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Abstract

In this article we introduce a general approach to dynamic path anal-
ysis. This is an extension of classical path analysis to the situation
where variables may be time-dependent and where the outcome of
main interest is a stochastic process. In particular we will focus on the
survival and event history analysis setting where the main outcome is
a counting process. Our approach will be especially fruitful for analyz-
ing event history data with internal time-dependent covariates, where
an ordinary regression analysis may fail. Our approach enables us to
describe how the effect of a fixed covariate partly is working directly
and partly indirectly through internal time-dependent covariates. For
the sequence of times of event, we define a sequence of path analysis
models. At each time of an event, ordinary linear regression is used to
estimate the relation between the covariates, while the additive hazard
model is used for the regression of the counting process on the covari-
ates. The methodology is illustrated using data from a randomized
trial on survival for patients with liver cirrhosis.

Keywords: event history analysis, graphical models, internal covari-
ates, time-dependent covariates

1 Introduction

Graphical models (e.g. path analysis) have been widely used in areas such
as computer science and social sciences. In survival and event history anal-
ysis as well as in many other branches of mathematical statistics, graphical
models have been mostly absent. Hence there has not been much focus
on the structure among variables beyond that between covariates and the
response in a regression analysis. Graphical models such as path analysis
have several appealing features. Assumptions about the relations between
the variables in the model can be specified in a concise and unambiguous
manner, which may be easily communicated to other researchers/analysts
familiar with graphical modelling. The mathematical theory of graphical
models such as Bayesian networks is well developed. However, one main
disadvantage of traditional graphical modelling is that the role of time is
not explicitly considered. In this paper we will introduce a new approach to
graphical models, where we focus on how events and processes in the past
influence the development in the future. We call this new approach dynamic
path analysis.

We are going to study the situation where the main outcome is a stochas-
tic process, and where we can model its compensator as a linear function of a



set of covariates. We will define a path analysis model, i.e. a set of hierarchi-
cal linear regression models where some covariates in one regression model
will be the response in another regression model, thus forming a graph of
vertices (variables) and edges showing how all variables are related to each
other. One of these linear models will be the regression of the increment of
the stochastic process. The path model will be fitted at each time we are
collecting information about the process.

A special case is when the stochastic process is the counting process
N(t) counting the number of individual events until time ¢. For the regres-
sion of the event indicator dN(t), we will use the additive hazard model
(Aalen 1980, 1989). Since the model is linear at time ¢ given the covariates
X1(t), Xa(t),. .., Xp(t), the additive hazard model is well suited to be fitted
into a path analysis framework. We have dN(t) = dBy(t) + dB1(t) X1 (t) +
o+ 4+ dBp(t)Xp(t) + dM(t) where dBj(t) are the regression functions and
dM (t) is a martingale increment. The regression functions are estimated by
the method of least-squares.

Because of the large variability in the estimates of dBj;(t), it is common
to consider the cumulative regression functions Bj(t) = fg dBj(s), and since
each regression function in path analysis terminology is a direct effect of
the covariate on the response, we will define Bj(t) as the cumulative direct
effect. Following the usual terminology of path analysis, the indirect effect
along a path with regression functions ;(t) (linear regression), and dB;(t)
is 1;(t)dB;(t). In a similar way as above we will then define the cumulative
indirect effect as fg 1;(s)dBj(s). This method has previously been proposed
by Fosen et al. (2004), but in this paper, in Section 2, we will define the
dynamic path model and cumulative indirect and direct effects more formally
and in larger generality.

An internal time-dependent covariate for a particular individual is usu-
ally the result of a process generated by that individual until time ¢, thus the
internal covariate might carry information about time to event (Kalbfleisch
& Prentice 2002). In the path analysis framework, an internal covariate is
simply an intermediate variable, i.e. some (or all) of the effect of a fixed
covariate on the response is working through the intermediate variable (also
known as the mediator). The effect of interest of a fixed covariate, e.g. treat-
ment, is then the sum of the direct effect of that covariate and the indirect
effect through the intermediate variable. This sum is known as the total
effect. Running a regression analysis without recognizing that one or more
of the covariates are also intermediate variables for other covariates will
hence lead to uncorrect estimation of effect since the indirect effect then is



discarded. This warning was also addressed, without referring to graphical
models, in Section 6.4 of Kalbfleisch & Prentice (2002).

As described in e.g. Fosen et al. (2004), the total effect is simply the effect
when excluding the intermediate variable(s). However, our main interest is
to understand the nature of this total effect for survival data. We want to
identify in which ways and to what extent the total effect is working directly
and indirectly. In Section 3 we will use a liver cirrhosis data set as a case
study.

Since we are trying to understand rather thoroughly how variables and
processes are influencing each other, it is particularly important to remember
that all conclusions rely on the assumption of no unmeasured confounders.
All estimated effects are vulnerable to unobserved confounders, which could
cause any direct effect in the model to be spurious. This is well-known in
all regression analyses. However, indirect effects are more vulnerable than
direct effects in the particular sense that the indirect effect depends on all
the direct effects along the path, each of which may be a spurious effect due
to an unmeasured confounder. A case where indirect effects constitute most
of the total effect is more vulnerable to unmeasured confounders than a case
where a direct effects is the main source of the total effect.

