer SiN - red 0.094 0.019 0.874
Single layer SiN - blue 0.090 0.028 0.869
Dielectric stack - green 0.175 0.048 0.777
Dielectric stack - red 0.245 0.070 0.685
Dielectric stack - blue 0.143 0.014 0.843
PS multilayer - green 0.074 0.075 0.859
PS multilayer - red 0.042 0.064 0.893
PS multilayer - purple 0.030 0.064 0.907
PS multilayer - orange 0.022 0.059 0.918

calculations of refletion in Table 2. For calculations of absorption in VASE, a
wavelength range of 300 — 1100 nm is used. The transmitted spectra, used as
input for efficiency simulations in PC1D, are obtained from these absorption
and reflection spectra.

4.1.1. SiN and dielectric stack ARCs

Figure 3 shows the reflection spectra achieved with single layer SiN,, opti-
mized for green, red and blue reflection spectra, respectively. The integrated
reflections are low, but the available color range is limited as the layer thick-
ness is the only variable in these films. The reflection spectra have a single
point of zero-reflection. The film intended to be red, is in reality more blue,
illustrating the difficulty of achieving different colors with only one SiN,
layer. Ellipsometric modeling of these simple structures is straight forward
and the accordance between measured and modeled values is excellent.

Figure 4 shows the reflection spectrum achieved with triple layer dielectric
stacks of SiN,./Si0,,/SiN,, optimized for green, red and blue reflection spectra.
The possibility of tailoring the color of the reflection spectra is significantly
improved, at the expense of a moderate increase in reflection.

Ellipsometric modeling is carried out by using optical constants obtained
from single layer SiN, made under the same deposition parameters. Optical
constants for the SiO, are approximated by tabulated values for SiO, taken
from Palik et al. [12]. The thickness of the three layers are fitted. Again
the accordance between measured and modeled data is very good. Figure
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Figure 3: Reflection spectra of green, red, and blue single layer SiN,. The curve ‘measured’
refers to the measured spectra and ‘modeled’ refers to the spectra extracted from the best
fit ellipsometric model of the structures.

5 shows the colors of the triple layer SiN,/SiO,/SiN, ARCs corresponding
to the reflection spectra in Figure 4. All the SiN, reflection spectra have a
small systematic wavelength shift compared to the designed stack. This is
due to a small thickness deviation. Further optimization of the deposition
parameters could improve the accuracy with which the designed spectra are
reproduced.

4.1.2. Multilayer nanoporous Silicon ARCs

Figure 6 shows the measured (‘measured’) and ellipsometric model gener-
ated (‘modeled’) reflection spectra of the fabricated colored PS ARCs. Green
(6a), red (6b), purple (6¢), and orange (6d) PS ARCs are demonstrated. Fig-
ure 7 shows pictures of the PS ARCs corresponding to the reflection spectra
in Figure 6. Control over both thickness and refractive index results in a large
freedom of tailoring the reflection spectra of the films. The layers can then
be optimized for low reflection in addition to specific color. As seen in Table
2, the integrated reflection of the PS ARCs are extremely low. Especially as
no texturing is performed prior to electrochemical etching.

4.2. Solar cell efficiencies

The efficiency, short circuit current density, and open circuit voltage of
the standardized solar cell with the different colored ARCs are shown in
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Figure 4: Reflection spectra of the green, red and blue triple layer dielectric stacks. The
curve ‘measured’ refers to the measured spectra and ‘modeled’ refers to the spectra ex-
tracted from the best fit ellipsometric model of the structures.

Table 3. Green, red, blue, purple, and orange colored ARCs are produced
that result in simulated efficiencies > 16.9%. PS ARCs provide the highest
efficiencies for all colors, but for blue and green ARCs the lead is marginal.
For blue ARCs there is no gain in efficiency by going from single layer SiN
to a triple layer dielectric stack, but more flexibility is provided with respect
to tailoring the tint of the color. For the green ARCs, a modest efficiency
improvement is obtained by using a triple layer dielectric stack compared
to a single layer SiN,. In the red part of the spectrum, PS ARCs yield
exceptionally low reflection, resulting in significantly higher efficiencies than
the triple layer dielectric stacks. It seems to be difficult to produce clear, red
colors with a single layer SiN, ARC.

A selection of colors was performed in order to investigate the potential of
these techniques for fabrication of colored ARCs. Optimization with respect
to thickness and possible adjustments in the target reflection spectra during
modeling may give further improvements in efficiency for both the dielec-
tric stacks and the multilayer PS. For the PS layers, improved control over
formation parameters can enhance efficiencies due to closer match between
designed and fabricated structures. For SiN, exciting possiblities to change
the refractive index during deposition is emerging. This could increase the
flexibility and enhance the efficiencies of colored SiN, ARCs.
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(b) Red dielectric stack

(c) Blue dielectric stack

Figure 5: Appearance of the colored triple layer dielectric stack ARC.
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optical constants in the best fit ellipsometry model ('modeled’).
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Figure 7: Appearance of the colored multilayered PS ARCs.
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Table 3: Simulated efficiencies obtained when each ARC is used on a standardized solar
cell. Simulated values for short circuit current density (Js.) and open circuit voltage (Vo)
are also shown. ! “Black” referes to perfect transmission through the ARC; no reflection,
no absorption.

Sample Efficiency Joe Voo  Jsef/Jsc(black)
“Black”! 19.8 38.5 620.1 100.0%
Single layer SiN - green 16.6 32.5 615.8 84.4%
Single layer SiN - red 17.6 34.5 6174 89.6%
Single layer SiN - blue 17.5 341 617.1 88.6%
Dielectric stack - green 15.2 29.8 613.5 77.4%
Dielectric stack - red 13.0 25.7  609.7 66.8%
Dielectric stack - blue 16.6 32.5 615.7 84.4%
PS multilayer - green 16.9 33.0 616.2 85.7%
PS multilayer - red 17.5 34.3 617.2 89.0%
PS multilayer - purple 17.8 34.8 617.7 90.4%
PS multilayer - orange 18.1 35.4 618.0 91.9%

5. Conclusions

We have her showed that the ARC of solar cells can be tailored to give
clear colors while retaining high efficiencies. Although the reflection from sin-
gle layer SiN, ARCs are generally low, the colors available by simple thickness
variations are limited. Using triple layer SiN, ARCs, a broader range of col-
ors can be achieved, at the expense of a modest increase in reflection. By
electrochemical etching of the Si wafer, colored ARCs with lower reflection
than conventional, single layer SiN, ARCs can be produced. Colored solar
cells able to absorb in excess of 90% of the incoming light is shown to be ac-
cesible with these structures. However, important issues such as passivation
and process-integration need further improvement before PS ARCs can be
implemented in industrial solar cell production [13].
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