2 Dynamic graphical modelling

We will in this section first formally describe classical path analysis us-
ing graphical model notation. Then we will introduce a general version of
Aalen’s additive model, extending its use beyond the usual counting process
framework. Finally we combine path analysis and Aalen’s additive model
into the dynamic path model.

2.1 Classical graphical models

The graphical models considered in this paper are based on the use of directed
acyclic graphs (DAGs). A directed graph G is a pair (V, E) where V is a
finite set and £ C V x V', i.e. E is a set of ordered pairs of elements from V.
The elements of V' are called vertices; the elements of E edges. If (v1,v2) € E
we say that vy is a parent of vy and vy is a child of v;. We denote the set
of parents of a vertex v as pa(v). A directed path from v;; € V tov;, € V
is a sequence (vj,, iy, - .., v;,) € V' of vertices such that (v;;,v;;,,) € E for
j=1,2,...,7r—1. A directed cycle is a directed path (v;,,vi,,...,v; ) where
v;, = v;,. Finally, a DAG is a directed graph with no directed cycles. For an
overview on graphical models, see e.g. Lauritzen (1996) or Edwards (2000).



For statistical modelling, one possibility is letting V' = { X1, Xo,..., X, },
where the X; are random variables. The basic idea is then to let (X}, X;) €
E if X, directly influences X; with respect to the other variables. Path
analysis, which was introduced by Sewall Wright in the 1920s (Wright 1921,
1934), was probably the first attempt of graphical modelling using this ap-
proach. For a general introduction to path analysis, see e.g. Loehlin (2004).
In path analysis, all relationships between the variables are assumed to be
linear with normally distributed errors. We are going to omit the normal
distribution assumption.

Formally, we have p ordered variables X1, Xo, ..., X, where X; = ¢; and
j—1

X; = BriXn+e; §=23,....p; (1)
h=1

where the ¢€; are iid with expectation zero and variance o2, The B are called
path coefficients. We may interpret (3, as the change that would occur in
Xj if we could intervene and increase X, by one unit without influencing
the other variables in the model. In this respect we may say that Gp; is a
measure of the causal effect of Xj;, on X;. The associated path diagram is a
DAG G with V = {X1, X»,..., X, } where for h < j, (X3, X;) € E if and
only if gp; # 0.

A path model is constructed in two steps. Firstly, we order the variables
such that X; does not influence X}, for h < j. Secondly, we may make the
further assumption that [(5; = 0 for one or more of the pairs (h,j). The
causal ordering of the variables might be given by subject-matter knowledge
or by logical considerations. For example, if the variables are ordered in
time, then cause must precede effect. As another example, if a variable X
is determined by randomization, then it seems reasonable to assume that
Br; = 0 for all h # j.

Because of the linearity and the acyclic structure, the path coefficients
can be estimated by recursively regressing each variable onto all of its par-
ents, using least squares: first we regress X, onto all of the variables in
pa(X,), then we regress X,,_; onto the variables in pa(X,_1), and so on.
Thus, path analysis may be seen as an extension of ordinary multiple re-
gression.

2.2 The additive regression model

Before we introduce dynamic path analysis, we need to define the additive
regression model. Previously, this has been done only for counting processes



(Aalen 1980, 1989), but we will give a more general definition. Let Y'(¢)
be a stochastic process defined on some probability space (2, F, P) and
adapted to the filtration {F;}, and assume that Y (¢) is the difference of two
local submartingales. Then, by the Doob-Meyer decomposition theorem
(e.g. Andersen et. al 1993, Section I1.3.1), we may write Y (¢) as a sum of a
finite variation predictable process A(t) and a martingale M (t),

Y(t) = A(t) + M(t).

The process A(t) is called the compensator of Y (¢). Intuitively, the equation
means that Y (¢) may be decomposed into a predictable part and a pure
noise part. Writing informally dY (t), dA(t) and dM(t) for the changes in
the corresponding processes in the infinitesimal time interval [¢, ¢+ dt), note
that
E(dY (t)|Fi-) = E(dA(t)|Fi-) + E(dM ()| Fi-) = dA(2),

since E(dM (t)|F;—) = 0 by the definition of a martingale and E(dA(¢t)|F—) =
dA(t) by predictability of A(t). Our aim is to model the influence of the co-
variates X1(t), Xa(t),..., X,(t) on the development of the process Y (¢).

The process Y (t) might not be observable at all times. We use the “at
risk” function R(t) to indicate whether Y (¢) is observed; R(t) = 1 at any
time ¢t when Y (¢) is observed, R(t) = 0 otherwise. Further we let R(t) be
predictable. The additive regression model then is

dA(t) = R(t)(dBo(t) + dB1(t)X1(t) + dBa(t) Xa(t) + - - + dB,(t) X,(1)),

where dB;(t) = (;(t)dt and the [3;(t) are arbitrary regression functions.
Estimation is based on the cumulative regression functions

Bj(t):/o ﬁj(s)ds.

Assume that we have n independent copies Yi(t),Ya(t),...,Yn(t) of the
process Y (t), corresponding to the observation of n individuals, and let
R;(t) = 1 if individual 7 is under observation just before time ¢, R;(t) = 0
otherwise. Then, for each ¢ = 1,...,n, the Doob-Meyer decomposition gives

dY;(t) = dA;(t) + dM;(t)
= R;(t)(dBo(t) + dB1(t) X1 (t) + - - - + dBp(t) Xip(t)) + dM;(2).



To write this on matrix form, we introduce

Y(t) = (Y1(t), Ya(t), ..., Yu(8))s
M(t) = (M (t), Ma(t), ..., Mn(t))"
B(t) = (Bo(t), Bi(t), .-, Bp(t))";
Wi(t) = Ri(t)(1, X (t),..., Xip(t)), i =1,2,...,m;

and let W(t) be the n x (p+ 1) matrix with ith row equal to W;(¢). Then,
we may write

dY (t) = W(t)dB(¢) + dM(2). 2)

Note that this has the form of a linear model with dY (t) as the response,
W (t)dB(t) as the systematic component, and dM(¢) as the noise term.
When W (t) has full rank, an estimator for dB(t) is given by

dB(t) = W ()dY (t),
where W= (t) = (W(t)'W(t))"'W(t)". Letting J(¢) be the indicator of
W (t) having full rank, an estimator for B(¢) is then given by

B(t) — /0 T(sYW~ ()Y (s). (3)

Using (2) and (3), we see that

B(t) = /0 J(s)dB(s) + /0 J(s)W ™ (5)dM(s).

Here the latter term on the right-hand side is a stochastic integral. In
particular the estimator is essentially unbiased, in the sense that

BB() = [ E((:)iB(). (4)

2.3 Examples/Special cases

In the liver cirrhosis case study in Section 3, the outcome for each individual
is a counting process indicating whether death has been observed to occur by
time ¢. More generally we could be interested in how the covariates influence
some event of interest, where the counting process N(t) is the number of
events that have occured up to and including time ¢. Then the compensator



is known as the integrated intensity process. With Y (¢) = N(t), Expression
(3) may now be written as

B(t) = Y J(T)W™ (Tr) AN(Ty), (5)
T <t
where T7 < T < --- are the ordered event times of the n counting processes

and
AN(Ty) = N(Ty) — N(Tk_1), k >2; AN(T1) = N(T1).

We will mainly focus on the counting process situation in the remainder
of the present paper. Nevertheless, it is worthwhile to emphasize that the
additive regression model may be useful in other situations as well, although
the theory is most well-developed for counting processes. For example, con-
sider the case where the outcome Y (t) is a diffusion process: let Y (t) be the
solution of the following It6 stochastic differential equation

dY (t) = (Y (1), ) dt + (Y (£),1) dV (1),

where o and 7 are deterministic functions, and V() is a Wiener process
(standard Brownian motion). Time-dependent covariates Xi(t),..., X,(¢)
may influence the process. Since the Wiener process is a martingale, the
integral fg a(Y (s),s)ds is the compensator of the process Y (t), and the
additive model then assumes that we may model a(Y(¢),t) (known as the
drift of the diffusion process) as

a(Y(t),t) = Bo(t) + 1) X1(t) + ...+ Bp(t) Xp(2).

Given several independent observations of the process Y (¢), we may then
estimate the cumulative regression functions B;(t) based on (3). In prac-
tice, the diffusion process will only be discretely observed, so the stochastic
integral in (3) cannot be evaluated directly, but must be approximated by a
sum. Using the matrix notation of Section 2.2, if n iid copies of the process
is observed at times 71,72, ..., Tim, a natural estimate for the vector B(t) of
cumulative regression functions is then

B(t) =Y J(m)W™ () AY (r),

T <t

where AY (1) = Y (1) — Y(73-1) for k > 2.



2.4 Dynamic path modelling

Having introduced path analysis and the additive hazard model in the pre-
vious sections, we are now ready to define ’dynamic path analysis’. The
aim is to investigate the effects of the covariate processes on the infinites-
imal changes of the outcome process Y (t), and the relations between the
covariates.

Dynamic path diagrams are defined in analogy with classical path dia-
grams (Section 2.1). A dynamic path diagram is a set of time-indezed DAGs
G(t) = (V(t),E(t)),t € [0,00). At any time t, the corresponding vertex set
V (t) is partitioned into a covariate set V.(t) = {X1(¢), Xa2(t),..., X,(t)} and
an outcome process Y (t): V(t) = V.(t) U {Y (t)} where Y (t) ¢ V.(t). We
will assume that V(¢) as well as the partition into covariates and outcome
is time-invariant, so we may drop the subscript ¢ from V(¢) and V.(¢) and
write V. = V. U {Y(t)}. However, the edge set E(t) may vary with time.
We will assume that, for all ¢, E(t) C (Ve(t) x Vi(¢)) U (Vo(t) x {Y(¢)}).
This simply means that all edges are allowed, except edges pointing from
the outcome to a covariate.

We have a sequence of dynamic path models, one for each time ¢t when we
collect information. The estimation of each dynamic path model is done by
recursive least squares regression as usual in path analysis (Section 2.1), but
now the first regression is of the increment of the outcome process Y (t) onto
pa(Y), using the additive regression model. Informally, the dynamic path
diagram may be seen as continuously evolving over time, with edges possibly
appearing or disappearing at any time when we collect new information. In
the case of a counting process outcome, this happens at each event time.

We focus on what happens locally in time, i.e. the effect of the covariates
on the instantaneous change in the outcome process at each time point.
This separates our approach from other dynamic graphical models such as
Didelez’ (2000) local independence graphs, where each node represents the
entirety of a process (globally in time).

The additivity of classical path analysis is preserved in dynamic path
analysis, hence total effects may be easily decomposed into direct and in-
direct effects, and this is possibly the most appealing feature of dynamic
path analysis. A direct effect is an effect which is transmitted through a
single edge in a graph, i.e. from a covariate to one of its children, while an
indirect effect is an effect of a covariate working through a directed path of
length greater than one. In other words, an indirect effect is an effect that
is mediated through one or more other covariates. Note that there may be
several indirect effects of a covariate on an outcome.



In nonlinear systems the notion of an indirect effect is quite problematic,
and cannot be defined simply as the difference between the total effect and
the direct effect, since such a “definition” would have no operational meaning
(Pearl, 2001).

In our model, the indirect effect along each path is simply the product of
the (ordinary linear or additive hazard) regression functions along the path,
and there is no problem of interpretation. The direct effect and the indirect
effects simply add up to the total effect. To formalize these notions, let
Ynj(t) denote the regression coefficient when X(t) is regressed onto Xj(t)
(corresponding to an edge from X} (t) to X;(t)), and let dBj(t) be the ad-
ditive regression of dY'(t) onto X;(t). We will now define the direct and
indirect effects of an arbitrary covariate Xp(t) on the outcome dY (t). Let
Xen (1), X (t),... » Xen (t) denote the set of children of an arbitrary Xj(¢).
For each child X o (t), there is a corresponding directed path

{00, X, (). (X (0 X (D), ., (X (8,dY ()} € B
Tk
from X (t) to dY (t). The indirect effect of X (t) on the infinitesimal change
in Y(t), dY(t), is now given by

m re—1
ind(Xs(t) — dY(t)) = > Uper, (1) (H wcleZ(Hl)(t)) dBy ). (6)
k=1 =1

The direct effect dir(X,(¢) — dY (t)) on dY (t) is simply dBy(t), so the total
effect is given by

m re—1
106(X(t) — dY () = dBi(t) + Y pen () ( IT Yeetn <t>> dBy (1),
k=1 =1

The cumulative indirect, direct and total effects are then given by

dir(Xp(t) — Y (t)) = Bp(t),

t m r—1
ind(X,(0) = V() = [ > () | T] Yuep,,, (9] dBy, (90 (®)
0 k(1+1) k
k=1

=1
and

tot(Xp(t) — Y () =

t m re—1
Bu(t) + /0 > Ung, (5) (H wcglc%l)(s)) aBy () (9)

k=1 =1



The notions of direct and indirect effects are important when we want
to understand the detailed workings of a system. A classical, simple exam-
ple (Hesslow 1976) is the effect of birth control pills on thrombosis. It is
suspected that the pills increase the risk of thrombosis (direct effect). Preg-
nancy also increases the risk of thrombosis, while, clearly, birth control pills
lower the chance of getting pregnant. Thus, birth control pills have a nega-
tive indirect effect on thrombosis, through pregnancy. In this case, interest
might focus on the direct effect. In other cases, both a direct effect and one
or more indirect effects might be of interest, and we want to assess each of
these separately.

2.5 Estimation in dynamic path models

From now on we are assuming the outcome Y (¢) to be a counting process,
hence Y (t) = N(t) in the expression (9) for the total effect of X}, (¢) on Y (¢).
We write R

AB(Ty) = J(Tir)W™ (T3 ) AN(Tk)

(where 77 < T < --- are the ordered event times) and let ABj,(T},) be the
hth element in this vector. Then the estimator B( ) in (3) may be written as
doT<t AB(T}). From (9), using the notations ind, dir and tot for estimators
of the indirect, direct and total effects, respectively, natural estimators are
then given by

oL (1) — N (1) =

= dir(Xp(t) — N(1)) + ind(X4(t) — N(#)) (10)
r—1
= Z ABy(Ty) + Z thc (T%) (H eh, k(m) )) ABC’,;% (T),
T, <t Tp<t k=1 =1

where each zﬁhj(s) is an ordinary least squares regression estimate of the
coefficient 1p,;(s) (for each time point s).

The distributions of the estimators for the cumulative indirect effects are
complicated because they are sums of highly correlated terms, where each
term is a product of a linear regression function and an additive hazard
model regression function. Instead of trying to find the large sample dis-
tributions of the estimators, we will assess their variability using bootstrap
confidence intervals. Since we then almost immediately also are provided
with the confidence intervals for the direct effects, we will use bootstrapping
here as well.

10



We will also use bootstrapping as method for selecting the path model,
partly because of the non-normality of the ¢; of (1) which inhibits us from
performing simultaneous testing of the complete path model (Bollen 1989,
Bollen & Lang 1993). More precisely we will use simple tests of significance
for each regression model contained in the path model to suggest which
effects should be considered non-existing. Then, after arriving at a sug-
gested model, we will use bootstrap confidence intervals for validating the
model choice: if the confidence interval contains zero, then the covariate is
unsignificant.

We will do a non-parametric bootstrap by sampling randomly with re-
placement from the set of all individuals (Efron 1981). Another approach
would have been to rely more on the additive hazard model and thus resam-
ple the martingale residuals. The percentile method for bootstrap confidence
intervals will be used, since this method is easily adapted to the bootstrap
scheme above.

3 Case study: survival with liver cirrhosis

3.1 Data

We will apply the theory developed above to analyse data from a randomized
trial of survival for patients with liver cirrhosis; see Andersen et. al (1993,
pp. 19-20) for a detailed description of the data and further references to
the study. The data consist of 488 patients diagnosed with liver cirrhosis
between 1962 and 1969 at several Copenhagen hospitals. The patients were
randomized into one group of 251 patients given treatment with prednisone
and one group of 237 patients receiving placebo. Prednisone is a synthetic
hormone of a class called glucocorticoids and is adminstered as a medicine
due to its anti-inflammatory property, being e.g. significantly stronger than
that of hydro-cortisone. The patients were followed until death or censoring
at the closure of the study in October 1974.

Earlier analyses of the data suggest that there is interaction between
ascites (whether or not presence of excess fluid in the peritoneal cavity) and
treatment, hence we can’t include ascites in the model without modifying
the path analysis. We will restrict our attention to the larger group with no
ascites, and then we have 386 patients, of whom 191 received treatment and
195 received placebo. The number of deaths observed were 211, of which 94
occurred in the treatment group and 117 in the placebo group.

We will concentrate on six covariates recorded at time zero (fixed covari-
ates) and in addition the time-dependent covariate prothrombin recorded

11



at follow-up visits to a physician. The visits were scheduled at 3, 6, and
12 months after randomization, and then once every year. Also other time-
dependent covariates were recorded at these visits, but we have chosen to
concentrate on prothrombin, since this turned out to be the most interesting
of them.

We then have the following list of covariates:

e whether receiving placebo or treatment with prednisone (O=placebo,
1=treatment).

e sex (O=female, 1=male).

e age, ranging mostly from 44 to 77 years, but with four persons at age
27 years.

e acetylcholinesterase: an enzyme that breaks the neurotransmitter acetyl-
cholin down after the transmission of a nerve impulse. This is a neces-
sary breakdown process in order to enable rapid neurotransmissions.

e inflammation in liver connective tissues (0=none, 1=present).

e baseline prothrombin (percent of normal value of a blood test of no.
II, VII, and X of blood coagulation factors produced in the liver
(Andersen et al. 1993, pp. 33)): prothrombin level measured at time
Z€ero.

e current prothrombin (time-dependent): prothrombin level measured
most recently.

Based on a preliminary analysis, the prothrombin variables have been
transformed such that if V'(¢) is the untransformed prothrombin value (base-
line prothrombin or current prothrombin) then we have

V() —70 it V() <70,

Transformed Prothrombin = { 0 it V(t) > 10.

Note that a prothrombin value above 70 is considered to be “normal”. Thus
the transformed prothrombin is zero for “normal” prothrombin levels and
negative when the level is lower than “normal”.

12



3.2 Illustration of the underestimation of treatment effect

Assume that we failed to recognize that current prothrombin might be an
internal covariate, thus moved straight ahead and analysed the data as a
traditional additive hazard model, giving the estimators (5) for the effect of
the covariates. The lower panel of Figure 1 shows the effect of treatment in
the model with all covariates. Using the concepts of direct and indirect effect
of path analysis, we recognize this effect as the direct effect of treatment.
However, if we remove current prothrombin from the analysis, we get the
treatment effect of the upper panel of Figure 1 which is a significantly larger
effect. This effect is the total effect (see e.g. Fosen et. al 2004), and is
the effect of interest. Instead of simply doing this regression where the
internal time-dependent covariate (current prothrombin) is removed from
the analysis, our main focus in this article is to disentangle to what extent
the total effect of treatment as well as the other fixed covariates is working
directly or indirectly via current prothrombin, and to better understand the
relation between the fixed covariates. Note that for treatment the indirect
effect is the difference between the upper and lower panels of Figure 1.

3.3 Graphical representation of dynamic path models

We can use a time-indexed DAG to model the underlying data-generating
process since all associations are directed, and Figure 2 is the DAG of one
possible model. Here, N(t) is the counting process recording the death of
an individual, and Xy, ..., X, Z(t) are the covariates treatment, sex, age,
acetylcholinesterase, inflammation, baseline prothrombin and current pro-
thrombin respectively.

In Figure 2, the variables X7, ..., Xg play identical roles in the graph in
the sense that there aren’t any edges between them, and they potentially
have an identical set of parents and children, although the analysis might
reveal that some of the direct effects between parents and children may be
zero. We say that these variables are on equal footing in this model, and
for the sake of visual clarity, we will refer to variables on equal footing as a
block. Figure 3 shows a block representation of the DAG of Figure 2. Note
that a directed edge between two blocks means that there might be directed
edges between all combinations of variables in these two blocks. Our purpose
of a block representation is only to give a schematic representation of the
relation between variables. We will not use any blocks in the dynamic path
analysis, but only place variables from the same block close to each other.
On the contrary, blocks are an integrated part of chain graph models (see
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Cox & Wemuth 1996, Chapter 2). Blocks are then used throughout the
analysis, and there are not edges between blocks, only between variables.
Note also that the graphs in chain graph models are directed from right to
left.

Since we are not going to use any blocks in the analysis, we will adopt
the usual path analysis notation of representing variables by rectangles.

3.4 Estimation of direct, indirect, and total effects

We assume relation (1) to hold among the covariates, and since N (t) is
the main outcome, we can perform a dynamic path analysis as described in
Sections 2.4 and 2.5.

When fitting the path analysis model for the model outlined in in Figure
3, we use dB,, (t) and dB.(t) for the estimated direct effect of X, and Z(t)
on dN(t). For the estimated direct effect of X}, on Z(t) we will use zﬁxh 2(t)
instead of the more general &zh o from Section 2.4 since Z(t) here replaces
the general notation X o (t) for the first child along the first indirect path
of the parent Xj,.

The path between X and dN(t) being mediated through Z(t) is an
indirect effect. By (6) this effect is v, .(t)dB,(t). Since we only have
one child along the path between X} and dN(t), thus only one mediating

rp—1
variable, we have no terms in the product H in (6). Further, since this

=1
indirect path is the only indirect path between X and dN(t), we have

m = 1. The cumulative indirect effect then is

ind(X), — N(t) /ww )dB.(s),

and when inserting the estimators we get

nd(Xp, — N0) = Y tu,-(Te) AB.(Ty).
Ty, <t

The interpretation of the indirect effect is simply that X} is working
directly on Z(t) and Z(t) is working directly on dN(t). If for instance X}
has a negative effect on Z(t) and Z(t) has a negative effect on dN(t), then
X}, has a positive indirect effect on dN(t).

The total cumulative effect is then by (9)

tot(Xp, — N(t)) = / Yz, 2(t)dB;(s), (11)
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and we estimate it with

t/()\t(Xh — N(t)) = Z Aéwh (Tk) + Z dzzhz(Tk)ABz<Tk)
Ty <t Tp<t

The model of Figure 3 is a simple one. A model taking into account
that age and sex is determined long before all other covariates, is given in
Figure 4. We then have four blocks, that is four groups of variables being
on equal footing in the graphical model. Being the exogenous variables, age
and sex constitute block 1. The variables being only ascendants of block 1
variables, i.e. acetylcholinesterase, inflammation, baseline prothrombin, and
treatment constitute block 2. Note, however, that we can tell a priori that
there is no edge from block 1 to treatment since treatment is randomized.
As a descendant of block 1 and block 2 variables, current prothrombin is
block 3, and the outcome dN(t) is block 4. Since we have only a small
number of blocks, it is notationally convenient to let U, X, and Z denote
the variables of block 1, block 2, and block 3 respectively instead of denoting
all variables X1, ..., X,,.

Now, Equation (7) for our extended model becomes

tot(Xp, — dN(t)) = dBy, (t) + g, (t)dB,(t) (12)
—— —_——
direct effect indirect effect

for the total effects of block 2 variables on the outcome block 4. The equation
for the total effect of block 1 variables on the outcome is, with p, being the
number of covariates in block 2,

tot(Up, — dN(t)) = dBy, (t) + ZI: Yuypz; (t)dez (t)

1=

direct effect 1 indir. eff. through block 2

F e 0dB() 4 e One(OdB()  (13)
——— ——

indir. eff. through block 3 =1 indir. eff. through block 2, and 3

since we sum over all indirect effects only through block 2, all indirect effects
only through block 3 (only one since only one Z(¢)) and finally all indirect
effects through both block 2 and 3. In a similar way,

Pz
tOt(Uh - Z(t)) = ¢uhz(t) + Z ¢Uh$iwxiz(t)7

direct effect =1

indirect effects
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is the total effect of block 1 variables on block 3 variables.
Combining (10) and (12), the cumulative total effects of block 2 variables
on the outcome are estimated by

fot(Xp — N(t) = > ABy, (Te) + > tha,(Th)AB.(Ty),  (14)

T <t T <t

while the estimated effect of block 1 variables by (10) and (13) become

tot(Uy — N(t) = Y ABy,(Tx)
Ty, <t

Px
+ 3> uya, (Th) ABy, (Th)
T <t i=1

+ ) P, (Th) AB.(Ty)

T <t

+2 Z%hz (Ti)ta,=(Ti) AB:(Th). (15)

T.<t i=1

Since we define a path analysis model at each time, this means that some
edges might be non-zero at some times T and then zero at others. Typically
we will have one path model for the interval [0, 7)) and then another one for
[11,72) etc. To account for the change of model, for Ty € [r1,72), some of
the terms in (14) and (15) may become zero for Ty > 71 that were not zero
for Ty, € [0,71) or vice versa.

3.5 The effects as functions of time

Based on the bootstrap inspection method described in Section 2.5, we
choose the model with the path diagram given in Figure 5. We now want
to study the estimated effects as functions of time. For convenience we will
then refer to ‘block 7 regression’ as the regression of a block ¢ covariate onto
its parents. The results are given in Figure 6 for the block 2 regressions
and in Figure 7 for the block 3 results. In order to get a better impression
of the underlying structure, the estimates could be smoothed using a local
scatter plot smoother (Cleveland 1979) or by local kernel regression (Hastie
et al. 2001, section 6.1.2), but since the estimates are fairly stable we omit
this. For the direct effects on dN(t) we use the cumulative regression func-
tions (5), and Figure 8 shows the results.

The direct effects of age and sex on the block 2 covariates acetylcholin-
esterase and inflammation, is varying with time even though all covariates
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involved are constant in time. The time-dependence of the regression func-
tion is thus only due to changes of risk sets over time. The individuals in
this study were followed to death or to the end of the study. Therefore, due
to the randomization, censoring does not depend on covariates, and any sys-
tematic changes in the composition of the risk sets are due to death. Thus it
seems from the right-hand panel of Figure 6 that sex might be more impor-
tant for the presence of inflammation for those surviving beyond four years
than for those surviving only a year: men are less susceptible to aqcuiring
inflammation, and even more so for the group of survivors. This result is
however uncertain. We also note that in the presence of a large proportion
of lost-to-followup cases, the explanation could be selective censoring.

The estimated negative direct effect of age on acetylcholinesterase is less
precise for the group of survivors than for all the individuals together but
this can partly be explained by variation due to the decreasing risk set as
time goes by.

Regarding the block 3 effects we see in Figure 7 that the direct effect
of baseline prothrombin on current prothrombin is clearly positive until six
years after randomization. Treatment is leading to an increase in current
prothrombin, particularly for the first couple of years. Acetylcholinesterase
has a positive effect on current prothrombin as well, but after about a year,
the effect decreases and seems to vanish.

At block 4 (Figure 8) there is a clear positive direct effect of age on
death and clear negative direct effect of inflammation as well as of current
prothrombin.

The direct effect of treatment on dN(t) is very small if present at all, as
seen in the lower panel of Figure 1, while the total effect is larger (upper
panel). By the decomposition of total effect, the difference between these
two effects is the indirect effect working through current prothrombin. The
indirect effect is given in the upper left panel of Figure 9 (and is also the
product of the 1st panel of Figure 7 and increments of 3rd panel of Figure
8). We see that treatment leads to fewer deaths, and the way that this is
happening is that treatment increases current prothrombin (upper left panel
of Figure 7) and high level of current prothrombin decreases dN(t), hence
since the indirect effect is a product of these two effects, there is a negative
indirect effect of treatment on dN(t). Since there is no direct effect, all
treatment effect is working through current prothrombin.

The indirect effect of baseline prothrombin on dN (t) (upper right panel of
Figure 9) is clearly negative. Note that the direction of this effect should be
the same as that of current prothrombin since the two prothrombin variables
are positively correlated.
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There is an estimated negative indirect effect of acetylcholinesterase on
dN (t) but only until one year after randomization after which the effect
seems to vanish (middle left panel of Figure 9).

Sex has an effect on dN(t) indirectly through inflammation and it is
positive (middle right panel of Figure 9). Men will have higher risk of
death than women because men have less inflammation (Figure 6), and less
inflammation leads to more deaths (Figure 8).

The indirect effect of age on dN (¢) is working through acetylcholinesterase
and current prothrombin (Figure 5) and is positive because higher age leads
to less acetylcholinesterase (Figure 6) and less acetylcholinesterase leads to
less current prothrombin (Figure 7), and less current prothrombin leads to
more deaths (Figure 8). The indirect effect of age seems to vanish after one
year (lower left panel of Figure 9). The indirect path from age to dN(t) con-
tains the indirect path from acetylcholinesterase to dN(t), the only difference
is the edge from age to acetylcholinesterase. At each time of event, the in-
direct effect of age is thus equal to the indirect effect of acetylcholinesterase
multiplied by the direct effect of age on acetylcholinesterase. Since the latter
effect is negative and not changing much in time, the two indirect effects
have a similar shape, only with different signs.

Age is working both directly and indirectly on dN(t). Since the sign of
the direct effect (Figure 8) and the indirect effect are identical, the media-
tion proportion (proportion of total effect being indirect) can be calculated.
Figure 10 shows that the mediation proportion is small. It seems to be
largest during the first year, but this might be caused by noise. As we no-
ticed above, after one year the indirect effect might no longer be positive,
and this also is the pattern for the mediation proportion.

4 Discussion

We have in this paper proposed a dynamic graphical model combining the
additive hazard model and classical path analysis. At each time of event we
fit a path analysis model by ordinary least-squares for all regression models
but one: when dN(t) is the dependent variable, we fit the additive hazard
model.

Instead of estimating the effect of e.g. treatment by simply removing
the internal covariates from the regression analysis, we want to understand
how treatment effect is related to the intermediate variables. Dynamic path
analysis is a way of doing this, since we decompose the total effect into direct
and indirect effects. This decomposition has the advantage that we can see
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to what extent the effect works directly and how much and in what ways
the effect is working indirectly. This enables us to better understand the
mechanisms involved in the processes.

Our analysis shows clearly how the treatment effect is mediated through
a transient effect on prothrombine. Hence, a more detailed picture emerges
than one would usually have in survival analysis. One gets a joint picture
of the development of prothrombine and survival, including the effect of
treatment. In the same manner we have seen that baseline prothrombin and
sex is working indirectly through current prothrombin and inflammation
respectively. Age is both working directly as well as indirectly along the
path age-acetylcholinesterase-current prothrombin.

We have used an identical path analysis model throughout the entire ob-
servation period. As stated in Section 3.4, this is not a requirement for using
dynamic path analysis. A thorough investigation of the bootstrap confidence
intervals of different models, shows that acetylcholinesterase ceases to have
an effect on current prothrombin one years after randomization (Figure 7).
Then, after another two years, treatment also ceases to have an effect. A
more accurate cumulative effect estimator would then be to use these three
models at the three intervals in question. As described at the end of Sec-
tion 3.4, this would just mean that some terms in e.g. (15) become zero for
some times of event. Nevertheless, for simplicity we have kept the model of
Figure 5 throughout the whole observation period. The choice of model at
each time of event is an interesting topic for further research.
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Figure 1: Cumulative regression functions estimates of treatment with 95%
pointwise confidence intervals obtained by the standard martingale based
method (splus-function aareg). The effect of treatment in the model with
sex, age, treatment, acetylcholinesterase, inflammation, and baseline pro-
thrombin (upper panel), and the effect of treatment when also current pro-
thrombin is included in the model (lower panel).
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x4 = acetylcholinesterase

z(t) = current

x5 = inflammation

prothrombin

x; = baseline

prothrombin

Figure 2: Directed acyclic graph (DAG) of one possible model of the liver
cirrhosis data.
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Figure 3: Block representation of path diagram of Figure 2.
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Figure 4: Block representation of a path model resembling that of Figure 3
but where the block of fixed covariates has been divided into a block of sex
and age, and a block of treatment, acetylcholinesterase, inflammation, and
baseline prothrombin. For treatment, the parameter v, , is known to be
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Figure 5: The path model best fitting the data.
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Figure 6: The estimated direct effects (regression functions) of the block 2
regressions: the effect of age on acetylcholinesterase (the left panel) and
the effect of sex on inflammation (the right panel). Estimates with 95%
bootstrap percentile pointwise confidence intervals, based on 500 bootstrap
replications.
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Figure 7: The estimated direct effects (regression functions) of the block 3
regressions: the effect of acetylcholinesterase, baseline prothrombin and
treatment on current prothrombin. Estimates with 95% bootstrap percentile
pointwise confidence intervals based on 500 bootstrap replications.
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Figure 8: The estimated cumulative direct effects (cumulative regression
functions) of the block 4 regressions: the effect of age, inflammation and
prothrombin on dN (t). Estimates with 95% bootstrap percentile pointwise
confidence intervals, based on 500 bootstrap replications.
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Figure 9: The estimated cumulative indirect effects on dN(t) using the
model of Figure 5: the effect of treatment through current prothrombin
(the upper left panel), baseline prothrombin through current prothrombin
(the upper right panel), acetylcholinesterase through current prothrombin
(middle left panel), sex through inflammation (the middle right panel) and
age through acetylcholinesterase and current prothrombin (the lower left
panel). Estimates with 95% bootstrap percentile pointwise confidence inter-
vals, based on 500 bootstrap replications.
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Figure 10: The mediation proportion (proportion of total effect working
indirectly) of age on dN(t). Estimates with 95% bootstrap percentile confi-
dence interval, based on 500 bootstrap replications.
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